
1. Introduction

Computer languages are a programmer’s most
basic tools [1]. With general-purpose languages
(GPLs) we can address large classes of problems
(e.g., scientific computing, business processing, sym-
bolic processing, etc.), while domain-specific lan-
guages (DSLs) target one specific domain and their
syntax and semantics is close to the domain’s notation
(e.g., aerospace, automotive, graphics, etc.). DSLs in-
crease the productivity of developers and can also be
used by end users [2, 3]. To speed up repeating tasks
and to reduce the error rate inside written programs it
is also useful to use syntax close to the problem do-
main [4]. This leads to language extensions and DSL
embedding.

The term DSL embedding has been commonly
used in the DSL community for two purposes and
it is a source of much confusion. Firstly, DSL em-

*This work was supported in part by United States National
Science Foundation award CCF-0811630 and by Slovenian Re-
search Agency award BI-US/11-12-031.

bedding has been used as a synonym for a DSL de-
sign phase where the DSL reuses already existing
language constructs by extension, specialization, or
the piggyback approach. Secondly, DSL embedding
has been used as a synonym for a particular DSL
implementation approach where the DSL is imple-
mented by using the host language feature of func-
tion composition. This is embedding in a pure sense
first introduced by Hudak [5]. To distinguish these
two cases Mernik et al. [3] proposed for the DSL de-
sign phase two patterns: language exploitation (DSL
design is based on an already existing language) and
language invention (DSL design bears no relationship
to an existing language), while embedding is only
one out of many different implementation approaches
(compiler/interpreter, application generator, prepro-
cessing, embedding, extensible compiler/interpreter,
COTS, and hybrid). Fowler [6] proposes classification
into internal and external DSLs. On the other hand,
Tratt [7] introduces new terms heterogeneous em-
bedding and homogeneous embedding. The hetero-
geneous embedding can be implemented using hard

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2011, Vol.40, No.4

EMBEDDING DSLS INTO GPLS: A GRAMMATICAL INFERENCE
APPROACH *

Dejan Hrn�i�
University of Maribor, Faculty of Electrical Engineering and Computer Science

Smetanova 17, SI-2000 Maribor, Slovenia
 e-mail: dejan.hrncic@uni-mb.si

Marjan Mernik
University of Maribor, Faculty of Electrical Engineering and Computer Science

Smetanova 17, SI-2000 Maribor, Slovenia
e-mail: marjan.mernik@uni-mb.si

Barrett R. Bryant
The University of Alabama at Birmingham, Department of Computer and Information Sciences

Birmingham, AL 35294-1170, U.S.A.
 e-mail: bryant@cis.uab.edu

Abstract. Embedding of Domain-Specific Languages (DSLs) into General-Purpose Languages (GPLs) is often
used to express domain-specific problems using the domain’s natural syntax inside GPL programs. It speeds up the
development process, programs are more self-explanatory and repeating tasks are easier to handle. End-users or
domain experts know what the desired language syntax would look like, but do not know how to write a grammar and
language processing tools. Grammatical inference can be used for grammar extraction from input examples. A
memetic algorithm for grammatical inference, named MAGIc, was implemented to extract grammar from DSL
examples. In this work MAGIc is extended with embedding the inferred DSL into existing GPL grammar.
Additionally, negative examples were also incorporated into the inference process. From the results it can be concluded
that MAGIc is successful for DSL embedding and that the inference process is improved with use of negative
examples.

Keywords: memetic algorithms, domain-specific languages, grammatical inference, embedding.

"�%

http://dx.doi.org/10.5755/j01.itc.40.4.980

http://dx.doi.org/10.5755/j01.itc.40.4.980

coded compilers/interpreters and preprocessing (e.g.,
source-to-source transformations) [7]. It is a suitable
implementation approach when the DSL reuses an
already existing language by extension, specializa-
tion, or piggyback. In other words, in the heteroge-
neous approach the programs written in a GPL and
embedded DSL are first checked by a tool that ex-
tracts the DSL part and transforms it into the GPL
code (e.g., SQLJ [8]), which is after the preprocess-
ing normally compiled using the GPL compiler. The
main advantage of heterogeneously embedded DSL
is that the DSL syntax is close to the concrete syn-
tax of the domain, which is especially important for
the end user’s productivity [9]. But such tools (e.g.,
compiler/interpreter, preprocessor) are usually imple-
mented from scratch. Such an implementation of a
DSL requires a formalization of its complete syn-
tax. Homogeneously embedded DSLs can be imple-
mented using macros, function composition, and li-
braries that provide domain-specific constructs [7].
A homogeneous embedded DSL is developed in a
programming language, called a host language, into
which it is embedded. The advantage of this approach
is that no preprocessing tool is required. The main
weakness of the homogeneous approach is that the
DSL’s concrete syntax is typically not close to the
concrete syntax of the domain.

End users often do not know how to develop a
new language, how to extend an existing program-
ming language or even how to write a grammar for
the desired language syntax. To fill this gap, gram-
matical inference (GI) algorithms can be used. Many
papers regarding use of GI in the field of program-
ming languages exist [10–12]. Despite many prelim-
inary studies that have been performed in this field,
the results are still not satisfactory.

GI is a process of building a model from ex-
amples of some structures or with interaction of the
learner by asking questions to an oracle [13]. By us-
ing examples of structures we distinguish between
learning from text, where only positive examples are
used and between learning from an informant, where
positive and negative examples are given as input.
The process of giving queries to an oracle is called
active learning. The obtained models can be then used
for recognizing, interpreting, generating or transduc-
ing data structures. GI attracts researchers from dif-
ferent fields (e.g., machine learning, formal language
theory, structural and syntactic pattern recognition,
computational linguistics, computational biology and
speech recognition).

In software engineering, GI deals with a problem
of finding the grammar from programs written in an
unknown language. These programs can be written in

some legacy programming language, where the spec-
ifications are lost and/or tools like the parser are miss-
ing. With GI the structural information from such pro-
grams can be restored and used for building tools for
parsing and conversion to newer programming lan-
guages. On the other hand, GI can be used by domain
experts or end users who have little or no knowledge
about language development. They can write the de-
sired programs and with the use of the GI approach
the programming language tools can be automatically
built.

We have developed a GI algorithm called
MAGIc. It is a memetic algorithm, which uses evo-
lutionary algorithm concepts combined with a local
search technique. Evolutionary algorithms [14] are
useful for solving realistic problems because they are
robust, give optimal or semi-optimal solutions, and
can easily be adapted for different problems [15–17].
MAGIc was developed for inference of DSLs, but can
be extended also for DSL embedding, which is pre-
sented in this paper. In the previous version of our al-
gorithm only positive examples were used. But some
of the generated grammars can be overgeneralized,
therefore in this paper an improved MAGIc is pre-
sented, that uses also negative examples to avoid over-
generalization.

The structure of this paper is as follows: in Sec-
tion 2 we present an overview of DSL embedding and
use of GI in software engineering. Section 3 describes
the core of MAGIc and the complexity and perfor-
mance of the algorithm. The extensions with DSL
embedding and use of negative examples are pre-
sented in Section 4. The results are presented in Sec-
tion 5. The paper is concluded with Section 6 where
the brief overview and word about future work is pre-
sented.

2. Related work

Several approaches were developed to embed
DSLs into GPLs. Dinkelaker et al. [18] used island
grammars [19], where the developer needs to specify
grammar parts of the host languages that are relevant
to the embedded DSL. Only those parts of the embed-
ded DSL syntax need to be specified that are not com-
patible with the syntax of the host language. Concrete
syntax is defined using special annotations inside the
code. With special preprocessing, the abstract syntax
tree is converted into the syntax of the host language.
Renggli et al. [20] developed the HELVETIA tool,
which is a language workbench tool for defining em-
bedded languages and for interpreting them into the
host language. It offers also debug support for embed-
ded DSL. Again, the complete syntax structure of the

D. Hrn�i�, M. Mernik, B. R. Bryant

"�8

DSL has to be known. Knoll and Mezini [21] devel-
oped a new language, based on patterns, that has the
ability to extend itself semantically and syntactically.
The embedding of DSL can be made only within the
pattern language itself, and the development cost of
such an approach is very high.

All approaches mentioned above have in com-
mon that an experienced developer is needed to in-
corporate the DSL syntax into the host language. In
the case of end users, who have little or no knowl-
edge about programming, this is hard to accomplish.
A tool for automatic extension of the host language
and to define syntax structure/grammar is needed.
Here grammatical inference comes in place. Imada
and Nakamura [11] presented an incremental induc-
tive CYK algorithm, that uses positive and negative
examples to infer ambiguous and unambiguous con-
text free grammars (CFGs). Unlike MAGIc, the in-
put example order influences the grammars inferred.
Kraft et al. [22] recovered grammars from hard-coded
parsers, where parse trees generated by parsing in-
put examples are used to recover a grammar. DSL
embedding cannot be made using this approach, be-
cause the grammar can be inferred using only existing
and working parsers. A work dealing with grammar
versioning is presented by Dubey et al. [10] where
partially correct grammars or grammar dialects were
used to handle grammar versions. An iterative tech-
nique with backtracking is introduced. New rules are
generated using existing non-terminals as left-hand
side (LHS) and right-hand side (RHS) are generated
using output of the CYK algorithm. Their algorithm
convergence is dependent on the input example order.
The results of grammatical inference in programming
languages are still premature and a need for a robust
and efficient algorithm exists.

3. MAGIc

Memetic Algorithm for Grammatical Inference
(MAGIc) is a memetic algorithm [23], which is a
population-based evolutionary algorithm with local
search. The combination of an evolutionary approach
with local search techniques is often used because of
better results. MAGIc is implemented to infer from
positive examples CFGs, which are non-ambiguous
and of type LR(1). Gold’s theorem [24] states that in-
ference of language grammar cannot be done from
positive examples only without additional knowl-
edge. Therefore differences between input examples
are used in MAGIc. The initial population of gram-
mars is not generated randomly, as this was proven
to be insufficient for grammar inference [25], but is
generated from input examples. By generating the ini-
tial grammars the Sequitur algorithm [26] was used. It

detects repetition in an example and factors it out by
forming grammar rules. Note, that each initial gram-
mar parses only one input example.

The main MAGIc steps are local search, mu-
tation, generalization, and selection. They are pre-
sented in Figure 1 and in more details discussed in
the following subsections. It is important to notice,
that MAGIc is not a typical genetic algorithm as it
does not include a crossover step, where two parents
are selected and offspring are produced from parts of
both parents.

3.1. Local Search

Individuals in the population are grammars that
parse at least one input example. The idea of the local
search operator is to incrementally change the gram-
mar in a way to parse more input examples.

The local search operator changes the selected
grammar using only positive examples. To success-
fully change the grammar, a local search method
needs one parsed (true positive) example, one not
parsed (false negative) example and the difference be-
tween them. The difference between examples rep-
resents part(s) that need to be inserted or made op-
tional in the grammar. Comparison of the examples
has to be done at the token level, not at the character
level. Therefore the lexical analysis phase [27] needs
to be inserted at the beginning of the algorithm. To
determine the difference between examples the diff
command [28] is used. It returns three types of dif-
ferences: ADD, REPLACE and DELETE. MAGIc is
implemented to exploit those differences for chang-
ing the grammars. When the parts (tokens) that need
to be added or made optional are determined, the lo-
cation inside the grammar where to make the change
needs to be identified. Here the LR(1) parser is used.
When parsing the false negative example, the parser
encounters an error and information about the parser
stack and the LR(1) item set [27] is returned. This in-
formation is used to determine the location where to
change the grammar. Successful change of the gram-
mar based on the type of difference is done following
the rules explained in [29].

3.2. Mutation

Mutation is used to make random changes in the
grammar. Grammar symbols (nonterminals or termi-
nals) can be made optional or iterative.

The frequency of mutation is dependent on the
algorithm input parameter pm, the probability of mu-
tation. On every grammar symbol three types of
change can be made: option, iteration+, iteration*.
For example, the changes of mutation on the produc-
tion Nx ::= α1 Ny α2, where grammar symbol
Ny is selected for mutation, can be:

Embedding DSLs into GPLs: A Grammatical Inference Approach

"�9

Figure 1. The Memetic Algorithm for Grammatical Inference

Nx::=α1 Nz α2

Option Iteration+ Iteration*
Nz::=Ny Nz::=Ny Nz Nz::=Ny Nz
Nz::=ε Nz::=Ny Nz::=ε

3.3. Generalization

Generalization is one of the most important parts
of the algorithm. It checks for every grammar if it
contains repetition or nested structures. Symbols Nx,
Ny and Nz represent nonterminals, while α, β, γ ∈
(N ∪ T)∗.

Nested structures. All productions of the form

Nx ::= Ny Ny α Nz Nz

are generalized and replaced with productions

Nx ::= Ny Nx Nz
Nx ::= α

where Ny and Nz are grammar symbols (nontermi-
nals or terminals).

Repeating symbols. If a sequence of repeating gram-
mar symbols is found, it can represent iteration. For
example, consider a sequence of repeating nontermi-
nals:

Nx ::= α Ny Ny β
Ny ::= γ

Repeating nonterminals are replaced with iteration*:

Nx ::= α Ny β
Ny ::= γ Ny
Ny ::= ε

and iteration+:

Nx ::= α Ny β
Ny ::= γ Ny
Ny ::= γ

Repeating RHS. If in some production the RHS of
another production appears, it is replaced with the
LHS of that production. In the following example, the
β part of the Nx production represents also the RHS
of the Ny production.

Nx ::= α β γ
Ny ::= β
Ny ::= δ

Therefore the grammar production Nx can be gener-
alized to:

Nx ::= α Ny γ
Ny ::= β
Ny ::= δ

3.4. Selection

MAGIc’s evolution cycle (Figure 1) ends with
the selection step. Grammars generated in steps be-
fore selection are inserted into the current population
and do not replace their parents. Therefore in each
evolution cycle the size of the population grows and
is not limited. The task of the final selection step is to
choose the best pop_size grammars from the current
population and generate a new population for the next
generation. Currently the selection process is deter-
ministic, grammars are ranked based on the following
fitness function:

φ+ =
N∑

i=1

isParsed(i) (1)

D. Hrn�i�, M. Mernik, B. R. Bryant

"1�

where N represents the number of input examples,
isParsed(i) function returns 1 if the i-th example
can be parsed with the current grammar or 0 if not,
and the function φ+ sums all successfully parsed ex-
amples. The best pop_size number of grammars is se-
lected and a new population is generated.

3.5. Complexity and performance

The MAGIc computational time is dependent not
only on the number of input examples, but also on
different algorithm parameters (population size, num-
ber of generations, and probability of mutation). The
overall (worst case) complexity is explained in the
next few lines, which refer to Figure 1.

The complexity of the Initialization phase is lin-
ear O(N), because for each input example one ini-
tial grammar is generated using Sequitur [26]. Af-
ter algorithm initialization, the evolutionary cycle be-
gins with num_gen generations. In the local search
step the algorithm has two for loops, one is for
improving the grammars with pop_size steps and
one for the evaluation of generated grammars with
N ∗ Δpop_size steps. The total approximate num-
ber of steps in this phase is (1 + Δ)pop_size ∗ N .
Note, that pop_size + Δpop_size is abbreviated as
(1+Δ)pop_size. The Mutation phase has two nested
for loops and ((1+Δ)pop_size)∗(size(G)∗pm)∗N
steps, where size(G) is the number of nonterminals
and terminals in grammar and pm represents proba-
bility of mutation. The next two steps of the algorithm
are Generalization with ((1+Δ)pop_size)∗N steps
and Selection with pop_size steps (best pop_size
grammars are selected into the next generation). The
overall approximate number of steps in the algorithm
is

N + num_gen ∗ (((1 + Δ)pop_size ∗N)+

(((1 + Δ)pop_size) ∗ (size(G) ∗ pm) ∗N)+

(((1 + Δ)pop_size) ∗N) + pop_size)
(2)

which means that the complexity of the algo-
rithm, based on the number of input examples is lin-
ear ≈ O(N). Due to this fact, increasing the number
of input examples which are often needed to success-
fully infer the correct grammar does not significantly
impact the MAGIc computation time.

To demonstrate the performance of the algo-
rithm, a simple DSL named DESK [30] was used.
DESK is a simple desk calculation language with
statements of the form PRINT <expression>
WHERE <definitions>. The average processing
time for 12 DESK language examples with probabil-
ity of mutation (pm) 0.01, population size (pop_size)
40 and number of generations (num_gen) 30 was

about 30 seconds [29]. For the DESK language, a pa-
rameter tuning was made, where pm was [1%, 2% and
5%], pop_size was [20, 30, 40 and 50] and num_gen
was [30, 50 and 70]. For each of the 36 parameter sets,
30 algorithm runs were made and based on the results
the optimal parameter values were chosen. The results
of parameter tuning are available in [29]. For experi-
mental runs, we have used an Intel Core 2 Duo P8600
processor with 2.4 GHz.

To infer the correct grammar, the differences be-
tween input examples are also important. They have
to be small and explicit enough that the diff algorithm
detects the correct difference among examples. All 12
positive input examples for the DESK language are
presented in [29]. The structure of negative examples
is close to that of positive examples, emphasizing the
part of the syntax that we do not want to be general-
ized.

The number of needed input examples depends
on the size of the inferred language. The main rule
for choosing the input examples is that they have to
express each language construct.

4. MAGIc extensions

4.1. DSL embedding

As discussed in Section 1, using an embedded
DSL is useful for several reasons. Development is
easier, quicker and programs are easier to read, es-
pecially by end users. By embedding DSL into the
host language, the developer has to deal with prob-
lems such as how the integration of DSL syntax is
made into the existing GPL grammar and how to en-
able the DSL to use the domain’s commonly used no-
tation/syntax. MAGIc is useful for solving this prob-
lem, because the developer does not need to deal with
either where to embed the productions of the DSL
language into the existing grammar or with defining
the formal syntax of embedded DSL. By looking into
the parser stack trace, MAGIc determines the possi-
ble positions where to insert the DSL productions into
the existing grammar. By looking into differences be-
tween input DSL examples, the structure of newly in-
serted productions is determined.

To determine the possible positions where to in-
sert new productions, MAGIc uses the approach de-
scribed in Section 3, which looks into the parser stack
when an error in parsing the input example occurs.
To define the structure of new grammar productions,
MAGIc’s local search and generalization methods
are used. Method mutation may help to identify some
DSL language concepts like iteration or option by
mutating grammar elements (see Section 3). The ex-
tension made in MAGIc to make embedding of DSL

Embedding DSLs into GPLs: A Grammatical Inference Approach

"11

into GPL possible was the ability to begin the infer-
ence process from an already existing GPL grammar
and not generated from input examples. The mutation
and generalization steps have to leave initial GPL pro-
ductions intact. This was accomplished by locking all
the productions in the initial grammar. Locking the
productions in the grammar means that no change to
productions can be made, except in the local search
step, where new nonterminals are inserted into cur-
rent productions.

4.2. Negative examples

In the latest version of MAGIc negative exam-
ples were also included into the inference process.
As mentioned before, MAGIc is able to infer correct
grammar from positive examples alone, but in the in-
ference process some grammars can be overgeneral-
ized.

In the MAGIc extension, input examples are di-
vided into positive and negative sets. The examples
from the negative set have an impact on the fitness
function of generated grammars, which is changed to:

φ = φ+ ∗ ((
M∑

i=1

isParsed(i) > 0)? 0 : 1) (3)

where φ+ represents the old fitness and M represents
the number of negative examples. The function sums
all successfully parsed examples, but if at least 1 true
negative example is successfully parsed, the output of
the fitness function is 0. A grammar is correct, if it
parses all true positive examples and rejects all true
negative examples that were given as input to the al-
gorithm.

As for now, there is no repair algorithm incorpo-
rated into MAGIc. Grammars that successfully parse
negative examples are simply discarded. For further
work we have an idea of using negative examples also
for repairing inferred grammars. In Section 5 the in-
fluence of negative examples on MAGIc results is dis-
cussed and shown on inferred grammars.

5. Results

5.1. DSL embedding

To test the applicability of using MAGIc for DSL
embedding, the ANSI C grammar [31] with approx-
imately 200 productions was used. In Figure 2 only
some productions are shown. These productions are
important to show how MAGIc infers the new gram-
mar with DSL syntax embedded. The DSL used is
TinySQL and was used also for DSL embedding in

[18]. Dinkelaker et al. have demonstrated the embed-
ding into Java and Groovy code with the use of island
grammars. The concrete DSL syntax is defined using
special method annotation. From meta-data provided
in those annotations the grammar of the embedded
DSL is extracted and combined with the grammar of
the host language. To combine the DSL grammar with
the host language grammar, the language developer
needs to specify those parts of the host language’s
syntax that are relevant when embedding DSL. The
positions in the host language grammar where to in-
sert new productions are determined automatically by
MAGIc.

The first 207 productions are original ANSI C
grammar productions. They are locked to prevent
MAGIc methods from altering them, except for the
local search method. Local search can insert new non-
terminals into the existing grammar to define the con-
nection between the host language and the embedded
DSL.

To demonstrate the embedding of TinySQL into
the ANSI C grammar consider the next three input
examples:
- true positive example:

int main() {
char str[][];
int i;
printf("Students:");
for(i = 0; i < str.length; i++) {

printf(str[i]);
}
return 0;

}

- two false negative examples:

int main() {
char str[][] = { SELECT Name FROM

Students };
int i;
printf("Students:");
for(i = 0; i < str.length; i++) {

printf(str[i]);
}
return 0;

}

int main() {
char str[][] = { SELECT Name, Surname

FROM Students, Professors };
int i;
printf("Students and Professors:");
for(i = 0; i < str.length; i++) {

printf(str[i]);
}
return 0;

}

D. Hrn�i�, M. Mernik, B. R. Bryant

"12

1. translation_unit ::= external_decl

2. translation_unit ::= translation_unit external_decl

3. external_decl ::= function_definition

4. external_decl ::= decl

6. function_definition ::= declarator decl_list

compound_stat

9. decl ::= decl_specs init_declarator_list ;
10. decl ::= decl_specs ;
11. decl_list ::= decl

12. decl_list ::= decl_list decl

15. decl_specs ::= type_spec decl_specs

27. type_spec ::= int | long | ...
45. init_declarator_list ::= init_declarator

46. init_declarator_list ::= init_declarator_list ,
init_declarator

47. init_declarator ::= declarator

64. enumerator ::= id
65. enumerator ::= id = const_exp

67. declarator ::= direct_declarator • NT1
68. direct_declarator ::= id
69. direct_declarator ::= (declarator)
70. direct_declarator ::= direct_declarator • [const_exp]
71. direct_declarator ::= direct_declarator [] •
72. direct_declarator ::= direct_declarator •

(param_type_list)
73. direct_declarator ::= direct_declarator • (id_list)
74. direct_declarator ::= direct_declarator • ()
88. id_list ::= id
89. id_list ::= id_list , id
90. initializer ::= assignment_exp

91. initializer ::= initializer_list

93. initializer_list ::= initializer

94. initializer_list ::= initializer_list , initializer

110. stat ::= labeled_stat | exp_stat | compound_stat |
selection_stat

114. stat ::= iteration_stat | jump_stat

116. labeled_stat ::= id : stat

117. labeled_stat ::= case const_exp : stat

118. labeled_stat ::= default : stat

119. exp_stat ::= exp ;
120. exp_stat ::= ;
121. compound_stat ::= decl_list stat_list

125. stat_list ::= stat

126. stat_list ::= stat_list stat

127. selection_stat ::= if (exp) stat

129. selection_stat ::= switch (exp) stat

130. iteration_stat ::= while (exp) stat

131. iteration_stat ::= do stat while (exp) ;
132. iteration_stat ::= for (exp ; exp ; exp) stat

140. jump_stat ::= goto id ; | continue ; | break ; | return exp ;
145. exp ::= assignment_exp

146. exp ::= exp , assignment_exp

147. assignment_exp ::= conditional_exp

148. assignment_exp ::= conditional_exp assignment_operator

assignment_exp

205. const ::= int_const | char_const | float_const
208. NT1 ::= = SELECT id NT2 FROM id NT2 | ε
210. NT2 ::= , id NT2 | ε

Figure 2. Excerpt of ANSI C grammar, extended
with inferred DSL productions

Comparing the true positive example with first
false negative example, the difference diff is:

= { SELECT Name FROM Students }

The positions where to insert new production

NT1 ::= = { SELECT Name FROM Students }

are returned from the LR(1) parser, when parsing the
first false negative example and can be seen in Fig-
ure 2 marked with symbol •. These positions can be
used to insert new nonterminals and extend the cur-
rent grammar with new rules of DSL.

The repetition of grammar symbols that can be
seen in productions 208-210 is made when both false
negative examples are incorporated into the grammar
and by using the generalization method, which is de-
scribed in subsection 3.3 and in detail in [29].

5.2. Negative examples

The generalization step can sometimes overgen-
eralize grammars and the resulting grammar can parse
also true negative examples. It is important to identify
such grammars and eliminate them to prevent them
to advance to the next generation. Since the repair
from true negative examples is under implementation,
the grammars that parse at least one true negative ex-
ample are simply discarded. As an example, consider
the previous example of the embedded TinySQL lan-
guage. Using the generalization step on the inferred
grammar (Figure 2) the following change to produc-
tions 208-211 of the grammar is obtained:

208. NT1 ::= = { SELECT enumerator NT2
FROM enumerator NT2 } | ε

210. NT2 ::= , enumerator NT2 | ε

The generalization step searches for the repeat-
ing RHS: Token id represents the RHS of the
64th production (enumerator ::= id), there-
fore it is replaced with the LHS of that production
(enumerator).

Using such an inferred grammar, due to produc-
tion 65 the new grammar parses also negative exam-
ple:

...{ SELECT Name = 3 FROM Students }...

Although this grammar parses all true positive
examples it is not correct and is discarded.

6. Conclusions

This paper has presented an extension of MAGIc
for embedding DSLs into GPLs. MAGIc is an incre-
mental population-based algorithm comprised of ini-
tialization, local search, mutation, generalization and
selection steps.

Embedding DSLs into GPLs: A Grammatical Inference Approach

"13

The extension to the algorithm was explained and
tested on simple DSL TinySQL and GPL ANSI C.
The results are similar to the original grammar of
TinySQL used in [18]. The main advantage of our
approach is that the grammar of the embedded DSL
is inferred from input examples and the interaction
between DSL grammar and host language grammar
is determined automatically, hence the user does not
have to be a language designer to be able to embed a
DSL.

In the future we would like to further extend
MAGIc to be able to use true negative examples also
for repairing inferred grammars, which successfully
parse true negative examples and are therefore dis-
carded. We will also extend the selection process
which needs to differentiate between neutral solu-
tions. More extensive experimental work, which will
include more DSLs, is also planned in the future.

References

[1] C. A. R. Hoare. Hints on programming language de-
sign. Technical report, CS-TR-73-403, Stanford Uni-
versity, Stanford, CA, USA, 1973.

[2] T. Kosar, N. Oliveira, M. Mernik, M. J. Varanda

Pereira, M. Črepinšek, D. da Cruz, P. R. Hen-

riques. Comparing General-Purpose and Domain-
Specific Languages: An Empirical Study. Computer
Science and Information Systems, 2010, 7, 247–264.

[3] M. Mernik, J. Heering, A. M. Sloane. When and how
to develop domain-specific languages. ACM Comput-
ing Surveys, 2005, 37(4), 316–344.

[4] M. J. Varanda Pereira, M. Mernik, D. da Cruz, P.

R. Henriques. Program comprehension for domain-
specific languages. Computer Science and Information
Systems, 2008, 5(2), 1–17

[5] P. Hudak. Building domain-specific embedded lan-
guages. ACM Computing Surveys, 1996, 28.

[6] M. Fowler. Domain Specific Languages. Addison-
Wesley Professional, 2010.

[7] L. Tratt. Domain Specific Language Implementation
via Compile-Time Meta-Programming. ACM Transac-
tions on Programming Languages and Systems, 2008,
30(6), 1–40.

[8] J. Melton, A. Eisenberg. Understanding SQL and Java
together: a guide to SQLJ, JDBC, and related technolo-
gies. Morgan Kaufmann, 2000.

[9] T. Kosar, P. E. Martínez López, P. A. Barrientos, M.

Mernik. A Preliminary Study on Various Implemen-
tation Approaches of Domain-Specific Language. In-
formation and Software Technology, 2008, 50(5), 390–
405.

[10] A. Dubey, P. Jalote, S. K. Aggarwal. Learning
context-free grammar rules from a set of program. IET
Software, 2008, 2(3), 223–240.

[11] K. Imada, K. Nakamura. Towards Machine Learn-
ing of Grammars and Compilers of Programming
Languages. In: Proceedings of European conference

on Machine Learning and Knowledge Discovery in
Databases - Part II, ECML PKDD ’08, Springer-
Verlag, Berlin, Heidelberg, 2008, 98–112.

[12] F. Javed, M. Mernik, B. R. Bryant, A. Sprague.

An Unsupervised Incremental Learning Algorithm for
Domain-Specific Language Development. Applied Ar-
tificial Intelligence, 2008, 22(7-8), 707–729.

[13] C. de la Higuera. A bibliographical study of gram-
matical inference. Pattern Recognition, 2005, 38(9),
1332–1348.

[14] Z. Michalewicz. Genetic Algorithms + Data Struc-
tures = Evolution Programs, Third Edition. Springer-
Verlag, New York, NY, USA, 1996.

[15] E. Babkin, M. Petrova. Application of Genetic Al-
gorithms to Increase an Overall Performance of Neu-
ral Networks in the Domain of Database Structures
Synthesis. Information Technology and Control, 2006,
35(3A), 285–294.

[16] N. Goranin, A. Čenys. Genetic Algorithm Based In-
ternet Worm Propagation Strategy Modeling. Informa-
tion Technology and Control, 2008, 37(2), 133–140.

[17] M. Paulinas, A. Ušinskas. A Survey of Genetic Al-
gorithms Applications for Image Enhancement and
Segmentation. Information Technology and Control,
2007, 36(3), 278–284.

[18] T. Dinkelaker, M. Eichberg, M. Mezini. Incremental
Concrete Syntax for Embedded Languages. In: Proc. of
ACM SAC 2011, Taiwan, 2011, 1309–1316.

[19] L. Moonen. Generating Robust Parsers using Island
Grammars. In: Proceedings of 8th Working Confer-
ence on Reverse Engineering, IEEE Computer Society
Press, 2001, 13–22.

[20] L. Renggli, T. Girba, O. Nierstrasz. Embedding
Languages Without Breaking Tools. In: Proceedings
of 24th European Conference on Object-Oriented
Programming (ECOOP 2010), Springer-Verlag, 2010,
380–404.

[21] R. Knöll, M. Mezini. π - A Pattern Language. ACM
SIGPLAN Notices, 2009, 44(10), 503–522.

[22] N. A. Kraft, E. B. Duffy, B. A. Malloy. Grammar Re-
covery from Parse Trees and Metrics-Guided Grammar
Refactoring. IEEE Transactions on Software Engineer-
ing, 2009, 35(6), 780–794.

[23] P. Moscato. On Evolution, Search, Optimization, Ge-
netic Algorithms and Martial Arts: Towards Memetic
Algorithms. Technical report, Concurrent Computation
Program 158-79, California Institute of Technology,
Pasadena, CA, USA, 1989.

[24] E. M. Gold. Language Identification in the Limit. In-
formation and Control, 1967, 10(5), 447–474.

[25] M. Črepinšek, M. Mernik, V. Žumer. Extracting
grammar from programs: brute force approach. ACM
SIGPLAN Notices, 2005, 40(4), 29–38.

[26] C. G. Nevill-Manning, I. H. Witten. Identifying Hi-
erarchical Structure in Sequences: A linear-time algo-
rithm. Journal of Artificial Intelligence Research, 1997,
7, 67–82.

[27] A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman. Com-
pilers: Principles, Techniques, and Tools, Second Edi-

D. Hrn�i�, M. Mernik, B. R. Bryant

"14

tion. AddisonWesley, 2007.

[28] J. W. Hunt, M. D. McIlroy. An Algorithm for Dif-
ferential File Comparison. Technical report, CSTR 41,
Bell Laboratories, Murray Hill, NJ, 1976.

[29] M. Mernik, D. Hrnčič, B. R. Bryant, F. Javed. Ap-
plications of Grammatical Inference in Software En-
gineering: Domain Specific Language Development.
In: Carlos Martín-Vide (ed.), Mathematics, Computing,
Language, and Life: Frontiers in Mathematical Lan-
guistics and Language Theory - Vol. 2, Scientific Appli-
cations of Language Methods, Imperial College Press,
London, 2010, ch. 8, 421–457.

[30] J. Paakki. Attribute Grammar Paradigms - A High-
Level Methodology in Language Implementation.
ACM Computing Surveys, 1995, 27(2), 196–255.

[31] J. Degener. ANSI C Yacc grammar.
http://www.lysator.liu.se/c/ANSI-C-grammar-y.html,
1995 (accessed October 29, 2010).

Received November 2010.

Embedding DSLs into GPLs: A Grammatical Inference Approach

