
100

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2010, Vol.39, No.2

GENERATING FUNCTIONAL DELAY FAULT TESTS FOR
NON-SCAN SEQUENTIAL CIRCUITS

Eduardas Bareiša1, Vacius Jusas1, Liudas Motiejūnas2, Rimantas Šeinauskas1,3
1Kaunas University of Technology, Software Engineering Department,

Studentų Str. 50-404, LT-51368 Kaunas, Lithuania
e-mail:eduardas.bareisa@ktu.lt, vacius.jusas@ktu.lt

2Kaunas University of Technology, Multimedia Engineering Department,
Studentų Str. 50-402, LT-51368 Kaunas, Lithuania

e-mail: liudas.motiejunas@ktu.lt
3Kaunas University of Technology, Information Technology Development Institute,

Studentų Str. 48A, LT-51368 Kaunas, Lithuania
e-mail: rimantas.seinauskas@ktu.lt

Abstract. The paper presents two functional fault models that are devoted for functional delay test generation for
non-scan synchronous sequential circuits. These fault models form one joint functional fault model. The non-scan
sequential circuit is represented as the iterative logic array model consisting of k copies of the combinational logic of
the circuit. The value k defines the length of clock sequence. The length of clock sequence is determined using the
presented functional fault models. The experimental results demonstrate the superiority of the delay test patterns
generated at the functional level using the introduced functional fault models against the transition test patterns
obtained at the gate level by deterministic test pattern generator. The functional delay test generation method especially
is useful for the circuits, when the long test sequences are needed in order to detect transition faults.

Keywords: sequential non-scan circuit, transition fault test, iterative logic array, functional level.

1. Introduction

Testing of sequential circuits can be carried out in
either scan mode or non-scan mode. Transition fault
testing of sequential circuits has mostly been con-
sidered assuming scan that allows a circuit to be tested
similar to a combinational one. Two test vectors are
applied to detect transition faults, namely v1 and v2.
The primary scan-based test techniques are enhanced
scan [11], functional justification also called broadside
test [20], and scan shifting also called skewed load
[15]. All of these techniques use slow and rated clock
periods. Slow clock period is used for generation and
application of vector v1, as well as for generation of
vector v2. The rated clock period is used for applica-
tion of vector v2 only.

Many sequences can be applied for testing scan
based circuits, which cannot be possible during its
normal operation. This leads to over-testing of the cir-
cuit, which not only increases the test application
time, but could also result in loss of yield [19]. Over-
testing may become more important when transition
faults are targeted compared to over-testing of stuck-at
faults [8].

Testing of a delay fault in a non-scan sequential
circuit requires more than two vectors. Two methodo-
logies can be applied: variable clock [13] and rated
clock [6]. In the variable clock non-scan sequential
test methodology, the vector pair should be like the
one used in the scan based test methodology. But, the
vector v1 should be generated by a set of vectors start-
ing at some initial state. This set is called a justifica-
tion sequence. If the destination path is a flip-flop,
then the state should be propagated to some primary
outputs. This part of the test is called a propagation se-
quence. The slow clock is used for justification and
propagation sequences. Thus, only one vector v2 in
the entire test sequence uses the rated clock.

The rated-clock non-scan sequential test is the
most natural form of the test. All the vectors, either
functional or those generated to cover any types of
faults, are applied at the rated clock. The variable-
clock test is always possible for a fault that is testable
by a rated-clock test [13]. However, some variable-
clock tests may cover paths that are impossible to ac-
tivate in the normal rated-clock function.

Generating Functional Delay Fault Test for Non-Scan Sequential Circuits

101

Under scan-based tests, transition faults are asso-
ciated with an extra delay that is large enough to cause
the delay of any path through the fault site to exceed
the clock period [5]. Beyond this assumption, the
specific delay size is not important. When non-scan
test sequences are applied at-speed, a faulty line must
be considered under multiple consecutive fast clock
cycles. In this case, it becomes necessary to consider
fault sizes measured in numbers of clock periods in
order to determine the value of a faulty line. In the
transition fault model introduced in [9], each transition
fault in the combinational logic of the circuit defines
several faults with different extra delays. The transi-
tion fault with a given extra delay of l clock periods is
referred to as an l-transition fault. An alternative
model, which is called an unspecified transition fault,
to the one of [9] was introduced in [16]. This model
attempts to encompass all the possible sizes of a tran-
sition fault in one fault. Under an unspecified transi-
tion fault, an unspecified value is introduced at the
fault site in the faulty circuit when the fault is acti-
vated or when a fault effect is propagated from a
previous time unit. Fault detection potentially occurs
when an unspecified value reaches a primary output.
But the simulation of unspecified values using three-
value logic has an inherent loss of the accuracy [16].

Experimental results reported in [9] and [17]
indicate that one-transition faults are the hardest to de-
tect. Moreover, tests for one-transition faults can
detect most of the l-transition faults for l > 1. There-
fore, it is possible to conclude that there is no need to
construct transition tests for l-transition fault, where l
> 1. This conclusion is supported by a new model of
transition faults, which is introduced in [18]. The
model, which is called double-single stuck-at fault, re-
quires the activation of single stuck-at faults with
opposite stuck-at values on the same line at conse-
cutive time units. In addition, it requires the detection
of both faults (as single faults) at the same or later
time units. The application of double-single stuck-at
fault model is demonstrated for the transformation of a
test sequence for single stuck-at faults into a test
sequence for detecting transition faults only. The use
of this model for deterministic sequential test genera-
tion is not specified.

The transition fault test for non-scan sequential cir-
cuits could be constructed at the functional level using
the software prototype model, as well [3, 12]. Kang et
al. [12] suggested the input/output transition (TRIO)
fault model for functional test selection at the register-

transfer level (RTL). It is defined with respect to the
primary inputs, primary outputs, and state variable of
the module. But this model is approximate due to the
following reasons: 1) it does not stipulate toggle pro-
pagation all the way to the primary outputs; 2) the
evaluation of the transition at the output, which de-
pends on multiple input transitions, is too much opti-
mistic. Therefore, the presented experimental results
demonstrate quite a large loss of transition fault
coverage of the initial test pool. For the circuits’ s1196
and s1238, the loss is even 14.99%.

Bareiša et al. [3] introduced three different new
fault models: the functional clock at-speed (FCaS), the
functional clock static-based (FCS), and the functional
clock delay (FCD). According to the proposed models,
the functional faults are considered on the primary
inputs, primary outputs and the state bits of the model.
Bareiša et al. [3] presented the bare ideas of the mo-
dels only. No implementation details were presented.
The experiments were carried out with FCS model
only. The important part of the test generation process
for non-scan sequential circuits – the determination of
the length of the clock sequence was left without
attention. Therefore, in this paper, we are going to
elaborate FCaS fault model, which now seems to be
the most appropriate, and to define in details, the
whole test generation process using functional fault
models.

The object of the paper is to present the functional
delay fault test generation process using the software
prototype model. The rest of the paper is organized as
follows. We present the functional fault models in
Section 2. We introduce the test generation process in
Section 3. We report the results of the experiment in
Section 4. We finish with conclusions in Section 5.

2. Fault model

A synchronous sequential circuit can be trans-
formed into an iterative logic array [14]. The iterative
logic array model of the synchronous sequential cir-
cuit consists of duplicated copies of the combinational
logic of the circuit, called time frames, as shown in
Figure 1. The iterative logic array model for the circuit
is expanded for k time frames. The vertical inputs of a
combinational cell are primary inputs and the vertical
outputs are primary outputs of the sequential circuit;
the horizontal inputs are the present state bits and the
horizontal outputs are the next state bits.

Figure 1.The iterative logic array model

E. Bareiša, V. Jusas, L. Motiejūnas, R. Šeinauskas

102

The length of clock sequence k defines the number
of the cells (time frames) in the iterative logic array. In
such a model, the number of primary inputs is multi-
plied by k, the number of primary outputs is multiplied
by k, the number of previous state bits, which are
considered as the primary inputs, is multiplied by k,
the number of next state bits, which are considered as
the primary outputs, is multiplied by k. We obtain the
model of the sequential circuit, which is expanded
quite a lot, but all the control of the model is included
into the interface.

Let a generic cell of the iterative logic array model
have a set of primary inputs X = {x1, ..., xi, ..., xn}, a
set of primary outputs Y = {y1, ..., yj, ..., ym}, a set of
bits of previous state Q = {q1, ..., qj, ..., qv}, and a set
of bits of next state P = {p1, ..., pj, ..., pv}. The number
v is the same for the bits of previous and next states.
Therefore, the input stimulus has n+v signal values,
and the output stimulus has m+v signal values. We do
not relate the inputs and outputs to the time frame, but
we associate the signal values to the time frame when
we consider the input stimulus and output responses.
We denote the complete input stimulus of the cell of
the time frame t by St = <st

1, …, st
i, …, st

n+v>. The
complete output response captured on the outputs of
the cell of the time frame t is Rt = <rt

1, …, rt
t, …,

rt
m+v>. When we refer to the input stimulus of the

whole iterative logic array, we do not use the upper
index t.

We define the functional faults for one generic
cell, but they will be applied for every cell in the itera-
tive logic array model. Nevertheless, the detectability
of the functional faults will be stored for one generic
cell only. Such a mode of storing information requires
the definition of corresponding functional fault mo-
dels.

The functional faults are separated into two
groups: primary and secondary. The definitions similar
to the description presented in [2] are introduced.

Definition 1. The primary functional fault is a pair
of stuck-at faults (xi

f, yj
h), f=0,1, h=0,1.

Definition 2. The secondary functional fault is a
pair of stuck-at faults in one of two different forms:

a) (xi
f, pj

h), f=0,1, h=0,1;
b) (qi

f, yj
h), f=0,1, h=0,1.

These two functional fault models are not replac-
ing each other, because they cover the different rela-
tionships of the generic cell. The secondary functional
fault has to be used as the addition to the primary
functional fault. We introduced the secondary fault in
order to avoid the problem of early saturation that is
characteristic for the primary functional fault. The
early saturation happens due to the following reasons:
1. Usually the primary input and the primary output

are connected by the number of different paths [4].
2. Storing of the functional faults for one generic cell

overlays faults of every cell in the iterative logic
array.

Now, we are concerned how to use these functio-
nal fault models for the detection of transition faults.
Remember the description of the detectability of the
functional fault [2], which we present here as a de-
finition.

Definition 3. The functional fault (xi
f, yj

h) is detec-
ted by test stimulus S under the following conditions:
1. The test stimulus S detects the single fault xi stuck-

at f.

2. The fault free value of output yj under S is –h.
3. In the presence of xi stuck-at f, the value of output

yj is h.
Such a definition is valid for the detection of

stuck-at faults. In order to adopt Definition 3 for
detection of delay faults in iterative logic array model
we have to take into account the following features:
1. The iterative logic array model consists of k cells;

meanwhile the functional faults described in [2]
were defined for a single combinational cell.

2. The functional faults are defined for a one generic
cell.

3. The fault effect can start at the inputs of the cell t
and it can be observed at the outputs of the same
cell t or at the outputs of the cells that are located
further in the chain of the cells.

4. The stuck-at faults can be injected at the inputs of
all the cells and the responses can be observed at
the outputs of all the cells.

5. The bits of previous and next state are not real
primary inputs and outputs.

6. The delay fault has to be detected. In order to
detect the delay fault a transition has to start at the
fault site.
Bearing in mind the above listed features, we

introduce the following definition that names the ne-
cessary conditions for detection of transition faults
using the model of primary functional fault.

Definition 4. The primary functional fault (xi
f, yj

h)
is detected by test stimulus S under the following
conditions:
1. The test stimulus S detects the single fault xi stuck-

at f on the input of the cell t.
2. The fault free value under S at the output yj of the

cell t or the cells t+1, t+2, …, k is –h.
3. In the presence of xi stuck-at f on the input of the

cell t, the value at the output yj of the cell t or the
cells t+1, t+2, …, k is h.

4. The fault free value under S at the input xi of the
cell t-1 is f.
The last condition of Definition 4 guarantees that

the transition starts at the input xi of the cell t. The first
three conditions ensure that the sensitive path exists
between the input xi of the cell t and the output yj,
which can be an output of one of the following cells t,
t+1, …, k.

The secondary functional fault (xi
f, pj

h) does not re-
late the primary input to the primary output.

Generating Functional Delay Fault Test for Non-Scan Sequential Circuits

103

Consequently, it alone cannot ensure the propagation
of fault effect from the primary input to the primary
output. The additional functional fault has to be linked
into the chain with secondary functional fault. Now,
we can formulate a definition that determines the ne-
cessary conditions for detection of transition faults
using the secondary functional fault (xi

f, pj
h).

Definition 5. The secondary functional fault (xi
f,

pj
h) is detected by test stimulus S under the following

conditions:
1. The functional fault satisfies the conditions of

Definition 4 and it is detected at the output pj of
cell t.

2. The functional fault (qi
f, yj

h), where qi denotes the
input of the cell t+1 directly connected to the
output pj of the cell t, and pj

h = qi
f, has to be

detected according to the conditions of Definition
4, except the fourth condition.
The secondary functional fault (qi

f, yj
h) relates the

state bit to the primary output. This fault allows mo-
deling the transition fault that starts at the state bit and
propagates to the primary output.

Definition 6. The secondary functional fault (qi
f,

yj
h) is detected by test stimulus S under the following

conditions:
1. The test stimulus S detects the single fault qi stuck-

at f on the previous state input of the cell t.
2. The fault free value under S at the output yj of the

cell t or the cells t+1, t+2, …, k is –h.
3. In the presence of qi stuck-at f on the previous state

input of the cell t, the value at the output yj of the
cell t or the cells t+1, t+2, …, k is h.

4. The fault free value under S at the previous state
input qi of the cell t-1 is f.

The delay test generation using the secondary
functional faults allows sensitizing the paths connec-
ting every bit of state to the primary output.

The detection of the functional delay faults can be
represented by the detection matrix D=||da,b||2(n+v),2m,
where index a is used to denote the inputs of the cell,
and index b is used to denote the outputs of the cell.
The bits of next state are not represented in the matrix,
because the corresponding functional faults are not
considered. The entry of the matrix da,b:=1 if the
corresponding functional delay fault is detected,
da,b:=0 – in the opposite case. Each input/output pair
(i, j) is associated with four entries of the matrix d2i-1,2j-

1, d2i-1,2j, d2i,2j-1, d2i,2j that correspond to the primary
functional delay faults (xi

0, yj
0), (xi

0, yj
1), (xi

1, yj
0), (xi

1,
yj

1), when i=1,..., n, and j=1 ..., ,m., and the secondary
functional faults are represented by the pairs (xi

0, pj
0),

(xi
0, pj

1), (xi
1, pj

0), (xi
1, pj

1), when i=1,..., n, and
j=m+1 ..., ,m+v.. The entry of the matrix d2i-1,2j-1 is set
to 1 if the primary functional delay fault (xi

0, yj
0) is

detected. That corresponds to the situation where the
transition 0→1 is on the input i, the transition 0→1 is
on the output j, and the blocked transition on the input
disables the transition on the output. The entry of the

matrix d2i-1,2j is set to 1 if the primary functional delay
fault (xi

0, yj
1) is detected. That corresponds to the

situation where the transition 0→1 is on the input i,
the transition 1→0 is on the output j, and the blocked
transition on the input disables the transition on the
output. The entry of the matrix d2i,2j-1 is set to 1 if the
primary functional delay fault (xi

1, yj
0) is detected.

That corresponds to the situation where the transition
1→0 is on the input i, the transition 0→1 is on the
output j, and the blocked transition on the input
disables the transition on the output. The entry of the
matrix d2i,2j is set to 1 if the primary functional delay
fault (xi

1, yj
1) is detected. That corresponds to the

situation where the transition 1→0 is on the input i,
the transition 1→0 is on the output j, and the blocked
transition on the input disables the transition on the
output. In the same way, the detection of the
secondary functional faults is labeled when they are
detected according to Definition 5.

3. Test generation process

Delay test generation is accomplished at the func-
tional level. The model of the circuit has to be de-
scribed in a high level description code, which is
termed a software prototype. Therefore, it can be
presented in the form of a high level programming
language, behavioural VHDL or Verilog description
code. But the reality is such that the models of the
circuits usually are available in the RTL description
code, for example ITC’99 benchmark suite [10]. Such
models have to be lifted up into the algorithmic level
of the description. In order to achieve this goal there
are several ways: 1) to write the model in C program-
ming language; 2) to translate from VHDL or Verilog
RTL code to the code in C programming language; 3)
to translate from VHDL or Verilog structural code to
the code in C programming language. There are pos-
sible other alternatives, but we did not consider them.
We have tried to write the models in C programming
language for all the benchmarks from ITC’99 bench-
mark suite. But we did not achieve our goal, because
for all the models practically it is not possible to en-
sure the adequacy. The second way, the most attractive
and reliable one, was eliminated as not possible for
two reasons: 1) it is difficult to think of the rules that
would allow to convert several parallel processes into
sequence of the operators in C programming lan-
guage; 2) such a way contradicts to the whole design
process, which flows from algorithmic level to more
detailed RTL. The third way looks little bit strange,
but the synthesized structural descriptions are avail-
able for all the benchmarks. We have written a trans-
lator from Verilog structural description code into
code in the C programming language. The rules of the
translation are very simple, because every Verilog
primitive (and, or, not, nand, nor) can be substituted
by appropriate operator of C programming language.
Such a model has a single deficiency only – it is very

E. Bareiša, V. Jusas, L. Motiejūnas, R. Šeinauskas

104

large for large circuits. Therefore, the productivity of
the test generation program suffers quite a lot.

Usually the reset and clock signals are present in
the RTL description code. The values of the reset and
clock signals change according to the regular law.
Therefore, these inputs have to be excluded from the
consideration. The values according to regularities of
these inputs have to be supplied later when the final
test is obtained for the sequential circuit.

In order to use the introduced fault models, the
state bits have to be extracted from the model of the
circuit. In a high level description code, the state bits
are represented by the variables. The declared type of
the variable determines the number of bits required for
the variable. But not all the variables represent the
state; some of them are used for temporary storage of
the values only. The careful analysis of the code is
needed in order to determine which variables are
temporary. Synthesis of the code could aid to resolve
this problem. Consider an example. Let us use the
RTL code of circuit b01 from ITC’99 benchmark suite
presented in VHDL hardware description language.
We find a single declared variable in the code:
variable stato: integer range 7 downto 0;

The knowledge of VHDL language allows deter-
mining that three state bits are required for the vari-
able stato. Let us examine the synthesized descrip-
tion of circuit b01. We find five flip-flops. In order to
find out the problem of difference between the number
of state bits and the number of flip-flops we examine
the synthesized code of b01. We discover that two
additional flip-flops are connected to two primary
outputs of the circuit. Such flip-flops form a buffer
zone. The buffer zone can be formed on the primary
inputs as well. But the flip-flops of the buffer zone can
be neglected, because they are used for the temporary
storage of the values only. Therefore, the initial
determination that three state bits are required for the
circuit b01 was correct. We could say in advance that
all the circuits from benchmark suite ITC’99 have the
buffer zone of flip-flops at the primary outputs, except
the circuit b05.

The parameters of circuits from the benchmark
suite ITC’99 are presented in Table 1. We have to pay
attention to the fact that the number of inputs of fault
model does not count the reset and clock signals that
are present in all the circuits. Analysis of the VHDL
code of the benchmarks presented in Table 1 revealed
that the code of circuits’ b04, b05, b08, b12, b14 has
temporary variables. In the code of circuits’ b07 and
b10, we learnt that some bits of declared variables are
never used. Therefore, the number of state bits accor-
ding to our calculation is more than the number of
flip-flops minus the number of primary outputs that
are represented by the flip-flops of the buffer zone.

Now we present a delay test generation process.
The delay test generation process consists of two
stages: determination of length of clock sequence, and
test pattern generation. The first stage is a very

important stage, because the non-scan sequential
circuit is represented by the iterative logic array con-
taining k combinational copies of the sequential
circuit. In other words, k denotes the length of clock
sequence. Every sequential circuit especially at the
algorithmic level can be represented as a finite state
machine. The finite state machine is always synch-
ronized by clock sequence of some defined length. If
the length of clock sequence is too short, some states
will not be visited, and the corresponding delay faults
will not be detected. If the length of clock sequence is
too long, some states will be visited repeatedly but
that will not sensitize the new paths, and the new
faults will not be detected. Too long clock sequence
increases the number of test patterns in the test
sequence quite substantially but without a necessity.
Therefore, the number of copies k directly influences
the success of test pattern generation.

Table 1. Parameters of circuits

Circuit Fault model

Name In-
puts

Out-
puts

State
bits

Flip-
flops Inputs Out-

puts

b01 4 2 3 5 5 5
b02 3 1 3 4 4 4
b03 6 4 26 30 30 30
b04 13 8 58 66 69 66
b05 3 36 34 34 35 70
b06 4 6 3 9 5 9
b07 3 8 43 49 44 51
b08 11 4 17 21 13 21
b09 3 1 27 28 28 28
b10 13 6 14 17 25 20
b11 9 6 25 31 32 31
b12 7 6 115 121 120 121
b13 12 10 43 53 53 53
b14 34 54 191 245 223 245

In order to determine the length of clock sequence
we use the fault models presented in Section 2. The
secondary functional fault (xi

f, pj
h) model shows the

ability to control and to observe the state bit. Of
course, we understand that all the state bits have to be
controlled by the values on the primary inputs. There-
fore, the secondary functional fault (xi

f, pj
h) model

serves as the first criterion in choosing the correct
length of clock sequence. We count the number of
uncontrollable state bits according to the secondary
functional fault (xi

f, pj
h) model. The goal is that this

number would become equal to zero. The increase of
the length of clock sequence allows us to converge to
this goal. This goal is not always reachable. Some-
times, we increase the length of clock sequence quite
substantially to several thousands, but some state bits
still remain uncontrollable. When we reach the goal or
we see that it is not possible to control all the state bits

Generating Functional Delay Fault Test for Non-Scan Sequential Circuits

105

with acceptable length of clock sequence, the primary
functional fault model is used as the second criterion
in choosing the correct length of clock sequence. Then
we count the number of detected functional faults
according to both criteria. We never know what the
number of detectable faults is. Therefore, the goal is to
reach the number of detected functional faults as
larger as possible. We stop the increase of the length
of clock sequence, when the number of detected func-
tional faults does not augment or the growth is very
small.

To start the delay test generation, the circuit is
assumed to be initialized to state 0 before the appli-
cation of the input sequence. If the circuit has a reset
input, then it can be set to state 0. If the circuit has no
the reset input, the synchronizing sequence could be
used, which transfers the circuit to known initial state
that could be different from the state 0. For example,
all the benchmarks from ITC’99 suite have the reset
input; meanwhile the benchmarks from ISCAS’89
suite have no reset input [7]. The problem of the
generation from the initial state, which is not the state
0, is out of scope of this paper.

When the length of clock sequence, which defines
the number of the cells in the iterative logic array
model of the circuit, is determined, the next step is a
delay test pattern generation. The generation is imple-
mented according to the iterative logic array model of
the circuit using the models of the primary functional
fault and the secondary functional fault (qi

f, yj
h). The

secondary functional fault (xi
f, pj

h) is not used for the
delay test pattern generation. The influence of the
values on the primary inputs to the values on the
primary outputs and the influence of the values on
previous state bits to the values on the primary outputs
are considered only.

The circuit is considered to be set to the state 0.
Random values are generated on the primary inputs.
Simulation is carried out of the first cell of the itera-
tive logic array. Simulation defines the values on the
primary outputs and the values of the next state, which
become the previous state values for the next cell of
the iterative logic array. The primary functional fault
and the secondary functional fault (qi

f, yj
h) are simu-

lated on every cell of the iterative logic array. Defi-
nition 4 and Definition 6 state the conditions of the
detectability of the functional faults. The detected
functional faults are labeled in the detection matrix D.
The test generation process should stop when all the
simulated functional faults are detected, but the
number of testable functional faults is unknown. The
solution to the problem of stopping the functional
delay test generation using the detection matrix is
presented in [1].

4. Experimental results

The experiments were carried out on the circuits of
the benchmark suite ITC’99. We report the detailed
process of the determination of the length of clock

sequence for the circuit b01 in Table 2. The length of
clock sequence is directly related to the functioning of
the circuit. In order to easier understand the whole
process of the determination of the length of clock
sequence we present the state transition graph of cir-
cuit b01 in Figure 2. The state transition graph has 8
states. The names for the states are given according to
VHDL model of circuit b01. The circuit has 2 primary
inputs (the reset and clock inputs are not counted).
The values are shown only on those edges, where
equal values are required on both inputs. These values
indicate that the path traversing the states of the circuit
will be chosen more likely through the edges that do
not have the values, because the generation of the
values is random. For example, the edge, which con-
nects the vertices a and f , is labeled by the controlling
value 11. The transition by the other edge, which con-
nects the vertices a and b, is controlled by the follow-
ing three combinations of values: 00, 01, 10. There-
fore, this transition will happen 3 times more likely.
Such a consideration allows us to determine the proper
length of clock sequence.

Table 2. Determination of length of clock sequence for b01

Length
of clock

se-
quence

Number of
uncontrol-
lable state

bits

Number
of detec-

ted
functio-

nal
faults

Number
of test
sub-

sequenc
es

Fault
cove-
rage at

gate
level
(%)

4 2 15 – –
8 0 44 – –

16 0 49 – –
32 0 49 – –
12 0 42 – –
10 0 44 – –
9 0 49 10 97.37
 12 96.99

15 0 49 8 93.61
 6 96.24

14 0 45 – –

As one can see in Table 2, we start the generation
with the length of clock sequence, which equals to 4.
Knowing the function of the circuit, it was possible to
predict that such a length of clock sequence will leave
some state bits uncontrollable. This value was chosen
in order to show that the model allows counting up the
uncontrollable state bits. Then, we double the value of
the length of clock sequence. The law of doubling is
used always in the search of the proper length of clock
sequence. In this search, we find two least values that
would fit for the proper length of clock sequence.
Value 9 is found only, because we know the func-
tioning of the circuit. The algorithm indicates the
value 15; the analysis of the state transition graph
presented in Figure2 suggests the value 9, therefore,
the decision was made to generate test sequences for

E. Bareiša, V. Jusas, L. Motiejūnas, R. Šeinauskas

106

both lengths of clock sequences. In order to reduce the
factor of randomness the generation was carried out
two times. The last two columns show the results of
these generations. We did not use the term test
subsequence, which is shown in the fourth column in
the text before. The test subsequence is a sequence of
input patterns, which corresponds to one clock se-

quence. Every test subsequence starts with reset test
pattern.

As the results indicate, the analysis of the state
transition graph was performed appropriately – the
length of clock sequence should be 9.

reset
00

001111

00

11 a 11

e

f g

b c

wf0

wf1

00

Figure 2. State transition graph of circuit b01

The similar process of the search for the proper
length of clock sequence was carried out for all the
circuits presented in [1], but we do not provide the
details. The stress is made now on the functional delay
test pattern generation. The results are reported in the
first three columns following the column of circuits’
names. We would like to pay attention that the fault
coverage of the functional delay test patterns was
measured at the gate level.

Table 3. Functional delay test patterns

Functional delay test patterns Fault coverage (%)

Circuit Length of
clock

sequence

Number of
test sub-

sequences

Fault
coverage

(%)

Tetra-
MAX

[18]
method

b01 9 10 97.37 97.37 -
b02 9 6 86.36 86.36 -
b03 9 85 56.09 52.15 55.73
b04 17 166 83.23 82.64 79.03
b09 64 14 60.14 62.70 65.93
b10 30 151 79.23 77.48 76.55
b11 2160 11 78.82 50.14 79.13
b12 480 27 34.33 6.6 -
b13 2160 92 63.43 21.29 -

b14 240 444 76.76 32.37 -

The transition test patterns were generated at the
gate level by TetraMAX program. The results are pre-
sented in the penultimate column. The last column
reports the results obtained in [18]. These two co-
lumns are provided for comparison purposes.

We see that the fault coverage of functional delay
test patterns is larger or equal in comparison with the
fault coverage of transition test patterns generated by
TetraMAX for all the circuits, except the circuit b09.

Especially good results are obtained for the circuits’
b11, b12, b13 and b14, where the long test sequences
are needed in order to detect transition faults. We
could confess that the thorough work was needed in
order to select the proper length of clock sequence,
because the process is not automatic yet. We see that
the length of clock sequence is very large for circuits’
b11, b13 and the lengths are occasionally equal.

The obtained results of functional delay test
generation can be compared with the results provided
in [18], where the double-single fault model was used
for transition test generation. Our method of func-
tional delay test generation allows obtaining better
results for the following circuits: b03, b04, and b10.
Our method looses for the circuit b09 and it obtains
almost the same fault coverage for the circuit b11.

Our method of functional delay test generation has
else one advantage over the transition test generated
by TetraMAX – shorter time of test generation. For
example, TetraMAX generates the transition test pat-
terns an hour and 56 minutes for the circuit b09, an
hour 45 minutes – for the circuit b10. This amount of
the time is already quite significant, but it increases to
half a day for the larger circuits like b11, b12, b13,
and b14. The test generation according to our method
obtains the results within the seconds for the smaller
circuits (b03, b04, b09, b10) and it takes some minutes
for the larger circuits (b11, b12, b13, b14). The time of
test generation in [18] was not provided.

5. Conclusions

We presented two functional fault models that are
devoted for functional delay test generation for non-
scan synchronous sequential circuits, namely the pri-
mary functional fault model and the secondary func-
tional fault model. The first model deals with the
stuck-at faults on the primary inputs and primary

Generating Functional Delay Fault Test for Non-Scan Sequential Circuits

107

outputs. The second model, which is used as the
addition to the first model, deals with the stuck-at
faults on the primary inputs, state bits and primary
outputs. The circuit is represented as the iterative logic
array model, consisting of k copies of the combi-
national logic of the circuit. The value k defines the
length of clock sequence. The method that allows
determining the length of clock sequence was pre-
sented.

The obtained results show that the introduced de-
lay test generation method, using the presented func-
tional fault models, outperforms by the fault coverage
the transition test patterns obtained at the gate level by
deterministic test pattern generator. The introduced de-
lay test generation method obtains especially good
quality results for the circuits, when the long test se-
quences are needed.

References
 [1] E. Bareisa, V. Jusas, K. Motiejunas, R. Seinauskas.

Test Generation at the Algorithm-Level for Gate-
Level Fault Coverage. Microelectronics Reliability,
2008, Vol.48, Issue 7, 1093-1101.

 [2] E. Bareisa, V. Jusas, K. Motiejunas, R. Seinauskas.
Functional Delay Test Generation Based on Software
Prototype. Microelectronics Reliability, 2009, Vol.49,
Issue 12, 1578-1585.

 [3] E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas.
Functional Delay Clock Fault Models. Information
Technology and Control, Kaunas, Technologija, 2008,
Vol.37, No.1, 12 - 18.

 [4] E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas.
On the Enrichment of Functional Delay Fault Tests.
Information Technology and Control, Kaunas, Tech-
nologija, 2009, Vol.38, No.3, 208 – 216.

 [5] Z. Barzilai, B. Rosen. Comparison of AC Self-Test-
ing Procedures. Proceedings of the IEEE International
Test Conference, 1983, 89–94.

 [6] S. Bose, V.D. Agrawal. Sequential Logic Path Delay
Test Generation by Symbolic Analysis. Proceedings of
the 4th Asian Test Symposium, Nov. 1995, 353-359.

 [7] F. Brglez, D. Bryan, K. Kozminski. Combinatorial
Profiles of Sequential Benchmark Circuits. Procee-
dings of IEEE International. Symposium on Circuits
and Systems, 1989, 1929-1934.

 [8] G. Chen, S.M. Reddy, I. Pomeranz. Procedures for
Identifying Untestable and Redundant Transition
Faults in Synchronous Sequential Circuits. Procee-
dings of the 21st International Conference on Com-
puter Design (ICCD’03), 2003, 36-41.

[9] K.-T. Cheng. Transition Fault Testing for Sequential
Circuits. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, Vol.12,
No.12, Dec. 1993, 1971–1983.

[10] F. Corno, M. Sonza Reorda, G. Squillero. RT-Level
ITC'99 Benchmarks and First ATPG Results, IEEE
Design and Test of Computers, Vol.17, No.3, July-
Sept. 2000 , 44-53.

[11] S. Dasgupta, R.G. Walther, T.W. Williams, E.B.
Eichelberger. An Enhancement to LSSD and Some
Applications of LSSD in Reliability, Availability and
Serviceability. Proceedings of the International Sym-
posium on Fault Tolerant Computing, 1981, 880-885.

[12] J. Kang, S.C. Seth, V. Gangaram. Efficient RTL
Coverage Metric for Functional Test Selection.
Proceedings of the 25th IEEE VLSI Test Symposium
(VTS'07), 2007, 318-324.

[13] S. Majumder, V.D. Agrawal, M.L. Bushnell. Path
Delay Testing: Variable-clock versus Rated-clock.
Proceedings of the 11th International Conference on
VLSI Design, Jan. 1998, 470–475.

[14] P. Muth. A nine-valued circuit model for test gene-
ration. IEEE Transactions on Computers, Vol.25,
No.6, June 1976, 630-636.

[15] S. Patil, J. Savir. Skewed-Load Transition Test: Part
II, Coverage, Proceedings of the IEEE International
Test Conference, 1992, 714-722.

[16] I. Pomeranz, S.M. Reddy. A Delay Fault Model for
at-Speed Fault Simulation and Test Generation. Pro-
ceedings of the IEEE/ACM International Conference
on Computer-Aided Design, Nov. 2006, 89–95.

[17] I. Pomeranz, S.M. Reddy. Unspecified Transition
Faults: A Transition Fault Model for At-Speed Fault
Simulation and Test Generation. IEEE Transactions
On Computer-Aided Design of Integrated Circuits and
Systems, Vol.27, No.1, January 2008, 137-146.

[18] I. Pomeranz, S.M. Reddy. Double–Single Stuck-at
Faults: A Delay Fault Model for Synchronous Sequen-
tial Circuits. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Vol.28,
No.3, March 2009, 426-432.

[19] J. Rearick. Too much Delay Fault Coverage is a Bad
Thing. Proceedings of the IEEE International Test
Conference, 2001, 624-633.

[20] J. Savir, S. Patil. Broad-Side Delay Test. IEEE
Transactions On Computer-Aided Design of Integra-
ted Circuits and Systems, Vol.13, No.8, August 1994,
1057-1064

Received February 2010.

