Traffic Sign Detection Algorithm Based on Improved Yolox

Authors

  • Teng Xu School of Computer Science and Software Engineering, University of Science and Technology Liaoning, 114051 Anshan, Liaoning, China
  • Ling Ren School of Innovation and entrepreneurship, University of Science and Technology Liaoning, 114051 Anshan, Liao-ning, China
  • Tian-Wei Shi School of Computer Science and Software Engineering, University of Science and Technology Liaoning, 114051 Anshan, Liaoning, China
  • Yuan Gao School of Computer Science and Software Engineering, University of Science and Technology Liaoning, 114051 Anshan, Liaoning, China
  • Jian-Bang Ding School of Computer Science and Software Engineering, University of Science and Technology Liaoning, 114051 Anshan, Liaoning, China
  • Rong-Chen Jin School of Computer Science and Software Engineering, University of Science and Technology Liaoning, 114051 Anshan, Liaoning, China

DOI:

https://doi.org/10.5755/j01.itc.52.4.34039

Keywords:

Traffic sign detection, Feature fusion, PVF-YOLO algorithm, Traffic sign Data enhancement, Gradient optimization

Abstract

This paper proposes a novel PVF-YOLO model to extract the multi-scale traffic sign features more effectively during car driving. Firstly, the original convolution module is replaced with the Omni-Dimensional convolution (ODconv) and the feature information obtained from the shallow feature layer is incorporated into the network. Secondly, this paper proposes a parallel structure block module for capturing multi-scale features. This module uses the Large Kernel Attention (LKA) and Visual Multilayer Perceptron (Visual MLP) to capture the information generated by the network model. It enhances the representation ability of feature maps. Next, in the process of training, the gradient concentration algorithm is used to optimize the initial Stochastic Gradient Descent (SGD). Under the condition of real-time detection, it improves the detection accuracy. Finally, to improve the robustness of the model, this paper conducts extensive experiments. Tsinghua-Tencent 100K (TT100K), Changsha University of Science and Technology CCTSDB (CSUST Chinese Traffic Sign Detection Benchmark) are used as the training data set. It verifies that the PVF-YOLO method proposed in this paper enhances the detection ability of traffic signs of different scales, and the detection speed and accuracy are better than the original model.

Downloads

Published

2023-12-22

Issue

Section

Articles