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Abstract. Genetic and evolutionary algorithms have achieved impressive success in solving various optimization 
problems. In this work, an improved genetic-evolutionary algorithm (IGEA) for the grey pattern problem (GPP) is 
discussed. The main improvements are due to the specific recombination operator and the modified tabu search (intra-
evolutionary) procedure as a post-recombination algorithm, which is based on the intensification and diversification 
methodology. The effectiveness of IGEA is corroborated by the fact that all the GPP instances tested are solved to 
pseudo-optimality at very small computational effort. The graphical illustrations of the grey patterns are presented. 
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Introduction 

The grey pattern problem (GPP) [29] deals with a 
rectangle (grid) of dimensions n1 	 n2 containing 
n = n1 	 n2 points (m black points and n 
 m white 
points). By putting together many of these rectangles, 
one gets a grey pattern (frame) of density m/n (see 
Figure 1). The goal is to get the most excellent grey 
pattern, that is, the points have to be spread on the 
rectangles as smoothly as possible. 

 
Figure 1. Examples of grey frames: m/n = 58/256 (a), 

m/n = 198/256 (b) 

Formally, the GPP can be stated as follows. Let 
two matrices A = (aij)n	n and B = (bkl)n	n and the set � 
of all possible permutations of the integers from 1 to n 
be given. The objective is to find a permutation 
� = (�(1), �(2), ..., �(n)) � � that minimizes 
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where the matrix (aij)n	n is defined as aij = 1 for i, j =1, 
2, ..., m and aij = 0 otherwise; the matrix (bkl)n	n is 
defined by the distances between every two of n 
points. More precisely, rstuutnsrnkl fbb �� �
�
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r, t = 1, ..., n1, s, u = 1, ..., n2. (2) 

frstu may be thought of as an electrical repulsion force 
between two electrons (to be put on the grid points) i 
and j (i, j = 1, ..., n) located in the positions k = �(i) 
and l = �(j) with the coordinates (r, s) and (t, u). The 
ith (i � m) element of the permutation �, 
�(i) = n2(r 
 1) + s, gives the location in the rectangle 
where a black point has to be placed in. The 
coordinates of the black point are derived according to 
the formulas: r = �(�(i) 
 1)/n2� + 1, 
s = ((�(i) 
 1) mod n2) + 1, where �(i) denotes the 
location of the black point, i = 1, 2, ..., m [29]. 

The grey pattern problem is a special case of the 
quadratic assignment problem (QAP) [4, 11], which is 
known to be NP-hard. Recently, genetic and evolutio-
nary algorithms (GAs, EAs) are among the most ad-
vanced heuristic approaches for these problems [5, 15, 
17, 18, 24, 29]. GAs and EAs belong to a class of po-
pulation-based heuristics. The following are the main 
phases of the genetic-evolutionary algorithms. Usual-
ly, a pair of individuals (solutions) of a population is 

  

(a) (b) 

http://dx.doi.org/10.5755/j01.itc.40.4 983

http://dx.doi.org/10.5755/j01.itc.40.4.983


Generation of Grey Patterns Using an Improved Genetic-Evolutionary Algorithm: Some New Results 

331 

selected to be parents (predecessors). A new solution 
(i.e. offspring) is created by recombining (merging) 
the parents. In addition, some individuals may under-
go mutations. Afterward, a replacement (reproduction) 
scheme is applied to the previous generation and the 
offspring to determine which individuals survive to 
form the next generation. Over many generations, less 
fit individuals tend to die-off, while better individuals 
tend to predominate. The process continues until a ter-
mination criterion is met. For a more thorough discus-
sion on the principles of GAs and EAs, the reader is 
addressed to [2, 8, 9, 12]. 

This work is organized as follows. In Section 1, 
the improved genetic-evolutionary algorithm (IGEA) 
framework is discussed. The details of IGEA for the 
grey pattern problem are described in Section 2. In 
Section 3, we present the results of generation of grey 
patterns using two versions of the proposed algorithm. 
Section 4 completes the work with conclusions. 

1.  The improved genetic-evolutionary 
algorithm framework 

The original concepts of GAs and EAs were 
introduced by Holland [10], Rechenberg [25] and 
Schwefel [26] in the nineteen seventies. Since that 
time, the structure of GAs and EAs has experienced 
various transformations. The state-of-the-art genetic-
evolutionary algorithms are in fact hybrid algorithms, 
which incorporate additional heuristic procedures [21, 
22, 23]. However, applying hybridized algorithms 
does not necessarily imply that good solutions are 
achieved at reasonable time [17]. Indeed, hybrids 
often make use of refined heuristics (like simulated 
annealing, tabu search) which are quite time-expen-
sive. This may become in real earnest a serious draw-
back, especially as we are willing to construct algo-
rithms that are competitive with other intelligent opti-
mization techniques. Under these circumstances, it is 
important to add additional enhancements to the gene-
tic-evolutionary algorithms (see also [17]). 

� The enhanced hybrid genetic-evolutionary algo-
rithms should incorporate fast local improvement 
procedures. Only short time behaviour matters as long 
as we are speaking of the fast procedures in the 
context of hybrid GA/EAs. 

� The compactness of the population is of great 
importance. In the presence of powerful local impro-
vement procedures, the large populations are not 
necessary: the small population size is fully compen-
sated by the improvement heuristic. 

� A high degree of the diversity within the popu-
lation must be maintained. This is especially true for 
tiny populations. Indeed, the smaller the size of the 
population, the larger the probability of the lost of 
diversity. Therefore, proper mechanisms for avoiding 
premature convergence must be applied. 
 

 
Figure 2. Basic flowchart of I&D 

The principle that can help putting the above en-
hancements into practice is known as "intensification 
and diversification" (I&D) [7]. The idea behind is to 
seek high quality solutions by iterative applying local 
search ("recreation") and perturbation ("ruin") proce-
dures. I&D is initiated by improvement of a starting 
solution. Then, one perturbs the existing solution (or 
its part). After that, the solution is again improved by 
means of a local search algorithm, and so on. I&D is 
distinguished for three main components: intensifica-
tion, diversification, and candidate acceptance crite-
rion (see Figure 2). The goal of intensification is to 
concentrate the search in a localized area (the neigh-
bourhood of the current solution). Diversification is 
responsible for escaping regions of "attraction" in the 
search space. It may be achieved by certain perturba-
tions of solutions (instead of saying "perturbation", 
other terms may be utilized: "mutation", "ruin", etc.). 
Finally, an acceptance criterion is used to decide 
which solution is actually chosen for the subsequent 
perturbation (see Section 2.4.3). I&D may be incor-
porated into the genetic-evolutionary algorithm in two 
ways. 

� Firstly, I&D is applied to single solutions, in 
particular, to the offspring obtained by parent recom-
bination. We call this post-recombination procedure 
the intra-evolutionary process (or simply intra-
evolution). Intra-evolution could be seen as a very 
special case of the conventional evolutionary algo-
rithm, that is, the population size is equal to 1, the 
reproduction scheme is "1, 1" (or "1 + 1"), and the 
single solution mutation procedure is used instead of 
the recombination operator. The mutation procedure 
plays, namely, the role of diversification. Regarding 
intensification, we found the tabu search (TS) tech-
nique [7] ideal for the GPP. The details of the TS pro-
cedure are described in Section 2.4.1. 

� Secondly, I&D may also be applied for the po-
pulations. In this case, it is enough to think of the 
population as some kind of meta-solution; that is, 
instead of improvement/perturbation of the single 
solution, the meta-solution, i.e. population is to be 
improved/perturbed. Basically, this means that the 
whole population (or, at least, its part) undergoes some 
deep mutation. In particular, the test is performed at 

candidate acceptance

diversification 

intensification start

end

saving the best so 
far solution 
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every generation, whether the diversity within the 
current population is below a given threshold. If it is, 
then a new population is created by applying muta-
tions and following improvement; otherwise, the 
search is continued with the current population in an 
ordinary way. We call the above process the inter-
evolution. 

2.  The improved genetic-evolutionary 
algorithm for the grey pattern problem 

2.1. Creation of the initial population 

The initial population (say, P) is created in two 
phases: firstly, PS = | P | individuals, i.e. the GPP 
solutions are generated in a pure random way; se-
condly, all the solutions of the produced population 
are improved by the intra-evolutionary algorithm (see 
Section 2.4). As a result, the population is created that 
consists solely of locally optimal solutions. Even-
tually, the population members are sorted according to 
the increasing values of the objective function. 

2.2. Selection mechanism 

Two individuals are selected to be predecessors of 
a new recombined individual. For the selection, we 
apply a rank based rule [31]. In particular, the position 
of the first parent, u1, within the sorted population is 
determined by the formula: u1 = �v �, where v is a 
uniform random number from the interval [1,  1PS ], 
where PS is the population size, and   is a real 
number in the interval [1, 2] (it is referred to as a 
selection factor). The same formula is utilized for 
defining of the position for the second parent, u2 
(u2 � u1). It is obvious that the larger value of  , the 
more probability that the better individual will be 
selected for recombination. 

2.3. Recombination of solutions 

Recombination of solutions remains one of the 
key factors by constructing competitive genetic/evolu-
tionary algorithms. Very likely, the role of recombina-
tion operators within the hybrid algorithms is even 
more important. The classical recombination operators 
like one point [8] or uniform [28] operators are not 
very well fitted for the grey pattern problem. This is 

due to the fact that basically only the first m elements 
(black points) determine the solution of the GPP (see 
Figure 3). The interchange of any of the first m 
elements does not influence the objective function 
value (the same is true for the last n 
 m elements 
(white points)). 

Recombination is a structured process that ensures 
that the offspring will inherit the elements (genes) 
which are common to both parents. We can also think 
of recombination as a special sort diversification inst-
rument; that is, it is desirable that recombination 
would add some randomness (certain elements, which 
are not contained in the parents, should be incorpora-
ted into the offspring). The degree of "disruptiveness" 
is introduced to formally describe a measure of how 
much recombination is randomized, i.e. how many 
"foreign genes" there are in the offspring (see also 
[17]). The degree of disruptiveness, !, is defined as 
follows: 

{ | ( ) { (1), (2),..., ( )} ( )
{ (1), (2),..., ( )}},
i i m i m i

m
! � � � � �

� � �
" " "� � # $ % # $ %

"" "" ""
 (3) 

where �", �"" are the parents and �$ is the offspring. 
There are two situations: 1) ! = 0; 2) ! > 0. We 

assume that the second variant is preferable to the first 
one in the environment of the robust hybrid algorithm. 
In our algorithm, disruptiveness is flexibly controlled 
by adding �� m� foreign genes to the offspring, where � 
is a parameter (disruptiveness factor). The recombi-
nation procedure itself is quite specific. It is based on 
the merging process suggested in [3, 5]. The detailed 
pseudo-code of this recombination procedure (written 
in an algorithmic language) is presented in Figure 4. 
An illustrative example is shown in Figure 5. 

It should be noted that the heuristic procedure 
based on tabu search is incorporated into the recom-
bination process to partially improve the offspring. 
This procedure is performed on a restricted set of the 
elements of the offspring. The details of the improve-
ment process are considered in the next section. Also, 
note that we apply the above recombination process 
more than once at one generation. In our implemen-
tation, the number of recombinations per generation is 
controlled by the parameter Nrecomb. 

Figure 3. The case of solutions of the grey pattern problem 

 

1 3 5 4 6 7 2 8 
m elements n
m elements 

n elements 

solution 1 (�") 

solutions 1 and 2 are equivalent (z(�") = z(�"")) 
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Figure 4. Pseudo-code of the recombination procedure for the GPP 

 

Figure 5. Example of creating a starting offspring 

procedure Recombination;
  // input: �", �"" 
 solutions-parents, n 
 problem size, m 
 number of black points, �1, �2 
 disruptiveness factors
  // output: �$ 
 recombined solution (offspring)
!1 := max{1, ��1m�}; !2 := max{1, ��2m�};

  obtain set(1) from the first m elements of �"; // |set(1)| = m
  obtain set(2) from the first m elements of �""; // |set(2)| = m
if not(set(1) & set(1)) then begin // the sets set(1) and set(2) are different

set(3) := set(1) ' set(2); mintersect = |set(3)|; set(4) := set(1) � set(2); // mintersect > 0, munion = |set(4)| = 2m 
 mintersect

set(5) := set(4) \ set(3); // mdifference = |set(5)| = 2m 
 2mintersect

if 2m 
 mintersect + !1 � n then ! := !1 else ! := n 
 2m + mintersect;
     select ! different elements from �" not in set(4) to form set(6);

set(7) := set(5) � set(6); mnew = |set(7)|; // mnew = min{2m 
 2mintersect + !, n 
 mintersect}
     add m 
 mintersect random elements from set(7) to set(3) to create set(8);
     // set(8) contains exactly m elements that serve as the starting offspring 

if mnew 
 (m 
 mintersect) > 0 then begin 
        obtain ��  from the elements of set(8); obtain ���  from the elements of set(7) that are not in set(8);
        merge ��  and ���  to get �� , the number of elements of ��  is equal to mnew 
 mintersect;

if mnew 
 (m 
 mintersect) � 5 then apply FastSteepestDescent to �� , get �̂
else apply FastRandomizedTabuSearch to �� , get �̂

        // note: FastSteepestDescent and FastRandomizedTabuSearch are performed  
        // only on the elements in set(7) and keeping the elements in set(3) fixed

end
else obtain �̂  from the elements of set(8)

end
else begin // the sets set(1) and set(2) are equivalent

    select !2 different elements from �" not in set(1) to create set(3);
    remove !2 random elements from set(1); obtain �̂  from the elements of set(1) and set(3)

end;
  obtain �  from the elements of set {1, 2, …, n} \ { )(ˆ),...,2(ˆ),1(ˆ m��� };
  merge �̂  and �  to get the offspring �$
end. 

3 4 6 1 
11 2 10 

set(1) 

|set(1)| = 7, |set(2)| = 7, |set(3)| = 5, |set(4)| = 9, |set(5)| = 4, |set(6)| = 2, |set(7)| = 6, |set(8)| = 7 

1 9 10 5
3 6 4

set(2)

set(4) = set(1) � set(2)

3 4 6 1
2 10 9 511

set(5) = set(4) \ set(3)

11 2 9 5

3 4 6 1
10 5 12

set(8)

set(6) 

7 12 

set(7) = set(5) � set(6) 

11 2 9 5 7 12

set(3) = set(1) ' set(2) 

3 4 6 1 10
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Figure 6. Example of the pairwise interchange 

2.4. Local improvement (intra-evolution) 

The post-recombination improvement is probably 
the most important component of IGEA. In the simp-
lest case, we could utilize the ordinary descent local 
search for this purpose. But we should make use of 
more elaborated approaches like tabu search if we are 
seeking for superior quality results. The standard TS 
algorithms, however, suffer from cycling and stagna-
tion phenomena. Fortunately, there exist the I&D ap-
proach (see Section 1). If intensification is performed, 
namely by means of the conventional TS, one gets the 
so-called iterated tabu search (ITS) method [20]. 
There are three main ingredients in the ITS approach: 
tabu search, mutation, and acceptance criterion. 

2.4.1. Tabu search procedure 
The central idea of tabu search is allowing clim-

bing moves when no improving solution exists (this is 
in contrast to the descent local search, which 
terminates as soon as the locally optimal solution has 
been encountered). TS starts from an initial solution, 
and moves repeatedly from the current solution to a 
neighbouring one. We use the 2-exchange neigh-
bourhood, 2( , where the neighbours are obtained by 
pairwise interchanges of the elements of a solution 
(see Figure 6). Formally, the neighbourhood 2(  of 
the solution � is defined by the formula: 

����( �� )) | {)(2 � } ,,...1, ,,...1 , , nmjmipij ������ ; 

here, �� �) � ijp  means that )�  is obtained from �  
by applying the move pij (the move pij exchanges the 
ith and the jth element in the given permutation, i.e. 

)()( ji �� �)  # )()( ij �� �) ). 
At each step of TS, a set of the neighbours of the 

current solution is considered and the move that 
improves most the objective function value is chosen. 
If there are no improving moves, TS chooses one that 
least degrades the objective function. The reverse 
moves to the solutions just visited are to be forbidden 
in order to avoid cycling. The GPP allows imple-
menting the list of tabu moves in an effective manner. 
In particular, the tabu list is organized as an integer 
matrix T = (tij)m	(n
m). At the beginning, all the entries 
of T are set to zero. As the search progresses, the entry 
tij stores the current iteration number, plus the value of 
the tabu tenure, h, i.e. the number of the future 
iteration starting at which the ith and the jth elements 
may again be interchanged. In this case, an elementary 
perturbation (move) pij is tabu if the value of tij is 
equal or greater than the current iteration number. 
Note that testing whether a move is tabu or not 

requires only one comparison. We therefore call the 
above procedure the fast tabu search procedure. 

An aspiration criterion allows permitting the tabu 
status to be ignored under favourable circumstances. 
Usually, the move from the solution � to solution �* is 
permitted (even if �* is tabu) if z(�*) < z(�+), where �+ 
is the best solution found so far. The resulting decision 
rule looks thus as follows: replace the current solution 
� by the new solution �, such that �,= )(minarg

)(2

*

� **
�

�(�
z , 

where 2 2      ( ) {  |  ( ) and ((  is not( � � � ( � �* * * *� �  
 tabu) or ( ( ) ( )))}z z� �* +- . 

TS forbids some moves from time to time. This 
fact means that certain portions of the search space are 
excluded from being visited. This can be seen as a 
disadvantage of the search process. One of the 
possible ways to get over this weakness is to minimize 
these restrictions, that is, it is desirable that the num-
ber of forbidden moves is as minimal as possible. We 
propose a very simple trick: the tabu status is disre-
garded with a small probability even if the aspiration 
criterion does not hold. We empirically found that the 
proper value of this probability, �, is somewhere 
between 0.05 and 0.1 (we used � = 0.05). As the tabu 
status is ignored randomly with a negligible 
probability, there is almost no risk that the cycles will 
occur. This approach is called the randomized tabu 
search. 

We also propose to include an additional com-
ponent into the above TS procedure. Our idea is to 
embed an alternative intensification mechanism based 
on the deterministic steepest descent (SD) algorithm. 
The rationale of doing so is to prevent an accidental 
miss of a local optimum and to refine the search from 
time to time. Better results are achieved if the SD 
procedure is invoked at the moments of detecting 
improving solutions (that is, the inequality 
z(�,) 
 z(�) < 0 holds). The alternative intensification 
procedure, however, is omitted if it already took place 
within the last . steps (. is an alternative intensi-
fication period (we used . = �0.03n�)). The TS process 
continues until a termination criterion is satisfied (an a 
priori number of iterations, /, have been performed). 

We implemented two variants of the steepest 
descent procedure. The first one is simply based on 
searching in the 2-exchange neighbourhood 2( . The 
second one uses the extended 2-exchange 
neighbourhood 2( . The extended neighbourhood 2(  
(denoted as 220( ) can be described in the following 

way (also see [19]): 12 2 2( ) ( )  |( � ( � � �# #
0 � �  

, , � � � �# #�� � � � � } ,,...1, ,,...1 , nmjmipij ��� , 

where )(minarg
)(2

▓ 


� 


� ��

�(�
z , 2 2( ) ( ) \( � ( �
 �  

2 ( )
{arg min ( )}z
� ( �

�
��

� . The graphical interpretation of the 

neighbourhood 220(  is shown in Figure 7. 

3 4 5 1 2 6 7� 

3 4 6 1 2 5 7�" 
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Figure 7. Graphical representation of the neighbourhood 

220(  

The pseudo-code of the randomized tabu search 
algorithm is presented in Appendix, Figure A1. The 
pseudo-codes of the steepest descent and extended 
steepest descent algorithms are given in Figures A2, 
A3. 

Fast execution of the local improvement procedure 
is of high importance, as stated above. This is even 
more true for ITS where plenties of iterations of TS 
take place. Fortunately, lots of computations can be 
shortened due to very specific character of the matrix 
A of the GPP, as shown in [17, 29]. In particular, the 
exploration of the neighbourhood is restricted to the 
interchange of one of the first m elements (black 
points) with one of the last n 
 m elements (white 
points). Consequently, the neighbourhood size decrea-
ses to O(m(n 
 m)) instead of O(n2) for the conven-
tional QAP. Evaluating the difference in the objective 
function values thus becomes considerably faster. 
Instead of the standard formula, a simplified formula 
(4) is used (see also [17]): 

( ) ( ) ( ) ( )
1,

� ( , , ) 2 ( ), 

1,2,..., , 1,..., ,

m

j k i k
k k i

z i j b b

i m j m n

� � � ��
� �

� 


� � �

�  (4) 

where ),,(� jiz �  denotes the difference in the values 
of the objective function by interchanging the ith and 
the jth elements of the permutation �. 

Drezner [5] proposed a very inventive technique 
which allows reducing the run time (CPU time) even 
more. Based on this technique, �z(�, i, j) is calculated 
according to the following formula [17]: 

( ) ( ) ( ) ( )� ( , , ) 2( ),  
1,2, , , 1,...  ,

j i i jz i j c c b
i ... m j m , n

� � � �� � 
 


� � �
 (5) 

where i and j denote the indices of the elements of the 
permutation and c�(i), c�(j) are the entries of an array C 
of size n. The entries of C are calculated once before 
starting the algorithm according to the formula: 

nibc
m

j
jii  ,...,2,1 ,

1
)( ���

�
�  (here, � is the starting solu-

tion). So, this takes O(mn) time. In case of moving 
from �  to � � uvp , updating of the values of ci is per-
formed according to the formula: ci = ci + bi�(u) 
  
bi�(v), which requires O(n) time only. As the TS 

procedure is invoked many times, the overall effect is 
really surprising, especially if m <<  n. 

2.4.2. Mutation 
During the mutation process, the whole solution 

(or its part) is perturbed. At the first look, this is a 
relatively easy part of the ITS method. In fact, things 
are some more complicated. Mutations enable to 
escape local optima and allow discovering new and 
new regions of the search space. The mutation 
procedure for the GPP is based on random pairwise 
interchanges (RPIs) of certain elements of the given 
solution. The mutation process can be seen as a 
sequence of elementary perturbations 

1 2 3 4
, ,...,r r r rp p  

2 1 2r rp
2 2


; here, 
1�iirrp  denotes a random move which 

swaps the rith and the ri+1th elements in the current 
permutation; thus, �� �~ �

21rrp � (2(� ), � ~(r1) =  

� (r2), � ~(r2) = � (r1), �� �~~ �
21rrp �

43rrp � (4(� ) 

(if r1 � r3, r2 � r4), and so on. 
All we need by implementing the RPI-mutation is 

to generate the couples of uniform random integers 
(ri, ri+1) such that 1 � ri, ri+1 � n, i = 1, 3, ..., 22. The 
length of the sequence, 2, is called the mutation level 
(strength). It is obvious that the larger the value of 2, 
the stronger the mutation, and vice versa. 

We can achieve more robustness if we let the 
parameter 2 vary in some interval, say [2min,  
2max] 3 [1, n]. The following strategy of changing the 
values of 2 may be proposed. At the beginning, 2 is 
equal to 2min; further, 2 is increased gradually, step by 
step, until the maximum value 2max is reached; once 
2max has been reached (or, possibly, a better local 
optimum has been found), the current value of 2 is 
immediately dropped to 2min, and so on. In addition, if 
the best so far solution remains unchanged for a quite 
long time, then the value of 2max may be increased. 
The pseudo-code of the mutation procedure is 
presented in Appendix, Figure A4. 

2.4.3. Acceptance criterion 
The following are two main acceptance strategies: 

a) "exploitation", and b) "exploration". Exploitation is 
achieved by choosing only the currently best local 
optimum (the best so far solution). In case of 
exploration, each locally optimized solution (not 
necessary the best local optimum) can be considered 
as a potential candidate for perturbation. In IGEA, the 
so-called "where you are" (WYA) approach is applied 
— every new local optimum is accepted for 
diversification. 

The pseudo-code of the resulting local improve-
ment (intra-evolution) algorithm is presented in 
Figure 8. 

 

  
 � 

)(2 �(  

)(minarg
)(2

�
�(�
�

�
z

�
 

)(22 �0�

)( ▓

2 �(

)(minarg
)(2
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Figure 8. Pseudo-code of the intra-evolutionary algorithm 

 

Figure 9. Pseudo-code of the improved genetic-evolutionary algorithm 

2. 5. Population replacement scheme 

For the population replacement, we utilize the well 
known "
 + 4" strategy. In this case, the individuals 
chosen at the end of the reproduction iteration are the 
best ones of P
 � P4, where P
 is the population at the 
beginning of the reproduction, and P4 denotes the set 
of newly created individuals (in our algorithm, 
 = PS, 
4 = Nrecomb). An additional replacement mechanism 
("hot" restart) is activated if the loss of the diversity has 
been identified. The following are two main phases of 
the hot restart: a) mutation, b) local improvement (intra-
evolution). As a hot restart criterion, we use a measure 
of entropy [6]. The normalized entropy of the 
population, E, is defined in the following way: 

EeE
n

i
i

ˆ
1
�
�

� , (6) 

where 

5
6
7



�
�

otherwise,log
0,0

PSPS

i
i ii

e 88

8
, (7) 

8i is the number of times that the ith element (�(i)) 
appears between the 1st and mth position in the 
current population. Ê  denotes the maximal available 
entropy. It can be derived according to the following 
formula: 

L
PS

L
PS
nE ""

"
�"



�

9:9: )(ˆ , (8) 

where 

5
6
7



�
�"

otherwise,log
0,0

PS

L
:

:
, PSL :"
�"" log , (9) 

where : = (m	PS 
 1) div n, :" = : + 1, 9 = ((m	 
PS 
 1) mod n) + 1 (here, x div y = �x/y�, x mod y = 
 x 
 �x/y� 	 y). 

procedure ImprovedGeneticEvolutionaryAlgorithm; 
  // input: PS 
 size of population, Ngen 
 # of generations, Nrecomb 
 # of recombinations, 
  // Q 
 # of iterations of ITS, / 
 # of iterations of TS, hmin, hmax 
 tabu tenures,   
 selection factor,
  // �1, �2 
 recombination disruptiveness factors, ;1, ;2 
 intra-evolutionary mutation factors, ET 
 entropy threshold
  // output: �+ 
 the best solution found

StackHeader := 0; for i := 1 to m do for j := m + 1 to n do Tabu[i,j] := 0; 2min := max{1, �;1n�}; 2max := max{1, �;2n�};
  create the locally optimized population P< � in two steps: (i) generate initials solutions 
    of P randomly, (ii) improve each member of P using intra-evolutionary algorithm;
    // note: increased number of the iterations of intra-evolution is used at this phase

)}({: ��
�

z
P�

+ �argmin ; // �+ denotes the best so far solution

for generation := 1 to Ngen do begin // main cycle
    sort the members of P in the ascending order of their quality; 

for recombined_solution := 1 to Nrecomb do begin
      pick two solutions �", �"" from P to be recombined; 
      apply Recombination to �" and �"", get recombined solution �$;
      apply IntraEvolution to �$, get improved solution ��;
      add �� to population P; if z(��) < z(�+) then �+ := ��

    end; // for recombined_solution...
    cull population P by removing Nrecomb worst individuals; 

if entropy of P is below ET then make hot restart in two steps: (i) mutate all the members 
       of P, except the best one, (ii) improve each mutated solution using intra-evolution 
end // for generation...

end. 

procedure IntraEvolution; // intra-evolution (post-recombination) process based on iterated tabu search
  // input: � 
 current solution, n 
 problem size, Q 
 # of iterations, 2min, 2max 
 minimum and maximum mutation level
  // output: �+ 
 the best solution found
  apply FastRandomizedTabuSearch to �, get improved solution ��;
� := ��; �+ := ��; 2 := 2min 
 1; // 2 is actual mutation level
for q := 1 to Q do begin // main cycle
� := �� // accept a solution for the subsequent mutation
if 2 < 2max then 2 := 2 + 1 else 2 := 2min; // update actual mutation level

    apply Mutation to selected solution � with mutation level 2, obtain new solution �~;
    apply FastRandomizedTabuSearch to the solution � ~, get new (improved) solution ��;

if z(��) < z(�+) then begin � + := ��; reset mutation level 2, i.e. 2 := 2min 
 1 end
end // for

end. 
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The normalized entropy E takes values between 0 
and 1. So, if E is less than the predefined entropy 
threshold ET, we state that premature convergence 
(stagnation) takes place. In this case, the population 
undergoes the hot restart process. After the restart, the 
algorithm continues in a standard way. 

The resulting pseudo-code of the improved hybrid 
genetic-evolutionary algorithm (IGEA) is given in 
Figure 9. Note that there are two versions of IGEA 
depending on the descent algorithm used in the intra-
evolutionary (tabu search) algorithm (see Appendix, 
Figure A1): in IGEA1, the pure steepest descent 
procedure is used, while IGEA2 uses the extended 
steepest descent procedure. 

3. Computational experiments 

In this section, we present the results of the experi-
mentation with the proposed genetic-evolutionary 
algorithm. In the experiments, we used the GPP 
instances generated according to the method described 
in [29]. For the set of problems tested, the size of the 
instances, n, is equal to 256, and the frames are of 
dimensions 16 	 16, i.e. n1 = n2 = 16. The instances 
are denoted by the name 16-16-m, where m is the 
density of grey; it varies from 3 to 128. Remind that, 
for these instances, the data matrix B remains un-

changed, while the matrix A is of the form =�
>

?�
@

00
01 , 

where 1 is a sub-matrix of size m 	 m composed of 1s 
only [30]. 

We experimented with the following control para-
meter settings: PS = 8; Ngen = 25; Nrecomb = 1; Q = 3; 
/ = �0.1n� = 25; hmin = �0.08n�, hmax = �0.12n�;   = 1.95; 
�1 = 0.1; �2 = 0.1; ;1 = 0.1, ;2 = 0.2; ET = 0.005 (PS 
denotes population size, Ngen — # of generations, 
Nrecomb — # of recombinations per generation, Q — # 
of iterations of the intra-evolutionary algorithm (the 
search depth), / — # of iterations of the tabu search 
procedure (within the intra-evolutionary algorithm), 
hmin, hmax — lower and higher tabu tenures,   —
 selection factor, �1, �2 — recombination disruptive-
ness factors, ;1, ;2 — intra-evolutionary mutation 
factors, ET — entropy threshold). These parameter 
values are identical to those used in [17]. In the 
experiments, 3 GHz Pentium computer was used. 

Firstly, we have compared our algorithm (version 
IGEA2) with an evolutionary algorithm (EA) of 
Drezner presented in [5]. We compared the average 
run time (CPU time) and the average deviation of the 
obtained solutions, where the average deviation, A , is 
calculated by the formula: %][ ) (100 **
� zzzA ; 
here, z  is the average objective function value over K 
runs ("cold restarts") of the algorithm and *z  denotes 
the best known value (BKV) of the objective function. 
Different starting populations are used at each run. 
Both algorithms use fast objective function evaluation 
(as described in formulas (4), (5)). The number of runs 

(K) is equal to 100 for EA. We used K = 10. The 
results of the comparison are shown in Table 1. 

Since our algorithm constantly finds the best 
known ((pseudo-)optimal) solutions, it is preferable to 
investigate run time performance instead of solution 
quality. In such situation, the so-called "time to target" 
[1] methodology may by used. In this case, for a given 
target value of the objective function (target solution), 
the run time of the algorithm to achieve this value is 
recorded. This is repeated multiple times and the 
recorded run times are sorted. With each run time, a 

probability 
w

iPi
5.0


�  is associated, where i (i = 1, 2, 

 …, w) denotes the number of the current trial and w is 
the total number of trials (we used w = 10). The 
probabilities Pi can be visualized using "time-to-tar-
get" plots which show the probability that the target 
value will be obtained (see Figure 10). 
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Figure 10. Example of the time-to-target plot for the 
instance 16-16-90 

The performance improvement factor, PIF, of one 
algorithm (A1) to another one (A2) may be defined by 

the following formula: 
)A(
)A(

15.0

25.0

t
t

PIF � ; here, t0.5 de-

notes the time needed to obtain the target value with 
probability 0.5. We have compared the performance 
improvement factors for our improved genetic-
evolutionary algorithms (IGEA1, IGEA2) and the 
previous hybrid genetic algorithm (HGA) presented in 
[17]. In Table 2, we present, in particular, the values of 
t0.5 as well as the values of the performance im-
provement factor for HGA, IGEA1 and IGEA2. The 
values of t0.5 are in seconds. The target values are set 
to be equal to the corresponding best known values 
(BKVs). (Only fifty-one instances (from m = 65 to 
m = 115) are examined because the remaining 
problems with m < 65 and m > 115 are, with few ex-
ceptions (m = 26, 44, 45, 46), easily solved by all 
algorithms.) 

Our previous genetic algorithm (HGA) is very effi-
cient and aggressive, so it is quite difficult to increase 
its overall performance. Nevertheless, with our new 
algorithms (IGEA1 and IGEA2), we have overcome its 
efficiency. This is especially true for the extended 
algorithm IGEA2. In particular, for the examined 
instances, the performance improvement factors of 
IGEA1 to HGA and IGEA2 to HGA are equal to ap-
proximately 1.16 and 1.32, respectively (see Table 2). 
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Table 1. Results of the experiments with the GPP (I) 

EA IGEA2 EA IGEA2 EA IGEA2 
Instance 

Best 
known 
value 

(BKV) 
Av. 

dev.† Time‡ Av. 
dev.† Time‡ 

Instance 
Best 

known 
value 

(BKV) 
Av. 

dev.† Time‡ Av. 
dev.† Time‡

Instance
Best 

known 
value 

(BKV) 
Av. 

dev.† Time‡ Av. 
dev.† Time‡

16-16-3  7810 a n/a n/a 0.000 0.0 16-16-45  8674910 c 0.018 206 0.000 150 16-16-87  39389054 b 0.000 127 0.000 25 
16-16-4  15620 a n/a n/a 0.000 0.0 16-16-46  9129192 c 0.005 162 0.000 64 16-16-88  40416536 b 0.014 132 0.000 23 
16-16-5  38072 a n/a n/a 0.000 0.0 16-16-47  9575736 a 0.004 78 0.000 3.1 16-16-89  41512742 b 0.006 173 0.000 183 
16-16-6  63508 a n/a n/a 0.000 0.0 16-16-48  10016256 a 0.021 106 0.000 2.0 16-16-90  42597626 e 0.006 302 0.000 165 
16-16-7  97178 a n/a n/a 0.000 0.0 16-16-49  10518838 b 0.018 181 0.000 3.4 16-16-91  43676474 e 0.007 321 0.000 224 
16-16-8  131240 a n/a n/a 0.000 0.0 16-16-50  11017342 a 0.000 193 0.000 2.8 16-16-92  44759294 g 0.010 224 0.000 157 
16-16-9  183744 a n/a n/a 0.000 0.0 16-16-51  11516840 b 0.000 207 0.000 7.5 16-16-93  45870244 e 0.005 260 0.000 214 
16-16-10  242266 a n/a n/a 0.000 0.0 16-16-52  12018388 b 0.002 194 0.000 6.3 16-16-94  46975856 e 0.016 273 0.000 190 
16-16-11  304722 a n/a n/a 0.000 0.1 16-16-53  12558226 a 0.001 193 0.000 4.6 16-16-95  48081112 h 0.026 217 0.000 169 
16-16-12  368952 a n/a n/a 0.000 0.1 16-16-54  13096646 b 0.004 175 0.000 4.0 16-16-96  49182368 a 0.065 236 0.000 216 
16-16-13  457504 a n/a n/a 0.000 0.1 16-16-55  13661614 b 0.010 295 0.000 10.1 16-16-97  50344050 a 0.040 155 0.000 213 
16-16-14  547522 a n/a n/a 0.000 0.1 16-16-56  14229492 b 0.005 234 0.000 2.8 16-16-98  51486642 a 0.052 145 0.000 188 
16-16-15  644036 a n/a n/a 0.000 0.1 16-16-57  14793682 b 0.000 167 0.000 2.2 16-16-99  52660116 a 0.020 169 0.000 201 
16-16-16  742480 a n/a n/a 0.000 0.1 16-16-58  15363628 b 0.005 216 0.000 2.3 16-16-100  53838088 a 0.005 109 0.000 117 
16-16-17  878888 a n/a n/a 0.000 0.2 16-16-59  15981086 a 0.005 235 0.000 3.5 16-16-101  55014262 a 0.012 125 0.000 84 
16-16-18  1012990 a n/a n/a 0.000 0.1 16-16-60  16575644 a 0.039 238 0.000 2.4 16-16-102  56202826 h 0.012 96 0.000 40 
16-16-19  1157992 a n/a n/a 0.000 0.2 16-16-61  17194812 b 0.021 386 0.000 2.2 16-16-103  57417112 a 0.002 82 0.000 73 
16-16-20  1305744 a n/a n/a 0.000 0.3 16-16-62  17822806 b 0.003 100 0.000 3.6 16-16-104  58625240 h 0.008 115 0.000 62 
16-16-21  1466210 a n/a n/a 0.000 0.5 16-16-63  18435790 a 0.003 381 0.000 1.9 16-16-105  59854744 a 0.001 103 0.000 38 
16-16-22  1637794 a 0.000 67 0.000 0.3 16-16-64  19050432 a 0.028 516 0.000 2.3 16-16-106  61084902 a 0.002 113 0.000 33 
16-16-23  1820052 a 0.000 67 0.000 0.2 16-16-65  19848790 b 0.019 416 0.000 3.1 16-16-107  62324634 a 0.001 122 0.000 21 
16-16-24  2010846 a 0.000 56 0.000 0.6 16-16-66  20648754 b 0.013 237 0.000 4.5 16-16-108  63582416 a 0.000 179 0.000 12.6 
16-16-25  2215714 b 0.001 97 0.000 3.2 16-16-67  21439396 b 0.028 305 0.000 9.7 16-16-109  64851966 a 0.000 87 0.000 11.1 
16-16-26  2426298 c 0.021 100 0.000 16.5 16-16-68  22234020 b 0.059 244 0.000 18.0 16-16-110  66120434 h 0.000 235 0.000 10.7 
16-16-27  2645436 a 0.006 100 0.000 1.1 16-16-69  23049732 b 0.025 284 0.000 27 16-16-111  67392724 a 0.000 358 0.000 8.2 
16-16-28  2871704 a 0.040 107 0.000 0.9 16-16-70  23852796 b 0.079 256 0.000 26 16-16-112  68666416 a 0.001 790 0.000 7.7 
16-16-29  3122510 a 0.001 94 0.000 0.7 16-16-71  24693608 b 0.034 286 0.000 78 16-16-113  69984758 a n/a n/a 0.000 10.2 
16-16-30  3373854 a 0.000 92 0.000 0.5 16-16-72  25522408 d n/a n/a 0.000 490 16-16-114  71304194 a n/a n/a 0.000 6.3 
16-16-31  3646344 a 0.055 84 0.000 0.6 16-16-73  26375828 e 0.057 335 0.000 298 16-16-115  72630764 a n/a n/a 0.000 5.1 
16-16-32  3899744 a 0.124 76 0.000 0.5 16-16-74  27235240 f 0.062 358 0.000 304 16-16-116  73962220 a n/a n/a 0.000 5.3 
16-16-33  4230950 a 0.004 59 0.000 0.7 16-16-75  28114952 b 0.020 343 0.000 41 16-16-117  75307424 a n/a n/a 0.000 4.0 
16-16-34  4560162 a 0.019 61 0.000 2.6 16-16-76  29000908 b 0.010 319 0.000 121 16-16-118  76657014 a n/a n/a 0.000 3.6 
16-16-35  4890132 a 0.006 104 0.000 3.2 16-16-77  29894452 f 0.016 376 0.000 145 16-16-119  78015914 a n/a n/a 0.000 2.3 
16-16-36  5222296 a 0.005 105 0.000 2.0 16-16-78  30797954 f 0.013 302 0.000 117 16-16-120  79375832 a n/a n/a 0.000 1.7 
16-16-37  5565236 a 0.000 101 0.000 1.8 16-16-79  31702182 b 0.022 253 0.000 11.6 16-16-121  80756852 a n/a n/a 0.000 1.6 
16-16-38  5909202 a 0.000 91 0.000 0.9 16-16-80  32593088 b 0.058 178 0.000 3.3 16-16-122  82138768 a n/a n/a 0.000 1.4 
16-16-39  6262248 a 0.000 67 0.000 1.1 16-16-81  33544628 b 0.004 94 0.000 3.9 16-16-123  83528554 a n/a n/a 0.000 1.0 
16-16-40  6613472 a 0.001 108 0.000 0.9 16-16-82  34492592 b 0.002 124 0.000 70 16-16-124  84920540 a n/a n/a 0.000 0.7 
16-16-41  7002794 a 0.001 137 0.000 0.6 16-16-83  35443938 e 0.000 167 0.000 57 16-16-125  86327812 a n/a n/a 0.000 0.4 
16-16-42  7390586 a 0.001 143 0.000 0.7 16-16-84  36395172 e 0.001 178 0.000 61 16-16-126  87736646 a n/a n/a 0.000 0.3 
16-16-43  7794422 b 0.001 199 0.000 3.2 16-16-85  37378800 e 0.001 206 0.000 151 16-16-127  89150166 a n/a n/a 0.000 0.2 
16-16-44  8217264 b 0.107 201 0.000 16.0 16-16-86  38376438 c 0.000 162 0.000 94 16-16-128  90565248 a n/a n/a 0.000 0.2 

† the average deviation (Av. dev.) is measured in percentage of average solution over BKV; 
‡ times for EA and IGEA2 are given in seconds per run for 2.8 GHz and 3 GHz computers, respectively; 

a comes from [30]; b comes from [14]; c comes from [13]; d comes from this paper; 
e comes from [5,17]; f comes from [15]; g comes from [27]; h comes from [16] 

Table 2. Results of the experiments with the GPP (II) 

Instance t0.5
� t0.5

� t0.5
� PIF1 PIF2 PIF3 Instance t0.5

� t0.5
� t0.5

� PIF1 PIF2 PIF3 Instance t0.5
� t0.5

� t0.5
� PIF1 PIF2 PIF3

16-16-65 2.9 2.9 2.4 1.00 1.21 1.21 16-16-82 61.1 59.0 51.4 1.04 1.19 1.15 16-16-99 194.0 172.0 162.0 1.13 1.20 1.06
16-16-66 4.7 3.5 3.2 1.34 1.47 1.09 16-16-83 55.4 47.4 48.0 1.17 1.15 0.99 16-16-100 110.1 99.0 101.4 1.11 1.09 0.98
16-16-67 9.3 9.0 6.7 1.03 1.39 1.34 16-16-84 61.0 52.2 49.5 1.17 1.23 1.05 16-16-101 94.0 77.3 81.0 1.22 1.16 0.95
16-16-68 19.3 16.0 12.3 1.21 1.57 1.30 16-16-85 132.6 131.8 110.3 1.01 1.20 1.19 16-16-102 36.9 37.0 34.9 1.00 1.06 1.06
16-16-69 28.1 23.8 15.6 1.18 1.80 1.53 16-16-86 93.8 93.8 70.1 1.00 1.34 1.34 16-16-103 74.5 66.4 52.8 1.12 1.41 1.26
16-16-70 26.6 22.4 21.4 1.19 1.24 1.05 16-16-87 20.9 18.1 16.1 1.15 1.30 1.12 16-16-104 68.5 59.3 50.0 1.16 1.37 1.19
16-16-71 82.8 67.5 56.3 1.23 1.47 1.20 16-16-88 25.2 23.5 20.5 1.07 1.23 1.15 16-16-105 43.8 32.9 32.4 1.33 1.35 1.02
16-16-72 n/a 597.0 450.0 n/a n/a 1.33 16-16-89 172.0 163.0 140.1 1.06 1.23 1.16 16-16-106 34.0 32.7 25.0 1.04 1.36 1.31
16-16-73 330.0 263.2 285.0 1.26 1.16 0.92 16-16-90 191.3 160.7 127.0 1.19 1.51 1.27 16-16-107 20.4 14.0 16.0 1.46 1.28 0.88
16-16-74 284.7 280.0 227.0 1.02 1.25 1.23 16-16-91 246.0 189.8 171.0 1.30 1.43 1.10 16-16-108 12.6 10.8 10.6 1.17 1.19 1.02
16-16-75 49.7 40.2 33.5 1.24 1.48 1.20 16-16-92 172.8 156.0 132.6 1.11 1.30 1.18 16-16-109 11.1 9.4 8.2 1.18 1.35 1.15
16-16-76 109.3 105.4 96.0 1.04 1.14 1.10 16-16-93 267.7 195.1 203.5 1.37 1.32 0.96 16-16-110 11.2 11.0 8.1 1.02 1.38 1.36
16-16-77 149.0 136.0 124.3 1.10 1.20 1.09 16-16-94 196.9 150.0 170.9 1.31 1.15 0.88 16-16-111 8.2 8.1 6.2 1.01 1.32 1.31
16-16-78 98.7 96.7 88.9 1.02 1.11 1.09 16-16-95 216.0 145.1 150.0 1.49 1.44 0.97 16-16-112 7.3 6.2 5.9 1.18 1.24 1.05
16-16-79 12.3 10.4 8.0 1.18 1.54 1.30 16-16-96 239.8 215.1 157.0 1.11 1.53 1.37 16-16-113 10.1 7.9 6.4 1.28 1.58 1.23
16-16-80 3.5 3.1 3.1 1.13 1.13 1.00 16-16-97 216.7 211.0 180.2 1.03 1.20 1.17 16-16-114 6.5 4.9 4.1 1.33 1.59 1.20
16-16-81 3.7 3.3 3.0 1.12 1.23 1.10 16-16-98 190.0 180.4 134.5 1.05 1.41 1.34 16-16-115 4.7 4.1 3.8 1.15 1.24 1.08
Average: --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 1.16 1.32 1.15

Notes: t0.5
� = t0.5(HGA), t0.5

� = t0.5(IGEA1), t0.5
� = t0.5(IGEA2), 

)IGEA(
)HGA(
1

5.0

5.0
1 t

t
PIF � , 

)IGEA(
)HGA(
2

5.0

5.0
2 t

t
PIF � , 

)IGEA(
)IGEA(

2
5.0

1
5.0

3 t
t

PIF �  
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Table 3. Results of the experiments with the GPP (III) 

Instance t0.5

 t0.5

� t0.5
� PIF4 PIF5 PIF6 Instance t0.5


 t0.5
� t0.5

� PIF4 PIF5 PIF6 Instance t0.5

 t0.5

� t0.5
� PIF4 PIF5 PIF6

16-16-65 1.8 1.2 0.2 1.50 9.00 6.00 16-16-82 39.4 26.1 3.9 1.51 10.10 6.69 16-16-99 124.1 77.1 12.0 1.61 10.34 6.43
16-16-66 2.8 1.6 0.2 1.75 14.00 8.00 16-16-83 35.0 20.9 3.6 1.67 9.72 5.81 16-16-100 67.7 44.1 7.5 1.54 9.03 5.88
16-16-67 5.7 3.9 0.5 1.46 11.40 7.80 16-16-84 37.2 23.4 3.7 1.59 10.05 6.32 16-16-101 58.0 32.8 6.1 1.77 9.51 5.38
16-16-68 12.1 7.0 0.9 1.73 13.44 7.78 16-16-85 83.2 58.9 8.3 1.41 10.02 7.10 16-16-102 23.6 15.9 2.6 1.48 9.08 6.12
16-16-69 17.7 10.7 1.2 1.65 14.75 8.92 16-16-86 56.3 40.8 5.3 1.38 10.62 7.70 16-16-103 47.7 29.1 3.9 1.64 12.23 7.46
16-16-70 16.1 9.4 1.6 1.71 10.06 5.88 16-16-87 12.7 8.1 1.2 1.57 10.58 6.75 16-16-104 41.9 25.5 3.7 1.64 11.32 6.89
16-16-71 52.9 29.7 4.2 1.78 12.60 7.07 16-16-88 15.9 10.0 1.5 1.59 10.60 6.67 16-16-105 27.1 14.6 2.4 1.86 11.29 6.08
16-16-72 451.9 262.0 33.2 1.72 13.61 7.89 16-16-89 106.2 72.3 10.5 1.47 10.11 6.89 16-16-106 21.6 14.5 1.8 1.49 12.00 8.06
16-16-73 210.4 115.0 21.5 1.83 9.79 5.35 16-16-90 116.9 67.5 9.4 1.73 12.44 7.18 16-16-107 12.8 6.0 1.2 2.13 10.67 5.00
16-16-74 171.2 118.0 17.0 1.45 10.07 6.94 16-16-91 155.7 84.6 12.9 1.84 12.07 6.56 16-16-108 7.6 4.8 0.8 1.58 9.50 6.00
16-16-75 31.2 16.9 2.5 1.85 12.48 6.76 16-16-92 110.5 67.1 9.8 1.65 11.28 6.85 16-16-109 6.7 4.1 0.6 1.63 11.17 6.83
16-16-76 68.0 46.5 7.2 1.46 9.44 6.46 16-16-93 169.9 88.1 15.0 1.93 11.33 5.87 16-16-110 6.8 4.7 0.6 1.45 11.33 7.83
16-16-77 91.1 60.0 9.3 1.52 9.80 6.45 16-16-94 121.2 66.2 12.8 1.83 9.47 5.17 16-16-111 5.2 3.5 0.5 1.49 10.40 7.00
16-16-78 63.3 41.2 6.6 1.54 9.59 6.24 16-16-95 131.1 63.9 11.1 2.05 11.81 5.76 16-16-112 4.4 2.7 0.4 1.63 11.00 6.75
16-16-79 7.8 4.4 0.6 1.77 13.00 7.33 16-16-96 153.9 95.1 11.7 1.62 13.15 8.13 16-16-113 6.3 3.5 0.5 1.80 12.60 7.00
16-16-80 2.2 1.3 0.2 1.69 11.00 6.50 16-16-97 132.2 95.2 13.3 1.39 9.94 7.16 16-16-114 4.0 2.2 0.3 1.82 13.33 7.33
16-16-81 2.3 1.4 0.2 1.64 11.50 7.00 16-16-98 122.4 79.7 10.1 1.54 12.12 7.89 16-16-115 2.9 1.7 0.3 1.71 9.67 5.67
Average: --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 1.65 11.09 6.76

Notes: t0.5

 = t0.5(SD), t0.5

� = t0.5(SA), t0.5
� = t0.5(IGEA2), 

)SA(
)SD(

5.0

5.0
4 t

tPIF � , 
)IGEA(

)SD(
2

5.0

5.0
5 t

tPIF � , 
)IGEA(

)SA(
2

5.0

5.0
6 t

tPIF �  

Table 4. Results of the experiments with the GPP (IV) 

Instance t0.5
� t0.5

� t0.5
� PIF7 PIF8 PIF9 Instance t0.5

� t0.5
� t0.5

� PIF7 PIF8 PIF9 Instance t0.5
� t0.5

� t0.5
� PIF7 PIF8 PIF9

16-16-65 0.6 0.4 0.2 1.50 3.00 2.00 16-16-82 12.3 7.7 3.9 1.60 3.15 1.97 16-16-99 41.0 21.0 12.0 1.95 3.42 1.75
16-16-66 1.0 0.4 0.2 2.50 5.00 2.00 16-16-83 11.2 5.9 3.6 1.90 3.11 1.64 16-16-100 23.2 13.0 7.5 1.78 3.09 1.73
16-16-67 1.9 1.1 0.5 1.73 3.80 2.20 16-16-84 12.4 6.6 3.7 1.88 3.35 1.78 16-16-101 18.7 10.1 6.1 1.85 3.07 1.66
16-16-68 3.8 2.1 0.9 1.81 4.22 2.33 16-16-85 27.3 17.3 8.3 1.58 3.29 2.08 16-16-102 7.8 4.6 2.6 1.70 3.00 1.77
16-16-69 5.7 3.1 1.2 1.84 4.75 2.58 16-16-86 19.8 11.5 5.3 1.72 3.74 2.17 16-16-103 15.0 8.5 3.9 1.76 3.85 2.18
16-16-70 5.5 2.9 1.6 1.90 3.44 1.81 16-16-87 4.3 2.3 1.2 1.87 3.58 1.92 16-16-104 13.7 7.5 3.7 1.83 3.70 2.03
16-16-71 16.8 9.0 4.2 1.87 4.00 2.14 16-16-88 5.3 2.9 1.5 1.83 3.53 1.93 16-16-105 8.9 4.0 2.4 2.23 3.71 1.67
16-16-72 141.1 74.1 33.2 1.90 4.25 2.23 16-16-89 34.5 21.4 10.5 1.61 3.29 2.04 16-16-106 7.0 4.2 1.8 1.67 3.89 2.33
16-16-73 69.4 33.9 21.5 2.05 3.23 1.58 16-16-90 38.9 21.1 9.4 1.84 4.14 2.24 16-16-107 4.0 1.8 1.2 2.22 3.33 1.50
16-16-74 57.4 36.4 17.0 1.58 3.38 2.14 16-16-91 51.9 25.2 12.9 2.06 4.02 1.95 16-16-108 2.6 1.4 0.8 1.86 3.25 1.75
16-16-75 9.9 5.1 2.5 1.94 3.96 2.04 16-16-92 35.6 20.4 9.8 1.75 3.63 2.08 16-16-109 2.3 1.2 0.6 1.92 3.83 2.00
16-16-76 22.1 13.4 7.2 1.65 3.07 1.86 16-16-93 53.5 24.9 15.0 2.15 3.57 1.66 16-16-110 2.4 1.4 0.6 1.71 4.00 2.33
16-16-77 29.8 17.9 9.3 1.66 3.20 1.92 16-16-94 39.0 19.0 12.8 2.05 3.05 1.48 16-16-111 1.7 1.1 0.5 1.55 3.40 2.20
16-16-78 20.0 12.0 6.6 1.67 3.03 1.82 16-16-95 42.9 17.8 11.1 2.41 3.86 1.60 16-16-112 1.5 0.8 0.4 1.88 3.75 2.00
16-16-79 2.6 1.3 0.6 2.00 4.33 2.17 16-16-96 49.2 27.8 11.7 1.77 4.21 2.38 16-16-113 2.1 1.0 0.5 2.10 4.20 2.00
16-16-80 0.7 0.4 0.2 1.75 3.50 2.00 16-16-97 43.0 27.9 13.3 1.54 3.23 2.10 16-16-114 1.4 0.6 0.3 2.33 4.67 2.00
16-16-81 0.8 0.4 0.2 2.00 4.00 2.00 16-16-98 40.2 22.9 10.1 1.76 3.98 2.27 16-16-115 1.0 0.5 0.3 2.00 3.33 1.67
Average: --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 1.86 3.65 1.97

Notes: t0.5
� = t0.5(TS), t0.5

� = t0.5(GA-SD), t0.5
� = t0.5(IGEA2), 

SD)(GA-
)TS(

5.0

5.0
7 t

tPIF � , 
)IGEA(

)TS(
2

5.0

5.0
8 t

tPIF � , 
)IGEA(

SD)(GA-
2

5.0

5.0
9 t

tPIF �  

Table 5. New best known solution for the GPP 

Instance Previous best known value New best known value 

16-16-72 25529984a 25522408 
a comes from [15] 
 

 

Figure 11. Previous (a) and new (b) best known grey frames of density 72/256: larger- and smaller-scale views 
 

(a) (b)



A. Misevi�ius 

340 

 

Figure 12. (Pseudo-)optimal grey frames of densities 100/256 (a), 101/256 (b), 102/256 (c), 103/256 (d) 

We have also compared the algorithm IGEA2 with 
other well-known algorithms, in particular, steepest 
descent (SD) algorithm, simulated annealing (SA) 
algorithm, tabu search (TS) algorithm, and genetic 
(evolutionary) algorithm hybridized with steepest 
descent (GA-SD). All these algorithms were coded 
and implemented by the author; the descriptions of the 
algorithms can be found in [5]. The results of the 
comparison of the algorithms are presented in Tables 3 
and 4. Similarly to Table 2, we present the values of 
t0.5 and PIF. The values of t0.5 are again in seconds, 
however the target values are 0.1% above BKVs. 

Note that during the experiments, we were 
successful in discovering new record-breaking solution 
for the instance 16-16-72 (m = 72) (see Table 5). As a 
confirmation of the quality of the solution produced, we 
give the visual representation of this solution and the 
previous best known solution in Figure 11. Some other 
(pseudo-)optimal grey frames are shown in Figure 12 so 
that the reader can judge about the excellence of the grey 
patterns generated. 

4. Conclusions 

In this work, the issues related to solving the grey 
pattern problem (GPP) are discussed. We propose to 
use an improved genetic-evolutionary algorithm 
(IGEA), which is based on the integrating of intensi-
fication and diversification (I&D) approaches. The 
main improvements of IGEA are due the special 
recombination of solutions and the enhanced intra-
evolutionary procedure as a post-recombination algo-
rithm. The recombination has both diversification and 
intensification effect. The post-recombination algo-
rithm itself consists of the iterative tabu search and 
mutation processes, where the tabu search serves as a 
basic intensification mechanism. The fast descent and 
extended decent-based local search procedures are 
designed to play the role of alternative intensification. 
The specialized mutation operator has exclusively 
diversification effect. 

The new results from the experiments show 
promising performance of the proposed algorithm, as 
well as its superiority to the previous efficient hybrid 
genetic algorithm proposed in [17]. These results sup-
port the opinion that is extremely important to use a 
smart post-recombination procedure as well as a 
proper mechanism for premature convergence 

avoidance. It is confirmed that integrating I&D into 
the evolutionary process has a quite remarkable effect 
on the quality of solutions. 

The effectiveness of our algorithm is also corro-
borated by the fact that all GPP instances are solved to 
pseudo-optimality at surprisingly small computational 
effort. The new best known grey pattern of density 
72/256 has been discovered. 
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Appendix 

 

Figure A1. Pseudo-code of the fast randomized tabu search algorithm. Notes. 1. The function if(x,y1,y2) returns y1 if x = TRUE, 
otherwise it returns y2. 2. The function random() returns a pseudo-random number uniformly distributed in [0, 1] 

 

 

Figure A2. Pseudo-code of the fast steepest descent algorithm using the neighbourhood 2(  

 

procedure FastRandomizedTabuSearch;
  // input: � 
 current solution, n 
 problem size, m 
 # of black points, B 
 distance matrix,
  // hmin, hmax 
 lower and higher tabu tenures, / 
 # of iterations, . 
 alternative intensification period, � 
 randomization level
  // output: �� 
 the best solution found

for i := 1 to StackHeader do Tabu[Stack1[i], Stack2[i]] := 0; // tabu list initialization
for i := 1 to n do begin ci := 0; for j := 1 to m do ci := ci + bi�(j) end; // initialization of C
�� := �; k := 1; k" := 1; improved := FALSE; choose h randomly between hmin and hmax;
while (k � /) or (improved = TRUE) then begin // main cycle
�min := B;
for i := 1 to m do // m(n 
 m) neighbours of � are considered
  for j := m + 1 to n do begin

� := 2(c�(j) 
 c�(i) 
 b�(i)�(j));
forbidden := if((Tabu[i,j] C k) and (random() C �), TRUE, FALSE); aspired := if((z(�) + � < z(��)) and forbidden), TRUE, FALSE);
if ((� < �min) and not(forbidden)) or aspired then begin �min := �;u := i;v := j end

end; // for
if �min < B then begin

�� �: � uvp ; for i := 1 to n do ci := ci + bi�(u) 
 bi�(v); // replace the current solution by the new one and update C
Tabu[u,v] := k + h; // update tabu list (make the move puv tabu)
StackHeader := StackHeader+ 1; Stack1[StackHeader] := u; Stack2[StackHeader] := v

end; // if
improved := if(�min < 0, TRUE, FALSE);
if improved and (k 
 k" C .) then begin // switch to alternative intensification (depending on the version of IGEA)

       apply FastSteepestDescent | FastExtendedSteepestDescent to �; k" := k
end;
if z(�) < z(��) then �� := �; // save the best so far solution
k := k + 1

end // while
end. 

procedure FastSteepestDescent;
  // input: � 
 current solution, n 
 problem size, m 
 # of black points, B 
 distance matrix
  // output: � 
 resulting (improved) solution

for i := 1 to n do begin ci := 0; for j := 1 to m do ci := ci + bi�(j) end;
repeat // cycle is repeated until local optimum is reached
�min := 0;
for i := 1 to m do

for j := m + 1 to n do begin � := 2(c�(j) 
 c�(i) 
 b�(i)�(j)); if � < �min then begin �min := �; u := i; v := j end end;
if �min < 0 then begin // replace the current solution by the better one

�� �: � uvp ; for i := 1 to n do ci := ci + bi�(u) 
 bi�(v) 

end // if
until �min C 0

end. 
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Figure A3. Pseudo-code of the fast extended steepest descent algorithm using the neighbourhood 220(  
 

 

Figure A4. Pseudo-code of the mutation procedure 
 

procedure FastExtendedSteepestDescent;
  // input: � 
 current solution, n 
 problem size, m 
 # of black points, B 
 distance matrix
  // output: � 
 resulting (improved) solution

for i := 1 to n do begin ci := 0; for j := 1 to m do ci := ci + bi�(j) end;
repeat // cycle is repeated until local optimum is reached
�min

(1) := B; �min
(2) := B; u(1) := 0; v(1) := 0;

for i := 1 to m do
for j := m + 1 to n do begin
� := 2(c�(j) 
 c�(i) 
 b�(i)�(j));
if � < �min

(1) then begin �min
(2) := �min

(1); u(2) := u(1); v(2) := v(1); �min
(1) := �; u(1) := i; v(1) := j end

else if � < �min
(2) then begin �min

(2) := �; u(2) := i; v(2) := j end
end; // for

�" := � � )1()1(  , vu
p ; �"" := � � )2()2(  , vu

p ; c" := c; for i := 1 to n do
)()( )2()2(:

viuiii bbcc
�� """"


�� ;
    apply FastSteepestDescent to �"", get �""";

if z(�") < z(�) or z(�""") < z(�) then begin
if z(�") < z(�""") then for i := 1 to n do

)()( )1()1(:
viuiii bbcc

�� ""

�"� ;

� := argmin(z(�"), z(�""")); // replace the current solution by a new (better) one
better_solution_found := TRUE

end
else better_solution_found := FALSE

until better_solution_found = FALSE
end. 

procedure Mutation;
  // input: � 
 current solution, n 
 problem size, m 
 # of black points, B 
 distance matrix, 2 
 mutation level (2 > 1)
  // output: � 
 mutated solution

for i := 1 to 2 do begin
    generate two numbers j and k randomly, uniformly, 1 � j < k � n;

�� �: � jkp ; // interchange the jth and the kth elements in �

    // the objective function value, z, is recalculated in O(m) operations, i.e. �(z � �
��


��
m

jll
ljlkjk bbzp

,1
)()()()( )(2)() �����

end // for
end. 




