
Information Technology and Control 2023/4/52966

Traffic Sign Detection Algorithm 
Based on Improved Yolox

ITC 4/52
Information Technology  
and Control
Vol. 52 / No. 4 / 2023
pp. 966-983
DOI 10.5755/j01.itc.52.4.34039

Traffic Sign Detection Algorithm Based on Improved Yolox

Received 2023/05/05 Accepted after revision 2023/09/30

HOW TO CITE: Xu, T., Ren, L., Shi, T.-W., Gao, Y., Ding, J.-B., Jin, R.-C. (2023). Traffic Sign Detection 
Algorithm Based on Improved Yolox. Information Technology and Control, 52(4), 966-983. https://
doi.org/10.5755/j01.itc.52.4.34039

Teng Xu
School of Computer Science and Software Engineering, University of Science and Technology Liaoning,  
114051 Anshan, Liaoning, China; e-mail: 1220175209@qq.com

Ling Ren
School of Innovation and entrepreneurship, University of Science and Technology Liaoning,  
114051 Anshan, Liao-ning, China; e-mail:176878392@qq.com

Tian-Wei Shi
School of Computer Science and Software Engineering, University of Science and Technology Liaoning,  
114051 Anshan, Liaoning, China; e-mail: tianweiabbcc@163.com

Yuan Gao, Jian-Bang Ding, Rong-Chen Jin
School of Computer Science and Software Engineering, University of Science and Technology Liaoning,  
114051 Anshan, Liaoning, China

Corresponding author: 176878392@qq.com

This paper proposes a novel PVF-YOLO model to extract the multi-scale traffic sign features more effectively 
during car driving. Firstly, the original convolution module is replaced with the Omni-Dimensional convolution 
(ODconv) and the feature information obtained from the shallow feature layer is incorporated into the network. 
Secondly, this paper proposes a parallel structure block module for capturing multi-scale features. This module 
uses the Large Kernel Attention (LKA) and Visual Multilayer Perceptron (Visual MLP) to capture the informa-
tion generated by the network model. It enhances the representation ability of feature maps. Next, in the process 
of training, the gradient concentration algorithm is used to optimize the initial Stochastic Gradient Descent 
(SGD). Under the condition of real-time detection, it improves the detection accuracy. Finally, to improve the ro-
bustness of the model, this paper conducts extensive experiments. Tsinghua-Tencent 100K (TT100K), Changsha 
University of Science and Technology CCTSDB (CSUST Chinese Traffic Sign Detection Benchmark) are used as 
the training data set. It verifies that the PVF-YOLO method proposed in this paper enhances the detection ability 
of traffic signs of different scales, and the detection speed and accuracy are better than the original model.
KEYWORDS: Traffic sign detection, Feature fusion, PVF-YOLO algorithm, Traffic sign Data enhancement, 
Gradient optimization.
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1. Introduction
In recent years, intelligent driving has garnered con-
siderable attention, and the automatic detection of 
traffic signs has emerged as prominent research focus 
both domestically and internationally. Traffic sign de-
tection is a critical task in intelligent driving systems, 
as it involves accurate identification of the spatial po-
sition and category of traffic signs on the road ahead, 
enabling appropriate responses from drivers or cen-
tral control platforms [9]. Although intelligent driv-
ing technology has matured, the occurrence of traffic 
accidents due to incorrect traffic sign recognition 
continues to pose a safety risk for road users. 
In the past, traffic sign detection methods relied on 
template matching, which entailed utilizing pre-de-
tected images to find matching targets in templates 
and subsequently annotating their coordinate posi-
tions [19]. These template-based recognition meth-
ods exhibit limited robustness and frequently falter 
in cases of image distortion or defects. 
With the evolution of machine learning, algorithms 
that integrate feature extraction and machine learn-
ing have gained prominence. Although convention-
al two-stage detectors like Faster R-CNN [15] and 
YOLO [14] have demonstrated satisfactory results 
within experimental environments, their practical 
applications still pose challenges. The key issues in 
traffic sign detection revolve around ensuring both 
detection speed and accuracy. Conventional gradi-
ent optimizers encounter difficulties in enhancing 
training accuracy. In real-world scenarios, challeng-
ing  weather conditions and rapid changes in traffic 
sign features can have a negative impact on the per-
formance of the detector. The pursuit of real-time 
object detection, without compromising accuracy, 
has emerged as a significant hurdle in this domain. 
In light of these challenges, this paper proposes the 
PVF-YOLO object detection network, presenting the 
benefits of superior detection accuracy and fast rec-
ognition. Specifically, the contributions outlined in 
this paper are as follows: 
1 Incorporating the shallow feature layer into the 

neck of the network and replacing the original 
convolution by Omni-Dimensional convolution 
(ODconv) to extract information from the shallow 
feature layer of the network.

2 Introducing a novel parallel visual feature module 
designed to extract deep abstract feature informa-
tion. This module adeptly captures both global and 
local features of the target object, seamlessly inte-
grating into the architecture of the network.

3 Drawing inspiration from gradient centralization, 
experimental updates have been made to the gra-
dient optimizer of the YOLOX network, leading to 
a significant enhancement in detection accuracy.

The remainder of this paper is organized as follows: 
Section 2 delves into the discussion of related work, 
Section 3 elucidates the methodology employed, Sec-
tion 4 outlines the conducted experiments, and final-
ly, Section 5 presents the conclusions derived from 
the study.

2. Related Works
2.1. Deep Learning Based Traffic Sign 
Recognition Algorithm
Deep learning has powerful feature learning capabil-
ities. Deep Convolutional Neural Networks (CNNs) 
do not require manual feature design; they perform 
supervised learning on input model images, complet-
ing feature extraction and classification with higher 
recognition rates than traditional algorithms such as 
AdaBoost and SVM.
Traffic sign detection based on deep learning typ-
ically uses CNNs to extract features from images. 
Object detection is then executed based on the ob-
tained image features. The successful application of 
convolutional neural networks demonstrates their 
extraordinary potential [12]. Ciresan et al. [4] achieved 
a remarkable 99.46% accuracy on the GTSRB dataset 
using multi-column deep neural networks. Howev-
er, the computational cost of this model is high, as it 
requires a large number of multiplication operations 
on hardware, and the efficiency of the activation func-
tions used is also low. To alleviate the computational 
burden, Aghdam et al. [1] opted for the Rectified Linear 
Unit (ReLU) activation function and divided the two 
intermediate convolutional pooling layers into two 
groups, thereby halving the number of parameters 
in these layers. This streamlined model eliminates 



Information Technology and Control 2023/4/52968

redundant neural network parameters, resulting in 
a recognition rate of 99.51%. The introduction of the 
YOLO series of single-stage object detection models 
has greatly advanced traffic sign recognition. Zhang et 
al.  [25] proposed the CCTSDB dataset and improved 
the number of convolutional layers in the YOLOv2 
network to better adapt to traffic signs. Zheng et al. 
[26] integrated YOLOv4-tiny into a low-cost embed-
ded system. Efficient real-time target detection was 
achieved by thermal imaging capture via a camera. 
Wang et al. [20] proposed an improved Feature Pyra-
mid model based on YOLOv5, which improves the de-
tection accuracy of the model by utilizing an adaptive 
attention module and feature enhancement module 
while maintaining real-time detection.  Recent re-
search has shown that for single-stage object detec-
tion networks, the feature fusion stage is crucial to the 
results. Tan et al. [18] introduced learnable weights to 
adjust the features of different inputs, while employ-
ing bidirectional fusion to improve detection accura-
cy and efficiency. Zhu et al. [28] used adaptive attention 
modules and feature enhancement modules to reduce 
information loss during the feature map generation 
process. A multi-scale transformer with dual-chan-
nel representation was designed by Zheng et al. [27]. 
By introducing multiscale analysis into the model, the 
form the tighter decision boundary.

2.2. Traffic Sign Dataset
Innovation in autonomous driving algorithms relies 
on reliable traffic sign datasets. Therefore, the com-
prehensiveness of datasets is crucial as a primary fac-
tor affecting safe driving. To promote research in traf-
fic sign detection, research institutions worldwide 
have compiled traffic sign databases, which serve as 
fundamental support for evaluating and comparing 
the effectiveness of various traffic sign recognition 
algorithms. In recent years, large-scale traffic sign da-
tabases have been created, as shown in Table 1, pro-
viding a foundation for researchers to develop new 
algorithms. These publicly available databases con-
tain various traffic sign samples captured by cameras 
under various occlusion conditions, with sign shapes 
reflecting the diversity of real-world scenarios.
Although most datasets contain traffic signs of differ-
ent shapes and sizes, they overlook traffic signs col-
lected under harsh weather conditions. Guo et al. [7] 
argue that adverse weather can have detrimental ef-

Table 1
Published traffic sign datasets

Dataset Applications Number Categories Country

GTSRB Identification 51839 43 Germany

GTSDB Detection 900 43 Germany

BTSD Detection 9006 62 Belgium

LISA Detection+ 
Identification

6610 47 America

CCTSDB Detection+ 
Identification

17856 3 China

TT100K Detection+ 
Identification

10000 45 China

GLARE Detection 2198 47 America

fects on traffic sign recognition. Therefore, creating a 
dataset that includes traffic signs under harsh weath-
er conditions is particularly important. 
GLARE is the first dataset containing traffic signs un-
der bright lighting conditions. When testing models 
using datasets with strong light backgrounds, detec-
tion accuracy is significantly lower than when using 
regular datasets. Thus, it is especially important to 
use datasets containing traffic signs under adverse 
weather conditions. Harsh environments, such as 
heavy rain, snow, fog, or extreme lighting conditions, 
are part of real-world driving scenarios. Ignoring 
these environments in data collection leads to an in-
complete representation of the challenges that au-
tonomous vehicles and traffic management systems 
might face in practical situations.      

3. Methodology
3.1. Architecture
As the latest model of MEGVII technology, YOLOX 
[7] has high accuracy, fast detection speed and easy 
to deploy. YOLOX has different versions, such as 
YOLOX-S, YOLOX-M, and YOLOX-L. This paper 
uses the YOLOX-S model as the improved baseline. 
Because of its minimal memory footprint, it has the 
potential for actual deployment in vehicles. YOLOX 
uses Cross Stage Partial Network (CSPNet) as the 
backbone network as shown in Figure 1. CSP is used 
to segment input data and connect it through multiple 
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Figure 1
Cross Stage Partial Network
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when updating the gradient weights. 
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to add more contextual information to the feature graph to help 
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module of YOLOX-S uses Path Aggregation Feature Pyramid 
Network (PAFPN) structure to extract features from multiple 
feature maps at different scales and aggregate them to improve 
the network’s understanding of image content. This method 
integrates high and low level semantic information, enhances 
feature representation ability, provides more effective 
information for network output and improves network 
performance. In addition, the decoupling detection head is used 
to solve the classification and regression conflict problems in the 
process of object detection. The model will also compare the 
overlapping areas between the prior box and the real box to 
determine whether the sample in the box is a positive/negative 
sample. YOLOX introduces an adaptive anchor generation 
mechanism that dynamically adjusts anchor scales to better 
match the distribution of object sizes in the dataset. This 
adaptive approach optimizes anchor selection and enhances 
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the real box to determine whether the sample in 
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distributions. 
The overall architecture of the PVF-YOLO pro-
posed is shown in Figure 2. The red positions are 
the innovations proposed in this paper.  ODConv 
is added to the Backbone and PVF block is added 
to the Neck of the model.
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In comparison to the linear weights of classical convolution, 
nonlinear scalars allow for a more comprehensive optimization of 
the network output [2]. When compared to static convolution 
linear function, ODconv evidently possesses a stronger feature 
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(CNNs) while maintaining efficient inference. The ODconv and 
conventional convolution are, respectively, defined as shown 
in Equations (2)-(3). 
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relation of the convolution kernel more comprehen-
sively. Through the aggregation of multiple convolu-
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is enhanced without increasing the number of layers. 
Experimental results demonstrate that ODconv can 
enhance the feature learning ability of the model [12]. 
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where β is the activation function, n is the number of 
experts, and Ki (i ≤ n) is the convolution kernel. Com-
paring (2) and (3) reveals that Odconv entails the 
same computational complexity as the conventional 
static convolution. However, since Odconv only com-
putes complex convolution once, it is notably faster.
After optimizing the network output with Odconv, the 
propagation path of eigenvalues of the network is fur-
ther updated to extract the previous shallow features. 
Through slicing, one-step convolution, and one-step 
CSP, the YOLOX-S network obtains the shallow fea-
ture layer F1. This layer encompasses more original 
and fuzzy feature information, possesses a smaller 
sensitivity field, and contains more global features 
and fine-grained information. However, the initial 
YOLOX-S network did not integrate the output of F1 
with the neck network, resulting in the loss of crucial 
information. During the downsampling process, the 
receptive field for small objects continually expands, 
leading to subpar performance in capturing detail 
features and detecting small objects. Therefore, this 
paper establishes a connection between the shallow 
feature layer F1 and the neck network, thus enabling 
fusion of the shallow features captured by the model. 
Denote the generated feature mapping as Mk. Its fea-
ture map at position (©, j) is represented as ©. This 
classification is labeled as C. Following further pooling 
of the resultant feature maps, a linear transformation 
is applied based on the feature weight of each class, re-
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sulting in the feature map denoted as WC
k. The weight 

AC of this classification is derived as Equation (4):

Comparing (2) and (3) reveals that Odconv entails the same 
computational complexity as the conventional static 
convolution. However, since Odconv only computes 
complex convolution once, it is notably faster. 
After optimizing the network output with Odconv, the 
propagation path of eigenvalues of the network is further updated 
to extract the previous shallow features. Through slicing, one-step 
convolution, and one-step CSP, the YOLOX-S network obtains 
the shallow feature layer F1. This layer encompasses more 
original and fuzzy feature information, possesses a smaller 
sensitivity field, and contains more global features and fine-
grained information. However, the initial YOLOX-S network did 
not integrate the output of F1 with the neck network, resulting in 
the loss of crucial information. During the downsampling process, 
the receptive field for small objects continually expands, leading 
to subpar performance in capturing detail features and detecting 
small objects. Therefore, this paper establishes a connection 
between the shallow feature layer F1 and the neck network, thus 
enabling fusion of the shallow features captured by the model. 
Denote the generated feature mapping as Mk. Its feature map at 
position (©, j) is represented as ©. This classification is labeled 
as C. Following further pooling of the resultant feature maps, a 
linear transformation is applied based on the feature weight of 
each class, resulting in the feature map denoted as Wc

k . The 
weight Ac of this classification is derived as Equation (4): 

 AC=∑ Wc
k

k
1
z
�∑ ∑ ©i,j

k
ji �.                              (4) 

Regarding the classification weight Ac , when the small-size 
target feature information conveyed by the shallow feature layer 
is disregarded, ©  diminishes, leading to a corresponding 
reduction in the classification weight. Consequently, the model 
learns fewer features for that specific class, thus impacting the 
detection of small-size targets. To provide an intuitive 
explanation of this process, this paper employs Gradient-
weighted Class Activation Mapping (Grad-CAM) to study the 
focus area of the model as depicted in Figure 4. Grad-CAM [17] 
is a gradient-based visualization technique for understanding the 
region of interest (ROI) within deep neural networks, particularly 
in image classification tasks. Grad-CAM assigns weights to 
detection classifications and generates heatmaps based on these 
weights. In these heat maps, the darker the color of the region, the 
more pronounced the detection capability of the model for that 
region. 
 
Figure 4 
Comparison of feature extraction effects. (A)(D) is the original 
image, (B)(E) shows the effect of the original YOLOX network 
model, and (C)(F) shows the feature extraction effect after the 
fusion of the shallow feature layer F1 and the neck network. On 

the basis of retaining shallow features, the improved network 
updates the acquired feature map through weight adjustment 
during backpropagation, thereby enhancing the detection of 
distant traffic signs. 

 
 
In this paper, the shallow and deep feature layers of the path 
convergence network (PANet) are fused. This enables the model 
to transfer strong location information and edge feature details 
from the shallow layer to the deep semantic layer, enhancing 
gradient information and thereby improving target detection 
performance. 
 
3.2.2 Parallel Visual Feature Block 
As the network deepens, the feature map becomes smaller and 
contains more abstract and high-level semantic information. 
However, the upsampling of feature information by the 
maximum pooling layer might lead to the loss of valuable spatial 
and semantic information within the feature map. Therefore, it is 
crucial to retain both spatial and semantic information during the 
design of deep neural networks. During vehicle operation, the 
object scale of traffic sign detection varies, which can 
significantly impact the performance of deep learning models. 
Rapid changes in traffic sign features can cause the loss of 
semantic information, disconnecting the relationship between 
feature information and image content. The complexity of 
convolutional neural networks is influenced by various factors 
like layer count, filters, and input. While increasing network 
complexity can improve feature extraction and training 
performance, it also raises the risks of overfitting and higher 
computational costs. Hence, striking the right balance between 
complexity, accuracy, and efficiency is pivotal for designing 
effective convolutional neural networks. 
To capture abstract information within the deep layers of the 
model, this paper introduces the PVF module into the deep layer 
of the neck network. The abstract feature maps generated by F3 
and F4 layers are fed into the PVF module. The deep features 
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Regarding the classification weight AC, when the small-
size target feature information conveyed by the shal-
low feature layer is disregarded, © diminishes, lead-
ing to a corresponding reduction in the classification 
weight. Consequently, the model learns fewer features 
for that specific class, thus impacting the detection of 
small-size targets. To provide an intuitive explanation 
of this process, this paper employs Gradient-weighted 
Class Activation Mapping (Grad-CAM) to study the 
focus area of the model as depicted in Figure 4. Grad-
CAM [17] is a gradient-based visualization technique 
for understanding the region of interest (ROI) within 
deep neural networks, particularly in image classifi-
cation tasks. Grad-CAM assigns weights to detection 
classifications and generates heatmaps based on these 
weights. In these heat maps, the darker the color of the 
region, the more pronounced the detection capability 
of the model for that region.
In this paper, the shallow and deep feature layers of 
the path convergence network (PANet) are fused. 

Figure 4
Comparison of feature extraction effects. (A)(D) is the 
original image, (B)(E) shows the effect of the original 
YOLOX network model, and (C)(F) shows the feature 
extraction effect after the fusion of the shallow feature layer 
F1 and the neck network. On the basis of retaining shallow 
features, the improved network updates the acquired feature 
map through weight adjustment during backpropagation, 
thereby enhancing the detection of distant traffic signs
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computational complexity as the conventional static 
convolution. However, since Odconv only computes 
complex convolution once, it is notably faster. 
After optimizing the network output with Odconv, the 
propagation path of eigenvalues of the network is further updated 
to extract the previous shallow features. Through slicing, one-step 
convolution, and one-step CSP, the YOLOX-S network obtains 
the shallow feature layer F1. This layer encompasses more 
original and fuzzy feature information, possesses a smaller 
sensitivity field, and contains more global features and fine-
grained information. However, the initial YOLOX-S network did 
not integrate the output of F1 with the neck network, resulting in 
the loss of crucial information. During the downsampling process, 
the receptive field for small objects continually expands, leading 
to subpar performance in capturing detail features and detecting 
small objects. Therefore, this paper establishes a connection 
between the shallow feature layer F1 and the neck network, thus 
enabling fusion of the shallow features captured by the model. 
Denote the generated feature mapping as Mk. Its feature map at 
position (©, j) is represented as ©. This classification is labeled 
as C. Following further pooling of the resultant feature maps, a 
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each class, resulting in the feature map denoted as Wc
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Regarding the classification weight Ac , when the small-size 
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learns fewer features for that specific class, thus impacting the 
detection of small-size targets. To provide an intuitive 
explanation of this process, this paper employs Gradient-
weighted Class Activation Mapping (Grad-CAM) to study the 
focus area of the model as depicted in Figure 4. Grad-CAM [17] 
is a gradient-based visualization technique for understanding the 
region of interest (ROI) within deep neural networks, particularly 
in image classification tasks. Grad-CAM assigns weights to 
detection classifications and generates heatmaps based on these 
weights. In these heat maps, the darker the color of the region, the 
more pronounced the detection capability of the model for that 
region. 
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This enables the model to transfer strong location in-
formation and edge feature details from the shallow 
layer to the deep semantic layer, enhancing gradient 
information and thereby improving target detection 
performance.

3.2.2. Parallel Visual Feature Block
As the network deepens, the feature map becomes 
smaller and contains more abstract and high-level 
semantic information. However, the upsampling of 
feature information by the maximum pooling layer 
might lead to the loss of valuable spatial and seman-
tic information within the feature map. Therefore, it 
is crucial to retain both spatial and semantic infor-
mation during the design of deep neural networks. 
During vehicle operation, the object scale of traffic 
sign detection varies, which can significantly im-
pact the performance of deep learning models. Rapid 
changes in traffic sign features can cause the loss of 
semantic information, disconnecting the relationship 
between feature information and image content. The 
complexity of convolutional neural networks is influ-
enced by various factors like layer count, filters, and 
input. While increasing network complexity can im-
prove feature extraction and training performance, 
it also raises the risks of overfitting and higher com-
putational costs. Hence, striking the right balance be-
tween complexity, accuracy, and efficiency is pivotal 
for designing effective convolutional neural networks.
To capture abstract information within the deep lay-
ers of the model, this paper introduces the PVF mod-
ule into the deep layer of the neck network. The ab-
stract feature maps generated by F3 and F4 layers are 
fed into the PVF module. The deep features produced 
by PVF are then combined with the shallow features 
from ODconv, and the remaining network layers are 
adjusted using this merged multi-level feature set. 
The PVF module can capture both global and local 
features, seamlessly merging them into a cohesive 
feature representation. Initially, multi-scale features 
are extracted from the modified Backbone feature lay-
er. Then, the complementary large kernel attention 
module and the visual Multilayer Perceptron (MLP) 
module are applied to capture global and local fea-
tures, respectively, as illustrated in Figure 5. 
The large core attention module calculates the chan-
nel attention graph for the entire feature graph, em-
phasizing informative features while suppressing 
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noise. The Visual MLP module is a new Transform-
er architecture that incorporates an enhanced depth 
separable convolutional layer and a channel MLP 
layer. Finally, the feature graphs obtained from both 
modules are concatenated along the channel dimen-
sion to create a unified feature graph, which serves as 
the output of the PVF module. This process can be ex-
pressed as in Equation (5): 
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default value of 0, which concatenates two vectors along the first 
dimension. Given the different tensor dimensions of the outputs 
of the PVF and Vision MLP modes, concatenation is required. 
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By avoiding complex operations, the LKA module can decrease 
memory usage and lower computational complexity. 
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By avoiding complex operations, the LKA module can decrease 
memory usage and lower computational complexity. 
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where A1 is the feature map, p∈R is the input feature. For 
self-attention, Q,K,V are defined to represent query vec-
tors, key vectors, and value vectors, where feature map 
Attentionl  can be represented as in Equations (7)-(8):
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produced by PVF are then combined with the shallow features 
from ODconv, and the remaining network layers are adjusted 
using this merged multi-level feature set. The PVF module can 
capture both global and local features, seamlessly merging them 
into a cohesive feature representation. Initially, multi-scale 
features are extracted from the modified Backbone feature layer. 
Then, the complementary large kernel attention module and the 
visual Multilayer Perceptron (MLP) module are applied to 
capture global and local features, respectively, as illustrated in 
Figure 5.  
The large core attention module calculates the channel attention 
graph for the entire feature graph, emphasizing informative 
features while suppressing noise. The Visual MLP module is a 
new Transformer architecture that incorporates an enhanced 
depth separable convolutional layer and a channel MLP layer. 
Finally, the feature graphs obtained from both modules are 
concatenated along the channel dimension to create a unified 
feature graph, which serves as the output of the PVF module. This 
process can be expressed as in Equation (5):  

𝑂𝑂𝑂𝑂ut=torch.cat(LKAout,Visual Mlp out),                (5) 
Where torch.cat is used to concatenate multiple tensors along a 
specified dimension. The dim parameter is omitted, with the 
default value of 0, which concatenates two vectors along the first 
dimension. Given the different tensor dimensions of the outputs 
of the PVF and Vision MLP modes, concatenation is required. 
The resultant series feature map encompasses both global features 
and local details. Moreover, since each module only processes a 
subset of features, the use of parallel feature modules effectively 
reduces the computational cost and memory consumption of the 
PVF model.  
 
Figure 5  
General view of the PVF module. 
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The self-attention mechanism constitutes an adaptive selection 

process. A pivotal aspect of this mechanism involves generating 
a feature map that highlights the significance of various parts 
within the input. While the conventional self-attention 
mechanism can establish extensive dependencies, it is 
accompanied by high computational complexity due to the 
necessity of computing attention weights for every feature 
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By avoiding complex operations, the LKA module can 
decrease memory usage and lower computational 
complexity.
In Figure 7, a standard large nuclear convolution can 
be decomposed into deep convolution, deep dilation 
convolution and point convolution. 
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Large 5×5 convolution decomposed into 3×3 deep convolution, 
3×3 deep dilation convolution, and point convolution

In Figure 7, a standard large nuclear convolution can be decom-
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The LKA module effectively emulates the spatial and channel 
dependencies existing between various regions of an image, 
enabling adaptive adjustment of attention weights based on input 
features. This module processes high-resolution images by 
selectively aggregating information from distinct channels and 
spatial positions. Selective aggregation does not necessitate 
matrix multiplication across all feature vectors, thus sidestepping 
the computational expenses linked with high-resolution image 
processing. Consequently, it emerges as an effective model 
suitable for high resolution and multi-scale complex feature target 
detection. Incorporating the LKA module into the proposed PVF 
module permits the extraction of local feature information and the 
aggregation of long-distance dependencies through the utilization 
of spatial background information. This, in turn, provides a more 
refined attention guidance mechanism for the target detection 
model.  
 Viissuuaall MMllpp 
Vision MLP is a new module tailored for computer vision 
applications. The model architecture is illustrated in Figure 8. It 
comprises an optimized depth separable convolution and a 
channel MLP. Within this setup, the attention-based module is 
replaced by the channel MLP, which takes the output derived 
from the depth separable convolution as input. The optimized 
deep convolution in Vision MLP processes the input feature 
graph, generating a set of channel features fed into the channel 
MLP. To enhance model generalization and robustness, drop path 
regularization is applied after deep separable convolution and 
channel MLP. 
Based on research by Chollet et al. [3], the use of nonlinear 
activation functions in deep separable convolution results in the 
loss of deep features. While spatial convolution entails linear 
operation via the convolution kernel on input images, the input 
information often lacks linear separability. Therefore, applying 
nonlinear activation functions to spatial convolution enhances 
model expressiveness. However, both separable convolution and 
point convolution within deep separable convolution involve 
nonlinear operations. Inserting additional nonlinear activation 

functions causes feature information loss and overfitting. 
Therefore, the nonlinear activation function between separable 
convolution and point convolution in depth separable convolution 
is omitted. YOLOX employs the silu activation function 
expressed as follows, in Equation (9): 

f(x)=x* 1
�1+exp(-x)�

 .                                 (9) 

To improve the generalization and robustness, drop path 
regularization [6] is introduced after deep separable convolution 
and channel MLP. During training, it randomly eliminates entire 
paths within the network to effectively prevent overfitting. This 
path elimination operation can be perceived as the structural 
transformation of the network model. Discarded paths are 
randomly reselected in the ensuing training iterations, rendering 
the network structure more diverse [24]. 
To capture long-term dependencies and global relationships, as 
well as spatial relationships among different images, the channel 
MLP serves as the output of this module. The channel MLP 
adaptively processes image size variations. Each color channel 
corresponds to an MLP layer, enabling feature extraction. The 
channel MLP treats each channel in the input feature graph as an 
independent vector, amalgamating and transforming them 
through the fully connected layer to yield new feature 
representations. The output of a single vector xi can be expressed 
as Equation (10): 
MLP(x1)=Leaky Relu�W1

i *X1+b1
i �,                                       (10) 

where Leaky Relu represents the activation function, W1
i  is the 

learnable weight, and b1
i  denotes the bias. The output of this 

module can be obtained by combining the acquired i output 
vectors as Equation (11): 
Visual Mlp out=Drp�cat�MLP(x1),MLP(x2),…MLP(xi)��, 

(11) 
where Drp signifies drop path.  
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 3.2.3 Gradient Centralization Optimization 
Modifying the gradient optimization algorithm can impact model 
performance [23]. Unlike conventional Batch Gradient Descent 
(BGD), Stochastic Gradient Descent (SGD) uses only one sample 
at a time to calculate the gradient and update the model 
parameters. Therefore, it offers advantages like reduced 
computational costs and storage requirements. In addition, SGD 
tends to converge more rapidly to locally optimal solutions and 
can manage non-convex objective functions. SGD is crucial in 
training autoencoders to learn basic signal properties from normal 
signals and minimize reconstruction errors. Optimizations using 
SGD and an entropy-based objective function during the training 
phase of the model can lead to better convergence results for the 
trained model [26]. However, using the SGD optimizer cannot 
resolve the gradient explosion problem due to network 
complexity. When the model backpropagates gradients, network 
updates with multiple hidden layers can become significantly 
slower than those with a single hidden layer, particularly for 
complex network architectures like YOLOX [11]. To address 
these challenges and taking inspiration from Yong et al., this paper 
introduces the innovative use of the gradient centralization 
algorithm to optimize YOLOX. 
Gradient Centralization is obtained by removing the gradient 
average of the weight vector from the standard gradient. For the 
standard convolution layer, it is assumed that the gradient 
∇P(Wi)  of the weight vector has been obtained by back 
propagation. Then the weight vector gradient ∇GCP(Wi) of the 
gradient concentration algorithm can be defined as Equation (12): 
∇PGC(Wi)=∇P(Wi)-μ,                              (12) 
where μ is the gradient mean of the weight vector. It can be de-
fined as Equation (13): 

μ= 1
k
∑ ∇P�Wi,j�k

j=1  (j=1,2,…,N).               (13) 

The steps for applying the algorithm to SGD are shown in 
the Algorithm 1. 

Algorithm1：Stochastic gradient descent using Gradi-
ent Centralization (SGDGC) 
Input: initial weight W0  , initial momentum m0 , mo-
mentum factor β, initial gradient g0, centralization gra-
dient gGC

0 , average value mg0.  
start： 
1.Initialisation i=0 
2.gGC

i =gi-mgi 
3. mi= βmi-1+(1-β)gGC

i  
4. Wi+1=Wi-mi 
5. i=i+1 
While step 1 

 
In the experiment, SGDGC is applied to the convolutional and 
fully connected layers in the YOLOX backbone network due to 
their output tensor dimension typically exceeding 3, which can 
potentially lead to gradient explosion.  

4. Experiment  
4.1 Datasets 
This experiment mainly uses two types of datasets: 1) the 
TT100K dataset, published by Tsinghua and Tencent; 2) the 
CCTSDB dataset, released by Changsha University of Technol-
ogy. The CCTSDB dataset includes images that have undergone 
data enhancement techniques, thereby expanding the scope and 
quality of the available data. By combining these datasets, this pa-
per aims to address a diverse spectrum of traffic sign detection 
challenges, providing a more comprehensive evaluation of algo-
rithm performance. The TT100K dataset comprises 10,000 high-
resolution traffic sign images captured in real-world environ-
ments. These images encompass a total of 30,000 instances of 
traffic signs with a resolution of 20482048. The dataset encom-
passes 128 distinct traffic sign categories, including but not lim-
ited to speed limit signs, prohibition signs, and road signs. To op-
timize network learning and mitigate the risk of overfitting, traffic 
sign classes with fewer than 100 instances were removed, ulti-
mately retaining 45 classes as shown in Figure 9. It is noteworthy 
that the absence of night time traffic sign images in TT100K re-
duces the generalization ability and robustness of the model. To 
compensate for this limitation, the experiment uses CCTSDB da-
taset, a trichotomous dataset classified by meaning as warning, 
mandatory, and prohibitory, as depicted in Figure 10. This dataset 
comprises 500 images of traffic signs captured under low-light 
conditions, enhancing the capacity of the model to detect signs in 
dark environments.  To increase the number of traffic sign images 

separable convolution as input. The optimized deep 
convolution in Vision MLP processes the input feature 
graph, generating a set of channel features fed into the 
channel MLP. To enhance model generalization and 
robustness, drop path regularization is applied after 
deep separable convolution and channel MLP.
Based on research by Chollet et al. [3], the use of non-
linear activation functions in deep separable convolu-
tion results in the loss of deep features. While spatial 
convolution entails linear operation via the convo-
lution kernel on input images, the input information 
often lacks linear separability. Therefore, applying 
nonlinear activation functions to spatial convolu-
tion enhances model expressiveness. However, both 
separable convolution and point convolution within 
deep separable convolution involve nonlinear opera-
tions. Inserting additional nonlinear activation func-
tions causes feature information loss and overfitting. 
Therefore, the nonlinear activation function between 
separable convolution and point convolution in depth 
separable convolution is omitted. YOLOX employs 
the silu activation function expressed as follows, in 
Equation (9):

In Figure 7, a standard large nuclear convolution can be decom-
posed into deep convolution, deep dilation convolution and point 
convolution.  
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and channel MLP. During training, it randomly eliminates entire 
paths within the network to effectively prevent overfitting. This 
path elimination operation can be perceived as the structural 
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randomly reselected in the ensuing training iterations, rendering 
the network structure more diverse [24]. 
To capture long-term dependencies and global relationships, as 
well as spatial relationships among different images, the channel 
MLP serves as the output of this module. The channel MLP 
adaptively processes image size variations. Each color channel 
corresponds to an MLP layer, enabling feature extraction. The 
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To improve the generalization and robustness, drop 
path regularization [6] is introduced after deep sep-
arable convolution and channel MLP. During train-
ing, it randomly eliminates entire paths within the 
network to effectively prevent overfitting. This path 
elimination operation can be perceived as the struc-
tural transformation of the network model. Discarded 
paths are randomly reselected in the ensuing training 
iterations, rendering the network structure more di-
verse [24].
To capture long-term dependencies and global rela-
tionships, as well as spatial relationships among dif-
ferent images, the channel MLP serves as the output 
of this module. The channel MLP adaptively processes 
image size variations. Each color channel corresponds 
to an MLP layer, enabling feature extraction. The chan-
nel MLP treats each channel in the input feature graph 
as an independent vector, amalgamating and trans-
forming them through the fully connected layer to yield 
new feature representations. The output of a single 
vector xi can be expressed as Equation (10):

In Figure 7, a standard large nuclear convolution can be decom-
posed into deep convolution, deep dilation convolution and point 
convolution.  
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Large 5×5 convolution decomposed into 3×3 deep convolution, 
3×3 deep dilation convolution, and point convolution. 
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3.2.3. Gradient Centralization Optimization
Modifying the gradient optimization algorithm can 
impact model performance [23]. Unlike conventional 
Batch Gradient Descent (BGD), Stochastic Gradient 
Descent (SGD) uses only one sample at a time to cal-
culate the gradient and update the model parameters. 
Therefore, it offers advantages like reduced compu-
tational costs and storage requirements. In addition, 
SGD tends to converge more rapidly to locally opti-
mal solutions and can manage non-convex objective 
functions. SGD is crucial in training autoencoders to 
learn basic signal properties from normal signals and 
minimize reconstruction errors. Optimizations using 
SGD and an entropy-based objective function during 
the training phase of the model can lead to better con-
vergence results for the trained model [26]. However, 

using the SGD optimizer cannot resolve the gradient 
explosion problem due to network complexity. When 
the model backpropagates gradients, network updates 
with multiple hidden layers can become significantly 
slower than those with a single hidden layer, particu-
larly for complex network architectures like YOLOX 
[11]. To address these challenges and taking inspira-
tion from Yong et al., this paper introduces the inno-
vative use of the gradient centralization algorithm to 
optimize YOLOX.
Gradient Centralization is obtained by removing 
the gradient average of the weight vector from the 
standard gradient. For the standard convolution 
layer, it is assumed that the gradient 𝛻P(Wi) of the 
weight vector has been obtained by back propaga-
tion. Then the weight vector gradient 𝛻GCP(Wi) of the 
gradient concentration algorithm can be defined as 
Equation (12):
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μ= 1
k
∑ ∇P�Wi,j�k

j=1  (j=1,2,…,N).               (13) 

The steps for applying the algorithm to SGD are shown in 
the Algorithm 1. 

Algorithm1：Stochastic gradient descent using Gradi-
ent Centralization (SGDGC) 
Input: initial weight W0  , initial momentum m0 , mo-
mentum factor β, initial gradient g0, centralization gra-
dient gGC

0 , average value mg0.  
start： 
1.Initialisation i=0 
2.gGC

i =gi-mgi 
3. mi= βmi-1+(1-β)gGC

i  
4. Wi+1=Wi-mi 
5. i=i+1 
While step 1 

 
In the experiment, SGDGC is applied to the convolutional and 
fully connected layers in the YOLOX backbone network due to 
their output tensor dimension typically exceeding 3, which can 
potentially lead to gradient explosion.  

4. Experiment  
4.1 Datasets 
This experiment mainly uses two types of datasets: 1) the 
TT100K dataset, published by Tsinghua and Tencent; 2) the 
CCTSDB dataset, released by Changsha University of Technol-
ogy. The CCTSDB dataset includes images that have undergone 
data enhancement techniques, thereby expanding the scope and 
quality of the available data. By combining these datasets, this pa-
per aims to address a diverse spectrum of traffic sign detection 
challenges, providing a more comprehensive evaluation of algo-
rithm performance. The TT100K dataset comprises 10,000 high-
resolution traffic sign images captured in real-world environ-
ments. These images encompass a total of 30,000 instances of 
traffic signs with a resolution of 20482048. The dataset encom-
passes 128 distinct traffic sign categories, including but not lim-
ited to speed limit signs, prohibition signs, and road signs. To op-
timize network learning and mitigate the risk of overfitting, traffic 
sign classes with fewer than 100 instances were removed, ulti-
mately retaining 45 classes as shown in Figure 9. It is noteworthy 
that the absence of night time traffic sign images in TT100K re-
duces the generalization ability and robustness of the model. To 
compensate for this limitation, the experiment uses CCTSDB da-
taset, a trichotomous dataset classified by meaning as warning, 
mandatory, and prohibitory, as depicted in Figure 10. This dataset 
comprises 500 images of traffic signs captured under low-light 
conditions, enhancing the capacity of the model to detect signs in 
dark environments.  To increase the number of traffic sign images 
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The steps for applying the algorithm to SGD are 
shown in the Algorithm 1.

Algorithm1: Stochastic gradient descent using Gradient 
Centralization (SGDGC)

Input: initial weight  W0, initial momentum m0, mo-
mentum factor β, initial gradient g0, centralization 
gradient g0

GC, average value mg0. 
start:
1. Initialisation i=0
2. g iGC= gi – mgi

3. mi = βmi-1 + (1 – β)g iGC 

4. Wi+1 = Wi – mi 
5. i=i+1
While step 1

In the experiment, SGDGC is applied to the convolu-
tional and fully connected layers in the YOLOX back-
bone network due to their output tensor dimension 
typically exceeding 3, which can potentially lead to 
gradient explosion. 
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4. Experiment 
4.1. Datasets
This experiment mainly uses two types of datasets: 
1) the TT100K dataset, published by Tsinghua and 
Tencent; 2) the CCTSDB dataset, released by Chang-
sha University of Technology. The CCTSDB dataset 
includes images that have undergone data enhance-
ment techniques, thereby expanding the scope and 
quality of the available data. By combining these 
datasets, this paper aims to address a diverse spec-
trum of traffic sign detection challenges, providing 
a more comprehensive evaluation of algorithm per-
formance. The TT100K dataset comprises 10,000 
high-resolution traffic sign images captured in re-
al-world environments. These images encompass a 
total of 30,000 instances of traffic signs with a reso-
lution of 2048×2048. The dataset encompasses 128 
distinct traffic sign categories, including but not lim-
ited to speed limit signs, prohibition signs, and road 
signs. To optimize network learning and mitigate the 
risk of overfitting, traffic sign classes with fewer than 
100 instances were removed, ultimately retaining 45 
classes as shown in Figure 9. It is noteworthy that the 
absence of night time traffic sign images in TT100K 
reduces the generalization ability and robustness 

Figure 9
The number of instances corresponding to each category in 
the TT100K dataset

captured in low-light conditions, imgaug was used to simulate im-
ages under various conditions such as snow, rain, and fog, as il-
lustrated in Figure 11. The images resulting from data augmenta-
tion maintain the same traffic signs as the original images. 
Through judicious data augmentation, this experiment seeks to 
bolster the robustness of the model against inclement weather  
conditions, as later experiments corroborate. 
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Figure 11 
Original images and data augmentation images. The original im-
ages are shown on the left and the data augmentation images are 
shown on the right. 

 

4.2 Experimental Setting 
The present study was carried out on an Ubuntu 18.04 operating 
system with hardware specifications including an i7-11700 CPU, 
80 GB of RAM, and a 3090 graphics card with 24 GB of RAM. 
YOLOX-S was selected as the baseline model for this experiment 
due to its relatively modest parameter count, improved accuracy 
compared to other versions of YOLOX, and its suitability for in-
dustrial deployment. The experimental settings are as follows: the 
input image resolution was set to 640640 pixels. Given the sub-
stantial number of images in the dataset, a batch size of 12 was 
utilized during the training process. Initial learning rate of 0.01 
and training momentum of 0.9 were specified, and the training 
process spanned 200 iterations. Both model width factor and 
depth factor were set to 1. The experiment incorporated a rotation 
angle of 10 and a translation range of 0.1. To comprehensively 
represent model training results, the validation of the model oc-
curred every ten rounds. 
 
4.3 Evaluation Indicator 
Experiment use the average detection accuracy (mAP@0.5) 
detection speed (fps) model size (Model) as the evaluation metric 
for the model in this experiment. Given that the focus of this 
experimental model is on traffic sign detection, the accuracy 
metrics employed are well-suited to effectively assess the 
recognition performance of the model. These metrics include 
recognition accuracy and localization accuracy, as well as 
inference performance. Such metrics are crucial in evaluating the 
ability of the model to identify and accurately locate objects 
within the vehicle environment.mAP@0.5 indicates the average 
accuracy when the IOU threshold is 0.5. Typically, the higher the 
value of mAP, the better the model is at detecting traffic signs. 
Whereas fps represents the number of frames per second that the 

of the model. To compensate for this limitation, the 
experiment uses CCTSDB dataset, a trichotomous 
dataset classified by meaning as warning, mandatory, 
and prohibitory, as depicted in Figure 10. This dataset 
comprises 500 images of traffic signs captured under 
low-light conditions, enhancing the capacity of the 
model to detect signs in dark environments.  To in-
crease the number of traffic sign images captured in 
low-light conditions, imgaug was used to simulate 
images under various conditions such as snow, rain, 
and fog, as illustrated in Figure 11. The images result-

Figure 10
Traffic sign classification map of CCTSDB dataset
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Original images and data augmentation images. The original im-
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ing from data augmentation maintain the same traffic 
signs as the original images. Through judicious data 
augmentation, this experiment seeks to bolster the 
robustness of the model against inclement weather  
conditions, as later experiments corroborate.

4.2. Experimental Setting
The present study was carried out on an Ubuntu 18.04 
operating system with hardware specifications in-
cluding an i7-11700 CPU, 80 GB of RAM, and a 3090 
graphics card with 24 GB of RAM. YOLOX-S was se-
lected as the baseline model for this experiment due 
to its relatively modest parameter count, improved 
accuracy compared to other versions of YOLOX, and 
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when fps is greater than 30, it can be considered as re-
al-time monitoring. In order to illustrate more clear-
ly the detection effectiveness of each model for three 
different sizes of targets, large, small and medium, the 
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though the proposed algorithm yields a larger model, it excels in 
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detection speed further accentuates its advantage. Experimental 
results of PVF-YOLO on the TT100K dataset are illustrated in 
Figure 12. For most categories, the model accurately detected the 
corresponding category names. While the proposed model 
exhibited some detection errors for small targets such as "p10", 
"pl30", and "pl40", overall, the detection outcomes for all targets 
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TP is the number of true cases, FP is the number of 
false positive cases and FN is the number of false neg-
ative cases. Precision indicates the number of posi-
tive samples in the predicted sample as a proportion 
of all actual positive samples, and Recall represents 
the number of positive samples in the predicted sam-
ple as a proportion of all actual positive samples.

4.4. Experimental Results and Analysis
To demonstrate the effectiveness of the proposed 
method, experiments were conducted on the TT100K 
dataset, and competing algorithms included Efficient-
det, Improved Faster R-CNN [6], YOLOv6 [12] and 
Improved YOLOv3 [21]. The evaluation of the compre-
hensive performance of the model employs mAP@0.5, 
fps, and model size, as presented in Table 2. In com-
parison to other competitive models, the improved 
algorithm achieves the best trade-off between accu-
racy and detection speed. Although Improved Faster 
R-CNN achieves the highest average detection accu-
racy, its two-stage detection approach is unsuitable for 
real-time traffic sign detection due to its slower detec-
tion speed. In contrast with advanced one-stage object 
detection algorithms such as YOLOv6-s and M-Yolo, 
though the proposed algorithm yields a larger model, it 
excels in the detection of small and large objects. More-
over, its higher detection speed further accentuates its 
advantage. Experimental results of PVF-YOLO on the 
TT100K dataset are illustrated in Figure 12. For most 
categories, the model accurately detected the corre-
sponding category names. While the proposed model 
exhibited some detection errors for small targets such 
as “p10”, “pl30”, and “pl40”, overall, the detection out-
comes for all targets were satisfactory.
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To evaluate the effectiveness of the PVF-YOLO algo-
rithm, real-world traffic signs were employed to test 
the capabilities of the model, as depicted in Figure 13. 
The captured images encompass both large and small 
traffic signs, effectively showcasing the detection abil-
ity of the proposed model. The experiment first gener-
ated the model’s regions of interest using Grad-CAM. 
The detection was then performed using YOLOv6, Im-
proved YOLOv3, and PVF-YOLO, respectively. The ob-
servation reveals that the other two models displayed 
instances of missed detection and false positives for 
traffic signs of diverse shapes. In contrast, the detec-
tion result of PVF-YOLO aligned seamlessly with the 
model’s regions of interest, successfully and accurately 
detecting each type of traffic signs.
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In this section, this paper conducts a series of ablation experi-
ments to investigate the impact of different components and strat-
egies on the performance of the proposed object detection frame-
work. The baseline configuration comprises YOLOX-S, utilizing 
SGD as the optimizer. The remaining hyperparameters of the 
model remain the same as in Section 4.2. This baseline configu-
ration serves as the starting point for the ablation study. The ex-
perimental results are presented in Table 3. First, when SGDGC 
is employed as the optimizer, it improves both the mAP@0.5 and 
fps of the model. Specifically, by subtracting the mean value from 
the gradient values, we effectively enhance the gradient propaga-
tion within the convolutional layer. The experiment visualizes the 
gradient values of the convolutional layers as depicted in Figure  
16. From the figure, it is evident that the generation of outliers is 
suppressed when SGDDC is used as the optimizer. Additionally, 
the extreme gradient values generated by backpropagation are re-
duced, diminishing the likelihood of exploding gradients. The 
training visualization parameters of PVF-YOLO are illustrated in 
Figure 15. The displayed metrics include mAP@0.5, precision, 
recall, and classification loss. Considering the varying sizes of 
traffic signs within the experimental dataset, multiple signs of dif-
ferent dimensions might appear in the same scene. Specifically, 
the sign information contained in each frame of the video may 
differ due to the changing speed of the car. This results in a non-

uniform feature scale of the target to be detected within adjacent 
frames in the dataset. Only by extracting both deep and shallow 
features can the complete evolution of feature information be per-
ceived. The experiments demonstrate the effectiveness of the pro-
posed model, and this comparison is presented in Figure 14 which 
illustrates the difference in accuracy between using the PVF block 
or ODConvs alone and using them in conjunction. It is worth not-
ing that since YOLOX-S defaults to turning off data augmenta-
tion for the last 15 epochs, a distinct inflection point becomes ap-
parent. 
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In this section, this paper conducts a series of abla-
tion experiments to investigate the impact of different 
components and strategies on the performance of the 
proposed object detection framework. The baseline 
configuration comprises YOLOX-S, utilizing SGD as 
the optimizer. The remaining hyperparameters of the 
model remain the same as in Section 4.2. This base-
line configuration serves as the starting point for the 
ablation study. The experimental results are present-
ed in Table 3. First, when SGDGC is employed as the 
optimizer, it improves both the mAP@0.5 and fps of 
the model. Specifically, by subtracting the mean value 
from the gradient values, we effectively enhance the 
gradient propagation within the convolutional layer. 
The experiment visualizes the gradient values of the 

Table 3 
Ablation experiments performed on CCTSDB

YOLOX-S (base line) SGDGC ODConv PVF block mAP@0.5 Model Fps

√ × × × 0.802 69M 59

√ √ × × 0.810 69M 64

√ √ √ × 0.822 73M 64

√ √ √ √ 0.848 80M 73
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convolutional layers as depicted in Figure 16. From 
the figure, it is evident that the generation of outliers 
is suppressed when SGDDC is used as the optimizer. 
Additionally, the extreme gradient values generat-

Figure 14
Ablation experiments
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ed by backpropagation are reduced, diminishing the 
likelihood of exploding gradients. The training visu-
alization parameters of PVF-YOLO are illustrated in 
Figure 15. The displayed metrics include mAP@0.5, 
precision, recall, and classification loss. Considering 
the varying sizes of traffic signs within the experi-
mental dataset, multiple signs of different dimen-
sions might appear in the same scene. Specifically, 
the sign information contained in each frame of the 
video may differ due to the changing speed of the car. 
This results in a non-uniform feature scale of the tar-
get to be detected within adjacent frames in the data-
set. Only by extracting both deep and shallow features 
can the complete evolution of feature information be 
perceived. The experiments demonstrate the effec-
tiveness of the proposed model, and this comparison 
is presented in Figure 14 which illustrates the dif-
ference in accuracy between using the PVF block or 
ODConvs alone and using them in conjunction. It is 
worth noting that since YOLOX-S defaults to turning 
off data augmentation for the last 15 epochs, a distinct 
inflection point becomes apparent.
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Figure 16 
Gradient data maps generated by the model at conv0, conv1, and conv2 layers by backpropagation. 
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The proposed model is applied in practice to detect results as 
shown in Figures 17-18. When compared with the original model, 
the proposed model successfully identifies small, medium, and 
large traffic signs in real traffic scenes with higher recognition ac-
curacy and almost no instances of missing or false detection. It 

also performs well in detecting targets against a night time back-
ground. These results visually showcase the advanced capabilities 
of the proposed model.

Figure 18 
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The proposed model is applied in practice to detect 
results as shown in Figures 17-18. When compared 
with the original model, the proposed model success-
fully identifies small, medium, and large traffic signs 
in real traffic scenes with higher recognition accuracy 
and almost no instances of missing or false detection. 
It also performs well in detecting targets against a 
night time background. These results visually show-
case the advanced capabilities of the proposed model.

5. Conclusion
To address the issue of scale changes in traffic signs 
during vehicle movement, this paper proposes the 
PVF-YOLO (parallel visual feature) model for ex-
tracting both deep and shallow features.
To optimize the YOLOX backbone network, the 
ODconv replaces the original convolution, and the 
shallow feature layer is integrated with the neck of 
the model. The objective is to extract more critical in-
formation and enhance model performance.
Using these optimization techniques, the YOLOX 
backbone network achieves higher accuracy rates in 
target detection tasks. In addition, a PVF module is 

Figure 18
Night time detection effect
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introduced to capture deep image feature maps. This 
module incorporates a large kernel attention module 
and a visual multilayer perceptron to effectively fuse 
local and global image features. This approach enables 
the parallel extraction of deep image feature maps, 
leading to improved image recognition accuracy.
This paper examines the impact of different mod-
el structures on task performance and compares the 
performance of convolutional layer models with vary-
ing depths against the original model. Experiments 
demonstrate a 2% increase in recognition accuracy 
for models with both shallow and deep convolutional 
layers. In addition, the influence of various optimizers 
on model performance is explored through the integra-
tion of gradient centralization into the original opti-
mizer. This integrated approach enhances the focus of 
the optimizer on gradient information and facilitates 
more efficient optimization of model parameters. Con-
sequently, this integration not only enhances model 
accuracy, but also accelerates the model iteration pro-
cess. Using an enhanced dataset, experimental results 
indicate that compared to the original YOLOX model, 
the proposed model achieves a 4% increase in accuracy 
and a 14 fps improvement in recognition speed. When 
compared to other mainstream detection models, this 
proposed model demonstrates significantly improved 
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detection accuracy for traffic targets of varying scales. 
These results confirm the efficacy of the proposed 
model in effectively addressing the challenges associ-
ated with traffic target detection tasks.

Appendix A
The dataset used in this paper can be found at：
TT100K
https://cg.cs.tsinghua.edu.cn/traffic-sign/

CCTSDB
https://github.com/csust7zhangjm/CCTSDB2021
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