An Additive FAHP based sentence score function for text summarization

Aysun Güran, Mitat Uysal, Yeliz Ekinci, Celal Barkan Güran


This study proposes a novel additive Fuzzy Analytical Hierarchy Process (FAHP) based sentence score function for Automatic Text summarization (ATS), which is a method to handle growing amounts of textual data. ATS aims to reduce the size of a text while covering the important points in the text. For this aim, this study uses some sentence features, combines these features by an additive score function using some specific weights and produces a sentence score function. The weights of the features are determined by FAHP - specifically Fuzzy Extend analysis (FEA)-; which allows the human involvement in the process, uses pairwise comparisons, addresses uncertainty and allows a hierarchy composed of main features and sub-features. The sentences are ranked according to their score functions values and the highest scored sentences are extracted to create summary documents. Performance evaluation is based on the sentence coverage among the summaries generated by human and the proposed method. In order to see the performance of the proposed system, two different Turkish datasets are used and as a performance measure, the F-measure is used. Resulting performance improvements show that the porposed model will be useful for both researchers and practitioners working in this research area.



Text summarization; Fuzzy Analytical Hierarchy Process; Sentence score function

Full Text: PDF

Print ISSN: 1392-124X 
Online ISSN: 2335-884X