ISSN 1392 — 124X INFORMATION TECHNOLOGY AND CONTROL, 2011, Vol.40, No.4

GENERATION OF GREY PATTERNS USING AN IMPROVED GENETIC-
EVOLUTIONARY ALGORITHM: SOME NEW RESULTS*

Alfonsas Misevicius

Kaunas University of Technology, Department of Multimedia Engineering,
Studenty St. 50—400a/416a, LT-51368 Kaunas, Lithuania
e-mail: alfonsas.misevicius@ktu.lt

crossref http://dx.doi.org/10.5755/j01.itc.40.4 983

Abstract. Genetic and evolutionary algorithms have achieved impressive success in solving various optimization
problems. In this work, an improved genetic-evolutionary algorithm (IGEA) for the grey pattern problem (GPP) is
discussed. The main improvements are due to the specific recombination operator and the modified tabu search (intra-
evolutionary) procedure as a post-recombination algorithm, which is based on the intensification and diversification
methodology. The effectiveness of IGEA is corroborated by the fact that all the GPP instances tested are solved to
pseudo-optimality at very small computational effort. The graphical illustrations of the grey patterns are presented.

Keywords: combinatorial optimization; heuristics; genetic-evolutionary algorithms; grey pattern problem.

Introduction

The grey pattern problem (GPP) [29] deals with a
rectangle (grid) of dimensions 7, x n, containing
n=mny x n, points (m black points and » —m white
points). By putting together many of these rectangles,
one gets a grey pattern (frame) of density m/n (see
Figure 1). The goal is to get the most excellent grey
pattern, that is, the points have to be spread on the
rectangles as smoothly as possible.

Figure 1. Examples of grey frames: m/n = 58/256 (a),
m/n=198/256 (b)

Formally, the GPP can be stated as follows. Let
two matrices A = (a;)ux, and B = (by),x, and the set I1
of all possible permutations of the integers from 1 to n
be given. The objective is to find a permutation
7= (1), 7(2), ..., 7(n)) € Il that minimizes

n n
z(7) = ZZGU%W >

i=l j=1

)

where the matrix (a;),x, is defined as a; =1 for i, j =1,
2, ..., m and a; =0 otherwise; the matrix (by),x, 1S
defined by the distances between every two of n

points. More precisely, by =b, 1. i = Frou s
where
7, ma !
Jrs = X 2
P vl (P — £+ nyv) + (s —u+nyw)’

2)

frsie may be thought of as an electrical repulsion force
between two electrons (to be put on the grid points) i
and j (i,j=1, .., n) located in the positions k= (i)
and /= 7z(j) with the coordinates (r, s) and (¢, u). The
ith (i<m) element of the permutation 7,
(i) = ny(r — 1) + s, gives the location in the rectangle
where a black point has to be placed in. The
coordinates of the black point are derived according to
the formulas: r=(ai) -)/ny+ 1,
s=((n(i) — 1) mod m,) + 1, where (i) denotes the
location of the black point, i =1, 2, ..., m [29].

The grey pattern problem is a special case of the
quadratic assignment problem (QAP) [4, 11], which is
known to be NP-hard. Recently, genetic and evolutio-
nary algorithms (GAs, EAs) are among the most ad-
vanced heuristic approaches for these problems [5, 15,
17, 18, 24, 29]. GAs and EAs belong to a class of po-
pulation-based heuristics. The following are the main
phases of the genetic-evolutionary algorithms. Usual-
ly, a pair of individuals (solutions) of a population is

rnt=1,.,n,s,u=1,.., n.

* This work was supported by Lithuanian State Science and Studies Foundation (grant number T-09293).

330

http://dx.doi.org/10.5755/j01.itc.40.4.983

Generation of Grey Patterns Using an Improved Genetic-Evolutionary Algorithm: Some New Results

selected to be parents (predecessors). A new solution
(i.e. offspring) is created by recombining (merging)
the parents. In addition, some individuals may under-
go mutations. Afterward, a replacement (reproduction)
scheme is applied to the previous generation and the
offspring to determine which individuals survive to
form the next generation. Over many generations, less
fit individuals tend to die-off, while better individuals
tend to predominate. The process continues until a ter-
mination criterion is met. For a more thorough discus-
sion on the principles of GAs and EAs, the reader is
addressed to [2, 8, 9, 12].

This work is organized as follows. In Section 1,
the improved genetic-evolutionary algorithm (IGEA)
framework is discussed. The details of IGEA for the
grey pattern problem are described in Section 2. In
Section 3, we present the results of generation of grey
patterns using two versions of the proposed algorithm.
Section 4 completes the work with conclusions.

1. The improved genetic-evolutionary
algorithm framework

The original concepts of GAs and EAs were
introduced by Holland [10], Rechenberg [25] and
Schwefel [26] in the nineteen seventies. Since that
time, the structure of GAs and EAs has experienced
various transformations. The state-of-the-art genetic-
evolutionary algorithms are in fact hybrid algorithms,
which incorporate additional heuristic procedures [21,
22, 23]. However, applying hybridized algorithms
does not necessarily imply that good solutions are
achieved at reasonable time [17]. Indeed, hybrids
often make use of refined heuristics (like simulated
annealing, tabu search) which are quite time-expen-
sive. This may become in real earnest a serious draw-
back, especially as we are willing to construct algo-
rithms that are competitive with other intelligent opti-
mization techniques. Under these circumstances, it is
important to add additional enhancements to the gene-
tic-evolutionary algorithms (see also [17]).

* The enhanced hybrid genetic-evolutionary algo-
rithms should incorporate fast local improvement
procedures. Only short time behaviour matters as long
as we are speaking of the fast procedures in the
context of hybrid GA/EAs.

= The compactness of the population is of great
importance. In the presence of powerful local impro-
vement procedures, the large populations are not
necessary: the small population size is fully compen-
sated by the improvement heuristic.

= A high degree of the diversity within the popu-
lation must be maintained. This is especially true for
tiny populations. Indeed, the smaller the size of the
population, the larger the probability of the lost of
diversity. Therefore, proper mechanisms for avoiding
premature convergence must be applied.

331

'

diversification

!

intensification

7 \
saving the best so
far solution

start— candidate acceptance

Y
end
Figure 2. Basic flowchart of [&D

The principle that can help putting the above en-
hancements into practice is known as "intensification
and diversification" (I&D) [7]. The idea behind is to
seek high quality solutions by iterative applying local
search ("recreation") and perturbation ("ruin") proce-
dures. 1&D is initiated by improvement of a starting
solution. Then, one perturbs the existing solution (or
its part). After that, the solution is again improved by
means of a local search algorithm, and so on. I&D is
distinguished for three main components: intensifica-
tion, diversification, and candidate acceptance crite-
rion (see Figure 2). The goal of intensification is to
concentrate the search in a localized area (the neigh-
bourhood of the current solution). Diversification is
responsible for escaping regions of "attraction" in the
search space. It may be achieved by certain perturba-
tions of solutions (instead of saying "perturbation",
other terms may be utilized: "mutation", "ruin", etc.).
Finally, an acceptance criterion is used to decide
which solution is actually chosen for the subsequent
perturbation (see Section 2.4.3). I&D may be incor-
porated into the genetic-evolutionary algorithm in two
ways.

= Firstly, I&D is applied to single solutions, in
particular, to the offspring obtained by parent recom-
bination. We call this post-recombination procedure
the intra-evolutionary process (or simply intra-
evolution). Intra-evolution could be seen as a very
special case of the conventional evolutionary algo-
rithm, that is, the population size is equal to 1, the
reproduction scheme is "1, 1" (or "1 +1"), and the
single solution mutation procedure is used instead of
the recombination operator. The mutation procedure
plays, namely, the role of diversification. Regarding
intensification, we found the tabu search (TS) tech-
nique [7] ideal for the GPP. The details of the TS pro-
cedure are described in Section 2.4.1.

= Secondly, 1&D may also be applied for the po-
pulations. In this case, it is enough to think of the
population as some kind of meta-solution; that is,
instead of improvement/perturbation of the single
solution, the meta-solution, i.e. population is to be
improved/perturbed. Basically, this means that the
whole population (or, at least, its part) undergoes some
deep mutation. In particular, the test is performed at

every generation, whether the diversity within the
current population is below a given threshold. If it is,
then a new population is created by applying muta-
tions and following improvement; otherwise, the
search is continued with the current population in an
ordinary way. We call the above process the inter-
evolution.

2. The improved genetic-evolutionary
algorithm for the grey pattern problem

2.1. Creation of the initial population

The initial population (say, P) is created in two
phases: firstly, PS=|P| individuals, i.c. the GPP
solutions are generated in a pure random way; se-
condly, all the solutions of the produced population
are improved by the intra-evolutionary algorithm (see
Section 2.4). As a result, the population is created that
consists solely of locally optimal solutions. Even-
tually, the population members are sorted according to
the increasing values of the objective function.

2.2. Selection mechanism

Two individuals are selected to be predecessors of
a new recombined individual. For the selection, we
apply a rank based rule [31]. In particular, the position
of the first parent, u,, within the sorted population is
determined by the formula: u; =|v°), where v is a
uniform random number from the interval [1, PS Yo 1,
where PS is the population size, and o is a real
number in the interval [1, 2] (it is referred to as a
selection factor). The same formula is utilized for
defining of the position for the second parent, u,
(up # uy). It is obvious that the larger value of o, the
more probability that the better individual will be
selected for recombination.

2.3. Recombination of solutions

Recombination of solutions remains one of the
key factors by constructing competitive genetic/evolu-
tionary algorithms. Very likely, the role of recombina-
tion operators within the hybrid algorithms is even
more important. The classical recombination operators
like one point [8] or uniform [28] operators are not
very well fitted for the grey pattern problem. This is

solution 1 (7')

A. MisevicCius

due to the fact that basically only the first m elements
(black points) determine the solution of the GPP (see
Figure 3). The interchange of any of the first m
elements does not influence the objective function
value (the same is true for the last » —m elements
(white points)).

Recombination is a structured process that ensures
that the offspring will inherit the elements (genes)
which are common to both parents. We can also think
of recombination as a special sort diversification inst-
rument; that is, it is desirable that recombination
would add some randomness (certain elements, which
are not contained in the parents, should be incorpora-
ted into the offspring). The degree of "disruptiveness"
is introduced to formally describe a measure of how
much recombination is randomized, i.e. how many
"foreign genes" there are in the offspring (see also
[17]). The degree of disruptiveness, p, is defined as
follows:

p=lili<mar°(i)e{x'(1),7'(2),... 7' (m)} A7°(i) 3)
("), 7"(2),.... 7" (m)} },

where 7/, 7" are the parents and 7° is the offspring.

There are two situations: 1) p=0; 2) p>0. We
assume that the second variant is preferable to the first
one in the environment of the robust hybrid algorithm.
In our algorithm, disruptiveness is flexibly controlled
by adding | & m| foreign genes to the offspring, where &
is a parameter (disruptiveness factor). The recombi-
nation procedure itself is quite specific. It is based on
the merging process suggested in [3, 5]. The detailed
pseudo-code of this recombination procedure (written
in an algorithmic language) is presented in Figure 4.
An illustrative example is shown in Figure 5.

It should be noted that the heuristic procedure
based on tabu search is incorporated into the recom-
bination process to partially improve the offspring.
This procedure is performed on a restricted set of the
elements of the offspring. The details of the improve-
ment process are considered in the next section. Also,
note that we apply the above recombination process
more than once at one generation. In our implemen-
tation, the number of recombinations per generation is
controlled by the parameter Nyecomp-

solution 2 (7'")

1|3]s

4 6] 7]2]Ss

s|l13]2]s8]7]4]cs

n—m elements
n elements

m elements

n—m elements
n elements

m elements

solutions 1 and 2 are equivalent (z(7') = z(7'"))

Figure 3. The case of solutions of the grey pattern problem

Generation of Grey Patterns Using an Improved Genetic-Evolutionary Algorithm: Some New Results

procedure Recombination;
// input: 7', 7'’ — solutions-parents, » — problem size, m — number of black points, &, & — disruptiveness factors
// output: 7° — recombined solution (offspring)
pr=max{l,[&ml}; pr=max{l,(&mi};
obtain sef!) from the first m elements of 7/ |set(l)\ =m
obtain sef” from the first m elements of 7'; // |sel®|=m
if not(sef” =sefV) then begin // the sets sei" and se/™ are different
set? = setV ~ ser®; M = |seld|; sel® = sefD Usel®; J) mM >0, m" " = |sed ™| = 2m — m™!
sel® = set\sel®; f) mT = |sefD) = 2m — 2m™ !
meset 4 o <n then p:=p else pi=n—-2m+m
select p different elements from 7/ not in set? to form Set((’);
set? = sef U sel®; m" =|sedV); // m"" = min{2m — 2m™ " + p, n — m™)
add m—m™"**" random elements from sef” to set? to create se!®;
// set®™® contains exactly m elements that serve as the starting offspring
if "™ —(m-m""*)>0 then begin
obtain 7z from the elements of se

intersect
’

if 2m—m

t(g); obtain # from the elements of sed” that are not in set(x);

new intersect
- ’

merge 7 and 7 to get 7, the number of elements of 7 is equal to m

new mtervec 1

if m"" —(m—m)<5 then apply FastSteepestDescent to 7, get 7=

else apply FastRandomizedTabuSearch to 7, get 7
// note: FastSteepestDescent and FastRandomizedTabuSearch are performed
// only on the elements in se/” and keeping the elements in ser® fixed
end
else obtain # from the elements of sel®
end
else begin // the scts sei’" and se® are equivalent
select p, different elements from #' not in set
t(l);

) to create set(S);

) 3

remove p random elements from se obtain 7 from the elements of se and se

end;
obtain 7 from the elements of set {1,2,...n}\{z(1),z(2),...7(m)};
merge 7 and 7 to get the offspring #°

end.

Figure 4. Pseudo-code of the recombination procedure for the GPP

set) set?

OJOJO)O, ®®©®
@ @ © ®©o©®

set® = setV ~ se®

®® ©® O O]

set™ = seiV U ser®

OJOJ00
IO DROXS),

set® = set® \ sel®

DEORONEO),

set((’) setm = set(s) U set“’)

@ @ @ @ @G D@
Set(g)

OJOJO10 -
0 ® @

lsef V| =7, [sef®| =17, |set®| = 5, |setV| = 9, |sel™| = 4, |sel®| =2, |set "] = 6, |sel®| = 7

Figure 5. Example of creating a starting offspring

333

Figure 6. Example of the pairwise interchange

2.4. Local improvement (intra-evolution)

The post-recombination improvement is probably
the most important component of IGEA. In the simp-
lest case, we could utilize the ordinary descent local
search for this purpose. But we should make use of
more elaborated approaches like tabu search if we are
secking for superior quality results. The standard TS
algorithms, however, suffer from cycling and stagna-
tion phenomena. Fortunately, there exist the I&D ap-
proach (see Section 1). If intensification is performed,
namely by means of the conventional TS, one gets the
so-called iterated tabu search (ITS) method [20].
There are three main ingredients in the ITS approach:
tabu search, mutation, and acceptance criterion.

2.4.1. Tabu search procedure

The central idea of tabu search is allowing clim-
bing moves when no improving solution exists (this is
in contrast to the descent local search, which
terminates as soon as the locally optimal solution has
been encountered). TS starts from an initial solution,
and moves repeatedly from the current solution to a
neighbouring one. We use the 2-exchange neigh-
bourhood, N,, where the neighbours are obtained by

pairwise interchanges of the elements of a solution
(see Figure 6). Formally, the neighbourhood N, of
the defined by the
N,(m)={z" 7" =z0 pi/.,ireH,i:1,...,m,j:m+1,...,n};

solution 7 is formula:

here, 7" =7 © p; means that 7" is obtained from 7

by applying the move p;; (the move p; exchanges the
ith and the jth element in the given permutation, i.e.
77 () =7(j) A 77 () = 7(D)).

At each step of TS, a set of the neighbours of the
current solution is considered and the move that
improves most the objective function value is chosen.
If there are no improving moves, TS chooses one that
least degrades the objective function. The reverse
moves to the solutions just visited are to be forbidden
in order to avoid cycling. The GPP allows imple-
menting the list of tabu moves in an effective manner.
In particular, the tabu list is organized as an integer
matriX T = (#;)uxu-m)- At the beginning, all the entries
of T are set to zero. As the search progresses, the entry
t; stores the current iteration number, plus the value of
the tabu tenure, 4, i.e. the number of the future
iteration starting at which the ith and the jth elements
may again be interchanged. In this case, an elementary
perturbation (move) p; is tabu if the value of #; is
equal or greater than the current iteration number.
Note that testing whether a move is tabu or not

334

A. MisevicCius

requires only one comparison. We therefore call the
above procedure the fast tabu search procedure.

An aspiration criterion allows permitting the tabu
status to be ignored under favourable circumstances.
Usually, the move from the solution 7 to solution 7’ is
permitted (even if 7° is tabu) if z(7") < z(z"), where 7*
is the best solution found so far. The resulting decision
rule looks thus as follows: replace the current solution
7 by the new solution 7* such that z*=argminz(z’),

”OENZO ()
N (r)={z" |z° e N,(x) and ((#° isnot
tabu) or (z(7") < z(x")))} .

TS forbids some moves from time to time. This
fact means that certain portions of the search space are
excluded from being visited. This can be seen as a
disadvantage of the search process. One of the
possible ways to get over this weakness is to minimize
these restrictions, that is, it is desirable that the num-
ber of forbidden moves is as minimal as possible. We
propose a very simple trick: the tabu status is disre-
garded with a small probability even if the aspiration
criterion does not hold. We empirically found that the
proper value of this probability, ¢, is somewhere
between 0.05 and 0.1 (we used a=0.05). As the tabu
status is ignored randomly with a negligible
probability, there is almost no risk that the cycles will
occur. This approach is called the randomized tabu
search.

We also propose to include an additional com-
ponent into the above TS procedure. Our idea is to
embed an alternative intensification mechanism based
on the deterministic steepest descent (SD) algorithm.
The rationale of doing so is to prevent an accidental
miss of a local optimum and to refine the search from
time to time. Better results are achieved if the SD
procedure is invoked at the moments of detecting
improving solutions (that is, the inequality
z(7*) — z(7) < 0 holds). The alternative intensification
procedure, however, is omitted if it already took place
within the last @ steps (@ is an alternative intensi-
fication period (we used @ =0.037))). The TS process
continues until a termination criterion is satisfied (an a
priori number of iterations, 7z, have been performed).

We implemented two variants of the steepest
descent procedure. The first one is simply based on
searching in the 2-exchange neighbourhood N,. The

second one uses the extended 2-exchange
neighbourhood N, . The extended neighbourhood N,

(denoted as N,q,) can be described in the following

way (also see [19]): Nz@z(iz):Nz(ﬁ)u{ﬁA | 7"

where

ell, 7" #n, n" =n* @p,.j,izl,...,m,j:m+1,...,n} ,

where 7% =argminz(z”), N, (m)=N,(m)\

7 eN; (7)

{argminz(7)}. The graphical interpretation of the

7eN, ()

neighbourhood N,g, is shown in Figure 7.

Generation of Grey Patterns Using an Improved Genetic-Evolutionary Algorithm: Some New Results

ﬂ\\ /Nz@z(”)
No | N
argminz(7) =)~ 7* =argminz(z")

7eNy () 7 eN; (7)

Figure 7. Graphical representation of the neighbourhood
N 202

The pseudo-code of the randomized tabu search
algorithm is presented in Appendix, Figure Al. The
pseudo-codes of the steepest descent and extended
steepest descent algorithms are given in Figures A2,
A3.

Fast execution of the local improvement procedure
is of high importance, as stated above. This is even
more true for ITS where plenties of iterations of TS
take place. Fortunately, lots of computations can be
shortened due to very specific character of the matrix
A of the GPP, as shown in [17, 29]. In particular, the
exploration of the neighbourhood is restricted to the
interchange of one of the first m elements (black
points) with one of the last » —m elements (white
points). Consequently, the neighbourhood size decrea-
ses to O(m(n — m)) instead of O(n?) for the conven-
tional QAP. Evaluating the difference in the objective
function values thus becomes considerably faster.
Instead of the standard formula, a simplified formula
(4) is used (see also [17]):

Az(m,i, j) =2 Z (b”(j)”<k) _bzro')zr(k))’

ke=1,k=#i

4)

i=12,..,m,j=m+1,..,n,

where Az(r,i, j) denotes the difference in the values
of the objective function by interchanging the ith and
the jth elements of the permutation 7.

Drezner [5] proposed a very inventive technique
which allows reducing the run time (CPU time) even
more. Based on this technique, Az(7, i, j) is calculated
according to the following formula [17]:

Az(70,1, J) = 2(C, 1y = Coity = briiyaiy)>

i=12,.,m j=m+1,.., n,

)

where i and j denote the indices of the elements of the
permutation and ¢, ¢ are the entries of an array C
of size n. The entries of C are calculated once before
starting the algorithm according to the formula:

¢ :me(j),izl,Z,...,n (here, 7 is the starting solu-
j=1

tion). So, this takes O(mn) time. In case of moving
from 7 to 7 © p,, , updating of the values of ¢; is per-
formed according to the formula: c¢;=c;+ biyu) —
bixv, which requires O(n) time only. As the TS

335

procedure is invoked many times, the overall effect is
really surprising, especially if m <n.

2.4.2. Mutation

During the mutation process, the whole solution
(or its part) is perturbed. At the first look, this is a
relatively easy part of the ITS method. In fact, things
are some more complicated. Mutations enable to
escape local optima and allow discovering new and
new regions of the search space. The mutation
procedure for the GPP is based on random pairwise
interchanges (RPIs) of certain elements of the given
solution. The mutation process can be seen as a
sequence of elementary perturbations p, .,p, ...,

P, here, p .~ denotes a random move which

swaps the rth and the r; th elements in the current
permutation; thus, 7~ =7 O p, € MN(7), 7 (r1)=

7(r), 7 (r)==nr), =~ =xOp, Op, € N(r)

(if 7y # r3, r, # ry), and so on.

All we need by implementing the RPI-mutation is
to generate the couples of uniform random integers
(ri, riv1) such that 1 <r, ry<n, i=1, 3, ..., 2. The
length of the sequence, 7, is called the mutation level
(strength). It is obvious that the larger the value of 7,
the stronger the mutation, and vice versa.

We can achieve more robustness if we let the
parameter 77 vary in some interval, say [7jmin,
Tmax] < [1, n]. The following strategy of changing the
values of 7 may be proposed. At the beginning, 7 is
equal to 77, further, 7 is increased gradually, step by
step, until the maximum value 77,,,x is reached; once
Tmax has been reached (or, possibly, a better local
optimum has been found), the current value of 7 is
immediately dropped to 7, and so on. In addition, if
the best so far solution remains unchanged for a quite
long time, then the value of 7, may be increased.
The pseudo-code of the mutation procedure is
presented in Appendix, Figure A4.

2.4.3. Acceptance criterion

The following are two main acceptance strategies:
a) "exploitation", and b) "exploration". Exploitation is
achieved by choosing only the currently best local
optimum (the best so far solution). In case of
exploration, each locally optimized solution (not
necessary the best local optimum) can be considered
as a potential candidate for perturbation. In IGEA, the
so-called "where you are" (WYA) approach is applied
every new local optimum is accepted for
diversification.

The pseudo-code of the resulting local improve-
ment (intra-evolution) algorithm is presented in
Figure 8.

A. MisevicCius

procedure IntraEvolution; // intra-evolution (post-recombination) process based on iterated tabu search
// input: 77— current solution, #» — problem size, Q — # of iterations, 7in, 7fme — Mminimum and maximum mutation level

// output: 7° — the best solution found

apply FastRandomizedTabuSearch to 7z, get improved solution 7#';

x=r; T=T 0= Quin— i
for g:=1 to QO do begin // main cycle
=7 // accept a solution for the subsequent mutation

// nis actual mutation level

if 7<7ww then n:=n+1 else n:=n.,; // update actual mutation level
apply Mutation to selected solution 7 with mutation level 7, obtain new solution x;

apply FastRandomizedTabuSearch to the solution 7z,

get new (improved) solution ;

if z(n)<z(#") then begin r":=7"; reset mutation level 7, i.e. 7n:=1um—1end

end // for
end.

Figure 8. Pseudo-code of the intra-evolutionary algorithm

procedure ImprovedGeneticEvolutionaryAlgorithm;

// input: PS — size of population, N, — # of generations, Nyecoms — # of recombinations,

/
/

// output: 7° — the best solution found

StackHeader :=0; for i:=1 to m do for j:=m+1 to n do Tabulij]:=0;
create the locally optimized population PcIIl in two steps:

of P randomly, (ii)

QO — # of iterations of ITS, 7— # of iterations of TS, /i, hmax — tabu tenures, o — selection factor,
&1, & — recombination disruptiveness factors, ¢, ¢> — intra-evolutionary mutation factors, £7 — entropy threshold

Nmin = max{l, Lé‘lnj} 7
(i) generate initials solutions

improve each member of P using intra-evolutionary algorithm;

// note: increased number of the iterations of intra-evolution is used at this phase

7" :=argmin{z(x)} ; // « denotes the best so far solution

el

for generation:=1 to N, do begin // main cycle

sort the members of Pin the ascending order of their quality;

for recombined solution =1 0 Nieomy do begin

pick two solutions #, 7" from P to be recombined;

apply Recombination to n/ and 7',

get recombined solution 7°;

apply IntraEvolution to 7#°, get improved solution 7x';
add 7° to population P; ifz(n)<z(n) then 7' =7

end; // for recombined_solution...

cull population P by removing Neeom» worst individuals;

if entropy of Pis below ET then make hot restart in two steps:

of P, except the best one, (ii)
end // for generation...

end.

mutate all the members

(1)

improve each mutated solution using intra-evolution

Figure 9. Pseudo-code of the improved genetic-evolutionary algorithm

2. 5. Population replacement scheme

For the population replacement, we utilize the well
known "u+ A" strategy. In this case, the individuals
chosen at the end of the reproduction iteration are the
best ones of P, U P,, where P, is the population at the
beginning of the reproduction, and P, denotes the set
of newly created individuals (in our algorithm, g = PS,
A= Nrecomp)- An additional replacement mechanism
("hot" restart) is activated if the loss of the diversity has
been identified. The following are two main phases of
the hot restart: a) mutation, b) local improvement (intra-
evolution). As a hot restart criterion, we use a measure
of entropy [6]. The normalized entropy of the
population, £, is defined in the following way:

E:Zn:ei E,
i=1

where

(6)

336

0,7,=0
ei:{ }/- Vi)

— i log-Li ise’
sclog 2, otherwise

7 is the number of times that the ith element (7(7))
appears between the 1st and mth position in the

current population. £ denotes the maximal available
entropy. It can be derived according to the following
formula:

FoK V) K (8)
PS PS
where
p={0r=0 L' =—log ©)
= 5 =—-log+< 5
—log &, otherwise B s
where x=mxPS—1)divn, «=x+1, v=((mx

PS—1)modn)+1 (here, xdivy=|x/y}, xmody=
X=Xy X p).

Tnax = max{l, | Hnl};

Generation of Grey Patterns Using an Improved Genetic-Evolutionary Algorithm: Some New Results

The normalized entropy E takes values between 0
and 1. So, if E is less than the predefined entropy
threshold ET, we state that premature convergence
(stagnation) takes place. In this case, the population
undergoes the hot restart process. After the restart, the
algorithm continues in a standard way.

The resulting pseudo-code of the improved hybrid
genetic-evolutionary algorithm (IGEA) is given in
Figure 9. Note that there are two versions of IGEA
depending on the descent algorithm used in the intra-
evolutionary (tabu search) algorithm (see Appendix,
Figure Al): in IGEA', the pure steepest descent
procedure is used, while IGEA? uses the extended
steepest descent procedure.

3. Computational experiments

In this section, we present the results of the experi-
mentation with the proposed genetic-evolutionary
algorithm. In the experiments, we used the GPP
instances generated according to the method described
in [29]. For the set of problems tested, the size of the
instances, n, is equal to 256, and the frames are of
dimensions 16 x 16, i.e. n; =n,=16. The instances
are denoted by the name 16-16-m, where m is the
density of grey; it varies from 3 to 128. Remind that,
for these instances, the data matrix B remains un-

changed, while the matrix 4 is of the form B g},

where 1 is a sub-matrix of size m x m composed of 1s
only [30].

We experimented with the following control para-
meter settings: PS=8; Ngen = 25; Niecomp = 15 O =3;
7=10.1n]=25; hpin =10.08n], Anax =10.12n); o= 1.95;
£&=01; £=0.1; §=0.1, £=0.2; ET=0.005 (PS
denotes population size, Ny, —# of generations,
Nrecomp — # of recombinations per generation, O — #
of iterations of the intra-evolutionary algorithm (the
search depth), 7—# of iterations of the tabu search
procedure (within the intra-evolutionary algorithm),
Pinins Pmax — lower and higher tabu tenures,
selection factor, &, & — recombination disruptive-
ness factors, (i, {; — intra-evolutionary mutation
factors, ET — entropy threshold). These parameter
values are identical to those used in [17]. In the
experiments, 3 GHz Pentium computer was used.

Firstly, we have compared our algorithm (version
IGEA? with an evolutionary algorithm (EA) of
Drezner presented in [5]. We compared the average
run time (CPU time) and the average deviation of the
obtained solutions, where the average deviation, S ,is

calculated by the formula: & =100(z — zo)/z<> [%];
here, z is the average objective function value over K

o —

runs ("cold restarts") of the algorithm and z° denotes
the best known value (BKV) of the objective function.
Different starting populations are used at each run.
Both algorithms use fast objective function evaluation
(as described in formulas (4), (5)). The number of runs

337

(K) is equal to 100 for EA. We used K=10. The
results of the comparison are shown in Table 1.

Since our algorithm constantly finds the best
known ((pseudo-)optimal) solutions, it is preferable to
investigate run time performance instead of solution
quality. In such situation, the so-called "time to target"
[1] methodology may by used. In this case, for a given
target value of the objective function (target solution),
the run time of the algorithm to achieve this value is
recorded. This is repeated multiple times and the
recorded run times are sorted. With each run time, a

probability P, = =2

is associated, where i (i = 1, 2,

..., w) denotes the number of the current trial and w is

the total number of trials (we used w=10). The
probabilities P; can be visualized using "time-to-tar-
get" plots which show the probability that the target
value will be obtained (see Figure 10).

1.0
0.9 1
0.8 1
0.7 1
0.6 1
0.5 1
0.4 1
03 1
0.2 1
0.1 g
e

88 100 128 130 150 160 164 175 190 201
time (s)

O®HGA
=IGEA1
XIGEA2

X
X
X

probability

Figure 10. Example of the time-to-target plot for the
instance 16-16-90

The performance improvement factor, PIF, of one
algorithm (A) to another one (A,) may be defined by

tOAS (AZ)

t0.5 1

notes the time needed to obtain the target value with
probability 0.5. We have compared the performance
improvement factors for our improved genetic-
evolutionary algorithms (IGEA', IGEA?) and the
previous hybrid genetic algorithm (HGA) presented in
[17]. In Table 2, we present, in particular, the values of
tos as well as the values of the performance im-
provement factor for HGA, IGEA" and IGEA? The
values of 7,5 are in seconds. The target values are set
to be equal to the corresponding best known values
(BKVs). (Only fifty-one instances (from m =65 to
m=115) are examined because the remaining
problems with m <65 and m > 115 are, with few ex-
ceptions (m =26,44,45,46), easily solved by all
algorithms.)

Our previous genetic algorithm (HGA) is very effi-
cient and aggressive, so it is quite difficult to increase
its overall performance. Nevertheless, with our new
algorithms (IGEA" and IGEA?), we have overcome its
efficiency. This is especially true for the extended
algorithm IGEA® In particular, for the examined
instances, the performance improvement factors of
IGEA' to HGA and IGEA? to HGA are equal to ap-
proximately 1.16 and 1.32, respectively (see Table 2).

the following formula: PIF = ; here, #y5 de-

A. MisevicCius

Table 1. Results of the experiments with the GPP (I)

kBeSt EA IGEA? kBeSt EA IGEA? kBeSt EA IGEA?
Instance “noWR Instance nown Instance nown
value AV'+ Time* AV} Time* value AV'T Time* AV'T Time* value AV'T Time* AV'T Time*
(BKV) dev. dev. (BKV) dev. dev. (BKV) dev. dev.
16-16-3 7810 n/a n/a 0.000 0.0 16-16-45 8674910¢ 0.018 206 0.000 750 16-16-87 39389054° 0.000 727 0.000 25

16-16-4 15620 n/a n/a 0.000 0.0 16-16-46 9129192° 0.005 762 0.000 64 16-16-88 40416536° 0.014 732 0000 23
16-16-5 38072 nla n/a 0.000 0.0 16-16-47 9575736° 0.004 78 0.000 37 16-16-89 41512742° 0.006 773 0.000 783
16-16-6 63508 nl/a n/a 0.000 0.0 16-16-48 10016256° 0.021 706 0.000 2.0 16-16-90 42597626° 0.006 302 0.000 765
16-16-7 97178% nla n/a 0.000 0.0 16-16-49 10518838° 0.018 787 0.000 34 16-16-91 43676474° 0.007 327 0.000 224
16-16-8 131240 n/a n/a 0.000 0.0 16-16-50 11017342° 0.000 793 0.000 2.8 16-16-92 44759294% 0.010 224 0.000 757
16-16-9 183744% nla n/a 0.000 0.0 16-16-51 11516840° 0.000 207 0.000 7.5 16-16-93 45870244° 0.005 260 0.000 274
16-16-10 242266" n/a n/a 0.000 0.0 16-16-52 12018388° 0.002 794 0.000 63 16-16-94 46975856° 0.016 273 0.000 790
16-16-11 304722" n/a n/a 0.000 0.7 16-16-53 12558226" 0.001 793 0.000 4.6 16-16-95 48081112" 0.026 277 0.000 769
16-16-12 368952" n/a n/a 0.000 0.7 16-16-54 13096646° 0.004 775 0.000 4.0 16-16-96 49182368° 0.065 236 0.000 276
16-16-13 457504" n/a n/a 0.000 0.7 16-16-55 13661614° 0.010 295 0.000 70.7 16-16-97 50344050° 0.040 755 0.000 273
16-16-14 547522% nla n/a 0.000 0.7 16-16-56 14229492° 0.005 234 0.000 28 16-16-98 51486642" 0.052 745 0.000 788
16-16-15 644036° nla n/a 0.000 0.7 16-16-57 14793682° 0.000 767 0.000 2.2 16-16-99 52660116 0.020 769 0.000 207
16-16-16 742480° nla n/a 0.000 0.7 16-16-58 15363628"° 0.005 276 0.000 23 16-16-100 53838088" 0.005 709 0.000 777
16-16-17 878888 nla n/a 0.000 0.2 16-16-59 15981086° 0.005 235 0.000 3.5 16-16-101 55014262" 0.012 725 0.000 &4
16-16-18 1012990* n/a n/a 0.000 0.7 16-16-60 16575644° 0.039 238 0.000 24 16-16-102 56202826" 0.012 96 0.000 40
16-16-19 1157992°% nla n/a 0.000 0.2 16-16-61 17194812° 0.021 386 0.000 22 16-16-103 57417112°* 0.002 82 0.000 73
16-16-20 1305744" n/a n/a 0.000 0.3 16-16-62 17822806° 0.003 700 0.000 3.6 16-16-104 58625240" 0.008 775 0.000 62
16-16-21 1466210° n/a n/a 0.000 0.5 16-16-63 18435790° 0.003 387 0.000 7.9 16-16-105 59854744° 0.001 703 0.000 38
16-16-22 1637794% 0.000 67 0.000 0.3 16-16-64 19050432" 0.028 576 0.000 2.3 16-16-106 61084902°¢ 0.002 773 0.000 33
16-16-23 1820052° 0.000 67 0.000 0.2 16-16-65 19848790° 0.019 476 0.000 3.7 16-16-107 62324634% 0.001 722 0.000 27
16-16-24 2010846° 0.000 56 0.000 0.6 16-16-66 20648754° 0.013 237 0.000 4.5 16-16-108 63582416° 0.000 779 0.000 72.6
16-16-25 2215714 0.001 97 0.000 3.2 16-16-67 21439396° 0.028 305 0.000 9.7 16-16-109 648519667 0.000 87 0.000 77.7
16-16-26 2426298° 0.021 700 0.000 76.5 16-16-68 22234020° 0.059 244 0.000 78.0 16-16-110 66120434" 0.000 235 0.000 70.7
16-16-27 2645436° 0.006 700 0.000 7.7 16-16-69 23049732° 0.025 284 0.000 27 16-16-111 67392724% 0.000 358 0.000 &2
16-16-28 2871704° 0.040 707 0.000 0.9 16-16-70 23852796° 0.079 256 0.000 26 16-16-112 68666416° 0.001 790 0.000 7.7
16-16-29 3122510° 0.001 94 0.000 0.7 16-16-71 24693608° 0.034 286 0000 78 16-16-113 69984758" nla na 0.000 70.2
16-16-30 3373854% 0.000 92 0.000 0.5 16-16-72 25522408 nia n/a 0.000 490 16-16-114 71304194° n/a na 0.000 63
16-16-31 3646344° 0.055 &4 0.000 0.6 16-16-73 26375828° 0.057 335 0.000 298 16-16-115 72630764" nl/a na 0.000 57
16-16-32 3899744°% 0.124 76 0.000 0.5 16-16-74 27235240° 0062 358 0.000 304 16-16-116 73962220° nl/a na 0.000 &3
16-16-33 4230950° 0.004 59 0.000 0.7 16-16-75 28114952° 0.020 343 0.000 47 16-16-117 75307424" nla na 0.000 4.0
16-16-34 4560162 0.019 67 0.000 2.6 16-16-76 29000908° 0.010 379 0.000 727 16-16-118 76657014° n/a na 0.000 36
16-16-35 4890132 0.006 704 0.000 3.2 16-16-77 298944527 0.016 376 0.000 745 16-16-119 78015914° n/a na 0.000 23
16-16-36 5222296 0.005 705 0.000 2.0 16-16-78 30797954 0013 302 0.000 777 16-16-120 79375832° nl/a na 0.000 7.7
16-16-37 5565236° 0.000 707 0.000 7.8 16-16-79 31702182° 0.022 253 0.000 77.6 16-16-121 80756852" nla na 0.000 7.6
16-16-38 5909202 0.000 97 0.000 0.9 16-16-80 32593088° 0.058 778 0.000 3.3 16-16-122 82138768 nla na 0.000 74
16-16-39 6262248°% 0.000 67 0.000 7.7 16-16-81 33544628° 0.004 94 0.000 39 16-16-123 83528554% nla na 0.000 7.0
16-16-40 6613472°% 0.001 708 0.000 0.9 16-16-82 34492592° 0.002 724 0.000 70 16-16-124 84920540" n/a na 0.000 0.7
16-16-41 7002794 0.001 737 0.000 0.6 16-16-83 35443938° 0.000 767 0.000 57 16-16-125 86327812% nla na 0.000 04
16-16-42 7390586 0.001 743 0.000 0.7 16-16-84 36395172° 0.001 778 0.000 67 16-16-126 87736646° nla na 0.000 0.3
16-16-43 7794422° 0.001 799 0.000 3.2 16-16-85 37378800° 0.001 206 0.000 757 16-16-127 89150166° n/a na 0.000 02
16-16-44 8217264° 0.107 207 0.000 76.0 16-16-86 38376438° 0.000 762 0.000 94 16-16-128 90565248° nla na 0.000 02
" the average deviation (Av. dev.) is measured in percentage of average solution over BKV;
* times for EA and IGEA? are given in seconds per run for 2.8 GHz and 3 GHz computers, respectively;
* comes from [30]; ® comes from [14]; ¢ comes from [13]; ¢ comes from this paper;
¢ comes from [5,17]; " comes from [15]; & comes from [27]; " comes from [16]

Table 2. Results of the experiments with the GPP (II)

&

Instance #s° s tys® PIF, PIF, PIF; Instance #,s® 1s® ts* PIF, PIF, PIF; Instance ts° #s° #s* PIF, PIF, PIF;

16-16-65 29 29 24 1.00 1.21 121 16-16-82 67.7 59.0 514 1.04 1.19 1.15 16-16-99 7940 71720 1620 1.13 120 1.06
16-16-66 4.7 3.5 32 1.34 147 1.09 16-16-83 554 474 480 1.17 1.15 099 16-16-100 770.7 99.0 1074 1.11 1.09 0.98
16-16-67 9.3 9.0 67 103 139 1.34 16-16-84 67.0 522 495 1.17 123 1.05 16-16-101 940 773 810 1.22 1.16 095
16-16-68 793 160 123 1.21 1.57 130 16-16-85 7326 17378 7710.3 1.01 120 1.19 16-16-102 369 37.0 34.9 1.00 1.06 1.06
16-16-69 287 238 156 1.18 180 1.53 16-16-86 938 938 70.1 1.00 1.34 1.34 16-16-103 745 664 528 1.12 141 1.26
16-16-70 26.6 224 214 1.19 124 1.05 16-16-87 20.9 181 16.1 1.15 130 1.12 16-16-104 685 593 50.0 1.16 137 1.19
16-16-71 828 675 563 123 147 120 16-16-88 252 235 205 107 123 1.15 16-16-105 438 329 324 1.33 1.35 1.02
16-16-72 n/la 5970 450.0 n/a n/a 133 16-16-89 7720 1630 1740.7 1.06 123 1.16 16-16-106 340 327 250 1.04 136 131
16-16-73 330.0 2632 2850 126 1.16 092 16-16-90 797.3 1760.7 1270 1.19 1.51 127 16-16-107 204 140 16.0 146 1.28 0.88
16-16-74 284.7 280.0 227.0 1.02 125 123 16-16-91 246.0 1898 171.0 130 143 1.10 16-16-108 726 708 10.6 1.17 1.19 1.02
16-16-75 49.7 402 335 124 148 120 16-16-92 7728 1560 1326 1.11 1.30 1.18 16-16-109 77.7 94 82 1.18 1.35 1.15
16-16-76 709.3 1054 96.0 1.04 1.14 1.10 16-16-93 267.7 1951 2035 137 132 096 16-16-110 77.2 71.0 81 1.02 1.38 1.36
16-16-77 749.0 1360 1243 1.10 120 1.09 16-16-94 796.9 1500 171709 131 1.15 0.88 16-16-111 82 81 6.2 1.01 1.32 1.3l
16-16-78 98.7 96.7 889 1.02 1.11 1.09 16-16-95 276.0 7451 1500 149 144 097 16-16-112 7.3 6.2 59 1.18 1.24 1.05
16-16-79 723 104 8.0 1.18 1.54 130 16-16-96 239.8 2751 1570 1.11 1.53 1.37 16-16-113 70.7 7.9 6.4 1.28 1.58 1.23
16-16-80 3.5 317 317 1.13 1.13 1.00 16-16-97 276.7 277.0 1802 1.03 120 1.17 16-16-114 6.5 4.9 4.1 1.33 1.59 1.20
16-16-81 3.7 3.3 3.0 1.12 123 1.10 16-16-98 790.0 1804 1345 1.05 141 1.34 16-16-115 4.7 4.1 3.8 1.15 1.24 1.08
Average: 1.16 1.32 1.15
ty5 (HGA) to5 (HGA) ty5 (IGEA")

Notes: 75® = 1o 5(HGA), t05® = t,5(IGEA"), to.5® = 1, s(IGEA?), PIF, = , PIF, = , PIF, =
0.5 0.5(), los 0.5(), tos* = tos() 1 105 (IGEA") 2 105 (IGEA?) 3 10 (IGEA?)

338

Generation of Grey Patterns Using an Improved Genetic-Evolutionary Algorithm: Some New Results

Table 3. Results of the experiments with the GPP (III)

Instance fos° tos tos PIF; PIFs PIF, Instance ts° fys° tys' PIF, PIFs PIF; Instance t,s° ts° ts PIF, PIFs PIF,
16-16-65 7.8 1.2 0.2 1.50 9.00 6.00 16-16-82 394 26.1 3.9 1.51 10.10 6.69 16-16-99 724.7 77.1 12.0 1.61 10.34 6.43
16-16-66 2.8 1.6 02 1.75 14.00 8.00 16-16-83 350 20.9 3.6 1.67 9.72 5.81 16-16-100 67.7 44.1 7.5 1.54 9.03 5.88
16-16-67 5.7 3.9 0.5 1.46 1140 7.80 16-16-84 372 234 37 1.59 10.05 6.32 16-16-101 580 328 6.1 1.77 9.51 538
16-16-68 72.7 7.0 0.9 1.73 1344 7.78 16-16-85 83.2 58.9 8.3 1.41 10.02 7.10 16-16-102 23.6 15.9 2.6 1.48 9.08 6.12
16-16-69 777 710.7 1.2 1.65 14.75 8.92 16-16-86 56.3 40.8 53 1.38 10.62 7.70 16-16-103 477 29.1 3.9 1.64 12.23 7.46
16-16-70 76.7 94 1.6 1.71 10.06 5.88 16-16-87 727 8.1 1.2 1.57 10.58 6.75 16-16-104 47.9 255 37 1.64 11.32 6.89
16-16-71 52.9 29.7 4.2 1.78 12.60 7.07 16-16-88 759 70.0 1.5 1.59 10.60 6.67 16-16-105 277 14.6 24 1.86 11.29 6.08
16-16-72 451.9 2620 332 1.72 13.61 7.89 16-16-89 706.2 723 710.5 1.47 10.11 6.89 16-16-106 27.6 74.5 1.8 1.49 12.00 8.06
16-16-73 2704 1150 21.5 1.83 9.79 535 16-16-90 7769 67.5 94 1.73 1244 7.18 16-16-107 728 6.0 1.2 2.13 10.67 5.00
16-16-74 771.2 1180 17.0 1.45 10.07 6.94 16-16-91 755.7 84.6 2.9 1.84 12.07 6.56 16-16-108 7.6 4.8 0.8 1.58 9.50 6.00
16-16-75 37.2 16.9 25 1.85 1248 6.76 16-16-92 770.5 67.1 9.8 1.65 11.28 6.85 16-16-109 6.7 4.1 0.6 1.63 11.17 6.83
16-16-76 68.0 46.5 72 1.46 9.44 6.46 16-16-93 769.9 881 15.0 193 11.33 5.87 16-16-110 6.8 4.7 0.6 1.45 11.33 7.83
16-16-77 97.7 60.0 9.3 1.52 9.80 6.45 16-16-94 727.2 66.2 2.8 1.83 947 5.17 16-16-111 52 35 0.5 1.49 10.40 7.00
16-16-78 63.3 412 6.6 1.54 959 6.24 16-16-95 737.7 639 71.1 2.05 11.81 576 16-16-112 4.4 27 04 1.63 11.00 6.75
16-16-79 7.8 44 0.6 1.77 13.00 7.33 16-16-96 753.9 95.1 11.7 1.62 13.15 8.13 16-16-113 63 35 0.5 1.80 12.60 7.00
16-16-80 2.2 1.3 0.2 1.69 11.00 6.50 16-16-97 7322 952 13.3 139 994 7.16 16-16-114 4.0 22 0.3 1.82 13.33 7.33
16-16-81 2.3 1.4 0.2 1.64 11.50 7.00 16-16-98 7224 79.7 70.1 1.54 12.12 7.89 16-16-115 2.9 1.7 0.3 1.71 9.67 5.67
Average: 1.65 11.09 6.76
Notes: fy5° = 1y s(SD) f05* = t0s(SA. t0 ' = 1 (1GEAD), PIF, = 0sCP) “ppp _ 10sBD) =y 10sGA).
155(SA) 1,s(IGEA™) 1os(IGEA”)
Table 4. Results of the experiments with the GPP (IV)
Instance #s° %s® ts PIF, PIFy PIF, Instance #s" fs° ts PIF, PIFs PIF, Instance f5° 1s* ts PIF; PIF PIF,
16-16-65 0.6 04 0.2 1.50 3.00 2.00 16-16-82 723 7.7 39 1.60 3.15 197 16-16-99 470 21.0 12.0 1.95 342 1.75
16-16-66 7.0 04 02 2.50 5.00 2.00 16-16-83 77.2 5.9 3.6 1.90 3.11 1.64 16-16-100 232 13.0 7.5 1.78 3.09 1.73
16-16-67 7.9 1.1 0.5 1.73 3.80 2.20 16-16-84 724 6.6 3.7 1.88 3.35 1.78 16-16-101 78.7 70.1 6.1 1.85 3.07 1.66
16-16-68 3.8 2.1 0.9 1.81 422 233 16-16-85 273 17.3 8.3 1.58 3.29 2.08 16-16-102 7.8 4.6 2.6 1.70 3.00 1.77
16-16-69 5.7 3.1 1.2 1.84 475 2.58 16-16-86 79.8 71.5 53 1.72 3.74 2.17 16-16-103 750 85 3.9 1.76 3.85 2.18
16-16-70 5.5 29 1.6 1.90 3.44 1.81 16-16-87 4.3 23 1.2 1.87 3.58 192 16-16-104 737 7.5 37 1.83 3.70 2.03
16-16-71 76.8 9.0 4.2 1.87 4.00 2.14 16-16-88 5.3 2.9 1.5 1.83 3.53 193 16-16-105 89 4.0 24 223 371 1.67
16-16-72 747.7 74.1 332 1.90 425 223 16-16-89 34.5 2714 10.5 1.61 3.29 2.04 16-16-106 7.0 4.2 1.8 1.67 3.89 233
16-16-73 694 339 215 2.05 323 1.58 16-16-90 389 2171.1 9.4 1.84 4.14 224 16-16-107 4.0 1.8 1.2 222 333 1.50
16-16-74 574 364 17.0 1.58 3.38 2.14 16-16-91 57.9 252 2.9 2.06 4.02 195 16-16-108 26 1.4 0.8 1.86 3.25 1.75
16-16-75 9.9 51 25 1.94 396 2.04 16-16-92 356 204 9.8 1.75 3.63 2.08 16-16-109 23 1.2 0.6 1.92 3.83 2.00
16-16-76 22.1 13.4 72 1.65 3.07 1.86 16-16-93 535 24.9 15.0 2.15 3.57 1.66 16-16-110 24 1.4 0.6 1.71 4.00 233
16-16-77 29.8 17.9 9.3 1.66 3.20 1.92 16-16-94 39.0 719.0 2.8 2.05 3.05 148 16-16-111 7.7 7.1 0.5 1.55 3.40 2.20
16-16-78 20.0 12.0 6.6 1.67 3.03 1.82 16-16-95 429 17.8 71.1 241 3.86 1.60 16-16-112 7.5 0.8 04 1.88 3.75 2.00
16-16-79 26 1.3 0.6 2.00 433 2.17 16-16-96 492 278 11.7 1.77 421 238 16-16-113 27 1.0 0.5 2.10 420 2.00
16-16-80 0.7 04 0.2 1.75 3.50 2.00 16-16-97 43.0 279 13.3 1.54 323 2.10 16-16-114 7.4 0.6 0.3 2.33 4.67 2.00
16-16-81 0.8 04 0.2 2.00 4.00 2.00 16-16-98 402 229 10.1 1.76 398 227 16-16-115 7.0 0.5 0.3 2.00 3.33 1.67
Average: 1.86 3.65 1.97
Notes: 1<% = 15(TS), 15 = 1o GA-SD), o' = 1, 5(1GEAD), PIF, =505 ppp 105D - pyp 105(GA-SD)
1,5(GA-SD) t,5s(IGEA?) t,5s(IGEA?)

Table 5. New best known solution for the GPP

Instance

Previous best known value

New best known value

16-16-72

25529984*

25522408

* comes from [15]

(a)

Figure 11. Previous (a) and new (b) best known grey frames of density 72/256: larger- and smaller-scale views

339

A. MisevicCius

(a)
Figure 12. (Pseudo-)optimal grey frames of densities 100/256 (a), 101/256 (b), 102/256 (c), 103/256 (d)

(b)

We have also compared the algorithm IGEA? with
other well-known algorithms, in particular, steepest
descent (SD) algorithm, simulated annealing (SA)
algorithm, tabu search (TS) algorithm, and genetic
(evolutionary) algorithm hybridized with steepest
descent (GA-SD). All these algorithms were coded
and implemented by the author; the descriptions of the
algorithms can be found in [5]. The results of the
comparison of the algorithms are presented in Tables 3
and 4. Similarly to Table 2, we present the values of
tos and PIF. The values of # s are again in seconds,
however the target values are 0.1% above BKVs.

Note that during the experiments, we were
successful in discovering new record-breaking solution
for the instance 16-16-72 (m =72) (sec Table 5). As a
confirmation of the quality of the solution produced, we
give the visual representation of this solution and the
previous best known solution in Figure 11. Some other
(pseudo-)optimal grey frames are shown in Figure 12 so
that the reader can judge about the excellence of the grey
patterns generated.

4. Conclusions

In this work, the issues related to solving the grey
pattern problem (GPP) are discussed. We propose to
use an improved genetic-evolutionary algorithm
(IGEA), which is based on the integrating of intensi-
fication and diversification (I&D) approaches. The
main improvements of IGEA are due the special
recombination of solutions and the enhanced intra-
evolutionary procedure as a post-recombination algo-
rithm. The recombination has both diversification and
intensification effect. The post-recombination algo-
rithm itself consists of the iterative tabu search and
mutation processes, where the tabu search serves as a
basic intensification mechanism. The fast descent and
extended decent-based local search procedures are
designed to play the role of alternative intensification.
The specialized mutation operator has exclusively
diversification effect.

The new results from the experiments show
promising performance of the proposed algorithm, as
well as its superiority to the previous efficient hybrid
genetic algorithm proposed in [17]. These results sup-
port the opinion that is extremely important to use a
smart post-recombination procedure as well as a
proper mechanism for premature convergence

340

() (d)

avoidance. It is confirmed that integrating 1&D into
the evolutionary process has a quite remarkable effect
on the quality of solutions.

The effectiveness of our algorithm is also corro-
borated by the fact that all GPP instances are solved to
pseudo-optimality at surprisingly small computational
effort. The new best known grey pattern of density
72/256 has been discovered.

Acknowledgments

The author thanks anonymous referees for the
valuable comments and suggestions that contributed to
significantly improve the quality of the paper.

References

[1] R.M. Aiex, M.G.C. Resende, C.C. Ribeiro. Prob-
ability distribution of solution time in GRASP: An
experimental investigation. Journal of Heuristics,

2002, Vol.8, 343-373.

T. Béck, D.B. Fogel, Z. Michalewicz (eds).
Handbook of Evolutionary Computation. /nstitute of
Physics Publishing, Bristol, 1997.

O. Berman, Z. Drezner. The multiple server location
problem. Journal of Operational Research Society,
2007, Vol.58, 91-99.

R.E. Burkard, E. Cela, P.M. Pardalos, L. Pitsoulis.
The quadratic assignment problem. /n D.Z.Du, P.M.
Pardalos (eds.), Handbook of Combinatorial Optimi-
zation, Kluwer, Dordrecht, 1998, Vol.3, 241-337.

Z. Drezner. Finding a cluster of points and the grey
pattern quadratic assignment problem. OR Spectrum,
2006, Vol.28, 417-436.

C. Fleurent, J.A. Ferland. Genetic hybrids for the
quadratic assignment problem. /n P.M.Pardalos, H.
Wolkowicz (eds.), Quadratic Assignment and Related
Problems. DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, Vol.16, AMS, Pro-
vidence, 1994, 173—188.

F. Glover, M. Laguna. Tabu search. K/uwer, Dord-
recht, 1997.

D.E. Goldberg. Genetic Algorithms in Search, Opti-
mization and Machine Learning. Addison-Wesley,
Reading, 1989.

A. Hertz, D. Kobler. A framework for the description
of evolutionary algorithms. European Journal of
Operational Research, 2000, Vo0l.126, 1-12.
J.H.Holland. Adaptation in Natural and Artificial

Systems. University of Michigan Press, Ann Arbor,
1975.

2]

131

[4]

[51

[6]

(7]
8]

9]

(10]

Generation of Grey Patterns Using an Improved Genetic-Evolutionary Algorithm: Some New Results

[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

E.L. Lawler. The quadratic assignment problem. Ma-
nagement Science, 1963, Vol.9, 586—599.

Z. Michalewicz, D.B. Fogel. How to Solve It: Modern
Heuristics. Springer, Berlin-Heidelberg, 2000.

A. Misevicius. Genetic algorithm hybridized with ruin
and recreate procedure: application to the quadratic
assignment problem. Knowledge-Based Systems, 2003,
Vol.16, 261-268.

A. Misevicius. Ruin and recreate principle based
approach for the quadratic assignment problem. In
E.Cantu-Paz, J.A.Foster, K.Deb et al. (eds.), Lecture
Notes in Computer Science, Vol.2723: Genetic and
Evolutionary Computation — GECCO 2003, Procee-
dings, Part 1, Springer, Berlin-Heidelberg-New York,
2003, 598—-609.

A. Misevicius. An improved hybrid genetic algorithm:
new results for the quadratic assignment problem.
Knowledge-Based Systems, 2004, Vol.17, 65-73.

A. Misevicius. A tabu search algorithm for the quad-
ratic assignment problem. Computational Optimiza-
tion and Applications, 2005, Vol.30, 95-111.

A. Misevic¢ius. Experiments with hybrid genetic algo-
rithm for the grey pattern problem. /nformatica, 2006,
Vol.17,237-258.

A. Misevi¢ius. Testing of crossover operators for the
grey pattern problem. Ukio technologinis ir ekonomi-
nis vystymas (Technological and Economic Develop-
ment of Economy), 2006, Vol.17, 37-43.

A. Misevi¢ius. Experiments with local search heuris-
tics for the traveling salesman problem. /n A. Targa-
madzé, R. Butleris, R. Butkiené (eds.), Proceedings of
the 16th International Conference on Information and
Software Technologies, 1T-2010, Technologija, Kau-
nas, 2010, 47-53.

A. Misevi¢ius, A. Lenkevi¢ius, D. Rubliauskas.
Iterated tabu search: an improvement to standard tabu
search. Information Technology and Control, 2006,
Vol.35, 187-197.

341

[21]

[22]

(23]

[24]

[25]

[26]

127]

28]

[29]

[30]

[31]

A. Misevi¢ius, D. Rubliauskas. Enhanced improve-
ment of individuals in genetic algorithms. Information
Technology and Control, 2008, Vol.37, No.3,
179-186.

A.Misevi¢ius, D.Rubliauskas, V.Barkauskas. Some
further experiments with the genetic algorithm for the
quadratic assignment problem. Information
Technology and Control, 2009, Vol.38, No.4,
325-332.

P. Moscato. Memetic algorithms: a short introduction.
In D. Corne, M. Dorigo, F.Glover (eds.), New Ideas in
Optimization, 1999, McGraw-Hill, London, 219-234.
V. Nissen. Solving the quadratic assignment problem
with clues from nature. /EEE Transactions on Neural
Networks, 1994, Vol .5, 66-72.

I. Rechenberg. Evolutionsstrategie: Optimierung
Technischer Systeme nach Prinzipien der Biologi-
schen Evolution. Formann-Holzboog Verlag, Stutt-
gart, 1973.

H.-P. Schwefel. Evolutionsstrategie und numerische
Optimierung. PhD Thesis, Technische Universitdt
Berlin, Germany, 1975.

T. Stiitzlee. MAX-MIN ant system for quadratic
assignment problems. Res. Report AIDA-97-04, Darm-
stadt University of Technology, Germany, 1997.

G. Syswerda. Uniform crossover in genetic algo-
rithms. In J.D. Schaffer (ed.), Proceedings of the Third
International Conference on Genetic Algorithms,
1989, Morgan Kaufimann, San Mateo, 2—9.

E. Taillard. Comparison of iterative searches for the
quadratic assignment problem. Location Science,
1995, Vol .3, 87-105.

E. Taillard, L.M. Gambardella. Adaptive memories
for the quadratic assignment problem. Tech. Report
IDSIA-87-97, Lugano, Switzerland, 1997.

D.M. Tate, A.E. Smith. A genetic approach to the
quadratic assignment problem. Computers & Opera-
tions Research, 1995, Vol.1, 73-83.

Received June 2011.

A. MisevicCius

Appendix

procedure FastRandomizedTabuSearch;
// input: 7 — current solution, n — problem size, m — # of black points, B — distance matrix,
// Piiny Pimae — lower and higher tabu tenures, 7— # of iterations, @ — alternative intensification period, & — randomization level
// output: 7" — the best solution found
for i:=1 to StackHeader do Tabu[Stacki[i], Stack,[i]] :=0; // tabu list initialization
for i:=1 to n do begin ¢;:=0; for j:==1 to m do c¢;:==c¢;+ by end; // initialization of C
7= k=1; k:=1; improved :=FALSE; choose h randomly between h,, and huu.;
while (k< 17) or (improved=TRUE) then begin // main cycle
Ay 7= 0;
for i:=1 to m do // m(n—m)neighbours of 7are considered
for j:=m+1 to n do begin
A =2 = Catiy = Do) i
Jforbidden = if(Tabulij]1 > k) and (random() > «), TRUE, FALSE); aspired :=if((z(z) + A <z(z")) and forbidden), TRUE, FALSE);
if ((A <A,i») and not(forbidden)) or aspired then begin A,;, .= A;u:=i;v:=jend
end; // for
if A,, <o then begin
=7 0Op,; for i:=1 to n do ¢;=c¢;+ bixy— bixy; // replace the current solution by the new one and update C

Tabu[u,v] :==k+ h; // update tabu list (make the move p,, tabu)
StackHeader = StackHeader+ 1 ; Stack,[StackHeader] .= u; Stack,[StackHeader] = v

end; //if

improved := if(A,;, < 0, TRUE, FALSE);

if improved and (k—Fk' > ®) then begin // switch to alternative intensification (depending on the version of IGEA)
apply FastSteepestDescent | FastExtendedSteepestDescent to z; k' =k

end;

if z(m) <z(7') then 7 :=7; // save the best so far solution

k=k+1

end // while
end.

Figure Al. Pseudo-code of the fast randomized tabu search algorithm. Notes. 1. The function if(x,y,,,) returns y, if x = TRUE,
otherwise it returns y,. 2. The function random() returns a pseudo-random number uniformly distributed in [0, 1]

procedure FastSteepestDescent;
// input: z— current solution, » — problem size, m — # of black points, B — distance matrix
// output: 7 — resulting (improved) solution
for i:=1 to n do begin ¢;:=0; for j:=1 to m do c¢;:=c;+ by, end;
repeat // cycle is repeated until local optimum is reached
Apin = 0;
for i:=1 to m do
for ji=m+1 to n do begin A:=2(cx)— Cxiy— buiap); 1€ A<A,;,, thenbeginA,;,:=A; u:=i; v:=jend end;
if A,»<0 then begin // replace the current solution by the better one
=70 p,; for i:=1 to n do ¢;:=c;+ by — bixy
end // if
until A,;, 20
end.

Figure A2. Pseudo-code of the fast steepest descent algorithm using the neighbourhood N,

342

Generation of Grey Patterns Using an Improved Genetic-Evolutionary Algorithm: Some New Results

procedure FastExtendedSteepestDescent;
// input: z— current solution, » — problem size, m — # of black points, B — distance matrix
// output: 7 — resulting (improved) solution
for i:=1 to n do begin ¢;:=0; for j:=1 to m do ¢ :=c;+ by end;
repeat // cycle is repeated until local optimum is reached
A =0 Aiy® =o0; 1 =0; VY =0;
for i==1 to m do
for ji=m+1 to n do begin
A= 2(cq) = €ty — D) 7
if A< Am,-,,”) then begin A,,”v,,(z’ =
else if A<A,;,” then begin A,;,” =A; u? =i; VY =) end
end; // for
=70 Py i 7 =10 P o i c'=c; for i=1 to n do ¢, =¢, +b,.”~(“<:», _b,,,nv':') ;

ApiiV; u® =0V V@ =9 ALY = A oD =4; D =j end

apply FastSteepestDescent to 7', get #'";
if z(n')<z(n) or z(n'")<z(n) then begin
if z(#)<z(#") then for i:=1 to n do ¢, = c,f+b”,(”(,))—bl”,(‘r(‘)) ;

:=argmin(z(7'), z(#""")); // replace the current solution by a new (better) one

better_solution_found := TRUE
end
else better solution_found = FALSE
until better solution_found =FALSE
end.

Figure A3. Pseudo-code of the fast extended steepest descent algorithm using the neighbourhood N,,

procedure Mutation;
// input: z— current solution, » — problem size, m — # of black points, B — distance matrix, 77 — mutation level (7> 1)
// output: 7— mutated solution
for i==1 to 7 do begin
generate two numbers j and k randomly, uniformly,
7=n ® p, ; // interchange the jth and the kth elements in 7

1<j<k<n;

// the objective function value, z, is recalculated in O(m) operations, i.e. z(z © p ;) =z(7)+2 Z(b,,(,c)”(,) =b.yey)
1=11#j

end // for
end.

Figure A4. Pseudo-code of the mutation procedure

343

