
286

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2011, Vol.40, No.4

DYNAMIC DOMAIN DECOMPOSITION APPLIED TO HOPPER
DISCHARGE SIMULATION BY DISCRETE ELEMENT METHOD

Darius Markauskas
Laboratory of Numerical Modelling, Vilnius Gediminas Technical University

Saul�tekio St. 11, Vilnius, LT-10223, Lithuania
e-mail: darius.markauskas@vgtu.lt

Arnas Ka�eniauskas
Laboratory of Parallel Computing, Vilnius Gediminas Technical University

Saul�tekio St. 11, Vilnius, LT-10223, Lithuania

Algirdas Maknickas
Department of Information Technologies, Vilnius Gediminas Technical University

Saul�tekio St. 11, Vilnius, LT-10223, Lithuania

Abstract. The paper presents the development of dynamic domain decomposition applied to hopper discharge
simulation by the discrete element method (DEM). Parallel neighbour search algorithm, non-blocking interprocessor
communication and dynamic load balancing are implemented in the DEM code. Parallel speed-up analysis is per-
formed solving the complex hopper discharge problems containing 100000 and 300000 particles. The influence of the
granular flow character on the load balance is investigated.

1. Introduction

The discrete element method became widely reco-
gnized after the pioneering work published by Cundall
and Strack [3]. The main advantage of the DEM is a
possibility to model highly complex particle systems
using the basic data on individual particles without
making oversimplifying assumptions. The method al-
lows simulation of motion and interaction between the
particles, taking into account the microscopic geomet-
ry and various constitutive models. Over the past de-
cade, the DEM was utilised in a variety of industrial
applications [2].

The DEM has been extensively applied to examine
different phenomena inside the granular materials. The
granular flow from hoppers and silos has a wide range
of applications in industry [29]. The conducted re-
search is mainly focused on three aspects: wall stress/
pressure, discharge rate and internal properties. The
study of the bulk material pressure on the walls of a
hopper is very important for hopper design [7]. The
prediction of the discharge rate is of importance for
the effective operation and control of a transport sys-
tem, and is difficult due to inhomogeneous solid dis-
tribution, irregular velocity profile and diverse particle
size [15]. It is very important to understand the micro-
scopic structure and its relations to the mechanisms

governing hopper flow [20]. DEM simulation takes
into account the discrete nature of granular materials,
and therefore is very effective for this purpose. The
combined approach of DEM and averaging method
offers a convenient way to link fundamental under-
standing generated from DEM-based simulations to
engineering application often achieved by continuum
modelling [28].

The main disadvantage of the DEM technique, in
comparison with the well-known continuum methods,
is impressive computational resources necessary to
solve large-scale industrial problems. The complex
character of hopper flow could require large number
of particles and short time steps resulting in a long
computing time.

Naturally, for the solution of industrial-scale prob-
lems, parallelization becomes an obvious option for
significantly increasing computational capabilities.
Early attempts to parallelize particle computations
were based on two main ideas: force decomposition
and domain decomposition. In the first class of me-
thods, a pre-determined set of force computations is
assigned to each processor. Such methods have shown
good performance for shared memory computers [19,
23], but the global character of the employed
algorithms produces interprocessor communication

http://dx.doi.org/10.5755/j01.itc.40.4.978

http://dx.doi.org/10.5755/j01.itc.40.4.978

Dynamic Domain Decomposition Applied to Hopper Discharge Simulation by Discrete Element Method

287

overhead on distributed memory machines. Recent
attempts to perform straightforward parallelization of
DEM codes by using OpenMP did not result in very
high parallel efficiency and scalability [6]. In the
second class of methods, the domain decomposition
[21] is employed. The basic idea of this technique is
the partitioning of the computational domain into
subdomains, each being assigned to a processor. The
subdomains exchange data with each other through
their boundaries [4]. Efficient and scalable shared and
distributed memory parallelization is achieved in the
area of molecular dynamics [10, 11], because the
simple mechanics of interparticle contact is employed.
Parallel visualization of particle systems on multi-core
computer clusters is investigated in [13].

The design of parallel DEM algorithms presents a
new challenge to computational scientists. Consider-
able efforts have been expended by scientists to design
reconfigurable co-processors for DEM simulations
[24] and even to optimize DEM codes for GPUs [22].
Two basic types, static or dynamic domain decom-
position strategies, are extensively used in solving the
time-dependent problems. Static domain decomposi-
tion works by assuming the fixed interdomain boun-
daries [12, 17]. The influence of material polydispersi-
ty to the performance of static domain decomposition
is presented in [14]. More flexible, but more comp-
licated dynamic decomposition algorithms [9] allow
us to move boundaries during the simulation keeping
load balancing of individual processors.

The parallel DEM algorithms employing the do-
main decomposition differ from analogous parallel
processing in the continuum approach [4]. During
hopper discharge moving particles dynamically
change the workload configuration [16], making paral-
lelization of DEM software much more difficult and
challenging. The cubic decomposition methods and
hierarchical trees employ moving boundaries to keep
optimal shaped subdomains [5, 27]. Dual-level do-
main decomposition reduces the memory size per pro-
cessor of the calculation [11, 26]. As the degree of
natural algorithmic concurrency inherent in explicit
time integration procedures is high, dynamic domain
decomposition can yield high speed-up on different
hardware configurations [25].

In spite of a considerable progress in developing
parallel DEM software, its application to the solution
of large-scale problems is rather limited. Only re-
cently, some successful attempts have emerged in
tackling problems of a similar nature [2, 25]. More-
over, the presented speed-up analyses are rarely per-
formed solving complex applications. In the present
research, the developed dynamic domain decomposi-
tion is applied to simulate hopper discharge problem.
A particular manifest of this paper is twofold: to
measure a parallel speed-up of the developed soft-
ware, and to investigate the influence of the granular
flow character to the workload balance.

The paper is organized as follows. In Section 2,
governing relations and the methodology of the

discrete element method are described. Section 3 dis-
cusses the developed algorithm of dynamic domain
decomposition. In Section 4, parallel performance
analysis and numerical results are presented, while the
concluding remarks are given in Section 5.

2. Governing relations and DEM methodology

The dynamic behaviour of the non-cohesive fric-
tional visco-elastic particle system governed by the
Newton’s second law is considered. Three translations
and three independent rotations expressed in terms of
the forces and torques at the centre of the i-th particle
are as follows:

i
i

i dt
dm Fx

�2

2
, (1)

i
i

i dt
dI T�

�2

2
, (2)

where mi, and Ii are mass and inertia moments, while
vectors xi and �i initiate the position of the particle
centre and the orientation of particle i, respectively.
Vectors Fi and Ti present the sum of contact force
Fi,cont, and gravity force Fi, grav as well as the corres-
ponding torques:

gFF i

N

ijj
iji m�� �

�� ,1
, (3)

��
����

	���
N

ijj
ijcij

N

ijj
ijcontactii

,1,1
, FdTTT , (4)

where dcij is particle geometry-dependent vector, poin-
ting from the particle center to contact center.

The employed interparticle contact model consi-
ders a combination of elasticity, viscous damping and
friction force effects. Actually, the contact between
two material particles is modelled by a spring and
dashpot in both the normal and tangential directions
and an additional slider in tangential direction. Thus,
the interparticle force vector Fij describing the contact
between the particles i and j may be expressed in
terms of normal and tangential components Fn,ij and
Ft,ij, respectively. The normal component Fn,ij present-
ing a repulsion force comprises elastic and viscous in-
gredients. The tangential component Ft,ij reflects static
or dynamic frictional behaviour. The static force de-
scribes friction prior to gross sliding and comprises
elastic and viscous ingredients, while the dynamic
force describes friction after gross sliding and is
expressed by the Coulomb’s law. Interparticle friction
is defined by internal friction coefficient
.

For evaluating the contact forces (3)-(4), all con-
tacts between the particles and their neighbours must
be detected. A cell-based method [8] is used for con-
tact detection to reduce the number of all particle pair
combinations. A three-dimensional domain of the gra-
nular media is divided into cubic cells of the size
slightly larger than the diameter of the largest particle.

D. Markauskas, A. Ka�eniauskas, A. Maknickas

288

Then contact search is performed only between par-
ticles in neighbouring cells.

The dynamical state of all particles at the time t,
resulting from the action of the particle forces (3)-(4),
is obtained by numerical integration of the equations
of motion (1)-(2). The solution of these equations is
obtained by the explicit 5th - order Gear’s predictor-
corrector scheme with a constant time increment t� .
The details of these procedures can be found in [1].

3. Parallel algorithm and load balancing

The presented research is focused to the develop-
ment of DEMMMAT_PAR code [17, 18], while pa-
rallel algorithms are extended to support dynamic load
balancing. Parallelization of software is based on the
dynamic domain decomposition, considered to be one
of the most efficient coarse grain strategies for scien-
tific and engineering computations.

Figure 1. Parallel DEM algorithm

The parallel algorithm (Figure 1) is designed as
follows. Initially, the pre-processor generates particles.
The master processor divides the three-dimensional
domain into the approximately equal subdomains
containing a roughly equal number of particles. Pa-
rallel planes are employed to achieve this purpose.
Then, the generated particles are assigned to relevant
processors, while the particle data are distributed by
using MPI calls. Thus, the initial domain decompo-
sition including interprocessor communication is fi-
nished.

The main CPU time-consuming computational
procedures of the DEM software are time integration
and computation of contact forces, including contact
detection. These intensive tasks are performed by the
workers including the zero MPI process, which also
serves as the master. The implemented domain decom-
position perfectly parallelizes time integration perfor-
med in the time loop without any interprocessor
communication. Each processor computes Gear’s
predictor and Gear’s corrector independently by using
locally stored data. Fast contact detection based on a
parallel version of the cell algorithm presents more
challenge because it requires interprocessor communi-
cation. Some neighbouring cells of the processed cell
may belong to another processor. The processors need
to exchange the information about the particles, which
are near the division boundaries in the nearby
subdomains.

The communication between workers is designed
as follows. The initial portion of communications is
performed after completing the Gear’s predictor step,
when the processors exchange particles as they move
from one subdomain to another. This interprocessor
communication is optional, requiring sending-receiv-
ing a small amount of data. However, it needs exten-
sive manipulation on the data structures. It is worth
noting that the conventional codes based on the con-
tinuum approach do not perform the described com-
munication. The main portion of communications is
performed to exchange particle data from the cells
near the division boundaries. The employed commu-
nication model is created for grid networks. The
received particle co-ordinates are placed as contiguous
data directly into the arrays containing local particles.
No time is spent for rearranging the data, except for
creating the buffered messages for interprocessor
communication. The inherent synchronisation of this
message passing algorithm ensures good performance
of parallel computation on the distributed memory PC
clusters. The communications are performed by the
non-blocking MPI routines MPI_ISEND and MPI_
IRECV, which significantly improve parallel efficien-
cy of the code.

However, during hopper discharge simulation par-
ticles move through the whole computational domain,
dramatically change the initial workload configuration
and cause significant load imbalance. Thus, dynamic
load balancing algorithm becomes necessary in case of
complex hopper flows. A universal algorithm

Dynamic Domain Decomposition Applied to Hopper Discharge Simulation by Discrete Element Method

289

performing the dynamic load balancing presents some
challenges due to a complex code structure, program-
ming efforts and computational costs. A fast and
simple iterative algorithm based on moving planes
(Figure 2) is implemented to achieve satisfactory load
balancing. During the analysis, the particles move
from one subdomain to another. Significantly different
numbers of particles in the subdomains indicate the
load imbalance, but the precise load can be evaluated
measuring time of computations performed by each
processor. The load coefficients representing the time
consumed per particle computations are calculated for
each subdomain. Thus, the global load can be
evaluated multiplying numbers of particles in subdo-
mains by relevant load coefficients. The user controls
the allowable load imbalance by specifying predefined
percentage. New decomposition is performed, when
the load change in any subdomain reaches a predefi-
ned value. The positions of planes are iteratively ad-
justed in such a way that the number of particles
multiplied by load coefficients in each subdomain
would be as close as possible to the average value.
However, during the dynamic decomposition, particles
and their data should be exchanged between the pro-
cessors, which insignificantly increases the overall
communication time.

Figure 2. Dynamic domain decomposition

4. Numerical results and discussions

The hopper discharge computations and parallel
speed-up measurements were performed on Vilnius
Gediminas Technical University cluster VILKAS
(Rocks Cluster, CentOS release 5.4, x86_64 architec-
ture) based on multi-core architecture. The cluster
consists of 23 nodes including Intel® Core2Quad
Q6600 2.40GHz CPU (2x4MB L2 cache and bus fre-
quency equal 1067 MHz), 4x1GB DDR2 800 RAM,
320GB HDD (SATA II Extensions and 16 MB cache).
Nodes are connected to 1Gbps Ethernet LAN by D-
Link DGS 1224T Gigabit Smart Switch (24-Ports
10/100/1000Mbps Base-T Module).

4.1. Hopper discharge simulation

The problems associated with handling flow of
granular materials in hoppers are of great significance
in pharmaceutical, food, cement and chemical indust-
ries. The challenges relevant to particle segregation,
the effects of granular material vibration, attrition, for-
mation of blockage or erratic flow zones, dust ex-
plosions and wall collapses are encountered during the
operation period of hoppers. The discrete approach
enables simulation of the dynamical behaviour of
granular material by direct introspection of physical
effects of individual particles on the resulting beha-
viour of flowing granular material.

Figure 3. Geometry of the hopper discharge problem

The hopper discharge actually means the flow of
the particles and their falling from the hopper due to
the opening of the orifice. The configuration of hopper
is presented in Figure 3. The rigid container walls are
considered to be fixed frictional boundaries. The di-
mensions of the orifice are 40 x 40 mm.

Granular material is modelled as the assemblies of
non-cohesive spherical particles N = 100000 and
N = 300000. The particle radii Ri varying over the
range from 1.95 to 2.35 mm are generated with uni-
form distribution. The total volume V of the material
is equal to V = 5.28�10-4 m3 for N = 1�105 particles and
V = 1.584�10-3 m3 for N = 3�105 particles. Elasticity
modulus of the particle is equal to E = 1�106 Pa, the
restitution coefficient is equal to 0.5. Interparticle fric-
tion is characterized by the friction coefficient � = 0.4.
Material parameters for particle-wall interactions are
assumed to be the same as those used for describing
the interparticle relations.

The initial state of the particulate material was
generated numerically by simulating the process of
filling. The state of hopper at 0.5 s after the opening of
orifice is showed in Figure 3. The particles were
initially coloured depending on the layer. The picture
allows us to follow the entire particles’ flow structure
and their interlayer migration as well as detecting a
zone of intensive mixing.

D. Markauskas, A. Ka�eniauskas, A. Maknickas

290

4.2. Parallel performance analysis

The parallel performance of computations was
evaluated by measuring the speed-up Sp

p
p t

tS 1� , (5)

where t1 is the program execution time for a single
processor; tp is the wall clock time for a given job to
execute on p processors. The benchmark tests are
repeated up to ten times and the averaged values are
presented in figures. The parallel performance tests
carried out on the PC cluster VILKAS are presented in
Figure 4 and Figure 5. The speed-up (5) gained rela-
tive to a sequential run as a function of the number of
processors is shown for the systems consisting of
100000 and 300000 particles.

Figure 4. Speed-up measured performing static domain
decomposition and dynamic domain decomposition

Figure 5. Parallel speed-up measured simulating the large
system consisting of 300000 particles

Figure 4 shows quantitative comparison of speed-
ups measured performing static domain decomposi-
tion and dynamic domain decomposition of the hopper
containing N = 100000 particles. It is well known fact
that Intel® Core2Quad processors lack sufficient
parallel performance, when four memory intensive
processes are executed per node. Thus, speed-ups (5)
attained executing four processors per node are

compared with those executing two processors per
node in order to illustrate this phenomenon. The
curves “DDD-2” and “DDD-4” represent speed-ups of
dynamic domain decomposition obtained by running
two processes per node and four processes per node,
respectively. The curves “SDD-2” and “SDD-4” repre-
sent speed-ups of static domain decomposition measu-
red by executing two processes per node and four
processes per node, respectively. The special curve
“Ideal” illustrates the ideal speed-up. The hopper solu-
tion domain can easily be divided to four subdomains
neglecting the dynamic character of particle flow.
Therefore, very close values of speed-up are measured
for four processes. The satisfactory static subdivision
of the hopper domain to eight or more subdomains is
more challenging or even impossible. Thus, the dyna-
mic domain decomposition significantly outperforms
the static decomposition. When the number of proces-
ses is small and two processes run per node (the curve
“DDD-2”), the measured speed-up is close to linear.
The reduction of the speed-up owing to communica-
tion overhead is obtained for 16 processes. The paral-
lel speed-up is largely determined by the ratio of local
computations over interprocessor communications. As
the number of processors increases, for a fixed prob-
lem size, the communication cost eventually become
dominant over the local computation cost.

Figure 5 shows parallel speed-up measured simu-
lating larger system consisting of 300000 particles. It
is difficult to simulate this system by using one pro-
cess, because of long computing time. A slight reduc-
tion of the speed-up is obtained by using 48 processes,
because of the limited decomposition topology leading
to communication overhead. The direct comparison of
the measured speed-up with the results of other
authors seems to be complicated, because of different
hardware platforms and software implementations.
Despite of that, the parallel speed-up reported in the
present paper can compete with that reported in the
overviewed literature. The presented results show that
the implemented dynamic domain decomposition is
well designed for simulation of hopper discharge on
the PC clusters.

Figure 6. Load balance evaluated measuring
simulation time of one time step

Dynamic Domain Decomposition Applied to Hopper Discharge Simulation by Discrete Element Method

291

Figure 7. Time variation of the number of particles
per processor

A highly efficient parallel implementation requires
a well balanced workload among the processors.
Figure 6 shows the dynamic load balance achieved by
using four processors. The total workload increases
slightly while particles rapidly change their positions.
It can be explained by the fact that, initially, arrays of
the particle data are ordered according to neighbour-
hood of the particles. This procedure was not repeated
during computations, therefore, large changes of par-
ticles’ positions lead to the cache miss. Figure 7 plots
the time variation of the number of particles per pro-
cessor. The workload is well balanced while proces-
sors work on very different numbers of particles.
Comparison of these figures shows that the workload
cannot directly be defined by the number of particles.

The discussed phenomena can be explained by the
fact that the amount of computations strongly depends
on the number of contacts between particles. Figure 8
plots time variation of particles’ contacts, while Figure
9 illustrates the hopper discharge at different time
instances. At the beginning of computations, it is dif-
ficult to balance the workload, because particles fall
from the hopper and reach the bottom (Figure 9a).
Thus, the number and the character of the contacts
changes very quickly (Figure 8). At t=0.7s all falling
particles belong to the upper subdomains (Figure 9b),
which leads to the small number of contacts and the
large number of particles. Figure 9c illustrates the
moment when all particles are in the lower box. It is
clear that at t=1.2s smaller number of particles and
larger number of contacts are in the lower
subdomains. Finally, it can be concluded that the
number of particles is inversely proportional to the
number of contacts in the processor, which leads to the
balanced workload.

Figure 8. Time variation of particles’ contacts

a) b)

c)
Figure 9. Hopper discharge simulated by 4 processors:

(a) t=0.2s, (b) t=0.7s, (a) t=1.2s

5. Conclusions

In this paper, the development of parallel DEM
software based on dynamic domain decomposition is
described. The developed dynamic load balancing is
applied to simulate the complex hopper discharge
problem on the PC clusters. The quantitative compa-
rison of the speed-ups measured performing static
domain decomposition and dynamic domain decom-
position is presented. Parallel speed-up analysis re-
veales that the developed dynamic decomposition is
able to ensure proper load balancing and to simulate
the challenging hopper discharge problem on the com-
puter clusters based on multi-core architecture. Perfor-
med investigation shows that workload is dependent

D. Markauskas, A. Ka�eniauskas, A. Maknickas

292

on the granular flow character. Moreover, the load ba-
lance is significantly influenced by the number of
contacting particles.

References
 [1] R. Balevi�ius, R. Ka�ianauskas, A. Džiugys,

A. Maknickas, K. Vislavi�ius. DEMMAT code for
numerical simulation of multi-particle systems dyna-
mics. Information Technology and Control, 2005,
Vol. 34(1), 71–78.

 [2] P.W. Cleary. Industrial particle flow modelling using
discrete element method. Engineering Computations,
2009, Vol. 26(6), 698–743.

 [3] P.A. Cundall, O.D.L. Strack. A discrete numerical
model for granular assemblies. Geotechnique, 1979,
Vol. 29(1), 47–65.

 [4] C.H. Dowding, O. Dmytryshyn, T.B. Belytschko.
Parallel processing for a discrete element program.
Computers & Geotechnics, 1999, Vol. 25(4), 281–285.

 [5] F. Fleissner, P. Eberhard. Parallel load-balanced si-
mulation for short-range interaction particle methods
with hierarchical particle grouping based on ortho-
gonal recursive bisection. Int. J. Numerical Methods in
Engineering, 2008, Vol. 74(4), 531–553.

 [6] G. Frenning. An efficient finite/discrete element pro-
cedure for simulating compression of 3D particle
assemblies. Computer Methods in Applied Mechanics
and Engineering, 2008, Vol. 197(49–50), 4266–4272.

 [7] T.J. Goda, F. Ebert. Three-dimensional discrete ele-
mentsimulations in hoppers and silos. Powder
Technology, 2005, Vol. 158(1–3), 58–68.

 [8] K. Han, Y.T. Feng, D.R.J. Owen. Performance com-
parisons of tree-based and cell-based contact detection
algorithms. Engineering Computations: Int. J. Compu-
ter-Aided Engineering and Software, 2007, Vol. 24(2),
165–181.

 [9] B. Hendrickson, K. Devine. Dynamic load balancing
in computational mechanics. Computer Methods in
Applied Mechanics and Engineering, 2000,
Vol. 184(2–4), 485–500.

[10] B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl.
GROMACS 4: algorithms for highly efficient, load-
balanced, and scalable molecular simulation. J. Che-
mical Theory and Computation, 2008, Vol. 4(3), 435–
447.

[11] J. Hutter, A. Curioni. Dual-level parallelism for ab
initio molecular dynamics: reaching teraflop perfor-
mance with the CPMD code. Parallel Computing,
2005, Vol. 31(1), 1–17.

[12] A. Jabbarzadeh, J.D. Atkinson, R.I. Tanner. A pa-
rallel algorithm for molecular dynamics simulation of
branched molecules. Computer Physics Communica-
tions, 2003, Vol. 150(2), 65–84.

[13] A. Ka�eniauskas, R. Pacevi�, A. Bugajev, T. Katke-
vi�ius. Efficient visualization by using ParaView
software on BalticGrid. Information Technology and
Control, 2010, Vol. 39(2), 108–115.

[14] R. Ka�ianauskas, A. Maknickas, A. Ka�eniauskas,
D. Markauskas, R. Balevi�ius. Parallel discrete ele-
ment simulation of poly-dispersed granular material.
Advances in Engineering Software, 2010, Vol. 41(1),
52–63.

[15] H. Kruggel-Emden, S. Rickelt, S. Wirtz, V. Sche-
rer. A numerical study on the sensitivity of the
discrete element method (DEM) for hopper discharge.
J. Pressure Vessel Technology, 2009, Vol. 131(3),
031211.

[16] J.W. Landry, G.S. Grest, S.J. Plimpton. Discrete
element simulations of stress distributions in silos:
crossover from two to three dimensions. Powder tech-
nology, 2004, Vol. 139(3), 233–239.

[17] A. Maknickas, A. Ka�eniauskas, R. Ka�ianauskas,
R. Balevi�ius, A. Džiugys. Parallel DEM software for
simulation of granular media. Informatica, 2006,
Vol. 17(2), 207–224.

[18] D. Markauskas, R. Ka�ianauskas, A. Džiugys,
R. Navakas. Investigation of adequacy of multi-
sphere approximation of elliptical particles for DEM
simulations. Granular Matter, 2010, Vol. 12(1), 107–
123.

[19] D.R.J. Owen, Y.T. Feng. Parallelized finite/discrete
element simulation of multi-fracturing solids and
discrete systems. Engineering Computations, 2001,
Vol. 18(3–4), 557–576.

[20] D.R. Parisi, S. Masson, J. Martinez. Partitioned dis-
tinct element method simulation of granular flow
within industrial silos. ASCE J. Engineering Mecha-
nins, 2004, Vol. 130(7), 771–779.

[21] S. Plimpton. Fast parallel algorithms for short range
molecular dynamics. J. Computational Physics, 1995,
Vol. 117(1), 1–19.

[22] C.A. Radeke, B.J. Glasser, J.G. Khinast. Large-
scale powder mixer simulations using massively pa-
rallel GPU architectures. Chemical Engineering
Science, 2010, Vol. 65(24), 6435–6442.

[23] M. Renouf, F. Dubois, P. Alart. A parallel version of
the non smooth contact dynamics algorithm applied to
the simulation of granular media. J. Computational
and Applied Mathematics, 2004, Vol. 168(1-2),
375-382.

[24] B.C. Schäfer, S.F. Quigley, A.H.C. Chan. Accelera-
tion of discrete element method (DEM) on a recon-
figurable co-processor. Computers & Structures, 2004,
Vol. 82(20-21), 1707–1718.

[25] J.H. Walther, I.F. Sbalzarini. Large-scale parallel
discrete element simulations of granular flow. Engi-
neering Computations, 2009, Vol. 26(6), 688–697.

[26] F. Wang, Y.T. Feng, D.R.J. Owen, J. Zhang,
Y. Liu. Parallel analysis of combined finite/discrete
element systems on PC cluster. Acta Mechanica Sini-
ca, 2004, Vol. 20(5), 534–540.

[27] D. Zhang, C. Jiang, S. Li. A fast adaptive load ba-
lancing method for parallel particle-based simulations.
Simulation Modelling Practice and Theory, 2009,
Vol. 17(6), 1032–1042.

[28] H.P. Zhu, Z.Y. Zhou, R.Y. Yang, A.B. Yu. Discrete
particle simulation of particulate systems: theoretical
developments. Chemical Engineering Science, 2007,
Vol. 62(13), 3378–3396.

[29] H.P. Zhu, Z.Y. Zhou, R.Y. Yang, A.B. Yu. Discrete
particle simulation of particulate systems: A review of
major applications and findings. Chemical Enginee-
ring Science, 2008, Vol. 63(23), 5728–5770.

Received December 2010.

