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Abstract. One of the most important issues in wireless sensor network programming is to assign a set of tasks to a 
set of nodes with limited energy resources in order to minimize energy consumption. In this paper, we develop a task 
assignment model where cost function is formulated as a sum of computation and communication energy spent in the 
network. The model employs task placement constraints that ensure expected lifetime of individual node. We propose 
an efficient genetic algorithm with repair operator to obtain a minimal cost solution. The repair operator guarantees 
valid task assignments that meet model constraints as candidate solutions are generated during the process of evolution. 
Experiments reveal that provided heuristic takes a reasonable amount of time to produce near optimal results. 
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1. Introduction 

Energy is a critical performance metric of a wire-
less sensor network (WSN). In order to extend the 
lifetime of the WSN, energy efficient task placement 
on a given deployment of sensor nodes is required. 
Initial task placement utilizes global knowledge avail-
able at compile time with the aim to minimize energy 
consumption for application execution in the network. 
As WSN is a dynamic environment, changing energy 
levels and positions of nodes are further handled by 
task migration subsystem [21]. These techniques 
enable effective WSN application management as 
depicted in Figure 1. 

The assignment of m tasks onto n nodes is a 
classical NP-complete problem, usually solved in pa-
rallel computing [1], [10]. Yet some aspects are 
specific for WSN: strict task placement constraints, 
communication of tasks between each other and the 
fact that nodes involved in routing also spend energy 
in the process.  

Several approaches to task assignment problem 
have been identified in literature. Graph theoretical 
algorithms [16], [19] or mathematical programming 
[12], [26] require high time complexity and do not 
allow constrains to be easily incorporated into the 
model. These algorithms obtain an optimal solution. 
Otherwise, heuristic-based techniques like genetic 

algorithm [7], [15] or simulated annealing [14] are 
applicable to larger dimensional problems due to their 
low time complexity. However, these algorithms pro-
vide suboptimal solution. As well as aforementioned 
exact methods, most of genetic algorithms do not take 
into account constraints to meet various application 
requirements. 

A number of researchers have already considered 
task placement in WSNs. Tian et al. [24] deal with 
task mapping problem from a protocol-centric point of 
view. Their aim is to map and schedule application 
tasks with minimum schedule length subject to energy 
consumption constrains. Here network assumptions 
are a bit different as sensors are grouped into single-
hop clusters and attention is paid more on scheduling 
but not mapping of tasks. As opposite, we consider a 
multi-hop homogenous WSN. In [23], Hamouda and 
Phillips propose biological task mapping and schedu-
ling algorithm claiming it outperforms an algorithm in 
[25]. Task allocation in these papers takes into account 
network dynamics during the lifetime of WSN 
whereas we deal only with initial task placement. Park 
et al. [14] use simulated annealing method to solve 
task transformation and assignment problem. In their 
case, tasks to be deployed are decomposable and 
transformable while we consider atomic tasks. In [5], 
energy consumption is addressed through energy-ba-
lanced task allocation that is most similar to our case. 
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However, Pathak and Prasanna only consider overall 
energy expenditure in the network whereas we also 
take into account energy dissipation of individual 
nodes. Besides, network communication and energy 
consumption mechanisms are more accurate in our 
simulations. We also propose an advanced adaptive 
genetic algorithm to solve task assignment problem.  

Our goal is to near optimally assign tasks to the 
WSN nodes in terms of energy spent in the network 
and apply the given constraints. We minimize a classi-
cal performance metric of total energy spent in the 
system in order to find the best task placement. This 
optimization goal consists of computation and com-
munication energy costs. We use genetic algorithm to 
explore the solution space efficiently. In order to 
comply with the given constraints, our constructed 
genetic algorithm employs a special repair operator to 
guarantee valid assignments during the process of 
evolution. Actual WSN application of greenhouse ma-
nagement is chosen to demonstrate the effectiveness 
of our solution to the task assignment problem. 

The remainder of this paper is structured as 
follows. Initial task assignment onto the target 
network is introduced in detail in Section 2. Next, the 
case study is provided.  In Section 4, we conclude and 
present directions of future work. 

2. Energy Efficient Task Placement 
2.1. Application Model 

The task mapping problem emerges while com-
piling data-driven macro-programs for WSNs. As a 
case study for the task assignment problem, we 
consider a monitoring system to prevent dew conden-
sation in a greenhouse environment [6], [11]. Dew 
condensation on the plants surface can promote va-
rious crop diseases. Our system is composed of three 
types of sensor nodes that collect ambient temperature 
and air humidity as well as plants surface temperature. 
Also, actuators that control ventilating fans are 
deployed for adjusting the environment inside the 
greenhouse. 

 
Figure 1. Application management in WSN 

We design the application as a directed acyclic 
graph (DAG) that describes tasks dependencies (Fig. 
2). The tasks of the DAG are to be placed onto the 
underlying target network. Each sensor node has an 
associated ambient temperature (T1, T2) or plant sur-
face temperature (T5, T6) or humidity (T3, T4) samp-
ling task. Additional five tasks T7–T11 that control 
application functionality are to be placed onto any of 
the nodes of the WSN. These are the tasks for optimi-
zation. Here T7, T8, and T9 collect and average am-

bient temperature, air humidity and plants surface 
temperature respectively, while T10 calculates the dew 
point and T11 compares it with the averaged plants 
surface temperature.  

 
Figure 2. Task graph of the greenhouse management 

application 

The temperature of the dew point is calculated by 
Barenbrug formula [11] using averaged values of am-
bient temperature and air humidity. If the dew point 
temperature of the greenhouse is higher than the ave-
raged plants surface temperature, the environment is 
adjusted by actuating tasks (T12, T13) that control 
ventilating fans. 

It is important to highlight that the assignment of 
tasks onto the target nodes should achieve the 
following goals:  
� minimize total energy spent in the entire system, 
� evaluate task placement constraints. 

According to these goals, we create a mathema-
tical model and formulate a cost function as described 
in the next section. 

2.2. Problem Formalization  

The concept of the model is based on the results 
presented in [5], where the framework of mathema-
tical description consists of four matrices that define 
task assignment problem. We complete these matrices 
with respect to actual WSN operation, whereas Pathak 
and Prasanna [5] provide inaccurate assumptions to 
perform simulations. Thus, in our case, elements of 
the model are supplemented with techniques that eva-
luate platform-dependent computation and communi-
cation energy consumption. 

A target network TN = {1,…,k,…n} consists of n 
nodes with initial properties that depend on the plat-
form in use. We explore a homogenous sensor net-
work, where all nodes have the same initial energy 
level ek. 

A task graph D = (DT, DE) consists of a set of 
vertices DT = {1,…,i,…m} representing the tasks to 
be executed and a set of directed edges 
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DE 3 DT × DT depicting communication dependen-
cies among tasks. Each task i has a firing rate fi 
depending on the nature of the task. It indicates the 
number of times the task is invoked in a period of 
system behavior. Each edge has an associated size of 
data sij that task i provides to task j per invocation. 

We construct task execution energy matrix Tm×n to 
present energy consumption of each task execution on 
every node and comply with task placement const-
raints. Here entry Tik of the matrix T defines the ener-
gy spent by node k per invocation of task i. 

Further, we create a routing energy cost matrix 
Rn×n×n for target network, where each entry R�
k de-
picts the energy required at node k to transmit a unit of 
data from node � to node 
. We used Dijkstra shortest 
path algorithm to fill the routing matrix. The const-
ruction of routing matrix R is elaborated in Section 3. 

The task mapping is a surjective function map:  
DT�TN, assigning task i to node map(i). 

After model elements are defined, computation 
and communication energy costs at a node in a period 
of system behavior are evaluated as follows: 
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Finally, the total energy spent in the WSN is ex-
pressed as the sum of energy consumptions of 
individual nodes: 
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The system level metric (3) is to be minimized in 
order to find an optimal mapping of tasks in terms of 
energy consumption. This is a classical goal function 
estimating the performance of distributed systems. 
The constraint (4) puts a limit on computation energy 
for the tasks on node k in a period of system behavior. 
It ensures that tasks are spread over the network 
avoiding high workload on a few nodes. In (4), � is the 
computation energy component and t denotes the 
expected lifetime of a node expressed in periods of 
system behavior. For performance metric (3) a feasible 
solution is possible only when all nodes have enough 
energy left at the end of period of system behavior (4), 
otherwise the task mapping algorithm should report 
failure. 

The time required to minimize the cost function 
(3) increases exponentially as the size of the problem 
nmopt grows. Here mopt is the number of tasks to be 
optimized. Thus, various heuristic and approximation 
methods are used to speed up the process of finding a 
good enough solution, where an exhaustive search is 

impractical. In [5], the problem is formulated as a 
mixed integer programming (MIP) problem and also 
special greedy algorithms are provided to solve it with 
computational complexity O(n3|DE|2). On the other 
hand, we propose a well established genetic-based ap-
proach to find a solution that minimizes a given cost 
function. We adapt general genetic algorithm for task 
assignment in WSN using repair operator. Also, the 
parameters of genetic algorithm are tuned. Introduced 
heuristic is adjustable to complex applications and 
effective for large networks. 

2.3. Genetic Algorithm for Task Mapping 

A genetic algorithm (GA) is a heuristic [3] that 
mimics natural biological evolution. GAs operate on a 
population of potential solutions applying the prin-
ciple of survival of the �ttest to produce better and 
better approximations to a solution. This heuristic is 
usually used to generate useful solutions to optimi-
zation and search problems. Closest to our case, it has 
been applied to assign tasks for multiprocessors with 
limited memory in parallel computing [1]. Other 
applications were also considered [2], [13], [17], [18]. 
There are several basic points that all genetic algo-
rithms are based on. 

Firstly, a genetic representation of the solution 
domain should be created. This means that a solution 
to a problem should be represented as a genome 
(chromosome). We assume that setting the i-th cell, 
called gene, of the chromosome array to j means as-
signing of the i-th task to node j (Figure 3).  A chro-
mosome is called valid if tasks are allocated to nodes 
in such a way that each node has enough energy to 
execute assigned tasks. The total cost for a given 
assignment is the total energy spent while executing 
all tasks assigned to the nodes of the target network. 

 
Figure 3. Chromosome representation of task assignment 

Further, we have to define a fitness function to 
evaluate the potential solution. Fitness function is the 
key element in the whole genetic algorithm and de-
pends on the problem. It measures the quality of the 
chromosome and correlates closely with the objective 
function. Also, computation time of fitness value of a 
chromosome should not be high. Hence, in our case, 
the fitness function fit is defined as follows: 

D Ecomp comm

1 .
k k

k

fit
C C

�

�
��

TN

 (5) 

Eventually, genetic operators should be defined 
and implemented. Crossover operator generates child 
chromosomes from two parent chromosomes by 
combining the information extracted from the parents. 
In our genetic algorithm we use one-point crossover. 
Mutation operator is used to explore the whole search 
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space and to maintain diversity. Our mutation operator 
involves a probability that a randomly selected gene in 
a genetic sequence will be changed from its original 
state.  

After crossover and mutation operators are ap-
plied, it is possible some child chromosomes to be 
invalid due to node capacity restrictions. Thus we 
deliver an additional repair operator that converts the 
invalid chromosomes to valid ones (Fig. 4). The input 
to the repair procedure consists of a chromosome 
chrom, which defines the mapping of tasks onto the 
nodes, as well as Enode and Etask arrays, which re-
present the energy levels of nodes and tasks, respect-
tively. It is assumed that a proportion of node energy 
is reserved for computation as WSNs deplete most of 
energy for communication. Dividing this energy by a 
number of periods of system behavior we get an 
amount of energy that can be consumed in one period 
to achieve expected lifetime of a node. Thus, each cell 
of the Enode array represents the available energy of 
particular node and its value is obtained by subtracting 
energy required for predetermined tasks from the ener-
gy that can be consumed in one period. Further, Etask 
array represents the tasks under optimization, where 
the value in each cell defines computation costs for 
particular task in a period of system behavior. Here, 
energy consumption for each task is calculated using 
formula (6) which is multiplied by firing rate fi in 
order to obtain computation costs in a period. Additio-
nal parameters, i.e. stringlength, that represents the 
number of optimization tasks, and optg_p, that is 
required to compute the value of the objective func-
tion for a given task assignment, are also needed as 
inputs of the repair operator. The repair operator veri-
fies the validity of a chromosome and, if required, 
corrects it according to constraints. Finally, a valid 
chromosome rchrom is provided as an output.  
 
Input: chrom, Enode, Etask, 
stringlength, optg_p 
Output: rchrom // repaired chromosome 
for i=1 to stringlength do

y = chrom(i) 
if Enode[y]-Etask[i] < 0 
valid_nodes = [] 

   index = 0 
for k=1 to n do

     if Enode[k]-Etask[i] >= 0
index=index+1
valid_nodes(index)=k

end if
end for 

// target node for a task is selected 
// randomly 

tnode = valid_nodes(randi([1,index])) 
Enode(tnode)= Enode(tnode)-Etask(i) 
rchrom(i) = tnode 

else
Enode(y) = Enode(y) - Etask(i) 
rchrom(i) = chrom(i) 

end if
end for
// fitness of a new individual is 

computed
// in the last element of an array 
rchrom(stringlength+1)=1/C_total(optg_p,
rchrom(1:stringlength))
return rchrom 

Figure 4. Method of the repair operator. Function C_total 
calculates the value of the objective function  

for a chromosome 
Once we have the genetic representation of the so-

lution, the fitness function and genetic operators de-
fined, GA proceeds to initialize a population of valid 
solutions randomly and then improves it through 
repetitive application of crossover, mutation, repair 
and selection operators. There are many ways to select 
chromosomes to the next generation like roulette-
wheel selection, stochastic universal sampling or tour-
nament selection. We executed various schemes of 
selection to improve the performance of GA and found 
the most effective one as follows: 
� Firstly, 10% of elite chromosomes with large 

values of the fitness function are moved to the 
next generation without any change. 

� The crossover operator with the probability 
pc=0.7 is applied to the next 70% of 
chromosomes. 

� The mutation operator is applied to the rest of 
chromosomes with small values of the fitness 
function. It is a mandatory mutation, so mutation 
probability pm is set to 1. 

� Finally, the repair operator corrects invalid child 
chromosomes. 

Evolutional process of genetic algorithm is repea-
ted until a termination condition is reached. We stop 
the evolution when the fitness of generation does not 
significantly increase over time (Figure 8). The gene-
ral structure of genetic algorithm for task mapping is 
depicted in Figure 5. 
 

 

Figure 5. Procedure of genetic algorithm 

Setting of parameters and type of selection ope-
rator are very important in GAs as these determine the 
convergence rate of the algorithm. Experiments were 
performed to find accurate settings that are presented 
in the next section. 
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3. Results 

As a case study of task assignment, we adopted a 
greenhouse management application discussed in Sec-
tion 2.1. Firstly, a generalized task graph, which de-
scribes the application tasks and their dependencies, is 
produced (Figure 2). It consists of ambient tempera-
ture, ambient humidity and plants temperature sampler 
tasks as well as actuator tasks. The number of sampler 
and actuator tasks depends on the number of nodes 
with appropriate capabilities. Besides, five application 
management tasks, which process the data from 
samplers and control actuators, are part of the task 
graph. These tasks can be assigned to any node in the 
target network, thus allowing optimizations. Also, 
each task in the task graph represents an indivisible 
unit of processing as opposed to task partitioning ap-
proach [14].   

Secondly, we simulated various WSN topologies 
where tasks of DAG are to be deployed. The number 
of nodes varied from 10 to 50 and they were randomly 
distributed in the area of 100m2. We assume line of 
sight (LOS) communication between the nodes within 
the same coverage area.  Two nodes are in the same 
coverage area if the distance between them is equal to 
or less than the radio range, which is set to 30m. An 
example of topology is depicted in Figure 6. 

Since it is important to use realistic values during 
the simulation, the proposed application was imple-
mented to run on Sun SPOT nodes [20]. These nodes 
are equipped with 400MHz 32bit ARM926EJ-S pro-
cessor, 1M SRAM, 8M Flash memory and 2.4GHz 
IEEE 802.15.4 radio with integrated antenna. The Sun 
SPOT has lithium-ion rechargeable battery with 
770mAh capacity and a normal voltage output of 
3.7V. Thus, each node has its initial energy ek equal to 
10256J. 

In order to estimate computation costs in the 
network, we firstly defined task execution energy mat-
rix T and selected firing rates fi. The task execution 
energy matrix T is an m	n matrix that represents com-
putational energy required for tasks and ensures that 
tasks which perform particular sensing and actuating 
would be tied up to nodes with the relevant capabili-
ties. Thus, each entry Tik of the matrix is either compu-
ted using formula (6) and depicts the energy spent by 
node k per invocation of task i or is set to B if it is 
impossible for node k to execute task i. We explore 
homogenous network, where energy consumption for 
task execution is the same on each node it is invoked 
on. In order to accurately estimate task execution cost, 
each task is expressed in CPU cycles [9]. Then the 
energy consumption of executing Ni clock cycles with 
CPU clock frequency fcpu and core supply voltage Vdd 
is evaluated as follows: 

D Edd cpu dd leak
cpu

V , f V I
f

i
ik i

N
T N� �2

ddCV , (6) 

where C and Ileak are processor dependent parameters 
[8]. It should be noted that this energy consumption 

model only considers the energy expenditure directly 
related with application executions. Thus energy 
dissipation during idle time is not taken into account. 
The parameters of Sun SPOT processor ARM926EJ-S 
in formula (6) are set as follows: Vdd=1V, C=0.52nF, 
Ileak=12mA, and fcpu=400MHz. Further, we selected 
higher firing rates fi for sensing tasks compared to 
actuating and controlling tasks in order to comply with 
data-driven approach. 
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Figure 6. Network topology with three types of sensors and 
one type of actuators. The shortest route is depicted between 

Node7 and Node25 
Network communication costs are evaluated by 

formula (2), where routing matrix R and data size in 
packets sij are to be provided. Routing matrix entry 
R�
k is obtained as follows: the shortest path between 
nodes � and 
 in the target network is found using 
Dijkstra algorithm and the energy consumption per 
data packet at intermediate node k, that belongs to this 
route, is computed via radio model [8], [22]: 

D E 2
tx_elec amp 0, E � , d ,txE l d l l d d� � � � � �  (7) 

D E rx_elecE ,rxE l l� �  (8) 

where Etx_elec, Erx_elec and �amp are node hardware pro-
perty parameters. Formula (7) defines that power con-
sumption on a sensor node to transmit l-bit data packet 
depends on transmission distance d and the energy 
dissipated by transmit electronics and power amplifier. 
Likewise, formula (8) states that energy required to 
receive l-bit data packet depends only on the energy 
dissipated to run the receive electronics. The approp-
riate parameter values for Chipcon CC2420 transcei-
ver used in Sun SPOT nodes were obtained from the 
datasheet [20]: Etx_elec=130nJ/bit, Erx_elec=144nJ/bit, 
�amp=100pJ/bit/m2, d0=30m. It should be mentioned 
that if a particular node k in WSN does not belong to 
the shortest route from node � to node 
, then its 
energy consumption value R�
k equals to 0 in the 
routing matrix R. Also, sij denotes the number of 
packets per data item that task i produces to task j per 
invocation. In our simulation, we assume sij=1 for all 
data items. 
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Figure 7. Task mapping in terms of energy consumption 

After all elements required for computation and 
communication costs are defined, the total energy 
spent in the entire network Ctotal is computed using 
formula (3). It takes 0.05s to find an optimal mapping 
for the network with 6 nodes and 2 tasks for optimi-
zation, as depicted in Figure 7, while the total energy 
spent in the network is 41J. 

As the number of optimization tasks and WSN 
nodes increases, computations grow exponentially and 
it is impossible to solve the problem within a 
reasonable amount of time. Therefore, we introduced a 
low time complexity genetic algorithm with repair 
operator which leads to near optimal results. A number 
of experiments were performed to identify suitable 
GA parameters presented in Table 1. 

Table 1. Values of GA parameters 

Parameter Value 
Maximum number of generations 200 
Population size 100 
Number of genes in a chromosome 5 
Crossover probability  0.7 
Mutation probability  1.0 

We select maximum number of generations as 
stopping criterion according to the analysis of the 
convergence rate of fitness over populations as pre-
sented in Figure 8. 

In order to evaluate the efficiency of the proposed 
heuristic, we performed optimization of five tasks 
(Figure 2) on various network topologies with in-
creasing number of nodes. Time taken for task assign-
ment using exhaustive search and genetic algorithm is 
exhibited in Figure 9. It demonstrates the effectiveness 
of genetic algorithm, particularly for complex 
applications to be mapped onto large WSNs. 

In our experiments the solution Ctotal produced by 
the genetic algorithm was the same as the one 
provided by exhaustive search for deployments with 
10 and 20 nodes and introduced only 2.5% error for 
the network with 50 nodes (Figure 10). Figures 9 and 

10 show the time taken and the energy spent averaged 
over 100 runs of genetic algorithm. 

0 100 200 300 400 500 600 700 800 900 1000
0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

Generation

Fi
tn

es
s 

of
 g

en
er

at
io

n

 
Figure 8. Performance of GA 
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Figure 9. Time of task mapping 
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Figure 10. Total energy spent in the WSN 

Implemented optimization technique enables to 
save up to 52% of energy for the network depicted in 
Figure 6. Therefore, network lifetime is extended to 
46.13 hours. Our experiments indicate that the pro-
posed genetic algorithm with repair operator is fast 
and accurate for actual WSN applications and there-
fore is an important contribution to WSN macro-prog-
ramming. 
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4. Conclusions 

In this paper, an approach for optimal initial task 
mapping that improves system lifetime was presented. 
Firstly, mathematical model for tasks assignment onto 
target network nodes was developed. Model const-
raints prevent the assignment of optimization tasks to 
the same node in order to extend the longevity of indi-
vidual node with the aim to evenly distribute the 
energy depletion in the WSN. Network performance 
was evaluated using energy balance as optimization 
goal. To minimize this goal a genetic algorithm with 
repair operator was implemented. The repair operator 
is required to comply with model constraints.  

Experiments were performed to tune parameters of 
the genetic algorithm in order to achieve best conver-
gence rate of its fitness function. Simulation results 
have shown that our genetic algorithm efficiently 
determines the mapping of tasks that leads to minimal 
energy consumption in the WSN. Even in large sensor 
networks genetic algorithm finds suboptimal solution 
with minimal error.  

To sum up, the proposed technique is dedicated to 
the compiler task allocation module [4]. We intro-
duced accurate energy and communication models 
that lead to better cost estimates. 

In the future, we intend to extend our work to de-
sign space exploration for wireless sensor network in 
order to evaluate various performance metrics in 
differrent platforms. 
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