
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2013, Vol.42, No.1 

1,2,3 Advanced Process Automation & Control (APAC) research group,
Industrial Control Center of Excellence, Faculty of Electrical & Computer Engineering,

K.N. Toosi University of Technology, Seyyed-Khandan, P.O.Box: 16315-1355, Tehran, Iran
e-mail: fatehi@kntu.ac.ir1, sadeghpoor@yahoo.com2, labibi@eetd.kntu.ac.ir3

http://dx.doi.org/10.5755/j01.itc.42.1.997

. This paper studies identification of a process in both frequent and infrequent operating points to design a 
nonlinear model predictive controller. Although, many of industrial processes normally work around an operating 
point, however they should seldom work in some infrequent points as well. In this case, due to low ratio of data points, 
identification of the processes based on all data set results in poor identification of the infrequent operating points. To 
resolve this problem, in this paper, at the first step, a data clustering strategy is used to group the data in different 
operating points. Since the ratio of infrequent to frequent data points is extremely low, the strategy used is the fuzzy 
Gath-Geva clustering methodology. Then, at the second step, a new approach has been proposed to compromise 
performance of identification of the nonlinear model for frequent and infrequent operating points. It is shown that if the 
ratio of data associated with frequent operating point to data of infrequent operating point is appropriately selected, the 
performance of the model remains satisfactory in the frequent operating point while the performance in the infrequent 
operating point is significantly improved as well. The proposed method gives an interval for appropriate ratio of data 
set in the highly nonlinear pH neutralization process.

: Nonlinear System Identification; Nonlinear Model Predictive Control (NMPC); Fuzzy Clustering; 
Multilayer Perceptron (MLP) Neural Networks.
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Model predictive control is widely used in 
industrial processes because of simplicity, 
understandability, handling constraints and dealing 
with time delays. The method is based on prediction 
of future outputs to generate a future control action to 
minimize a performance index of error and control 
signals [15], [3]. Since this strategy strongly depends 
on the underlying model, its performance is violated if 
the quality of the predictor model is low. Due to 
severe nonlinearity of most of industrial processes and 
efficacy of MPC in control of nonlinear systems, 
nonlinear MPC (NMPC) has attracted more attention 
in the last two decades [14]. This kind of control 
strategy uses nonlinear models to predict future 
output. In [20] & [16] Wiener models, in [2] & [17] 
Volterra series models and in [11] & [5] Hammerstein 
model are used as the nonlinear models in NMPC. 
Multiple models strategy [4] & [21] is another suitable 
choice for a nonlinear plant where combination of 
some local linear models is used to model the 

nonlinear plant. Moreover, neural networks have been 
extensively used as nonlinear models in model 
predictive control of nonlinear processes [19], [13], 
[1], [11] & [23]. In all of these works, nonlinear model 
is the fundamental part of the controller which quality 
of control heavily depends on.

To identify a process, the most important step is to 
design excitation signals according to important 
frequency range of the nonlinear system at different 
operating points [18]. However, in many real 
applications, it is not always possible to apply the 
designed excitation signals to the real system. This 
necessitates using usual data of the process which are 
logged into historical data servers. These data are 
obtained from different operating points with different 
data ratio and different weights of importance. 
Industrial processes usually work in several limited 
main or frequent operating areas. However, changes in 
quality of input materials, disturbances or so on 
necessitate employing a process in infrequent 
andunusual operating points. If the data set used to 



identify the nonlinear model of the plant does not 
involve enough data of these operating points, the 
plant will not be accurately identified. Consequently, 
the prediction results in large error which may cause 
large control error or even instability. On the other 
hand, using the same number of data points for both 
frequent and infrequent operating points decreases 
quality of the identified model for frequent operating 
points and subsequently increases overall cost of using 
the model.

In this paper, we propose a method to design a 
nonlinear MPC so that it has satisfactory performance 
in frequent operating point while the quality of control 
at infrequent operating point is not less than an 
acceptable threshold. The proposed method 
recommends using a portion of data in the infrequent 
area much larger than its real portion in the actual data 
set but much less than the portion of data of frequent 
operating area. This strategy improves identification 
quality in the infrequent operating area while it keeps 
the relative identification quality in frequent operating 
area as well.

However, there are two main problems associated 
with this strategy. The first one is how to specify 
various operating points of the process as frequent and 
infrequent data points. For this purpose, data 
clustering is employed to separate data in different 
operating points. Since the ratio of data in frequent to 
infrequent operating points is enormously high, fuzzy 
Gath-Geva clustering [7] has been used. The second 
problem is how to select the ratio of identification data 
to accurately identify a nonlinear model for the 
system. In this direction, we specified an approximate 
value for the ratio of training data by providing an 
especial experiment.

The pH neutralization process is selectedin order 
to show the efficacy of the proposed algorithm. Due to 
severe nonlinearity of this process, it is known as one 
of the most difficult processes to be controlled [22]. 
Nonlinearity of pH neutralization is more on its steady 
state gain which may change by a factor of 30 for a 
low nonlinear process up to 1000 for high nonlinear 
one. A pH neutralization process can be modeled well 
by Wiener [16] or Hammerstein [5] model. Indeed, 
linear model with adaptive dynamic [6] or general 
nonlinear dynamic model has also been used [8] in 
some researches. In this paper, we use a neural 
network ARX (NARX) model for the process. By 
implementing the proposed algorithm in identification 
of a nonlinear model for NMPC of a pH process, error 

of frequent operating points remains low while at the 
same time error of infrequent operating points is in an 
acceptable range. Indeed, the overall error is near to 
minimum. 

The rest of the paper is organized as follows: In the 
next section a review of the model predictive control 
strategy is given. In Section 3, the clustering method 
has been explained to specify frequent and infrequent 
data points. Section 4 presents the main result on 
nonlinear identification in both frequent and 
infrequent operating points, in which the proper ratio 
in identification data set is obtained for a pH process. 
In section 5, the proposed method is used in a neural 
network model predictive control system and finally 
section 6 gives conclusions.

Figure 1 shows the general block diagram of 
model predictive control strategy. Contrary to the 
classical control which only uses past and present 
output or states of the plant, the model predictive 
control considers prediction of future signals as well. 
All the MPC algorithms have common components 
which are predictive model, cost function and 
calculation of future control to minimize the cost 
function. 

The general structure of MPC

Predictive model is a fundamental part of an MPC. 
At the first step, a mathematical model of the process 
is identified based on past inputs ( ( + ); 1)
and past outputs ( ( + ); 0) . This model, 
together with future inputs ( ( + ); 0 ) is 
employed to predict future outputs ( ( + | ), 1 <

< ) . Since the future inputs are unknown, 
practically the model gives future outputs as a 
function of future inputs. At the next step, an 
optimization problem is solved using a cost function 
of predicted error and future control effort. A general 
expression for such cost function can be given as 
follows:  

( , , ) = ( )[ ( + ) ( + )] + ( )[ ( + )] (1)

where ( + ) is steps ahead prediction of the 
output, ( + ) is steps ahead reference signal, 

( + ) is steps ahead control signal and is the 
backward difference operator. > 1 and present 
interval of output prediction and is the control 
horizon. Normally, is equal to the delay of the 

process [15]. Coefficients ( ) and ( ) affect 
performance of the controller and usually are 
considered to be constant.

Industrial processes are subject to some constraints 
in input signal, output signal, their differentiation 
through time, acceptable overshoot and so on. These 
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constraints can be dealt in MPC with minimization of 
Eq. (1) subject to defined constrains. Solution of this 
optimization problem is the future input to apply as 
control signal to the process. In order to obtain 

( + ), it is necessary to minimize the cost function 
J. To do this, predicted output ( + ) is substituted 
in the cost function based on the prediction model as a 
function of previous and present inputs and previous 
outputs which are known and future control signal 
which is unknown [11]. 

Despite of the fact that most of industrial processes 
are nonlinear in nature, many applications of MPC so 
far have been applied to linear models [3]. However, 
there exist processes whose nonlinearities are severe 
enough not to be negligible. Accordingly, nonlinear 
model predictive control, NMPC which uses a 
nonlinear model in MPC strategy is very helpful and 
justifiable [14]. In nonlinear modeling, it is possible to 
use neural models, fuzzy models, a combination of 
both or other nonlinear models such as Wiener and 
Hammerstein models. In this paper, multilayer 
perceptron (MLP) neural network is selected as the 
process model.

To identify a nonlinear model, it is necessary to 
excite the system at different operating points. 
Acquired data are saved in a database to be used in 
identification ofthe plant. The structure of model 
(number of neurons), algorithm of parameter 
adjustment (training of neural networks), quality of 
produced data and preprocessing of data (noise 
elimination, delay estimation and so on) affect quality 
of the model [3].

Since in neural network training, mean of square 
of errors is used as the criterion of parameter 
adjustment, volume of produced data in any area 
heavily affects quality of identification in that area. If 
the number of data points in an operating point is
much less than the number of data points in another 
operating point, the effect of modeling error for the 
first data set is less than that for the second data set in 
the cost function. This reduces the efficacy of the cost 
function on designing a good model for the first 
operating point, despite the error is considerable in 
this area. In fact, training algorithms have more 
tendencies to reduce small errors in regions with a 
large amount of data than to reduce large errors in 
regions with small amount of data. 

Identification data may be produced either actively 
using some special experiment or passively using the 
ordinary data of the process during its operation. In 
the first case, one may excite the process in different 
operating points and select necessary data in each one. 

However, this may not possible in a plant during its 
normal operation. In this case, the only available data 
for identification is the ordinary data logged during 
the operation. These data include both frequent and 
infrequent data points. Therefore, it is necessary to 
separate data of different operating points and use 
specific ratio of them for identification, as will be 
presented in Section 4. For this purpose clustering is 
employed to separate frequent and infrequent data 
points.

There are various clustering methods [12]. C-
means clustering is a basic method in which data are
clustered in some hyper-sphere clusters. Gustafson-
Kessel method was introduced in [9] in which the 
clustering distribution variation can be different in 
each direction which means each cluster is a hyper-
ellipsoid. However, the total clustering error 
proportionally depends on the number of data points
in that cluster in both of the above methods. 
Therefore,the total clustering error for a small size but 
scattered and high distributed cluster may be much 
less than the total clustering error for a condense but 
large size cluster. As a result, the clustering algorithm 
may divide the large cluster in two parts and includes 
small groups of data in each of these two large clusters 
to minimize the overall clustering error. Gath and
Geva [7] presented another clustering in which the 
number of data points in each cluster is inversely 
affects the clustering error. Therefore, a small cluster 
may have the same effect in the overall clustering 
error as a large one with more or less the same 
distribution of data. In this section, fuzzy Gath-Geva
clustering algorithm is used to cluster the data in 
frequent and infrequent operating points.

Clustering is a nonsupervisory classification 
technique in which the data set is divided into 
clusters based on the similarity of the members of 
each other and their difference from those of other 
clusters. Consider data set with data points

= ( , , … , ) , = 1,2, … , , where is the 
number of data points in and  is the dimension of 

. The problem is to find cluster centers  
= , , … , , = 1,2, … , , and membership 

of to the cluster such that an overall cost function 
of distance of data from their cluster center is 
minimized. The distance function in fuzzy Gath-Geva 
clustering is defined as [7]:

= , , (2)

where , is the distance of from center of 
: 

, = (3)



, is the degree of membership of to cluster 
which is computed during the clustering, is used 

to change the fuzziness of the clusters and is the 
covariance matrix of cluster . is cardinality of 
cluster which is defined as the proportion of sum of 
the membership values of all data points to to sum 
of all membership values of all data points to all of the 
clusters.

pH neutralization process is selected to illustrate 
clustering frequent and infrequent operating points. 
pH process, as demonstrated in Figure 2, has three 
reaction streams: HNO3 as an acid, NaOH as a base 
and water. It has two output variables: liquid level and 
pH of the output stream. Water flow rate is deployed 
to control the liquid level and base flow rate is the 
control signal on pH control loop where acid flow rate 
is disturbance. A detailed model of this process is 
presented in [10] which is used in this study.

pH Neutralization process

The titration curve of pH process

This process is a severe nonlinear process. 
Figure 3 shows a typical titration curve of a pH 
neutralization process. As it is shown in this figure, 
gain of the process could be categorized into 3 
different areas; low gain in areas 1 & 5, medium gain 
in areas 2 & 4 and high gain in area 3.

If we design controller of this process in any area 
other than area 3, changing the operating point from 
that area to area 3 may result in oscillation or even 
instability. Suppose the pH process usually operates in 
area 2 but operates at a very small interval of time in 
area 3 due to some disturbances. Accordingly, we 
consider area 2 as the main or frequent area and area 3 
as the rare or infrequent area. The question is how to 
separate data points of area 2 and 3 from each other.

Since dynamic behavior of processes is concerned 
in this paper, each data point consists of the regression 
vector used later in nonlinear identification of the pro-
cess. This vector, as will be stated in sub-section 4.1, 
is ( ), ( 1), ( 2), ( 3), ( 1), ( 2) ,
where ( ) is the inlet base feed rate and ( ) is the 
outlet pH value. Suppose is the number of data 
points in the infrequent area and is the number of 
data points in the frequent area and = / . In 
other words, is the ratio of period of time the 
process operates in the frequent area with respect to 
that of the infrequent area.

We apply an amplitude modulation pseudo random 
binary signal (APRBS) [18] with length = 2000
step. The amplitude of the inlet flow is selected so that 
the operating point remains in area 3. Another APRBS 
is also applied with different length of and with the 
amplitude so that it operates in area 2. The regressor 
data are clustered using the Gath-Geva clustering 
method. Figure 4 illustrates the clustering result for 

= 100 where the number of clusters is = 5 .
Figure 4a shows the first element (the pH value) of 
each data point. The horizontal axis is the element 
number in each cluster. The clustering is near optimal 
after 10 training steps. Figure 4b illustrates the center 
of the clusters for these 10 steps of training. Although 
the number of infrequent data points is too small 
Gath-Geva clustering could accurately cluster them. 
The frequent data points are divided into 4 different 
clusters. To merge these clusters, we define a 
minimum threshold for the distance between the 
centers of the clusters.

Clustering of pH neutralization process into 5 
clusters

Data point in each cluster
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The main question in simultaneous identification of 
frequent and infrequent operating areas is how to 
select the ratio of the data in these areas to identify 
them such that the following objectives are satisfied:

1. Identify the main operating area with a high 
quality such that the model error in this 
areaislow.

2. Identify the process in the infrequent area 
such that the model error in this area is not 
high.

3. The overall identification error of the model 
over all the operating range is optimally low.

To satisfy these objectives, we have to find the 
ratio of data to be employed for identification. In 
subsection 4.2, through several experiments, we will 
find the appropriate ratio. To this end, first we present 
some practical concerns in modeling of pH process in 
subsection 4.1.

In identification of pH process similar to other 
systems, several practical issues should be considered 
which are explained in details in [21]. One of the 
important factors in a good identification is quality of 
the identification data. Accordingly, the identification 
data need to be informative, i.e. excite different 
frequencies and operating points of the process 
dynamics. To this end, we use a binary signal with 
admissible amplitude to excite all modes of the 
system. Also, we add noise to that signal to increase 
the quality of identification and to have a better 
excitation. We consider the amplitude of noise roughly 
1/15 of the signal amplitude. To collect data, open 
loop identification is employed which is acceptable 
due to stability of the pH neutralization process. Since
the time constant of the process is 350 to 400 seconds, 
we select the sample time as 30 seconds. The input 
vector of the neural network consists of 

( 1), ( 2), ( 3), ( 1), ( 2) and 
its output is ( ). The number of neurons is chosen 
based on an error threshold. Consequently, the neural 
network is composed of a hidden layer with 5 and, in 
some of experiments, with 7 neurons. 

This section explains how the amount of required 
data in different areas is selected to satisfy the 
mentioned objective of simultaneous identification of 
frequent and infrequent operating points. In order to 
find the best ratios, we provide the following 
experiment. Suppose is the ratio of period of time 
the system operates in the frequent areas with respect 
to that of the infrequent areas. After clustering, part of 
data in frequent cluster and part of that from the 
infrequent cluster is selected to identify the plant. If 
we select and as the numbers of training data 
sets in infrequent area and frequent area, respectively, 
then = / is the ratio of training data sets. In our 
experiment, for different values of we identify the 

process with different value of . Also, another data 
set is used as test data set, which its ratio is to 
as well, to measure the infrequent data error, frequent 
data error and the total error in each case. Table 1 
compares MSE1, MSE2 and MSET which are mean 
square of identification errors of infrequent data, 
frequent data and total data sets, respectively, for 
different values of and . 

As depicted in the table, if for example the length 
of the infrequent operating area of the process is one 
tenth of that of the main operating area and the ratio of 
the training sets for the main and the infrequent data 
sets is selected as 2 to 1, then the total error of the 
performance of the test data in the infrequent 
operating point is equal to 0,86 × 10 . Figures 5, 6,
and 7 show MSE for infrequent operating point, main 
operating point and total operating points for different 
values of n and N, respectively.

In Figure 5, we observe that by increasing , the 
error associated with the infrequent operating point 
increases. In fact, the ability of the neural model to 
predict the output of the infrequent operating point 
decreases due to decrease of proportion of data in this 
operating point to the main operating point in the total 
data. However, in all of the error curves in Figure 5 up 
to 25, the MSE of data in the infrequent operating 
point has a negligible value and performance of the 
modelis acceptable.

Identification error of the infrequent operating 
point for different values of N and n

As it can be observed from Figure 6, the error 
decreases for the main operating point by increasing 
the proportion of data ofthe main operating point to 
the infrequent operating point for all different values 
of . This is because the neural network model better 
identified the main operating point. Hence, the error 
associated with this area decreases. However, the rate 
of this decrease for lower ratios is rapid and for larger 
ratios is very slow. In all the error curves for 12
this rate is very slow and approximately equal to zero.

By studying Figure 7, we observe that MSE value 
for data sets associated with the combination of
infrequent and main operating points initially

n

M
SE

1

N=1
N=5
N=10
N=20
N=50
N=100
N=200
N=500
N=1000



The identification MSE for total data set, infrequent data set and frequent (main) data set (all values are in 10-6)

Identification error of the main operating point for 
different values of N and n 

decreases with slow rates and then increases with 
rapid rates. Hence, to minimize the error cost function, 
the appropriate ratio is in an interval around the 
optimal point.

Identification error of the total operating points for 
different values of N and n

According to Figures 5 to 7, we can conclude that 
for the main operating point, the ratios greater than 12 
and for the infrequent operating point the ratios less 
than 25 are acceptable. Therefore, the common 

n

M
SE

2

N=1
N=5
N=10
N=20
N=50
N=100
N=200
N=500
N=1000

n

M
SE

T

N=1
N=5
N=10
N=20
N=50
N=100
N=200
N=500
N=1000

N 
n 1 2 3 5 7 10 12 15 20 25 30 40 50 70 100 150 200 500 700 1000

1 
MSET 0.4706 0.4758 0.4749 0.4645 0.469 

MSE1 0.8198 0.8553 0.8602 0.843 0.8529 

MSE2 0.1215 0.0962 0.0896 0.086 0.0852 

5 
MSET 0.2278 0.221 0.2252 0.2125 0.2144 0.1486

MSE1 0.8187 0.8541 0.8993 0.8377 0.8518 0.8634

MSE2 0.1099 0.0947 0.0906 0.0877 0.0872 0.0773

10
MSET 0.188 0.155 0.1485 0.1469 0.1477 0.1486

MSE1 1.07 0.8565 0.8219 0.8381 0.8525 0.8636

MSE2 0.1 0.085 0.0813 0.078 0.0774 0.0773

20
MSET 0.1403 0.1278 0.1246 0.1206 0.1208 0.1211 0.1216 0.1217 0.1224 

MSE1 0.8189 0.8524 0.8707 0.8346 0.8537 0.8616 0.8734 0.8739 0.8874 

MSE2 0.1065 0.0917 0.0873 0.085 0.0843 0.0842 0.0841 0.0842 0.0843 

50
MSET 0.1348 0.1148 0.1106 0.1069 0.1064 0.1064 0.1065 0.1066 0.1065 0.1067 0.135 0.139 0.141 

MSE1 0.8378 0.8534 0.8618 0.8481 0.8569 0.8633 0.8724 0.8721 0.868 0.8724 2.316 2.523 2.602 

MSE2 0.1208 0.1001 0.0956 0.0921 0.0914 0.0913 0.0912 0.0913 0.0913 0.0914 0.092 0.092 0.092 

100
MSET 0.117 0.099 0.0965 0.0934 0.0937 0.0929 0.093 0.093 0.0932 0.0931 0.0928 0.0925 0.0923 0.6 0.73 

MSE1 0.829 0.8453 0.858 0.8429 0.8992 0.8635 0.8733 0.8676 0.8898 0.8721 0.8529 0.83 0.8094 51.84 65.77 

MSE2 0.1099 0.0916 0.0889 0.0859 0.0857 0.0852 0.0852 0.0853 0.0853 0.0853 0.0853 0.0852 0.0851 0.0851 0.0856 

200
MSET 0.1112 0.0958 0.092 0.0888 0.0882 0.0881 0.0881 0.0882 0.0882 0.0883 0.0881 0.0881 0.098 0.34 0.43 0.9 1

MSE1 0.8198 0.8553 0.8602 0.843 0.8563 0.8635 0.8742 0.8734 0.8682 0.8711 0.8458 0.8317 2.748 50.69 70.33 156 174.7

MSE2 0.1077 0.092 0.0881 0.085 0.0844 0.0843 0.0842 0.0843 0.0843 0.0844 0.0843 0.0843 0.084 0.084 0.084 0.084 0.088

500
MSET 0.1128 0.0978 0.0944 0.0906 0.0899 0.0897 0.0897 0.0898 0.0898 0.0898 0.0897 0.093 0.093 0.19 0.2 0.4 0.4 0.5 

MSE1 0.8189 0.8524 0.903 0.8346 0.8537 0.8616 0.8734 0.8739 0.8874 0.862 0.8531 2.521 2.637 51.39 57.17 162.4 166 231.5 

MSE2 0.1114 0.0963 0.0928 0.0891 0.0883 0.0882 0.0881 0.0882 0.0882 0.0883 0.0882 0.089 0.088 0.088 0.088 0.088 0.088 0.088 

1000
MSET 0.1393 0.1249 0.1216 0.1188 0.1177 0.1174 0.1174 0.1175 0.1175 0.1174 0.1174 0.1173 0.119 0.17 0.18 0.3 0.3 0.3 0.4 1.9299 

MSE1 0.8187 0.849 0.8737 0.876 0.8545 0.863 0.8737 0.8718 0.8884 0.8613 0.8527 0.8301 2.606 50.49 66.5 154.9 173.9 215.4 245.5 1800 

MSE2 0.1387 0.1241 0.1209 0.118 0.1169 0.1167 0.1167 0.1167 0.1167 0.1167 0.1167 0.1166 0.117 0.116 0.116 0.116 0.116 0.116 0.116 0.116 



interval of [12,25] is acceptable. Nevertheless, for 
< 12 we can set = . 
Thus, we find an appropriate value for the ratio of 

the identification data of the main operating point to 
that of the infrequent operating point for the pH 
process such that the modeling objectives are satisfied. 
In fact, through this selection, despite reduction of 
amount of selected data from the main operating 
point, MSE does not increase significantly. On the 
other hand, the model is sufficiently trained in the 
infrequent operating area to improve not only the 
model in this area but also the overall performance of 
the system.

As a consequence, the overall nonlinear 
identification of a process in frequent and infrequent 
operating points can be summarized in the following 
steps:

Gather the actual data of the process 
during its operation. 
Cluster the data using hierarchical Gath-
Geva fuzzy clustering.

If standard deviation of 
any of the clusters is high, divide it into 
smaller clusters. 

If centers of some clusters 
are close to each other, merge these 
clusters.
Select part of data of each cluster for 
identification according to the following 
ratio rule: 

If actual ratio of data between 
clusters is less than 25, use the same ratio 
of data for identification; otherwise use 
some ratio between 12 to 25.
Identify the nonlinear model using the 
selected data.

In the previous section, we found an optimal 
interval for ratio of the main data to the infrequent 
data when a nonlinear model is identified for both 
operating points. In this section, we use this ratio to 
train a neural network to identify a nonlinear model of 
the process to be used in an NMPC structure.

The actual ratio of data is supposed to be =
1000 . In the identification process we selected 
different training ratios as = 1, 15 and 1000. Then, 
each of the identified models for any of these ratiosis 
used in the model predictive control structure. The 
closed loop tracking results for these controllers are 
shown in Figures 8 to 10. In these figures, the plant is 
in infrequent operating area during the first 2000
sample times. After that it works in the main operating 
area for 2,000,000 sample times, however just portion 
of it is shown in these figures. MSE values of 
reference input tracking for neural model predictive 
control using different models are given in Table 2.

MSE of tracking in NMPC for different ratios of 
training data sets (all values are in 10-6).

n 1 15 1000

MSET 3.48 0.90 0.98

MSE1 31.66 22.68 135.20
MSE2 3.46 0.88 0.84

Figure 8 illustrates the case = = 1000 , i.e. 
the training data ratio is the same as the real data ratio. 
As it is shown, the output response in the infrequent 
operating area is oscillating. The reason is that, only 
one thousand of the training data are from infrequent
operating point. This means that this area has not been 
accurately identified. So the model is not suitable for 
this area and the NMPC cannot control the process in 
this operating point. When the same number of data 
points are selected for both main and infrequent 
operating areas, i.e. = 1 , the results given in 
Figure 9 are obtained. The response is stable in all the 
operating points. However, comparison of the results 
of main operating points in Figures 8 to 10 shows that
the quality of the controller degrades. This is also 
depicted in Table 2, where the MSE of the main 
operating area with  = 1 is 4 times more than the 
MSE for the same area when = 1000. 

The results given in Table 2 illustrate that the 
controller performance is the best when = 15. For 
the main operating area, increasing n from 1 to 15
results in a significant improvement in the MSE. 
However, more increase of this ratio to = 1000
does not have a large effect on the performance of this 
area. On the other hand, increasing from 15 to 1000 
significantly degrades the performance of the 
infrequent operating area. MSET values recommend
that ratio 15 is also the best ratio among the others for 
the total test data set. Summarizing the above results, 
we conclude if the identification (or training) data 
ratio is selected as = 15 , all three objectives of 
Section 2 would be satisfied. It is important to 
emphasize that there is no large difference between the 
results when is any value between 12 and 25. This 
means that the results are robust and are not largely 
sensitive to the ratio values.

Industrial processes generally operate in a specific 
operating point. However, it is a well known practice 
that the processes may operate in some infrequent 
operating point for a short period of time due to any 
kind of disturbances like changes in input materials 
quality, faults in other interacted control loops and so 
on. For these processes, in addition to preserving 
performance quality in the frequent operating area, 
closed loop oscillation or instability must be avoided 
in the infrequent operating area. However, this is a 
difficult task for the control system of a plant with 
severe nonlinearity. Many of control strategies, like 
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Nonlinear model predictive control with training ratio of = 1

nonlinear model predictive control, heavily depend on 
the identified model. Therefore, deviation of the 
model from the actual behavior of the plant degrades 
performance of such controllers. Using low number of 
data point in infrequent operating space causes 
significant inaccuracy in that space which may end to 
instability. On the other hand, using the same number 
of data points in both frequent and infrequent 
operating points, causeslow accuracy in most of the 

time which reduces the overall efficiency. To resolve 
this problem, in this paper we proposed to choose an 
appropriate data ratio of the main operating area to 
that of the infrequent operating area in the 
identification.
The usual assumption in system identification is that 
we should design the excitation signal according to 
important frequency range and, in nonlinear 
identification also according to different operating
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points [18]. However, to identify part of a process in a 
working factory, we are not allowed to apply our 
designed excitation signal due to some technical 
safety and conservatism. Therefore, we have to use the 
usual data of the process which is logged into 
historical data servers. These data come from different 
operating points with different data ratio and different 
importance. So, to apply the above suggested data 
ratio, it is necessary to distinguish various operating 
points. We use clustering for this purpose. This is not 
new, but since it is supposed that the amount of data 
points in various data sets are substantially different, 
usual method of clustering cannot properly cluster the 
data sets. We suggest using Gath-Geva clustering 
method. In addition, to improve its performance a 
hierarchical algorithm is presented for it.

We showed that for the pH neutralization process, 
which is a highly nonlinear process, by selecting data 
ratios between 12 and 25, in addition to high accuracy 
of the identified model in the main operating area, 
modeling error in the infrequent operating area does 
not exceed a specific threshold. Besides, error 
associated with the total data is minimized as well 
when this data ratio is selected. Since the ratio interval 
is somehow wide, the algorithm is robust to the 
selection of the data ratio.

Although nonlinear model predictive control of a 
pH neutralization process is studied in this paper as a 
case study, the idea of selection of specific ratio for 
identification of a nonlinear process can be used in 
other types of model based nonlinear control and 
processes. Also, using a neural network for model 

structure is not crucial. Using any other kind of black 
box nonlinear models has the same problem. So the 
same algorithm can be applied to them for nonlinear 
system identification in both frequent and infrequent 
operating points.
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