
ISSN 1392–124X INFORMATION TECHNOLOGY AND CONTROL, 2011 Vol. 40, No. 4

COMPARATIVE PERFORMANCE OF THREE METAHEURISTIC APPROACHES

FOR THE MAXIMALLY DIVERSE GROUPING PROBLEM

Gintaras Palubeckis

Multimedia Engineering Department, Kaunas University of Technology
Studentu St. 50, LT-51368 Kaunas, Lithuania

E-mail: gintaras@soften.ktu.lt

Eimutis Karčiauskas

Software Engineering Department, Kaunas University of Technology
Studentu St. 50, LT-51368 Kaunas, Lithuania

E-mail: eimutis.karciauskas@ktu.lt

Aleksas Riškus

Multimedia Engineering Department, Kaunas University of Technology
Studentu St. 50, LT-51368 Kaunas, Lithuania

E-mail: aleksas@soften.ktu.lt

Abstract. Given a set of elements and a symmetric matrix representing dissimilarities between them, the maximally
diverse grouping problem asks to find a partitioning of the elements into a fixed number of restricted size-groups such that the
sum of pairwise dissimilarities between elements in the same group is maximized. We present multistart simulated annealing,
hybrid genetic and variable neighborhood search algorithms for solving this problem. We report on computational experiments
that compare the performance of these algorithms on benchmark instances of size up to 2000 elements.

Keywords: combinatorial optimization; maximally diverse grouping; metaheuristics; simulated annealing; genetic
algorithm; variable neighborhood search.

1. Introduction

The maximally diverse grouping problem (MDGP
for short) is the problem of partitioning a set of ele-
ments into a given number of pairwise disjoint subsets
called groups, such that the groups are bounded in
size and are as diverse as possible. It can be stated as
follows. Suppose there is a set V of n elements to be
grouped. Let D = (dij) be an n×n symmetric matrix
with zero main diagonal and nonnegative off-diagonal
entries. It is assumed that dij , i, j ∈ {1, . . . , n},
i �= j, summarizes the dissimilarity between element
i and element j. Additionally, suppose that the set V
is partitioned into m groups, each of size at least a and
at most b. Then the MDGP can be stated as follows:

maximize F =
m∑

k=1

n−1∑

i=1

n∑

j=i+1

dijxikxjk (1)

m∑

k=1

xik = 1, i = 1, . . . , n, (2)

a �
n∑

i=1

xik � b, k = 1, . . . , m, (3)

xik ∈ {0, 1}, i = 1, . . . , n, k = 1, . . . , m. (4)

In this formulation, the binary variable xik is equal to
1 if and only if element i is assigned to group k. Con-
straints (2) guarantee that each element belongs to a
unique group and constraints (3) enforce each group
to be of a specified size.

One of the most studied applications of the
MDGP is the assignment of students to groups [2, 6,
18,20–22]. In this context, the goal is to create diverse
groups of students, where the diversity is measured
on the basis of the dissimilarity matrix D. Also, sev-
eral other applications of the MDGP have been iden-
tified in the literature. These include exam schedul-
ing [10, 21], the construction of reviewer groups [4],
the assignment of employees to project teams [2], and
VLSI design [20, 21].

It can be seen that the model (1)–(4) is a spe-
cial case of the binary quadratic optimization problem
(BQOP), as formulated, for example, in [16]. In this
case, the underlying set of elements is S = {(i, k) |
i = 1, . . . , n, k = 1, . . . , m}. The feasible region of
the problem is a certain subset of the power set of
S. Using binary variables, this subset is specified by

277

http://dx.doi.org/10.5755/j01.itc.40.4.977

http://dx.doi.org/10.5755/j01.itc.40.4.977

the constraints (2) and (3). The coefficients of the ob-
jective function (1) are assigned to pairs of elements
in S in one-to-many fashion. The most widely stud-
ied cases of the BQOP include unconstrained binary
quadratic programming, the maximum diversity prob-
lem [3, 5, 12, 14], and the Max-2-SAT problem [15].
Actually, the MDGP is a generalization of the maxi-
mum diversity problem. Indeed, the latter is obtained
from the MDGP by setting m = 1 and removing
the constraint (2). Then the variables xik and xjk can
be replaced by the variables xi and xj , respectively.
Moreover, since all the entries of the matrix D are
nonnegative, the first inequality in (3) is redundant
and the second one transforms into an equality.

The MDGP is an NP-hard problem and is dif-
ficult to solve. The application of exact methods to
larger instances of the MDGP is unduly time con-
suming. Therefore, heuristic algorithms have been de-
veloped for finding good but not necessarily optimal
solutions. Perhaps the simplest heuristic techniques
for the MDGP are the so-called construction algo-
rithms. An algorithm of this type starts with a set of
empty groups and constructs an assignment by adding
one or more elements to groups at a time. Such algo-
rithms were given in [13, 18]. The construction algo-
rithms are very fast but, however, the quality of solu-
tions produced by them is generally unsatisfactory. A
quite different approach to the MDGP is to use itera-
tive improvement algorithms. There are several algo-
rithms of this type developed in the past [1,10,19,21].
The results of computational testing presented in [21]
have shown the superiority of the algorithm suggested
in [19]. Recently, Fan et al. [6] proposed a hybrid ge-
netic algorithm (GA) for solving the MDGP. In their
approach, they used a specific crossover and a related
encoding scheme. The GA was hybridized with a lo-
cal search procedure. However, this procedure makes
only one pass through the elements and thus it does
not guarantee that the returned solution is locally op-
timal (see the appendix in [6]). Hence, the power of
local search is exploited insufficiently.

In the current paper, we investigate computation-
ally the applicability of three quite different meta-
heuristics to the MDGP, namely, simulated annealing,
genetic algorithm and variable neighborhood search.
The latter was selected as a representative of a group
of non-evolutionary metaheuristics based on the local
search (LS) technique. Our genetic algorithm is hy-
bridized with an effective LS procedure. The empiri-
cal results summarized in this paper were obtained by
testing the developed algorithms on the dissimilarity
matrices taken from the literature.

The remainder of this paper is structured as fol-
lows. In Sections 2 to 4, we describe simulated an-

nealing, hybrid genetic and variable neighborhood
search algorithms, respectively. In Section 5, we re-
port the results of numerical experiments comparing
these algorithms. Finally, Section 6 ends the paper
with a few concluding remarks.

2. Simulated annealing

The simulated annealing (SA) technique is a
metaheuristic search method exploiting an analogy
between the physical process of annealing and the
process of searching for the global extremum of a
function. During annealing, a material is first heated
up to a very high temperature and then slowly cooled
down to obtain a minimum-energy crystalline struc-
ture. The simulated annealing metaheuristic mimics
this process by generating a sequence of solutions that
eventually converges to the optimum of the objective
function.

Before presenting the SA algorithm for the MDGP,
we introduce some necessary notations. We will use
P = (V1, . . . , Vm) to denote a feasible solution to the
problem. Certainly, if the same solution is represented
by a 0-1 vector (xik | i = 1, . . . , n, k = 1, . . . , m)
satisfying (2) and (3), then Vk = {i ∈ V | xik = 1},
k = 1, . . . , m. We denote by F (P) the value of
the objective function F for a solution P . Suppose
that elements i and j belong to different groups of
P . Then by interchanging the elements i and j we
get a new feasible solution to the problem. We de-
note it by P (i, j). The set of all solutions obtained
from P in this way is the pairwise interchange (or
2-interchange) neighborhood N2(P) of P . Suppose
now that a < b in (3). Consider an element i ∈ Vr

and a group Vk, k �= r. If |Vr| > a and |Vk| < b, then
the solution obtained from P by relocating the ele-
ment i from group Vr to group Vk is a feasible one.
Let this particular solution be denoted by Pk(i). All
such solutions constitute the relocation neighborhood
N1(P) of P .

In order to efficiently compute the difference be-
tween the values of the objective function at the so-
lutions P (i, j) (or Pk(i)) and P , we use an auxil-
iary n × m matrix C = (cqk). Its entry cqk repre-
sents the sum of the dissimilarities between the ele-
ment q and all elements in the group Vk. Formally,
cqk =

∑
s∈Vk

dqs. Assume that i ∈ Vr and j ∈ Vl.
Then, using C, we can write

Δ(P, i, j) := F (P (i, j)) − F (P) =
= cil − cir + cjr − cjl − 2dij ,

(5)

δ(P, i, k) := F (Pk(i)) − F (P) = cik − cir. (6)

At each iteration of the SA algorithm, the choice be-
tween selecting a solution P (i, j) from the neighbor-

G. Palubeckis, E. Kar�iauskas, A. Riškus

278

hood N2(P) or a solution Pk(i) from the neighbor-
hood N1(P) is made probabilistically. For that pur-
pose, the algorithm is supplied with a probability pa-
rameter p. Other parameters include the cooling rate
α, the minimum temperature tmin, and the repetition
factor R0. Typically, tmin is fixed at a very small
positive number. The maximum temperature, tmax,
is set to the largest absolute value of Δ(P, i, j) over
a sample of solutions randomly drawn from the 2-
interchange neighborhood N2(P) of a randomly gen-
erated initial solution P .

The computation time of the SA algorithms
largely depends on the cooling rate as well as on the
repetition factor. However, the stopping rule based
on these parameters is not suitable when we want to
fairly compare the performance of the SA algorithm
with that of other approaches for the MDGP. A uni-
versal termination rule is to stop an algorithm after a
prescribed time period has elapsed. We adopted this
rule in our computational study. In order to be able to
apply it in the case of SA, we execute the simulated
annealing procedure repetitively. The main algorithm,
called MSA (Multistart Simulated Annealing), can be
stated as follows.

MSA

1. Randomly generate an initial solution P to the
given instance of the MDGP. Initialize P ∗ with
P and F ∗ with F (P).

2. Compute tmax = max{|Δ(P, i, j)| | P (i, j) ∈
Q}, where Q is a set of solutions randomly se-
lected from the neighborhood N2(P). Set T :=
�(log(tmin) − log(tmax))/ log α�, and R :=
R0n.

3. Apply SA(P , P ∗, F ∗, tmax, T , R, α).

4. Check if the termination condition is satisfied. If
so, then stop with the solution P ∗ of value F ∗.
If not, then randomly generate a new starting so-
lution P for SA and return to 3.

Our implementation of Step 1 of MSA is based
on using a randomly generated permutation of ele-
ments. Suppose, for simplicity, that z = n/m is an
integer number. The algorithm splits the permutation
into m equally sized parts. Specifically, the first z el-
ements are assigned to the first group, the next z ele-
ments are assigned to the second group, and so on.
The same procedure involving generation of a per-
mutation and splitting it into m parts is used also in
Step 4. The purpose of Step 2 is to prepare the pa-
rameters to be passed to the simulated annealing al-
gorithm. These parameters are the maximum temper-
ature tmax, the number of temperature reductions T ,

and the number of solutions evaluated at a tempera-
ture level (denoted by R). The size of the set Q in
our experiments was fixed at 1000. Throughout both
MSA and simulated annealing procedure SA, the best
solution found so far is denoted by P ∗ and its value by
F ∗. The procedure SA can be described as follows.

SA(P, P ∗, F ∗, tmax, T, R, α)

1. Initialize f with F (P), t with tmax and K with
1.

2. Set L := 1.

3. With probability p go to 5, otherwise go to 4.

4. Randomly select elements i and j such that
P (i, j) ∈ N2(P). Compute h = Δ(P, i, j) by
equation (5). Set P ′ := P (i, j). If h � 0, then
go to 7. Otherwise go to 6.

5. Randomly select an element i and group Vk such
that Pk(i) ∈ N1(P). Compute h = δ(P, i, k) by
equation (6). Set P ′ := Pk(i). If h � 0, then go
to 7. Otherwise proceed to 6.

6. Randomly draw a number ξ from the uniform
distribution on [0, 1]. If ξ � exp(h/t), then pro-
ceed to 7; else go to 8.

7. Replace P with P ′. Set f := f + h. If f > F ∗,
then set P ∗ := P ′ and F ∗ := f .

8. Increment L by 1. If L � R, then go to 3.

9. Increment K by 1. If K � T , then set t := αt
and go to 2. Otherwise return with P ∗ and F ∗.

The body of SA consists of the initialization step
and two nested loops. In the initialization step, the
temperature is set equal to tmax. The outer loop suc-
cessively modifies the temperature by multiplying it
by the cooling factor α. Each execution of the inner
loop starts with the random selection of the neigh-
borhood of the current solution P . The relocation
neighborhood N1(P) is selected with probability p.
If this does not happen, then the 2-interchange neigh-
borhood N2(P) is used. Such a strategy helps to in-
crease a level of diversification in the search process.
Of course, if a = b in (3), then the probability p must
be forced to zero. The current solution P is compared
with a solution randomly selected from an appropriate
neighborhood. The new solution P ′ is accepted to re-
place P if either it is not worse than P or the condition
defined in Step 6 is fulfilled. When moving from P to
P ′, the matrix C needs to be updated. Suppose that
P ′ = P (i, j). Furthermore, let us assume that i ∈ Vr

and j ∈ Vl. Then the formulas used for q ∈ V \{i, j}
are: cqr := cqr+dqj−dqi, cql := cql+dqi−dqj . Also,
dij is added to both cir and cjl and subtracted from

279

�������	
���
����������������������	�����
�	
�����������������	������
�������
�����������
���
�������

both cil and cjr. Similar manipulations are performed
when P ′ = Pk(i). Step 7 also updates the current ob-
jective function value f and, if this value exceeds the
previous best, saves P ′ as the best solution found so
far. It is easy to see that the time complexity of an it-
eration of the inner loop is O(n). The most expensive
operations are done in Step 7 of SA.

3. Hybrid genetic algorithm

One of the techniques that offers an alternative
to traditional search methods working with only one
solution at a time is genetic algorithm (GA). The key
feature of GA is that it works with a population of
individuals representing solutions to a problem. Fre-
quently, in order to make the GA smarter, it is hy-
bridized with a local search procedure. In this sec-
tion, we propose a hybrid genetic algorithm (HGA)
for solving the MDGP. The algorithm includes the
following main steps: creating an initial population,
reproducing offspring, applying local search to off-
spring, and updating the current population. In the
description given below, the population is denoted by
Π and its size by pop_size. For the ease of presenta-
tion, we denote by H = {(l, r) | l, r = 1, . . . , m} the
Cartesian square of the set {1, . . . , m}. The algorithm
can be stated as follows.

HGA

1. (Initialization) Set Π := ∅, λ := 0 and F ∗ :=
−∞. While λ < pop_size do the following:

1.1. Randomly generate a solution P that satis-
fies (3).

1.2. Apply the local search procedure LS to P .
Let P ′ denote the solution returned by it.

1.3. Add P ′ to the population Π. Increment λ
by 1. If F (P ′) > F ∗, then set P ∗ := P ′

and F ∗ := F (P ′).

2. (Parents selection) Randomly choose two indi-
viduals, say P 1 = (V 1

1 , . . . , V 1
m) and P 2 =

(V 2
1 , . . . , V 2

m), from the current population Π.

3. (Mating) Perform the following steps:

3.1. Set W := V .
3.2. Compute elr = |V 1

l ∩ V 2
r | for each pair

(l, r) ∈ H .
3.3. Form a set H∗ of m pairs (l, r) ∈ H such

that elr � euv for each (l, r) ∈ H∗ and
each (u, v) ∈ H \H∗ (in other words, pick
the m largest values elr).

3.4. Let ρ be a one-to-one mapping from {1, . . . , m}
onto H∗. For each k ∈ {1, . . . , m}, set
Vk := V 1

l ∩ V 2
r , where (l, r) = ρ(k).

Remove all elements of each Vk, k ∈
{1, . . . , m}, from W .

3.5. For each group Vk of size less than a, per-
form the following steps:
3.5.1. Assuming that ρ(k) = (l, r), form

the set Uk = (V 1
l ∪ V 2

r) ∩ W .
3.5.2. If |Uk| � g := a − |Vk|, then

add all the elements of Uk to Vk. Oth-
erwise, randomly select g elements
from the set Uk and add them to Vk.
In both cases, remove the added ele-
ments from the set W .

3.6. For each group Vk of size less than a, ran-
domly select a−|Vk| elements from the set
W and move them from W to Vk.

3.7. If the set W is empty, then go to 4. Other-
wise, for each element i ∈ W , perform the
following steps:
3.7.1. Identify the groups V 1

l ∈ P 1 and
V 2

r ∈ P 2 the element i belongs to.
3.7.2. Consider the groups Vu, u ∈ {1, . . . , m},

satisfying the following two condi-
tions: 1) |Vu| < b; 2) either l = l′ or
r = r′, where (l′, r′) = ρ(u). If such
groups exist, then randomly select one
of them and move the element i from
the set W to this selected group.

3.8. If the set W is empty, then go to 4. Oth-
erwise, for each element i ∈ W , perform
the following operations. Randomly select
a group Vk such that |Vk| < b. Assign i to
Vk.

4. (Local search) Apply the local search procedure
LS to the offspring P = (V1, . . . , Vm) con-
structed in the previous step. Let P ′ denote the
solution returned by LS.

5. (Offspring evaluation) Check whether F (P ′) >
F ∗. If so, then set P ∗ := P ′ and F ∗ := F (P ′).
Accept the offspring P ′ only if it is not worse
than the worst individual in the current popula-
tion Π. In such a case, replace the worst individ-
ual in Π by P ′.

6. Check if the termination condition is satisfied. If
so, then stop with the solution P ∗ of value F ∗.
If not, then return to 2.

In the initialization phase of HGA, a starting pop-
ulation of individuals is created. Random solutions to
the problem are generated using precisely the same
mechanism as in Step 1 of MSA. These solutions are
improved by a local search procedure and gathered
to form the initial population Π. Thus, already at the

G. Palubeckis, E. Kar�iauskas, A. Riškus

2��

start of the evolution phase, Π entirely consists of lo-
cally optimal solutions. A member of Π with the max-
imum objective function value is saved as the best so-
lution found so far. This solution is denoted by P ∗

and its value by F ∗. Each iteration of the evolution
process starts by choosing two individuals from Π,
called parents. In our implementation of the genetic
algorithm, they are selected randomly. From the se-
lected parents, an offspring is generated. This is done
in Step 3 of HGA. There, the offspring is denoted
by (V1, . . . , Vm). The groups Vk, k = 1, . . . , m, are
initialized with seeds formed in Steps 3.2–3.4. Actu-
ally, each seed is obtained as the result of a set in-
tersection operation on two groups, one from each of
the two parents. Each such pair of groups is evalu-
ated by calculating the number of common elements.
For V 1

l ∈ P 1 and V 2
r ∈ P 2, this number is denoted

by elr. It is natural to favor pairs of groups with the
greatest value of this quantity. When selecting m such
pairs (Step 3.3), ties are broken at random. In Step 3
of the algorithm, W stands for the set of elements that
are not yet assigned to groups Vk, k = 1, . . . , m. This
set is gradually reduced and finally emptied by per-
forming a sequence of steps.

Usually all or almost all groups Vk, k = 1, . . . , m,
after initialization contain less than a elements. The
minimum required size of each group is achieved in
Steps 3.5 and 3.6. First, for each group Vk = V 1

l ∩V 2
r

such that |Vk| < a, an attempt is made to enlarge it
by adding some still unassigned elements from either
V 1

l or V 2
r . After this operation, the group Vk still may

violate the size lower bound. All such groups are ex-
panded to the required size in Step 3.6 using the ran-
dom selection rule.

Steps 3.7 and 3.8 of HGA are needed to deal with
the case of a < b. The elements of W are distributed
to groups in two passes. In the first pass, the algorithm
strives to assign element i ∈ W to a group which is
constructed starting from the seed V 1

l′ ∩ V 2
r′ such that

i belongs either to V 1
l′ or V 2

r′ . In the second pass, each
unassigned element, if any, is moved to a randomly
selected group of size less than b. Certainly, if a = b,
Steps 3.7 and 3.8 are skipped.

The produced offspring is submitted to a local
search procedure for possible improvement. In fact,
this procedure can be regarded as a kind of mutation
operator. In Step 5, the population Π is updated by
replacing the worst individual in Π by the offspring,
unless the latter is worse than all members of Π. The
evolution process is stopped when the same termina-
tion criterion (based on the CPU clock) as in the case
of SA is met.

The described algorithm makes multiple calls to
a local search heuristic LS. There are various ways to

implement it for the MDGP. The notable features of
our implementation are the following: first, LS per-
forms an exploration of both the relocation neigh-
borhood N1 and the 2-interchange neighborhood N2;
second, the search is stochastic by nature, that is, LS
considers elements (and groups) in the order given by
a random permutation. The LS procedure consists of
the following steps.

LS(P)

1. Randomly generate a permutation of elements,
denoted by (β(1), . . . , β(n)), and a permutation
of groups, denoted by (γ(1), . . . , γ(m)). Initial-
ize f with F (P).

2. For i′ = 1, . . . , n do the following:

2.1. Set i := β(i′). Let Vr be the group the el-
ement i belongs to. If |Vr| = a, then go
to 2.3. Otherwise proceed to 2.2.

2.2. For k′ = 1, . . . , m do the following:
2.2.1. Set k := γ(k′). If k �= r and |Vk| <

b, then go to 2.2.2. Otherwise repeat
from 2.2.1 for the next value of k′.

2.2.2. Compute h = δ(P, i, k) by equa-
tion (6). If h > 0, then set P̃ := Pk(i)
and go to 3.

2.3. For j′ = i′ + 1, . . . , n do the following:
2.3.1. Set j := β(j′). If j ∈ Vr, then re-

peat from 2.3.1 for the next value of
j′. Otherwise proceed to 2.3.2.

2.3.2. Compute h = Δ(P, i, j) by equa-
tion (5). If h > 0, then set P̃ :=
P (i, j) and go to 3.

3. If h � 0, then return with the solution P of value
f . Otherwise, replace P with P̃ , set f := f + h,
and go to 2.

At each iteration of LS, both the neighborhood
N1 and the neighborhood N2 are explored (respec-
tively, in Steps 2.2 and 2.3). The result of the relo-
cating operation is evaluated only for elements in the
groups of size exceeding a. Of course, such an ele-
ment is allowed to be moved to groups of size less
than b only. Obviously, if a = b, then Step 2.2 is
bypassed. Step 2.3 evaluates pairwise interchanges
of elements. The increase in the objective function
value, denoted by h, is calculated using formula (5).
If h > 0 in Step 3, then LS starts the search for an
improving interchange or relocation from the begin-
ning. Upon termination, LS returns a locally optimal
solution with respect to both neighborhoods N1 and
N2.

We note that the pure genetic algorithm can be
obtained from HGA simply by removing Step 4. In

2�

�������	
���
����������������������	�����
�	
�����������������	������
�������
�����������
���
�������

this case, the local search procedure is used solely as
a tool for improving individuals in the initial popula-
tion.

4. Variable neighborhood search

In this section, we describe an implementation
of the variable neighborhood search (VNS) algo-
rithm for solving the MDGP. The VNS metaheuristic
is a general-purpose optimization method combining
neighborhood change mechanism with local search
technique. In recent years, algorithms based on the
VNS framework have been successfully applied to a
variety of optimization problems. The basic schemes
of the approach and typical applications are reviewed
in [7–9].

Before presenting our VNS algorithm, we first
define the r-th neighborhood of a solution to the
considered problem. Given such a solution P =
(V1, . . . , Vm), let l(i, P) be the index of the group
containing element i ∈ V . Thus, if i ∈ Vk, then
l(i, P) = k. Let Ψ be the set of all solutions to
the MDGP. Then its subset Nr(P) = {P ′ ∈ Ψ |
l(i, P ′) �= l(i, P) for exactly r elements i ∈ V } is
called the r-th neighborhood of P in the search space.
Notice that the neighborhoods N1 and N2 considered
in the previous sections fit this definition.

The developed algorithm comprises initialization
step and three phases executed iteratively: shaking,
local search, and neighborhood change. The system
of neighborhoods used in the algorithm is {Nr}, r ∈
[rmin, rmax]. For the sake of simplicity in the exposi-
tion, we will assume that for any value of r from the
above interval, in the shaking phase, the algorithm al-
ways succeeds in selecting �r/2� pairs of elements
such that elements in the same pair belong to dif-
ferent groups and no element is selected more than
once. Without this assumption, the description given
below should be modified slightly. The algorithm can
be stated as follows.

VNS

1. Randomly generate an initial solution P to the
given instance of the MDGP. Apply the local
search procedure LS to P . Let P ′ denote the so-
lution returned by it. Initialize P ∗ with P ′ and
F ∗ with F (P ′).

2. Set r := rmin.

3. Set P := P ∗ and W := V .

4. Repeat �r/2� times the following steps:

4.1. Randomly select elements i, j ∈ W such
that l(i, P) �= l(j, P) and interchange
them (set P := P (i, j)).

4.2. Remove i and j from W .

5. If either a = b or r is even, then go to 6. Oth-
erwise, search for the element-group pairs (j, u)
such that j ∈ W , l(j, P) �= u, |Vl(j,P)| > a and
|Vu| < b. If no such pair exists, then go to 6. Oth-
erwise, select one at random (let it be denoted
by (i, k)). Move the element i from Vl(i,P) to Vk

(set P := Pk(i)).

6. Apply the local search procedure LS to P . Let
P ′ denote the solution returned by it.

7. Check whether F (P ′) > F ∗. If so, then set
P ∗ := P ′, F ∗ := F (P ′) and r := rmin. If not,
then increase r by rstep.

8. Check if the termination condition is satisfied. If
so, then stop with the solution P ∗ of value F ∗.
Otherwise, if r � rmax, then go to 3; else go
to 2.

Earlier in this section, we did make an assump-
tion regarding the selection of element pairs in the
shaking phase of VNS. If this assumption is aban-
doned, then only a couple of modifications to the de-
scription of VNS should be made. First, in Step 4, it is
needed to check if W ⊆ Vk for some k ∈ {1, . . . , m}.
If this condition is satisfied (which may occur only
when r is very close to n), then the algorithm must
exit from this step. Second, in Step 5, it may hap-
pen that more than one element needs to be moved
from its current group to a randomly selected one. Of
course, Step 5 is executed only if a is less than b.

At the beginning of VNS, the initial assignment
of elements to groups is generated randomly using the
same method as for the SA algorithm. This solution
is improved by applying the local search procedure
LS described in Section 3. The shaking phase consists
of Steps 3 through 5. The algorithm strives to obtain
a solution in the neighborhood Nr(P) by perform-
ing the maximum number of pairwise interchanges of
elements. During this process, W is used to denote
the set of elements that were not involved in the in-
terchange operation. If r is odd and a < b, then, in
addition, one randomly selected element from W is
moved from its current group to a different one. No-
tice that if a = b, then it makes sense to consider
the neighborhoods Nr(P) for even values of r only
(since Step 5 in this case is skipped). The conditions
in Step 5 guarantee that the group to which the se-
lected element i is currently assigned differs from the
target group and, after the move, for both of them, the
size constraints are met. Step 7 implements the neigh-
borhood change principle of the VNS method. If P ′

does not improve the best solution obtained over the
previous iterations, then the value of r is increased. If

G. Palubeckis, E. Kar�iauskas, A. Riškus

2�!

r becomes larger than rmax, the process proceeds to
Step 2, and r is switched to rmin. The parameters of
the algorithm are rmin, rstep and rmax. In our imple-
mentation, we take rmax = r̃n, where r̃ is a number
from the interval [rmin/n, 1]. Thus, essentially, r̃ re-
places rmax in the parameter list.

5. Experimental results

In this section, we report the results of compu-
tational experiments aiming at comparing the perfor-
mance of the algorithms we have described. All the
algorithms have been coded in the C programming
language and all the tests have been carried out on a
PC with an Intel Core 2 Duo CPU running at 3.0GHz.
As a testbed we have chosen two sets of randomly
generated dissimilarity matrices that have been used
in the recent past for empirical evaluation of various
algorithms for solving the maximum diversity prob-
lem (see, for example, [3, 5, 14]). The first set was in-
troduced by Silva et al. in [17]. The second set is one
of the four sets generated by Duarte and Martí [5].
These data can be obtained from the internet (for ex-
ample, [11]).

In the experiments, we have used the follow-
ing parameter setting: α = 0.95, tmin = 0.0001,
R0 = 300, p = 0.3 for MSA; pop_size=100 for
HGA; rmin = 1, r̃ = 0.3, rstep = 1 for VNS.
These parameters were fixed on the basis of prelimi-
nary tests. The results presented in this section were
obtained by performing 10 runs of each algorithm on
each problem instance in the chosen datasets. Maxi-
mum CPU time limits for a run were as follows: 60s
for n = 100, 300s for n = 200, 600s for n = 300,
900s for n = 400, 1800s for n = 500, and 3600s for
n = 2000.

Table 1 summarizes the results of MSA, HGA
and VNS on the Silva instances. Each entry of the
dissimilarity matrix defining an instance in this se-
ries is an integer randomly and uniformly drawn
from the interval [0, 9]. The number of elements n ∈
{100, 200, 300, 400, 500} is included in the name of
an instance (first column in the table). For example,
Silva_100_1 denotes the first (out of four) instance
with 100 elements. The numerical experiment was
conducted for the case where the number of groups m
was fixed at 10. The size of each group was bounded
from below by a = 0.8n/m and from above by
b = 1.2n/m. The second column of Table 1 contains,
for each instance, the value of the best solution ob-
tained from all runs of MSA, HGA and VNS. The
third (respectively, fourth) column shows the differ-
ence between the value displayed in the second col-
umn and the value of the best solution out of 10 runs
(respectively, the average value of 10 solutions) found

by MSA. The remaining columns give these differ-
ences for HGA and VNS. The results, averaged over
all problem instances, are presented in the last row of
the table.

As seen in Table 1, HGA is definitely superior
to both the MSA and VNS algorithms. Basically, the
solutions found by HGA appear to be the best in our
experiment. Compared with the results of HGA, the
MSA and VNS algorithms tie in one and, respec-
tively, three cases and produce inferior solutions in all
other cases. We can also see from Table 1 that VNS
performs better than MSA for instances of size 100
but is worse than MSA for all larger instances in the
dataset. Overall, the ranking of the results from best
to worst is as follows: "Min HGA", "Ave HGA", "Min
MSA", "Ave MSA", "Min VNS", and "Ave VNS".

In Table 2 we show the results obtained for the
Duarte-Martí instances. All the entries dij of the dis-
similarity matrix D for these instances are integers
generated randomly from a uniform distribution be-
tween 0 and 10. We should mention that Duarte and
Martí have generated 20 dissimilarity matrices of size
2000 × 2000. We present the results for the first 10
of them. The results of MSA, HGA and VNS for the
other 10 matrices are very similar to those reported
in Table 2. For our experimentation, we have fixed
the number of groups to 50, the minimum group size
to 0.8n/m = 32, and the maximum group size to
1.2n/m = 48. The structure of Table 2 is the same as
that of Table 1.

From Table 2, we find that, according to solution
quality, the algorithms can be ranked in the reverse or-
der of that observed in the experiment with the Silva
instances. Now VNS is the best-performing algorithm
of the three. Meanwhile, the HGA algorithm shows
the worst performance. After analyzing the results of
the experiment, we found out that the LS procedure
was quite time consuming for the Duarte-Martí in-
stances, especially when applied to a solution that is
far from local optima. This is probably the main rea-
son why the performance of HGA deteriorates sig-
nificantly on large-size instances. When applied to
DM_1, for example, HGA was able to invoke the LS
procedure within the allotted one hour only 332 times
on the average (excluding the calls to LS throughout
the construction of the initial population). For com-
parison, the average number of LS invocations in the
case of the Silva_500_1 instance exceeded 688000.
When solving DM_1 by the VNS algorithm, the aver-
age number of calls to LS was 1748.

We do not present the results of the pure genetic
algorithm, which is obtained from HGA by deleting
Step 4 (see Section 3) where hybridization with local
search occurs. The pure GA generates a huge num-

2�"

�������	
���
����������������������	�����
�	
�����������������	������
�������
�����������
���
�������

Table 1. Results of running MSA, HGA and VNS on the Silva instances (m = 10, a = 0.08n, b = 0.12n)

Instance Best Solution difference

value MSA HGA VNS

Min Ave Min Ave Min Ave

Silva_100_1 3136 13 20.7 0 1.9 2 15.0
Silva_100_2 3215 0 10.3 0 11.3 0 9.5
Silva_100_3 3175 1 13.4 0 3.5 0 11.6
Silva_100_4 3171 6 10.5 0 3.7 0 8.1
Silva_200_1 12167 30 63.1 0 17.8 44 78.5
Silva_200_2 12206 36 59.1 0 7.3 54 92.3
Silva_200_3 12151 34 51.8 0 8.1 43 88.4
Silva_200_4 12282 20 51.6 0 19.3 21 84.2
Silva_300_1 26604 102 136.7 0 39.2 102 193.9
Silva_300_2 26550 87 132.6 0 52.9 157 218.5
Silva_300_3 26565 58 105.3 0 32.4 111 209.9
Silva_300_4 26682 85 109.7 0 31.1 163 223.8
Silva_400_1 46266 170 267.3 0 71.3 332 454.0
Silva_400_2 46295 52 141.1 0 19.7 240 350.5
Silva_400_3 46272 127 214.5 0 53.2 305 400.8
Silva_400_4 46196 142 197.5 0 59.9 219 389.8
Silva_500_1 70955 265 348.5 0 123.2 339 523.1
Silva_500_2 71109 247 291.0 0 83.5 306 523.6
Silva_500_3 71092 208 292.2 0 96.1 351 458.9
Silva_500_4 71027 240 285.2 0 86.3 363 533.3

Average 96.1 140.1 0 41.1 157.6 243.4

Table 2. Results of running MSA, HGA and VNS on the Duarte-Martí instances (n = 2000, m = 50, a = 32,
b = 48)

Instance Best Solution difference

value MSA HGA VNS

Min Ave Min Ave Min Ave

DM_1 269990 1160 1424.4 2665 2823.7 0 588.8
DM_2 270409 1509 1877.9 3060 3246.3 0 908.1
DM_3 269710 768 1121.7 2382 2559.6 0 460.1
DM_4 269790 430 1135.5 2053 2507.4 0 644.1
DM_5 269675 495 1175.1 1983 2455.8 0 365.7
DM_6 269933 877 1225.7 2537 2772.8 0 553.5
DM_7 269781 952 1275.8 2405 2705.8 0 558.9
DM_8 270325 1535 1833.4 2718 3050.6 0 748.5
DM_9 269830 866 1209.8 2357 2565.5 0 535.1
DM_10 269892 1106 1417.9 2447 2643.3 0 547.4

Average 969.8 1369.7 2460.7 2733.1 0 591.0

ber of offspring, but each of them is worse than its
own parents. This is because the parents are sampled
from the initial population which is built using the lo-
cal search procedure. The mating mechanism (Step 3
in the description of HGA) is too weak to be able to

produce an offspring that could outperform the fitness

of its parents. Thus the performance of the pure GA

is poor compared with the described MSA, HGA and

VNS implementations.

G. Palubeckis, E. Kar�iauskas, A. Riškus

2�#

6. Conclusions

In this paper we have presented simulated an-
nealing (MSA), hybrid genetic (HGA) and variable
neighborhood search (VNS) algorithms for the max-
imally diverse grouping problem. In order to evalu-
ate the performance of these algorithms we conducted
computational experiments on two sets of problem
instances of size up to 2000 elements. The results
show that neither of the algorithms is a clear win-
ner in all cases. For smaller instances, the best results
were achieved using HGA. However, the comparison
of the heuristics on larger MDGP instances favors the
VNS algorithm. In both cases, MSA is the second best
method. Certainly some more experiments, especially
by varying group size, could be run to better evaluate
the potential of various approaches.

In an additional experiment, we let HGA and
VNS run for longer on a number of problem instances
in the datasets we have used. The result was that in all
cases except for the Silva_100_2 and Silva_100_3 in-
stances the solutions obtained were better than those
reported in Tables 1 and 2. This means that there is
some room for improvements and further research on
the heuristics for solving the MDGP. For example,
different mating mechanism in HGA and various lo-
cal search procedures both in HGA and VNS could
be tried. Also, the development of new algorithms for
the MDGP, based on other metaheuristics than those
considered in this paper, is an important line of future
work.

References

[1] T. Arani, V. Lotfi. A three phased approach to final
exam scheduling. IIE Transactions, 1989, Vol.21, 86–
96.

[2] K.R. Baker, S.G. Powell. Methods for assigning stu-
dents to groups: a study of alternative objective func-
tions. Journal of the Operational Research Society,
2002, Vol.53, 397–404.

[3] J. Brimberg, N. Mladenović, D. Urošević, E. Ngai.
Variable neighborhood search for the heaviest k-
subgraph. Computers and Operations Research,
2009, Vol.36, 2885–2891.

[4] Y. Chen, Z.-P. Fan, J. Ma, S. Zeng. A hybrid group-
ing genetic algorithm for reviewer group construction
problem. Expert Systems with Applications, 2011,
Vol.38, 2401–2411.

[5] A. Duarte, R. Martí. Tabu search and GRASP for
the maximum diversity problem. European Journal
of Operational Research, 2007, Vol.178, 71–84.

[6] Z.P. Fan, Y. Chen, J. Ma, S. Zeng. A hybrid genetic
algorithmic approach to the maximally diverse group-
ing problem. Journal of the Operational Research So-
ciety, 2011, Vol.62, 1423–1430.

[7] P. Hansen, N. Mladenović. Variable neighborhood
search: principles and applications. European Journal
of Operational Research, 2001, Vol.130, 449–467.

[8] P. Hansen, N. Mladenović, J.A. Moreno Pérez.
Variable neighbourhood search: methods and applica-
tions. 4OR, 2008, Vol.6, 319–360.

[9] P. Hansen, N. Mladenović, J.A. Moreno Pérez.
Variable neighbourhood search: methods and ap-
plications. Annals of Operations Research, 2010,
Vol.175, 367–407.

[10] V. Lotfi, R. Cerveny. A final-exam-scheduling pack-
age. Journal of the Operational Research Society,
1991, Vol.42, 205–216.

[11] R. Martí, M. Gallego, A. Duarte. Maximum di-
versity problem. http://www.optsicom.es/mdp/. Ac-
cessed 25 May 2011.

[12] R. Martí, M. Gallego, A. Duarte, E.G. Pardo.
Heuristics and metaheuristics for the maximum diver-
sity problem. Journal of Heuristics, 2011, in press,
DOI: 10.1007/s10732-011-9172-4.

[13] J. Mingers, F.A. O’Brien. Creating student groups
with similar characteristics: a heuristic approach.
Omega, 1995, Vol.23, 313–321.

[14] G. Palubeckis. Iterated tabu search for the maximum
diversity problem. Applied Mathematics and Compu-
tation, 2007, Vol.189, 371–383.

[15] G. Palubeckis. A new bounding procedure and an
improved exact algorithm for the Max-2-SAT prob-
lem. Applied Mathematics and Computation, 2009,
Vol.215, 1106–1117.

[16] G. Palubeckis, D. Rubliauskas, A. Targamadzė.
Metaheuristic approaches for the quadratic minimum
spanning tree problem. Information Technology and
Control, 2010, Vol.39, 257–268.

[17] G.C. Silva, L.S. Ochi, S.L. Martins. Experimen-
tal comparison of greedy randomized adaptive search
procedures for the maximum diversity problem. Lec-
ture Notes in Computer Science, 2004, Vol.3059, 498–
512.

[18] R.R. Weitz, M.T. Jelassi. Assigning students to
groups: a multi-criteria decision support system ap-
proach. Decision Sciences, 1992, Vol.23, 746–757.

[19] R.R. Weitz, S. Lakshminarayanan. On a heuristic
for the final exam scheduling problem. Journal of the
Operational Research Society, 1996, Vol.47, 599–600.

[20] R.R. Weitz, S. Lakshminarayanan. An empirical
comparison of heuristic and graph theoretic methods
for creating maximally diverse groups, VLSI design,
and exam scheduling. Omega, 1997, Vol.25, 473–482.

[21] R.R. Weitz, S. Lakshminarayanan. An empirical
comparison of heuristic methods for creating maxi-
mally diverse groups. Journal of the Operational Re-
search Society, 1998, Vol.49, 635–646.

[22] H.K. Yeoh, M.I.M. Nor. An algorithm to form
balanced and diverse groups of students. Com-
puter Applications in Engineering Education, 2011,
Vol.19, 582–590.

2�$

�������	
���
����������������������	�����
�	
�����������������	������
�������
�����������
���
�������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���������	
����
����

