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Abstract. In this paper, we propose a Hybrid Genetic Algorithm for data model partitioning of power distribution 
network.  Analytical functions are the core of Distribution Management Systems (DMSs).  Efficient calculation of the 
functions is of the utmost importance for the DMS users; the necessary preconditions for the efficient calculation are 
optimal load balancing of processors and data model partitioning among processors. The proposed algorithm is applied 
to different real models of power distribution systems. It obtains better results than classical evolutionary algorithms 
(Genetic Algorithm and Particle Swarm Optimization). The Hybrid Genetic Algorithm also achieves better results than 
multilevel algorithm (METIS) in cases of small graphs. 
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1. Introduction 

In order to effectively manage modern adaptive 
applications within the multiprocessor system, large 
amounts of data need to be optimally processed in pa-
rallel.  For optimal calculations to be carried out on 
certain groups of data, the following conditions must 
be satisfied: the data are necessarily partitioned across 
the processors and load balancing of the processors 
must be achieved. It is necessary to make an optimal 
distribution of data across the processors in accor-
dance with pre-defined criteria that determine the 
calculation functions so that the calculations and the 
overall system functioning is efficient. 

The Integrated Smart Grid power system largely 
increases the amount of data in each of its subsystems. 
It integrates systems such as [1]: Geographic Informa-
tion System, Energy Management System, Distribu-
tion Management System (DMS), Outage Manage-
ment System, etc. We treat parallel calculations in the 
DMS as one subsystem of Smart Grid system. DMSs 
have the supervision, management, planning and 
visualization of the distribution network in two 
modes: on-line (real-time) and simulation.  Analytical 
DMS functions are the central component of the 
DMS. They allow monitoring and manage the power 
distribution network. 

The most important DMS functons are: Load Flow 
(LF), State Estimation (SE), Fault Calculation, Perfor-
mance Indices, Volt/Var Control, etc. 

This paper describes the optimal partitioning of 
power distribution network data model by using the 
most common DMS functions – Load Flow and State 

Estimation. Also, the real power distribution networks 
and the corresponding functions are analyzed. The LF 
[2] and SE function algorithms are based on the weak-
ly meshed radial data network. SE requires multiple 
LF execution and will thus not be discussed further. 
The network architecture makes the data models suit-
able for partitioning and parallel calculations [3, 4].  

Depending on an application context of the DMS, 
dynamic data can be monitored either on-line by the 
SCADA system (real-time context), or off-line – de-
fined and analyzed by the user (within the planning, 
simulation or testing contexts). Calculation time of the 
functions above becomes critical with increasing 
amounts of data involved in calculations (the present 
network contains tens of millions of data). For DMS 
functions optimization, only real-time (RT) context is 
critical for time calculation.  

The initial partitioning of the DMS data model is 
studied.  The partitioning is based on the initial values 
of objects’ attributes and the relationships between the 
data. As a result, groups of data necessary for calcula-
tion are made. Dynamic changes of certain attributes 
(usually the relations among the data objects) can 
affect the data; and consequently, calculations. Thus 
we introduce the optimization criterion by which a po-
tential need of using the data stored in other partitions 
is lowered. The structure of the power distribution 
network enables the transformation of data into a 
graph that can be successfully partitioned.  In other 
words, the problem of DMS data model partitioning 
can be reduced to the problem of graph partitioning. 
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This paper reports the results of experiments which 
show that hybrid Genetic Algorithm (HGA) can be 
successfully applied for initial partitioning and that it 
always provides better results than simple Genetic 
Algorithm (GA)[5] and Particle Swarm Optimization 
(PSO)[6] algorithm. 

The paper is organized in the following way: next 
section describes related work on algorithms for parti-
tioning graphs. Section 3 describes the problem and 
defines terms used in the paper. It also includes the 
details of data model and definitions of the optimiza-
tion problem. The HGA for initial partitioning is pre-
sented in Section 4. Section 5 describes experimental 
setup, presents and discusses the results.  Section 6 is 
a conclusion. 

2. Related Works 

Graph partitioning is classified as an NP hard opti-
mization problem [7]. Many suboptimal graph parti-
tioning solutions have been proposed. Two commonly 
used classes of algorithms are multilevel and evolutio-
nary algorithms. 

Multilevel algorithms [8, 9] consist of three pha-
ses: coarsening – the matching of vertices per levels, 
partitioning – the partition graph consisting of mat-
ched vertices at a certain level and refinement – im-
provement of the partitioning at various levels. Most 
of these algorithms use KL [10] or its variant FM [11] 
algorithms, which are specialized for local improve-
ment of solutions by exchanging vertices between the 
individual partitions. In addition, the FM algorithm 
moves a vertex from one partition to another in each 
iteration, and the KL algorithm exchanges vertices 
between partitions. Most commonly used multilevel 
algorithm is METIS algorithm [9]. 

In our studies [5, 6, 12], evolutionary algorithms 
are used for the initial partitioning. This allows the use 
of somewhat slower algorithms since it is done prior 
to startup. However, before the algorithms are applied, 
the coarsening of data is required in order to reduce 
the problem dimensionality and make a smaller num-
ber of data groups. The aim of the study reported in 
this paper is to improve previously obtained results 
and determine the applicability of evolutionary algo-
rithms to large data model partitioning in power distri-
bution systems.  

Evolutionary algorithms have been successfully 
used for graph partitioning. The most commonly used 
algorithms are PSO[6] and GA[5, 13-15]. 

GA is used for graph partitioning: various size 
graphs or unweighted ones [13]. Furthermore, parallel 
GA [14, 15] was developed to speed up the algorithm. 
If the accuracy of a simple GA is not satisfied, then 
variants of hybrid GA are recommended [16-19]. GA 
finds a solution close to the optimum and some other 
algorithm (often KL/FM) is used for local refinement 
[13].  

This paper compares hybrid GA with previously 
used GA[5, 12] and PSO[6, 12] algorithms for initial 
graph partitioning. 

3. DMS Data Model Partitioning 
3.1.  DMS data model 

Data models in power distribution utilities, based 
on Common Information Model (CIM) connectivi-
ty/topology model (Figure 1) are studied. CIM [20] is 
a well-known standard established by the International 
Electrotechnical Commission (IEC). It defines an ob-
ject-oriented model of electric power systems, repre-
sents resources as classes and associations between 
them. 

The distribution network is a weakly meshed radial 
network. It begins in high-voltage substations (Substa-
tion) of the power sources (EnergySource), represen-
ting the point of supply from energy transmission 
networks. The connectivity model is composed of 
transformer substations (represented by PowerSystem-
Resource) connected with power lines (ACLineSeg-
ment), which are used to supply groups of consumers 
with energy (EnergyConsumer). Substations contain 
various equipment (ConductingEquipment and Power-
Transformer) that is connected by various nodes (Con-
nectivityNode). ConductingEquipment objects are m-
odelled with single- or double-ended (SingleEn-
dedCondEq and  DoubleEndedCondEq) conductors, 
and these are always connected with Connectivity-
Node(s). Some of the typical single-ended conductors 
are EnergyConsumer, EnergySource, and BusbarSec-
tion, and double-ended ones are Switchgear (Breaker, 
Fuse) and ACLineSegment. In essence, the connec-
tivity model is an edge-vertex model suitable for a 
graph presentation, where edges and vertex are 
instances of ConductingEquipment and Connectivity-
Node, respectively. 

 
Figure 1. Connectivity CIM based DMS data model 

The DMS data model partitioning is described by 
analyzing the target DMS functions. It is assumed that 
only one function �  is running in the system. This is 
done in order to optimally partition datasets and finish 
data processing as quickly as possible. 
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DMS data model (Q) contains all elements �i that 
are included in a calculation. Conducting equipment 
and transformers are elements usually used for the 
DMS functions. 

If two elements �i and �j are in a relation N(�i, �j) 
then it is assumed that the calculation function 
 uses 
them together. The elements are connected and they 
are called neighbors. 

The relation between neighbors that depends on 
the state of an element (uij) could be temporarily 
inactive. We refer to it as potential connection Pot(�i, 
�j, uij). When a potential connection is activated, two 
elements become neighbors 

( , ) ( , , ) ( , )i j i j ij i jQ Pot u active N� � � � � �� � � �  (1) 

For example, state of a switch between pieces of 
equipment could be active (closed) or inactive (open). 

The set of mutually connected elements is called 
calculation region R (or just region) 

( ) ( , ) ,

{1,2,..., }
i k i j j kR N R

k n
� � � �� � � �

�
  (2) 

and it is the smallest data unit that can be processed by 
calculation function.  

All regions create a calculation domain D 
( nRRRD ���� ...21 ) and function Yi = �(Ri) is 
applied to each region Ri to produce output result set 

....21 nYYYY ����  

3.2.  Model Partitioning 

The process of partitioning large datasets consists 
of the following phases: 1) formation of the initial 
graph, 2) topological analysis and creation of the 
graph for calculations (coarsened graph), and 3) par-
titioning of the coarsened graph. 

1. Formation of the initial graph 
The initial graph is derived from the conduction 

elements and other equipment involved in the cal-
culations. The edges of the initial graph are: (i) double 
ended equipment, (ii) single ended equipment with 
one fictive vertex. The transformers with two win-
dings are presented with two edges (primary + de-
rived), and transformers with three windings are 
presented with three edges (primary + two derived). 
The vertices are connectivity nodes. 

2. Topological analysis and creating of the graph for 
calculations 

Topological analysis is one of the DMS functions. 
It depends on the status of conducting equipment; for 
instance, the state of the switches (open / closed). The 
analysis determines the basic group of elements (cal-
culation regions) necessary for the calculations. The 
result of the analysis is a calculation domain D that 

could be represented by undirected weighted graph G 
= (V, E) with vertices (V) and edges (E). 

 
Figure 2. An example of initial data model in power 

distribution system 

The weight of vertex vi (w(vi)) depends on the 
complexity of the calculation for the appropriate 
region Ri. The example of determining the complexity 
of the calculation for different types of electrical com-
ponents in power distribution systems is given in [21]. 
If Load Flow (LF) function is considered, it can be 
inferred that the complexity of the LF calculation is 
linearly proportional to the total number of elements 
in the region. Therefore the weight of vertex vi is equal 
to the number of elements in the region Ri. The weight 
of edge ei,j = (vi, vj) (w(ei,j)) is equal to the number of 
the potential connections between elements of two 
regions (for example there are 3 open switches bet-
ween regions R1 and R2, therefore w(e1,2)=3). Thus, for 
example, for LF calculations, the initial graph model 
from Figure 2 would be transformed into the coarse-
ned graph shown in Figure 3. 

 

Figure 3. Coarsened graph for Load Flow calculation 

3. Partitioning of the coarsened graph - definition of 
optimization criteria 

The problem of graph partitioning is based on par-
titioning of the undirected graph with vertices and 
edges that have a certain weight. The result of p-way 
partitioning is a set of p partitions �={�1, �2,…, �p}, 
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where partition �i  contains an optimal set of regions 
(vertices). 

3.3. Optimization criterion 

In order to define optimization criterion for a 
partition �k, we need to define the partition weight 
W�k:  

k j

j k

R
R

W w�
��

� �   (3) 

as the sum of all contained regions’ weights.  We also 
need to define a function �k as: 

�
�

�
k

qp
RqRp

RRk Pot
�

�
,

,   (4) 

This function is an indicator of “good connectivi-
ty” between the regions in the partition. 

First, it is necessary to group regions into a defined 
number of partitions (p), so that the weights of these 
partitions are approximately the same. They can never 
be greater than the maximal partition weight M de-
fined as: 

1

1(1 )
k

p

k
M W

p ��
�

� � � �   (5) 

where 
k

W� is weight of partition �k, p is the number of 

partitions, and � � [0, (p–1)/p] is the tolerance.  
The optimization criterion should obtain the 

maximum connection inside a partition:  

,
1
�
�

��
p

k
k�    (6) 

,)max(��F   (7) 

where function �k is given in (4), and all partition 
weights are constrained by:  

, {1,2,..., }.
k

W M k p� � � �   (8) 

It should be noted that the maximal number of 
connections inside each of the partitions means a 
minimal number of connections among partitions. 

4. Algorithms 

We apply the HGA to find the best approximate 
solutions for the optimization problem (7) with respect 
to the constraints given in (8). HGA consists of the 
simple genetic algorithm. Its solutions are improved 
by using FM algorithm.  

It is assumed that a graph with the n regions 
(vertices) should be divided into the p partitions. The 
solution is represented by the vector of the n elements 
whose values are indices of the given partitions 
(integers between 0 and p-1).  

4.1. Genetic Algorithm (GA) 

GA starts from randomly constructed initial 
solutions, which are considered individuals in a 
population. The initial partition weight can affect the 
quality of the solution. After coarsening the graph, the 
DMS data model partitioning problem becomes the 
weighted graph partitioning problem. The weighted 
graph has less than 1000 vertices (realistic estimations 
are around 500 vertices). Experimental results show 
that good solutions for this kind of graph partitioning 
can be obtained when the number of individuals is si-
milar to the number of vertices (regions). The GA exe-
cution time is not considered since the algorithm 
execution time is not critical. The algorithm is exe-
cuted prior to the start of the system.  

GA is an iterative algorithm that consists of selec-
tion, crossover and mutation.  

Different types of selection (random, tournament 
and roulette-wheel) are studied. Experimental results 
show that the best selection type is roulette-wheel.   

In addition, different types of crossovers can be 
used: in one point, in the k-points, etc. For the purpo-
ses of our research, we chose the one point crossover. 
It randomly selects a cut point which is the same on 
both parent individuals. The cut point divides the 
individuals into two disjoint parts. Two offsprings are 
created from opposite parts of parents. If the constraint 
for partition weights (given by (8)) is not satisfied 
then a high penalty factor is used to decrease function 
F. Besides the one point crossover (without prepro-
cessing), we investigate the following crossovers: (i) a 
crossover with unique partition representation (nor-
malization) in all individuals [22], and (ii) a crossover 
with the favorite best partition [5]. Our experiments 
show that the best results are obtained with the 
crossover without preprocessing ([22], [5]). The prob-
ability that a certain individual is involved in a cross-
over is called crossover rate. Mutation is performed 
with a probability that is called mutation rate. The 
choice of mutation rate significantly influences the 
solution quality. 

Also, the results gained from our experiments 
show good convergence of GA (i.e. good global 
search). However, inadequately fine solutions indicate 
the need to combine GA with algorithms for local im-
provements. FM algorithm is chosen for local im-
provement.  

4.2. Fiduccia-Mattheyses (FM) algorithm  

FM algorithm [11] is a group migration heuristic 
which starts with a partitioned graph and iteratively 
moves vertices to improve solution. It selects the 
vertex that should be moved from one partition to 
another. The criterion for moving vertex vi from 
partition �S to partition �J is the maximum value of 
gain parameter (g). The parameter is calculated as: 

g(i, J)=FS(i, J)-TE(i) 
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where FS(i, J) is the number of edges connecting the 
vertex vi with vertices in the partition �J, and TE(i) is 
the number of edges incident to vertex vi and another 
vertex in the same partition (�S) as vertex vi. 

In the case of weighted graphs, it is the sum of 
weights of the corresponging edges that is calculated 
instead of the number of edges. Fiduccia and Matthey-
ses [11] propose a method of FM algorithm realiza-
tion. The method speeds up the execution time of the 
algorithm by using data structure (bucket list) that re-
duces computation time (an iteration can be done in 
O(|E|) time). For multiple-way partitioning, all pos-
sible transfers of border vertices (neighbors with verti-
ces from other partitions) are checked. 

Pseudo code of a simplified FM algorithm is given 
below: 
Input: partitioned graph G=(V,E) -> 

�=�1��2�...��p
Output: improved partitions of graph G -> 

�`=�1`��2`�...��p`
Repeat

for each border vertex vi in graph G
for each partition �J in �

g(i,J) � FS(i,J)-TE(i)
end for 

end for 
find vb��S and �D � (max(g)=g(b,D))
if(w(�D�{vb})< M) 

�D‘ =�D�{vb}
�S‘ =�S\{vb}

end if 
recalculate g(i,J)(for neighbors of vb)

until (max(g) � 0)
In the HGA, we first use the GA to partition a 

graph; then, we use the FM algorithm to improve this 
graph.  

4.3. Hybrid Genetic Algorithm  

The HGA utilizes the results of FM algorithm to 
improve the local optimum. The initial population is 
generated randomly (for each gene in each individual 
the partition number is randomly set). Since the FM 
algorithm moves a vertex from one partition to ano-
ther (in the GA, this movement presents a value 
change of a particular gene), hybridization of the ge-
netic algorithm is carried out in a mutation phase. 
HGA uses mutations from the classical genetic algo-
rithm; but it also introduces FM mutations periodi-
cally (every freq iterations). 

Pseudo code of the HGA is given below: 
Input: unpartitioned graph G=(V,E) 
Output: partitioned graph �=�1��2�...��p

create initial population X={x1,x2,...,xm}
it � 0 
repeat

select pairs (xi,xj) for crossover 
it � it+1
for each pair (xi,xj)

offspringi,j � Crossover(xi,xj)
X = X � {offspringi,j}

end for 
Xmut � select individuals for mutation 
for each individual xk�Xmut

xnk � Mutation(xk)
    X = X � {xnk}
end for 
if it%freq = 0

XFM � select individuals for FM 
for each individual xq�PFM

xnq � FM_mutation(xq)
X = X � {xnq}

end for 
end if 
X �choose the best m individuals from X

until (no progress) or it > maxit
The algorithm is finished either if there is no 
improvement or, after a predefined number of 
iterations (maxit) are executed. 

5. Experimental Results 

We tested the models of the real electric power 
distribution network. The network characteristics are 
shown in Table 1. 

Table 1. Test data models 

Size of initial graph 
(uncoarsened) 

Size of coarsened 
graph Graph 

name 

Total 
number 

of 
elements

Number of 
vertices 

Number 
of edges 

Number 
of regions

Number   
of edges  

bg54 1126254 295225 299131 54  44 
it206 1787939 431102 434486 206 286 

pec106 2284322 762411 766755 106 52 
bg63 1196078 300503 304637 63 52 
bg5x 5980390 1502505 1523180 315 260 

Models bg54 and bg63 are different versions of 
Belgrade (Serbia) power distribution network. Pec is a 
part of North Carolina (United States) power 
distribution network model; it206 is a network model 
of Milano (Italy); and bg5x is Belgrade network model 
multiplied five times. 

We ran initial partitioning tests using HGA on 
datasets from Table 1.  

The tests were carried out for 2, 3, 4, 5, 6 and 8 
partitions. Each test was repeated 100 times. The HGA 
is applied with the following parameters: 
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bg54, bg63 100 individuals 
pec106 120 individuals 
it206 220 individuals 

Population size 

bg5x 330 individuals 
Crossover rate 0.5 (50%) 
Mutation rate 0.5 (50%) 
FM mutation frequency 100 iterations 
Balancing coeficient � 0.1 (10%) 
Maximal number of iterations 5000 

Our experiments show that the best results are 
achieved with a mutation rate of 0.5 (50%) and 
crossover rate of 0.5 (50%). 

The obtained results (for function F given by (7)) 
are shown in Table 2.  

Table 2. Partitioning results (the best results are in bold) 

p Model GA PSO HGA METIS 
bg54 397 392 398 398 
bg63 479 475 483 483 

pec106 157 149 163 163 
it206 936 853 940 937 

2 

bg5x 2393 2379 2447 2465 
bg54 378 385 389 388 
bg63 466 455 474 474 

pec106 152 146 161 161 
it206 889 746 912 907 

3 

bg5x 2327 2190 2411 2465 
bg54 359 363 384 382 
bg63 461 444 468 465 

pec106 149 138 153 156 
it206 859 674 881 883 

4 

bg5x 2270 2062 2373 2452 
bg54 353 336 377 377 
bg63 437 419 461 461 

pec106 135 129 148 152 
it206 845 603 841 888 

5 

bg5x 2262 1949 2351 2465 
bg54 335 310 359 346 
bg63 444 360 460 448 

pec106 135 120 150 152 
it206 850 530 821 870 

6 

bg5x 2246 1933 2232 2463 
bg54 285 255 361 360 
bg63 363 237 443 399 

pec106 132 119 145 148 
it206 480 421 757 820 

8 

bg5x 2225 1908 2280 2385 

The table includes the results obtained from pre-
viously developed GA and PSO algorithms [5, 6, 12]. 

Based on these results, we can conclude that the 
HGA always achieves significantly better results than 
simple GA and PSO algorithms. This is particularly 
evident when partitioning graphs which have over 100 
vertices, and when there is a large number of par-
titions. 

The applicability of the HGA is determined by 
giving a comparison of the results gained from the 
HGA and the ones gained from the METIS algorithm. 

The METIS algorithm is much faster but this charac-
teristic is insignificant for the practical applications of 
the model initial partitioning. Thus we conclude that 
the HGA yields better results for graphs of up to 200 
vertices. We recommend specialized multilevel algo-
rithms for partitioning graphs that are over 200 
vertices and if there is a large number of partitions 
required.   

6. Conclusions 

In this paper, we developed a new HGA for initial 
partitioning of large data models. The amount of data 
that need to be processed in the DMSs is increased. 
The increase calls for parallel calculations of ana-
lytical DMS functions. The calculations are executed 
in different processors; consequently different data are 
sent to different processors. The DMS network is such 
that the problem of data partitioning boils down to the 
problem of graph partitioning. 

The algorithm is successfully applied to large scale 
electricity power distribution data model. Experiments 
reported in the paper show that HGA always obtains 
better results than simple GA and PSO algorithms do. 
Further, HGA is compared with METIS algorithm. 
The results show that HGA is good for partitioning 
graphs with up to 200 vertices. 
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