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Abstract. The paper presents two functional fault models that are devoted for functional delay test generation for 
non-scan synchronous sequential circuits. These fault models form one joint functional fault model. The non-scan 
sequential circuit is represented as the iterative logic array model consisting of k copies of the combinational logic of 
the circuit. The value k defines the length of clock sequence. The length of clock sequence is determined using the 
presented functional fault models. The experimental results demonstrate the superiority of the delay test patterns 
generated at the functional level using the introduced functional fault models against the transition test patterns 
obtained at the gate level by deterministic test pattern generator. The functional delay test generation method especially 
is useful for the circuits, when the long test sequences are needed in order to detect transition faults. 
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1. Introduction 

Testing of sequential circuits can be carried out in 
either scan mode or non-scan mode. Transition fault 
testing of sequential circuits has mostly been con-
sidered assuming scan that allows a circuit to be tested 
similar to a combinational one. Two test vectors are 
applied to detect transition faults, namely v1 and v2. 
The primary scan-based test techniques are enhanced 
scan [11], functional justification also called broadside 
test [20], and scan shifting also called skewed load 
[15]. All of these techniques use slow and rated clock 
periods. Slow clock period is used for generation and 
application of vector v1, as well as for generation of 
vector v2. The rated clock period is used for applica-
tion of vector v2 only.  

Many sequences can be applied for testing scan 
based circuits, which cannot be possible during its 
normal operation. This leads to over-testing of the cir-
cuit, which not only increases the test application 
time, but could also result in loss of yield [19]. Over-
testing may become more important when transition 
faults are targeted compared to over-testing of stuck-at 
faults [8]. 

Testing of a delay fault in a non-scan sequential 
circuit requires more than two vectors. Two methodo-
logies can be applied: variable clock [13] and rated 
clock [6]. In the variable clock non-scan sequential 
test methodology, the vector pair should be like the 
one used in the scan based test methodology.  But, the 
vector v1 should be generated by a set of vectors start-
ing at some initial state. This set is called a justifica-
tion sequence. If the destination path is a flip-flop, 
then the state should be propagated to some primary 
outputs. This part of the test is called a propagation se-
quence. The slow clock is used for justification and 
propagation sequences. Thus, only one vector v2 in 
the entire test sequence uses the rated clock. 

The rated-clock non-scan sequential test is the 
most natural form of the test. All the vectors, either 
functional or those generated to cover any types of 
faults, are applied at the rated clock. The variable-
clock test is always possible for a fault that is testable 
by a rated-clock test [13]. However, some variable-
clock tests may cover paths that are impossible to ac-
tivate in the normal rated-clock function. 
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Under scan-based tests, transition faults are asso-
ciated with an extra delay that is large enough to cause 
the delay of any path through the fault site to exceed 
the clock period [5]. Beyond this assumption, the 
specific delay size is not important. When non-scan 
test sequences are applied at-speed, a faulty line must 
be considered under multiple consecutive fast clock 
cycles. In this case, it becomes necessary to consider 
fault sizes measured in numbers of clock periods in 
order to determine the value of a faulty line. In the 
transition fault model introduced in [9], each transition 
fault in the combinational logic of the circuit defines 
several faults with different extra delays. The transi-
tion fault with a given extra delay of l clock periods is 
referred to as an l-transition fault. An alternative 
model, which is called an unspecified transition fault, 
to the one of [9] was introduced in [16]. This model 
attempts to encompass all the possible sizes of a tran-
sition fault in one fault. Under an unspecified transi-
tion fault, an unspecified value is introduced at the 
fault site in the faulty circuit when the fault is acti-
vated or when a fault effect is propagated from a 
previous time unit. Fault detection potentially occurs 
when an unspecified value reaches a primary output. 
But the simulation of unspecified values using three-
value logic has an inherent loss of the accuracy [16]. 

Experimental results reported in [9] and [17] 
indicate that one-transition faults are the hardest to de-
tect. Moreover, tests for one-transition faults can 
detect most of the l-transition faults for l > 1. There-
fore, it is possible to conclude that there is no need to 
construct transition tests for l-transition fault, where l 
> 1. This conclusion is supported by a new model of 
transition faults, which is introduced in [18]. The 
model, which is called double-single stuck-at fault, re-
quires the activation of single stuck-at faults with 
opposite stuck-at values on the same line at conse-
cutive time units. In addition, it requires the detection 
of both faults (as single faults) at the same or later 
time units. The application of double-single stuck-at 
fault model is demonstrated for the transformation of a 
test sequence for single stuck-at faults into a test 
sequence for detecting transition faults only. The use 
of this model for deterministic sequential test genera-
tion is not specified. 

The transition fault test for non-scan sequential cir-
cuits could be constructed at the functional level using 
the software prototype model, as well [3, 12]. Kang et 
al. [12] suggested the input/output transition (TRIO) 
fault model for functional test selection at the register- 

transfer level (RTL). It is defined with respect to the 
primary inputs, primary outputs, and state variable of 
the module. But this model is approximate due to the 
following reasons: 1) it does not stipulate toggle pro-
pagation all the way to the primary outputs; 2) the 
evaluation of the transition at the output, which de-
pends on multiple input transitions, is too much opti-
mistic. Therefore, the presented experimental results 
demonstrate quite a large loss of transition fault 
coverage of the initial test pool. For the circuits’ s1196 
and s1238, the loss is even 14.99%. 

Bareiša et al. [3] introduced three different new 
fault models: the functional clock at-speed (FCaS), the 
functional clock static-based (FCS), and the functional 
clock delay (FCD). According to the proposed models, 
the functional faults are considered on the primary 
inputs, primary outputs and the state bits of the model. 
Bareiša et al. [3] presented the bare ideas of the mo-
dels only. No implementation details were presented. 
The experiments were carried out with FCS model 
only. The important part of the test generation process 
for non-scan sequential circuits – the determination of 
the length of the clock sequence was left without 
attention. Therefore, in this paper, we are going to 
elaborate FCaS fault model, which now seems to be 
the most appropriate, and to define in details, the 
whole test generation process using functional fault 
models. 

The object of the paper is to present the functional 
delay fault test generation process using the software 
prototype model. The rest of the paper is organized as 
follows. We present the functional fault models in 
Section 2. We introduce the test generation process in 
Section 3. We report the results of the experiment in 
Section 4. We finish with conclusions in Section 5. 

2. Fault model 

A synchronous sequential circuit can be trans-
formed into an iterative logic array [14]. The iterative 
logic array model of the synchronous sequential cir-
cuit consists of duplicated copies of the combinational 
logic of the circuit, called time frames, as shown in 
Figure 1. The iterative logic array model for the circuit 
is expanded for k time frames. The vertical inputs of a 
combinational cell are primary inputs and the vertical 
outputs are primary outputs of the sequential circuit; 
the horizontal inputs are the present state bits and the 
horizontal outputs are the next state bits. 

 
Figure 1.The iterative logic array model 
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The length of clock sequence k defines the number 
of the cells (time frames) in the iterative logic array. In 
such a model, the number of primary inputs is multi-
plied by k, the number of primary outputs is multiplied 
by k, the number of previous state bits, which are 
considered as the primary inputs, is multiplied by k, 
the number of next state bits, which are considered as 
the primary outputs, is multiplied by k. We obtain the 
model of the sequential circuit, which is expanded 
quite a lot, but all the control of the model is included 
into the interface. 

Let a generic cell of the iterative logic array model 
have a set of primary inputs X = {x1, ..., xi, ..., xn}, a 
set of primary outputs Y = {y1, ..., yj, ..., ym}, a set of 
bits of previous state Q = {q1, ..., qj, ..., qv}, and a set 
of bits of next state P = {p1, ..., pj, ..., pv}. The number 
v is the same for the bits of previous and next states. 
Therefore, the input stimulus has n+v signal values, 
and the output stimulus has m+v signal values. We do 
not relate the inputs and outputs to the time frame, but 
we associate the signal values to the time frame when 
we consider the input stimulus and output responses. 
We denote the complete input stimulus of the cell of 
the time frame t by St = <st

1, …, st
i, …, st

n+v>. The 
complete output response captured on the outputs of 
the cell of the time frame t is Rt = <rt

1, …, rt
t, …, 

rt
m+v>. When we refer to the input stimulus of the 

whole iterative logic array, we do not use the upper 
index t. 

We define the functional faults for one generic 
cell, but they will be applied for every cell in the itera-
tive logic array model. Nevertheless, the detectability 
of the functional faults will be stored for one generic 
cell only. Such a mode of storing information requires 
the definition of corresponding functional fault mo-
dels. 

The functional faults are separated into two 
groups: primary and secondary. The definitions similar 
to the description presented in [2] are introduced.  

Definition 1. The primary functional fault is a pair 
of stuck-at faults (xi

f, yj
h), f=0,1, h=0,1. 

Definition 2. The secondary functional fault is a 
pair of stuck-at faults in one of two different forms: 

a) (xi
f, pj

h), f=0,1, h=0,1; 
b) (qi

f, yj
h), f=0,1, h=0,1. 

These two functional fault models are not replac-
ing each other, because they cover the different rela-
tionships of the generic cell. The secondary functional 
fault has to be used as the addition to the primary 
functional fault. We introduced the secondary fault in 
order to avoid the problem of early saturation that is 
characteristic for the primary functional fault. The 
early saturation happens due to the following reasons: 
1. Usually the primary input and the primary output 

are connected by the number of different paths [4]. 
2. Storing of the functional faults for one generic cell 

overlays faults of every cell in the iterative logic 
array. 

Now, we are concerned how to use these functio-
nal fault models for the detection of transition faults. 
Remember the description of the detectability of the 
functional fault [2], which we present here as a de-
finition. 

Definition 3. The functional fault (xi
f, yj

h) is detec-
ted by test stimulus S under the following conditions: 
1. The test stimulus S detects the single fault xi stuck-

at f. 

2. The fault free value of output yj under S is –h. 
3. In the presence of xi stuck-at f, the value of output 

yj is h. 
Such a definition is valid for the detection of 

stuck-at faults. In order to adopt Definition 3 for 
detection of delay faults in iterative logic array model 
we have to take into account the following features:  
1. The iterative logic array model consists of k cells; 

meanwhile the functional faults described in [2] 
were defined for a single combinational cell. 

2. The functional faults are defined for a one generic 
cell. 

3. The fault effect can start at the inputs of the cell t 
and it can be observed at the outputs of the same 
cell t or at the outputs of the cells that are located 
further in the chain of the cells. 

4. The stuck-at faults can be injected at the inputs of 
all the cells and the responses can be observed at 
the outputs of all the cells. 

5. The bits of previous and next state are not real 
primary inputs and outputs. 

6. The delay fault has to be detected. In order to 
detect the delay fault a transition has to start at the 
fault site. 
Bearing in mind the above listed features, we 

introduce the following definition that names the ne-
cessary conditions for detection of transition faults 
using the model of primary functional fault. 

Definition 4. The primary functional fault (xi
f, yj

h) 
is detected by test stimulus S under the following 
conditions: 
1. The test stimulus S detects the single fault xi stuck-

at f on the input of the cell t. 
2. The fault free value under S at the output yj of the 

cell t or the cells t+1, t+2, …, k is –h. 
3. In the presence of xi stuck-at f on the input of the 

cell t, the value at the output yj of the cell t or the 
cells t+1, t+2, …, k is h. 

4. The fault free value under S at the input xi of the 
cell t-1 is f. 
The last condition of Definition 4 guarantees that 

the transition starts at the input xi of the cell t. The first 
three conditions ensure that the sensitive path exists 
between the input xi of the cell t and the output yj, 
which can be an output of one of the following cells t, 
t+1, …, k. 

The secondary functional fault (xi
f, pj

h) does not re-
late the primary input to the primary output. 
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Consequently, it alone cannot ensure the propagation 
of fault effect from the primary input to the primary 
output. The additional functional fault has to be linked 
into the chain with secondary functional fault. Now, 
we can formulate a definition that determines the ne-
cessary conditions for detection of transition faults 
using the secondary functional fault (xi

f, pj
h). 

Definition 5. The secondary functional fault (xi
f, 

pj
h) is detected by test stimulus S under the following 

conditions: 
1. The functional fault satisfies the conditions of 

Definition 4 and it is detected at the output pj of 
cell t. 

2. The functional fault (qi
f, yj

h), where qi denotes the 
input of the cell t+1 directly connected to the 
output pj of the cell t, and pj

h = qi
f, has to be 

detected according to the conditions of Definition 
4, except the fourth condition. 
The secondary functional fault (qi

f, yj
h) relates the 

state bit to the primary output. This fault allows mo-
deling the transition fault that starts at the state bit and 
propagates to the primary output. 

Definition 6. The secondary functional fault (qi
f, 

yj
h) is detected by test stimulus S under the following 

conditions: 
1. The test stimulus S detects the single fault qi stuck-

at f on the previous state input of the cell t. 
2. The fault free value under S at the output yj of the 

cell t or the cells t+1, t+2, …, k is –h. 
3. In the presence of qi stuck-at f on the previous state 

input of the cell t, the value at the output yj of the 
cell t or the cells t+1, t+2, …, k is h. 

4. The fault free value under S at the previous state 
input qi of the cell t-1 is f. 

The delay test generation using the secondary 
functional faults allows sensitizing the paths connec-
ting every bit of state to the primary output. 

The detection of the functional delay faults can be 
represented by the detection matrix D=||da,b||2(n+v),2m, 
where index a is used to denote the inputs of the cell, 
and index b is used to denote the outputs of the cell. 
The bits of next state are not represented in the matrix, 
because the corresponding functional faults are not 
considered. The entry of the matrix da,b:=1 if the 
corresponding functional delay fault is detected, 
da,b:=0 – in the opposite case. Each input/output pair 
(i, j) is associated with four entries of the matrix d2i-1,2j-

1, d2i-1,2j, d2i,2j-1, d2i,2j that correspond to the primary 
functional delay faults (xi

0, yj
0), (xi

0, yj
1), (xi

1, yj
0), (xi

1, 
yj

1), when i=1,..., n, and j=1 ..., ,m., and the secondary 
functional faults are represented by the pairs (xi

0, pj
0), 

(xi
0, pj

1), (xi
1, pj

0), (xi
1, pj

1),  when i=1,..., n, and 
j=m+1 ..., ,m+v.. The entry of the matrix d2i-1,2j-1 is set 
to 1 if the primary functional delay fault (xi

0, yj
0) is 

detected. That corresponds to the situation where the 
transition 0→1 is on the input i, the transition 0→1 is 
on the output j, and the blocked transition on the input 
disables the transition on the output. The entry of the 

matrix d2i-1,2j is set to 1 if the primary functional delay 
fault (xi

0, yj
1) is detected. That corresponds to the 

situation where the transition 0→1 is on the input i, 
the transition 1→0 is on the output j, and the blocked 
transition on the input disables the transition on the 
output. The entry of the matrix d2i,2j-1 is set to 1 if the 
primary functional delay fault (xi

1, yj
0) is detected. 

That corresponds to the situation where the transition 
1→0 is on the input i, the transition 0→1 is on the 
output j, and the blocked transition on the input 
disables the transition on the output. The entry of the 
matrix d2i,2j is set to 1 if the primary functional delay 
fault (xi

1, yj
1) is detected. That corresponds to the 

situation where the transition 1→0 is on the input i, 
the transition 1→0 is on the output j, and the blocked 
transition on the input disables the transition on the 
output. In the same way, the detection of the 
secondary functional faults is labeled when they are 
detected according to Definition 5. 

3. Test generation process 

Delay test generation is accomplished at the func-
tional level. The model of the circuit has to be de-
scribed in a high level description code, which is 
termed a software prototype. Therefore, it can be 
presented in the form of a high level programming 
language, behavioural VHDL or Verilog description 
code. But the reality is such that the models of the 
circuits usually are available in the RTL description 
code, for example ITC’99 benchmark suite [10]. Such 
models have to be lifted up into the algorithmic level 
of the description. In order to achieve this goal there 
are several ways: 1) to write the model in C program-
ming language; 2) to translate from VHDL or Verilog 
RTL code to the code in C programming language; 3) 
to translate from VHDL or Verilog structural code to 
the code in C programming language. There are pos-
sible other alternatives, but we did not consider them. 
We have tried to write the models in C programming 
language for all the benchmarks from ITC’99 bench-
mark suite. But we did not achieve our goal, because 
for all the models practically it is not possible to en-
sure the adequacy. The second way, the most attractive 
and reliable one, was eliminated as not possible for 
two reasons: 1) it is difficult to think of the rules that 
would allow to convert several parallel processes into 
sequence of the operators in C programming lan-
guage; 2) such a way contradicts to the whole design 
process, which flows from algorithmic level to more 
detailed RTL. The third way looks little bit strange, 
but the synthesized structural descriptions are avail-
able for all the benchmarks. We have written a trans-
lator from Verilog structural description code into 
code in the C programming language. The rules of the 
translation are very simple, because every Verilog 
primitive (and, or, not, nand, nor) can be substituted 
by appropriate operator of C programming language. 
Such a model has a single deficiency only – it is very 
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large for large circuits. Therefore, the productivity of 
the test generation program suffers quite a lot. 

Usually the reset and clock signals are present in 
the RTL description code. The values of the reset and 
clock signals change according to the regular law. 
Therefore, these inputs have to be excluded from the 
consideration. The values according to regularities of 
these inputs have to be supplied later when the final 
test is obtained for the sequential circuit. 

In order to use the introduced fault models, the 
state bits have to be extracted from the model of the 
circuit. In a high level description code, the state bits 
are represented by the variables. The declared type of 
the variable determines the number of bits required for 
the variable. But not all the variables represent the 
state; some of them are used for temporary storage of 
the values only. The careful analysis of the code is 
needed in order to determine which variables are 
temporary. Synthesis of the code could aid to resolve 
this problem. Consider an example. Let us use the 
RTL code of circuit b01 from ITC’99 benchmark suite 
presented in VHDL hardware description language. 
We find a single declared variable in the code: 
variable stato: integer range 7 downto 0; 

The knowledge of VHDL language allows deter-
mining that three state bits are required for the vari-
able stato. Let us examine the synthesized descrip-
tion of circuit b01. We find five flip-flops. In order to 
find out the problem of difference between the number 
of state bits and the number of flip-flops we examine 
the synthesized code of b01. We discover that two 
additional flip-flops are connected to two primary 
outputs of the circuit. Such flip-flops form a buffer 
zone. The buffer zone can be formed on the primary 
inputs as well. But the flip-flops of the buffer zone can 
be neglected, because they are used for the temporary 
storage of the values only. Therefore, the initial 
determination that three state bits are required for the 
circuit b01 was correct. We could say in advance that 
all the circuits from benchmark suite ITC’99 have the 
buffer zone of flip-flops at the primary outputs, except 
the circuit b05. 

The parameters of circuits from the benchmark 
suite ITC’99 are presented in Table 1. We have to pay 
attention to the fact that the number of inputs of fault 
model does not count the reset and clock signals that 
are present in all the circuits. Analysis of the VHDL 
code of the benchmarks presented in Table 1 revealed 
that the code of circuits’ b04, b05, b08, b12, b14 has 
temporary variables. In the code of circuits’ b07 and 
b10, we learnt that some bits of declared variables are 
never used. Therefore, the number of state bits accor-
ding to our calculation is more than the number of 
flip-flops minus the number of primary outputs that 
are represented by the flip-flops of the buffer zone. 

Now we present a delay test generation process. 
The delay test generation process consists of two 
stages: determination of length of clock sequence, and 
test pattern generation. The first stage is a very 

important stage, because the non-scan sequential 
circuit is represented by the iterative logic array con-
taining k combinational copies of the sequential 
circuit. In other words, k denotes the length of clock 
sequence. Every sequential circuit especially at the 
algorithmic level can be represented as a finite state 
machine. The finite state machine is always synch-
ronized by clock sequence of some defined length. If 
the length of clock sequence is too short, some states 
will not be visited, and the corresponding delay faults 
will not be detected. If the length of clock sequence is 
too long, some states will be visited repeatedly but 
that will not sensitize the new paths, and the new 
faults will not be detected. Too long clock sequence 
increases the number of test patterns in the test 
sequence quite substantially but without a necessity. 
Therefore, the number of copies k directly influences 
the success of test pattern generation. 

Table 1. Parameters of circuits  

Circuit Fault model 

Name In-
puts 

Out-
puts 

State 
bits 

Flip-
flops Inputs Out-

puts 

b01 4 2 3 5 5 5 
b02 3 1 3 4 4 4 
b03 6 4 26 30 30 30 
b04 13 8 58 66 69 66 
b05 3 36 34 34 35 70 
b06 4 6 3 9 5 9 
b07 3 8 43 49 44 51 
b08 11 4 17 21 13 21 
b09 3 1 27 28 28 28 
b10 13 6 14 17 25 20 
b11 9 6 25 31 32 31 
b12 7 6 115 121 120 121 
b13 12 10 43 53 53 53 
b14 34 54 191 245 223 245 

In order to determine the length of clock sequence 
we use the fault models presented in Section 2. The 
secondary functional fault (xi

f, pj
h) model shows the 

ability to control and to observe the state bit. Of 
course, we understand that all the state bits have to be 
controlled by the values on the primary inputs. There-
fore, the secondary functional fault (xi

f, pj
h) model 

serves as the first criterion in choosing the correct 
length of clock sequence. We count the number of 
uncontrollable state bits according to the secondary 
functional fault (xi

f, pj
h) model. The goal is that this 

number would become equal to zero. The increase of 
the length of clock sequence allows us to converge to 
this goal. This goal is not always reachable. Some-
times, we increase the length of clock sequence quite 
substantially to several thousands, but some state bits 
still remain uncontrollable. When we reach the goal or 
we see that it is not possible to control all the state bits 



Generating Functional Delay Fault Test for Non-Scan Sequential Circuits 

105 

with acceptable length of clock sequence, the primary 
functional fault model is used as the second criterion 
in choosing the correct length of clock sequence. Then 
we count the number of detected functional faults 
according to both criteria. We never know what the 
number of detectable faults is. Therefore, the goal is to 
reach the number of detected functional faults as 
larger as possible. We stop the increase of the length 
of clock sequence, when the number of detected func-
tional faults does not augment or the growth is very 
small. 

To start the delay test generation, the circuit is 
assumed to be initialized to state 0 before the appli-
cation of the input sequence. If the circuit has a reset 
input, then it can be set to state 0. If the circuit has no 
the reset input, the synchronizing sequence could be 
used, which transfers the circuit to known initial state 
that could be different from the state 0. For example, 
all the benchmarks from ITC’99 suite have the reset 
input; meanwhile the benchmarks from ISCAS’89 
suite have no reset input [7]. The problem of the 
generation from the initial state, which is not the state 
0, is out of scope of this paper. 

When the length of clock sequence, which defines 
the number of the cells in the iterative logic array 
model of the circuit, is determined, the next step is a 
delay test pattern generation. The generation is imple-
mented according to the iterative logic array model of 
the circuit using the models of the primary functional 
fault and the secondary functional fault (qi

f, yj
h). The 

secondary functional fault (xi
f, pj

h) is not used for the 
delay test pattern generation. The influence of the 
values on the primary inputs to the values on the 
primary outputs and the influence of the values on 
previous state bits to the values on the primary outputs 
are considered only. 

The circuit is considered to be set to the state 0. 
Random values are generated on the primary inputs. 
Simulation is carried out of the first cell of the itera-
tive logic array. Simulation defines the values on the 
primary outputs and the values of the next state, which 
become the previous state values for the next cell of 
the iterative logic array. The primary functional fault 
and the secondary functional fault (qi

f, yj
h) are simu-

lated on every cell of the iterative logic array. Defi-
nition 4 and Definition 6 state the conditions of the 
detectability of the functional faults. The detected 
functional faults are labeled in the detection matrix D. 
The test generation process should stop when all the 
simulated functional faults are detected, but the 
number of testable functional faults is unknown. The 
solution to the problem of stopping the functional 
delay test generation using the detection matrix is 
presented in [1]. 

4. Experimental results 

The experiments were carried out on the circuits of 
the benchmark suite ITC’99. We report the detailed 
process of the determination of the length of clock 

sequence for the circuit b01 in Table 2. The length of 
clock sequence is directly related to the functioning of 
the circuit. In order to easier understand the whole 
process of the determination of the length of clock 
sequence we present the state transition graph of cir-
cuit b01 in Figure 2. The state transition graph has 8 
states. The names for the states are given according to 
VHDL model of circuit b01. The circuit has 2 primary 
inputs (the reset and clock inputs are not counted). 
The values are shown only on those edges, where 
equal values are required on both inputs. These values 
indicate that the path traversing the states of the circuit 
will be chosen more likely through the edges that do 
not have the values, because the generation of the 
values is random. For example, the edge, which con-
nects the vertices a and f , is labeled by the controlling 
value 11. The transition by the other edge, which con-
nects the vertices a and b, is controlled by the follow-
ing three combinations of values: 00, 01, 10. There-
fore, this transition will happen 3 times more likely. 
Such a consideration allows us to determine the proper 
length of clock sequence. 

Table 2. Determination of length of clock sequence for b01  

Length 
of clock 

se-
quence 

Number of 
uncontrol-
lable state 

bits 

Number 
of detec-

ted 
functio-

nal 
faults 

Number 
of test 
sub-

sequenc
es 

Fault 
cove-
rage at 

gate 
level 
(%) 

4 2 15 – – 
8 0 44 – – 

16 0 49 – – 
32 0 49 – – 
12 0 42 – – 
10 0 44 – – 
9 0 49 10 97.37 
   12 96.99 

15 0 49 8 93.61 
   6 96.24 

14 0 45 – – 

As one can see in Table 2, we start the generation 
with the length of clock sequence, which equals to 4. 
Knowing the function of the circuit, it was possible to 
predict that such a length of clock sequence will leave 
some state bits uncontrollable. This value was chosen 
in order to show that the model allows counting up the 
uncontrollable state bits. Then, we double the value of 
the length of clock sequence. The law of doubling is 
used always in the search of the proper length of clock 
sequence. In this search, we find two least values that 
would fit for the proper length of clock sequence. 
Value 9 is found only, because we know the func-
tioning of the circuit. The algorithm indicates the 
value 15; the analysis of the state transition graph 
presented in Figure2 suggests the value 9, therefore, 
the decision was made to generate test sequences for 
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both lengths of clock sequences. In order to reduce the 
factor of randomness the generation was carried out 
two times. The last two columns show the results of 
these generations. We did not use the term test 
subsequence, which is shown in the fourth column in 
the text before. The test subsequence is a sequence of 
input patterns, which corresponds to one clock se-

quence. Every test subsequence starts with reset test 
pattern.  

As the results indicate, the analysis of the state 
transition graph was performed appropriately – the 
length of clock sequence should be 9. 

 
 
 
 
 
 
 
 
 
 
 
 
 

reset 
00

001111 

00

11 a 11

e 

f g

b c

wf0

wf1

00

 
Figure 2. State transition graph of circuit b01 

The similar process of the search for the proper 
length of clock sequence was carried out for all the 
circuits presented in [1], but we do not provide the 
details. The stress is made now on the functional delay 
test pattern generation. The results are reported in the 
first three columns following the column of circuits’ 
names. We would like to pay attention that the fault 
coverage of the functional delay test patterns was 
measured at the gate level. 

Table 3. Functional delay test patterns  

Functional delay test patterns Fault coverage (%)

Circuit Length of 
clock 

sequence 

Number of 
test sub-

sequences 

Fault 
coverage 

(%) 

Tetra-
MAX 

[18] 
method

b01 9 10 97.37 97.37 - 
b02 9 6 86.36 86.36 - 
b03 9 85 56.09 52.15 55.73 
b04 17 166 83.23 82.64 79.03 
b09 64 14 60.14 62.70 65.93 
b10 30 151 79.23 77.48 76.55 
b11 2160 11 78.82 50.14 79.13 
b12 480 27 34.33 6.6 - 
b13 2160 92 63.43 21.29 - 

b14 240 444 76.76 32.37 - 

The transition test patterns were generated at the 
gate level by TetraMAX program. The results are pre-
sented in the penultimate column. The last column 
reports the results obtained in [18]. These two co-
lumns are provided for comparison purposes. 

We see that the fault coverage of functional delay 
test patterns is larger or equal in comparison with the 
fault coverage of transition test patterns generated by 
TetraMAX for all the circuits, except the circuit b09. 

Especially good results are obtained for the circuits’ 
b11, b12, b13 and b14, where the long test sequences 
are needed in order to detect transition faults. We 
could confess that the thorough work was needed in 
order to select the proper length of clock sequence, 
because the process is not automatic yet. We see that 
the length of clock sequence is very large for circuits’ 
b11, b13 and the lengths are occasionally equal. 

The obtained results of functional delay test 
generation can be compared with the results provided 
in [18], where the double-single fault model was used 
for transition test generation. Our method of func-
tional delay test generation allows obtaining better 
results for the following circuits: b03, b04, and b10. 
Our method looses for the circuit b09 and it obtains 
almost the same fault coverage for the circuit b11. 

Our method of functional delay test generation has 
else one advantage over the transition test generated 
by TetraMAX – shorter time of test generation. For 
example, TetraMAX generates the transition test pat-
terns an hour and 56 minutes for the circuit b09, an 
hour 45 minutes – for the circuit b10. This amount of 
the time is already quite significant, but it increases to 
half a day for the larger circuits like b11, b12, b13, 
and b14. The test generation according to our method 
obtains the results within the seconds for the smaller 
circuits (b03, b04, b09, b10) and it takes some minutes 
for the larger circuits (b11, b12, b13, b14). The time of 
test generation in [18] was not provided. 

5. Conclusions 

We presented two functional fault models that are 
devoted for functional delay test generation for non-
scan synchronous sequential circuits, namely the pri-
mary functional fault model and the secondary func-
tional fault model. The first model deals with the 
stuck-at faults on the primary inputs and primary 
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outputs. The second model, which is used as the 
addition to the first model, deals with the stuck-at 
faults on the primary inputs, state bits and primary 
outputs. The circuit is represented as the iterative logic 
array model, consisting of k copies of the combi-
national logic of the circuit. The value k defines the 
length of clock sequence. The method that allows 
determining the length of clock sequence was pre-
sented.  

The obtained results show that the introduced de-
lay test generation method, using the presented func-
tional fault models, outperforms by the fault coverage 
the transition test patterns obtained at the gate level by 
deterministic test pattern generator. The introduced de-
lay test generation method obtains especially good 
quality results for the circuits, when the long test se-
quences are needed. 
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