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Abstract. Along with the fast advance of internet technique, internet users have to deal with tremendous data every 
day. One of the most useful knowledge exploited from web is about the transfer of the information expressed by two 
data sets collected in different time phases. With this kind of knowledge, we can further apprehend what information 
newly appears, what information is antiquated, and what information maintains unchanged along with time passing. 
The task aiming at acquiring this kind of knowledge is formally entitled as data evolvement analysis. Clustering is a 
good solution to this task. By comparing the clustering results respectively formed in different time phases, it is easy to 
acquire the transfer of the information. Unfortunately, aforementioned plan is time- consuming, since it needs to 
perform clustering algorithm once again, once input data are updated. Therefore, we need to design a dynamic 
clustering algorithm. Once input data are updated, it can form clustering results by adjusting the existent cluster 
partition instead of performing clustering algorithm again. For this reason, a novel Topology Self-Adaptive Clustering 
algorithm (abbreviated as TSAC) is proposed in this paper. This algorithm comes from Self Organizing Mapping 
algorithm (abbreviated as SOM), whereas, it doesn't need to make any assumption about neuron topology beforehand. 
Besides, when input data are updated, its topology remodels meanwhile. For further enhancing its performance, it 
imports minimum spanning tree to preserve its topology order, which is never performed by any traditional SOM based 
algorithms. For clearly measuring the magnitude of the transfer of the information, it partitions data space into several 
grids, and calculates the density of each grid to quantify the transfer. Experiment results demonstrate that TSAC can 
automatically tune its topology. By this algorithm and in addition to grid structure, the transfer of the information can 
be legibly visualized. 

Keywords: topology adaptation; competitive learning; data evolvement analysis; minimum spanning tree; self-
organizing-mapping. 
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1. Introduction 

Due to the fast advance of internet technique, 
internet users have to face to new data everywhere and 
anytime. Along with time passing, some knowledge 
implied by old data is antiquated and is never covered 
by new data. On the other hand, some knowledge is 
novel and is only revealed by new appearing data. As 
a result, the research, which aims at analyzing the 
transfer of the information expressed by the data sets 
collected in different time phases, becomes popular. 
This task is nominated as data evolvement analysis 
and related in Ref. [1–3]. 

In general, the purpose of data evolvement 
analysis is to exploit the knowledge about, what 
information appears, what information disappears, and 
what information maintains. This kind of knowledge 
is essential to the men who need to make the decisions 

via observing on the dynamic data, such as stock 
estimator, economy analyzer, policy designer, etc. 

As indicated by the following literatures, there are 
many related methods proposed for this task. For 
example: 

The algorithm proposed by Silber and McCoy in 
Ref. [4] regards data evolvement analysis as an 
upgrade of the task of multiple document abstract 
generation. The significant distinction between them is 
that Silber and McCoy add a supplementary analysis 
process to illustrate the transfer of the information, 
whereas, this plan needs additional training corpus to 
form an abstract generation model. 

Roberto in Ref. [5] regards data evolvement 
analysis as an extension of classification. He carries 
out an additional analysis process based on the 
classification results to show the transfer of the 
information. However, the class labels are predefined 
by users. They mayn’t cover the various kinds of 
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information expressed by input data. That lets the 
analysis results improper. 

Due to the limitation of training corpus and the 
deficiency of predefined labels aroused by supervised 
plan, the unsupervised plan becomes overwhelming. 
Clustering is one of the most prevalent unsupervised 
method for data analysis, since it is totally 
unsupervised and easy to be carried out [6~8]. For 
example, Dhillon et al in Ref. [9] just utilize the 
clustering results to help analyze the transfer of the 
information. Unfortunately, it is time-consuming, 
since it needs to run clustering algorithm several times 
and consequently impractical. Ghaseminezhad and 
Karami in Ref. [10] solve this problem by employing 
SOM algorithm, which forms an initial neuron 
topology at first and dynamically tunes its topology 
once input data are updated. However, its neuron 
topology is fixed in advance and too rigid to be 
altered. 

In order to let neuron topology easily be altered, 
some topology adaptive algorithms have been 
proposed. The prominent merit of them is that they 
don’t need to set any assumption about neuron 
topology in advance. For example, Melody in Ref. 
[11] initializes a neuron topology of small scale at first 
and then gradually expands it following the update of 
input data. Tseng et al in Ref. [12] improve this 
algorithm by tuning neuron topology in virtue of 
dynamically creating and deleting the arcs between 
different neurons. 

Unfortunately, aforementioned topology adaptive 
algorithms have two problems. One is that, when 
neuron topology isn’t suitable for current input data, 
they will insert or split neurons, whereas, these newly 
created neurons may locate out of the area where input 
data distribute. The other is that, they fail to preserve 
topology order. Therefore, they can’t perform 
competitive learning as transitional SOM algorithms, 
which will generate some dead neurons and they will 
never be tuned. The detailed discussions are indicated 
in Ref. [13, 14]. 

For effectively clustering dynamic data, a novel 
Topology Self-Adaptive Clustering algorithm 
(abbreviated as TSAC) is proposed in this paper. Its 
neuron topology can be dynamically tuned following 
the update of input data. At the end of this paper, 
TSAC is applied to perform data evolvement analysis 
to acquire the transfer of the information expressed by 
the data sets collected in different time phases. For 
quantitatively measuring the transfer of the 
information, neuron topology is partitioned into 
several grids, and density is adopted as measure 
criterion. 

2. Neuron model analysis 

Self-Organizing-Mapping (abbreviated as SOM), 
proposed by Kohonen in Ref. [15], is one of the most 
extensively applied clustering algorithm for data 
analysis, because of its characteristic that its neuron 
topology is identical with the distribution of input 
data. For this reason, we also employ it to cluster 
dynamic data in this paper. However, the 
inconvenience, that it needs to predefine two 
parameters of cluster quantity and neuron topology, 
prevents it from prevailing in online situation. 

For avoiding predefining cluster quantity, some 
scalable SOM based clustering algorithms are 
proposed, such as GSOM in Ref. [16] and GHSOM in 
Ref. [17]. Nevertheless, neuron topologies of them are 
fixed as liner, cycle, square or rectangle in advance. 
These kinds of topologies are too rigid, and hardly to 
be altered. 

To illustrate this situation, we use GSOM to cluster 
the synthetic data and show the results in Figure 1. 

It is easy to see, the distribution of the neurons in 
the first picture of Figure 1 is identical with the 
distribution of the synthetic data. This is because the 
predefined neuron topology is square, and it is 
consistent to the distribution of the synthetic data in 
this picture. On the contrary, if the predefined neuron 
topology is inconsistent with the distribution of the

       

    

Figure 1. Use GSOM to form neuron topology to simulate the distribution of the synthetic data which distribute symmetrically in 
the gray area, where the black dots represent the neurons which are organized as (4*4) square topology in advance
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synthetic data, even if the distinctness is between 
square (for neurons) and rectangle (for the synthetic 
data), the topology of the neurons will be distorted and 
no longer can simulate the distribution of the synthetic 
data, such as demonstrated in the last three pictures of 
Figure 1. 

Another deficiency of SOM and its scalable 
versions is that they can’t cluster dynamic data. This 
situation is shown in Figure 2, where the distribution 
of the synthetic data is the same to that in the first 
picture of Figure 1. In order to simulate dynamic 
training process, the data are firstly symmetrically 
chosen from the bellow part of the gray area to train 
neuron model. After several training steps (e.g. one 
thousand times), the data are symmetrically chosen 
from the entire area to train neuron model. 

 

Figure 2. Use GSOM of square topology to simulate the 
distribution of the synthetic data in the gray area, where the 

data are firstly sampled form the below part and then 
sampled from the entire area to simulate dynamic training 

process  

It is easy to see, the neuron topology in the first 
picture of Figure 1 is dissimilar to that in this figure, 
where the neuron topology can’t simulate the 
distribution of the synthetic data. The reason to this 
situation is that topology assumption predefined by 
SOM and its scalable versions is always too rigid, and 
can’t be plastically altered following the update of 
input data. 

In order to solve this problem, some topology 
adaptive algorithms have been proposed, such as GNG 
in Ref. [18], PSOM in Ref. [19], and DASH in Ref. 
[20]. These algorithms free of predefining neuron 
topology and can automatically construct it to let it 
conform to the distribution of input data. We take 
DASH for example and show the clustering results in 
Figure 3. 

As stated in the introduction, there are two 
deficiencies of traditional topology adaptive 
algorithms. One is that they will insert some neurons 
which locate out of the area where input data 
distribute. The other is that competitive learning can’t 
be performed by them. Figure 4 shows the simulation 
results affected by these two deficiencies. 

Although there are some neurons out of the area 
where input data distribute in Figure 4, it doesn’t 
hamper us from drawing the conclusion that topology 
adaptive algorithms can better cluster dynamic data 
than SOM and its scalable versions. This proof is 
shown in Figure 5. 

       

     

Figure 3. Use DASH to form neuron topology to simulate the distribution of the synthetic data in the gray area 

 

Figure 4. Use DASH to form neuron topology to simulate 
the distribution of the synthetic data as round and cross 

shapes 

 

Figure 5. Use DASH to form neuron topology to simulate 
the distribution of the synthetic data in the gray area. In 

order to simulate dynamic training process, the method to 
sample training data is the same to that adopted in Figure 2 
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In order to accurately cluster dynamic data which 
isn’t effectively solved by traditional topology fixed 
algorithms and topology adaptive algorithms, a novel 
Topology Self-Adaptive Clustering algorithm 
(abbreviated as TSAC) is proposed in this paper. It can 
dynamically alter its neuron topology following the 
update of input data through fulfilling two sub-
processes. They are: (a) initialization of neuron 
topology; (b) training on neuron topology. In the 
former sub-process, an initial neuron topology is 
rapidly constructed according to input data, which is 
partially similar to the distribution of input data. In the 
latter sub-process, the neuron topology is iteratively 
altered by training samples to let it gradually conform 
to the distribution of input data. 

3. Topology self-adaptive clustering algorithm 
(TSAC) 

3.1. Initialization of neuron topology  

In this section, we will elaborate how to rapidly 
initialize neuron topology, which is roughly similar to 
the distribution of input data and only needs a few 
training steps to make it converge in the next training 
sub-process. 

As indicated by Ref. [21], the general way to 
expand neuron topology is to combine the neuron 
which has the largest accumulation error with its least 
similar neighbor to form a new one. Unfortunately, 
this plan brings an inconvenient consequence that it 
may create the neurons which locate out of the area 
where input data distribute. 

For dealing with this issue, TSAC imports local 
density, proposed by Duan et al. in Ref. [22], to 
construct the new neuron. 

Let Di represent one datum among input data. The 
neuron which is constructed from Di is marked as Ni. 
The process that constructs Ni from Di by local density 
is shown as follows: 

Choose t samples from input data, where t is 
decided by user. Among them, the kth sample has kth 
similarity to Di. Calculate local density of Di and each 
sample among those t data by 
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where SDik represents the datum which has kth 
similarity to Di. Neighbor(SDik,r) represents the datum 
which has rth similarity to SDik. m represents the 
quantity of the neighbors which are adjacent to SDik, 
and it often equals to t. Density(SDik) represents the 
density of the district around SDik, and can be 
calculated by 
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After previous calculations, treat the datum, which 
has the maximal local density, as the neuron to 
represent the cluster which includes Di. 

The detailed procedure of initialization sub-
process of TSAC is listed as follows. 

1. Arrange input data by random order, and put them 
in the set marked as InSet. Let the symbol 
NEURON stand for the neuron set. Let the symbol 
LINK stand for the set which includes the links 
between different neurons, where each link has 
two parameters, which are relation to express its 
weight and age to note its creating time. 

2. Choose two data from Inset which has the minimal 
similarity, and mark them as Dp and Dq. Apply 
previous local density plan to construct two 
neurons from them, and mark them as Np and Nq. 
Insert them in NEURON. Remove Dp and Dq from 
Inset. 

3. Create a link between Np and Nq, mark it as lpq, 
and insert it in LINK. Mark time parameter of lpq 

as Agepq, and assign it with 0. Mark relation 
parameter of lpq as Rpq, and calculate it by 
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where C represents the quantity of the clusters, 
which equals to the number of the neurons. Simpq 
represents the similarity between two neurons, 
such as Np and Nq. 
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where z represents the dimension of neuron vector, 
Wpk represents the weight of kth entry in Np. 
Traditional concurrence based similarity 
calculations, e.g. Euclidean distance or Cosine, 
have a flaw that the neurons, which locate at the 
two opposite boundaries of the same cluster, have 
less similarity, if the similarity is calculated by 
them. Actually, those neurons should have larger 
similarity, because they are in the same cluster. 
Thus, we integrate local density into Eq.4 to deal 
with this shortcoming. 

4. Scan InSet from top to bottom, mark Di as the 
datum which is just selected, and remove it from 
InSet. Use previous local density plan to construct 
one neuron from Di, and mark it as Ni. Insert Ni in 
NEURON. 

5. Apply Eq.4 to calculate the similarity between Ni 
and each neuron in NEURON. 

6. Let Nm represent the neuron which has the 
maximal similarity to Ni in NEURON. Create a 
link between Ni and Nm, mark it as lim, and insert it 
in LINK. Assign the age parameter-Ageim of lim 
with 0. Calculate the relation parameter-Rim of lim 
by Eq.3. 
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7. If the similarity between Ni and Nm is beyond 
certain threshold, such as the mean of the total 
similarities among all the neuron-pairs, go to step 
[8]. If not, go to step [12]. 

8. Tune Nm by 

1

exp( )* | |
z

m m im ik mk

k

N N R N N


    . (5) 

This equation is just borrowed from Ref. [23]. 
Where, z represents the number of the neurons, Rim 
represents the relation value between two neurons 
of Ni and Nm, acquired by Eq.3. 

9. Choose the neuron from NEURON which has the 
secondly maximal similarity to Ni, and mark it as 
Nj. 

10. If there is no link between Nj and Nm, go to step 
[11]. If not, go to step [12]. 

11. Create a link between Nj and Nm, mark it as ljm, 
and insert it in LINK. 

12. Apply Eq.3 to calculate the relation parameter-Rjm 
of link ljm. Assign the age parameter-Agejm of ljm 
with 0. 

13. Add age parameters of all the links to 1. If there is 
a link whose age parameter is beyond the 
threshold calculated by the following equation, 
remove it. 

x/( / ) mai T
u u dThreshold T T T , (6) 

where i represents the index of running steps. Tu, 
Td, Tmax are respectively evaluated with 20, 200, 
10000. Those values are validated by a large 
amount of experiments and exhibited in Ref. [23]. 
Apparently, along with proceeding of initialization 
sub-process, the threshold of age parameter 
calculated by Eq.6 becomes larger and larger. The 
reason is that, along with continuing of 
initialization sub-process, cluster partition is more 
and more accurate, thus, the links between 
different neurons should maintain stable. 
Therefore, we gradually increase the threshold of 
age parameter to make the links difficult to be 
deleted. 

14 Choose i+1th datum from InSet, and repeat steps 
[4] ~ [14] until InSet is empty. 

Figure 6 shows the neuron topology formed after 
initialization sub-process. It is easy to see, the neuron 
topology is partially similar to the distribution of the 
synthetic data. For example, certain area has too many 
neurons, and certain area has few neurons. 

3.2. Training on neuron topology 

As Figure 6 shows, the neuron topology formed 
after initialization sub-process is inaccurate. In order 

 

      

Figure 6. Neuron topology formed by TSAC after 
initialization sub-process 

to amend it, we add a training process, and import 
competitive learning proposed by Ref. [24] into it. 

Due to lacking of topology order, the adjacent 
neurons of the winner neuron (the neuron which has 
the maximal similarity to training sample) can’t be 
found by traditional topology adaptive algorithms to 
perform competitive learning. Since our algorithm is 
also a kind of topology adaptive algorithms, we 
employ minimum spanning tree addressed by Ref. 
[25] to form topology order. The minimum spanning 
tree formed by TSAC after training sub-process is 
shown in Figure 7. It is easy to see, the structure of 
minimum spanning tree is similar to the distribution of 
the synthetic data. 

      

Figure 7. Minimum spanning trees formed by TSAC after 
training sub-process, where the dots represent the neurons 

and the links represent the arcs of the tree 

In virtue of minimum spanning tree, we can define 
neuron adjustment range in the following equation, 
which is never carried out by traditional topology 
adaptive algorithms. 

2
m( , ) ( ) * max(| | )
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

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where Nm represents the winner neuron. ε represents 
the set which includes the neurons that are directly 
connected to Nm in the minimum spanning tree, such 
as Nb. a(t) is learning rate. 

By means of neuron adjustment range, we can tune 
the neurons by 
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where Nm represents the winner neuron which has the 
maximal similarity to Di. Rbm is the relation value 
between Nm and Nb, which can be acquired by Eq.3. t 
represents the index of training steps. a(t) is learning 
rate which monotonously drops along with training 
process, and is specified in Ref. [26]. 

So, why we choose the neurons, which are directly 
connected to the winner neuron, to form neuron’s 
adjustment range? The reason is proved as follows. 

Theorem: The neurons which are directly connected 
to the winner neuron are more similar to 
the winner neuron than to other neurons. 

▼Proof: Let Tree1 represent the minimum 
spanning tree displayed in Figure 8, where each node 
represents one neuron. Let T1 represent the winner 
neuron, and T2 represent the neuron which is directly 
connected to T1. Let ARCT1T2 represent the arc linking 
T1 and T2. Let RT1T2 represent the relation parameter 
of ARCT1T2 acquired by Eq.3. Let WAT1T2 represent the 
weight of ARCT1T2. Since we reverse the value of the 
relation parameter as the weight of the arc, WAT1T2=1/ 
RT1T2. 
In order to prove this theorem is valid, we can prove 
its opposite assumption is false. If we assume this 
theorem were invalid, we can find a neuron, labeled 
by T3, which is directly connected to T2 but not 
directly connected to T1. After connect T1 to T3 by 
the dotted line in Tree1, we will have 

1 2 1 3T T T TR R or 1 2 1 3T T T TWA WA . It means T3 is 
more similar to T1 than to T2. 
Apparently, after connect T1 to T3, there will be a 
circle through T1, T2 and T3 in Tree1. If we remove 
the arc linking T1 and T2, there will be a new tree and 
we label it as Tree2. According to the assumption that 

1 2 1 3T T T TWA WA , the weight of Tree1 is bigger than 
that of Tree2. However, Tree1 is the minimum 
spanning tree through T1, T2 and T3. Thus, the 
assumption that 1 2 1 3T T T TR R  or 1 2 1 3T T T TWA WA  
is false. Then, we can say that the aforementioned 
theorem we are just proving is valid. ▲ 

 

Figure 8. Minimum spanning tree of neuron topology 

The detailed procedure of training sub-process of 
TSAC is listed as follows. 

1. Mark the neuron set and the link set formed from 
initialization sub-process as NEURON and LINK. 
Initialize error coefficient of each neuron with 0. 
Let Inset represent the set containing input data. 

Let t represent the index of training steps, and 
initialize it with 0. 

2. Randomly choose a datum from Inset, and mark it 
as Di. Calculate the similarity between Di and each 
neuron in NEURON by Eq.4. 

3. Choose the neuron which has the maximal 
similarity to Di as the winter neuron, and mark it 
as MBN. Tune MBN and its adjacent neurons by 
Eq.8. Increase the error coefficient of MBN by 

2| |m m ierr err D MBN   , (9) 

where, errm represents the error coefficient of 
MBN. 

4. Choose the neuron which has the secondly 
maximal similarity to Di, and mark it as SBN. If 
there is no link between MBN and SBN, go to [5]. 
If not, go to [6]. 

5. Create a link between MBN and SBN, mark it as 
lms, and insert it in LINK. 

6. Apply Eq.3 to calculate the relation parameter-Rms 
of lms. Assign age parameter-Agems of lms with 0. 

7. Add age parameters of all the links in LINK to 1. 

8. Check each link in LINK. If there is a link whose 
age parameter is beyond the threshold calculated 
by Eq.6, remove it. 

9. Check each neuron in NEURON. If there is a 
neuron which isn’t connected by any link, remove 
it. 

10. Increase t to t+1. 

11. If t is the integral times of the quantity of input 
data, go to step [12]. If not, go to step [2]. 

12. Choose the neuron which has the maximal error 
coefficient, and mark it as Nq. Choose the neuron 
which is adjacent to Nq and has the minimal 
similarity to Nq, and mark it as Nf. 

13. Combine Nq and Nf to construct a new neuron by 

2

q f
r

N N
N


  (10) 

Mark this created neuron as Nr. Create the links 
between Nq and Nr, Nf and Nr, and insert them in 
LINK. Initialize age parameter of each newly 
created link with 0. 

14. Reduce error coefficients of Nq and Nf by 

/ 2q qerr err , (11) 

/ 2f ferr err . (12) 

Assign Nr with the new error coefficient by 

2

q f
r

err err
err


 . (13) 

15. Check whether neuron topology has met 
convergence condition or not. If yes, stop. If not, 
go to step [2]. 
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Neuron topology formed after training sub-process 
is shown in Figure 9. Comparing Figure 6 with Figure 
9, it can be concluded that, by dynamically creating 
and removing the neurons, the neuron topology 
displayed in Figure 9 is more identical with the 
distribution of the synthetic data than that displayed in 
Figure 6. 

  

Figure 9. Neuron topology formed by TSAC after training 
sub-process 

Since only the winner neuron and its adjacent 
neurons of small number are adjusted in each 
circulation of training sub-process, it makes the entire 
neuron topology change very slightly after each 
training circulation. Thus, there is no need to construct 
minimum spanning tree again after each training 
circulation. For this reason, when TSAC runs for 
about the integral times of 100 training circulations, 
minimum spanning tree is constructed once more. 

In our algorithm, Mean Quantization Error 
(abbreviated as MQE) is adopted as convergence 
condition as performed by many literatures [15~17]. 
Since MQE can measure the average agglomeration 
degree of clustering results, when its value is less than 
a threshold such as 0.01 (which is adopted by 
Kohonen in Ref. [27]), our algorithm stops. 
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where C represents the quantity of the clusters. Nj 
represents one neuron. Cj represents the cluster, 
including the texts which are more similar to Nj than 
to other neurons. |Cj| represents the quantity of the 
data included by Cj. Di represents one datum among 
Cj. 

4. Data evolvement analysis 

In this paper, TSAC is applied to perform data 
evolvement analysis to help users apprehend the 
transfer of the information expressed by the data sets 
collected in different time phases, which also 
demonstrates that TSAC can cluster dynamic data on 
the other side. 

4.1. The process to cluster dynamic data 

For helping explain how to cluster dynamic data, 
let’s adopt some symbols. Let t1 and t2 represent two 

time phases. Let InSett1 and InSett1 represent the data 
sets respectively collected in t1 and t2. For clustering 
the dynamic data from t1 to t2, we first use TSAC to 
form a neuron topology according to InSett1. When 
InSett1 is updated, for example, changing to InSett2, 
we use TSAC to alter the existent neuron topology 
according to InSett2. The altering process is just the 
same to the training sub-process of TSAC. Once data 
set is updated again, it only needs to run this training 
sub-process once more to alter the existent neuron 
topology according to the updated data set. 

From Figure 10, it is easy to find, when input data 
are updated, neuron topology is reconstructed to 
simulate the distribution of the updated data. 

          

Figure 10. Use TSAC to form neuron topology to simulate 
the distribution of the synthetic data. For simulating 

dynamic data, we partition the circle into three rings marked 
as R1, R2, and R3 form inside to outside. We firstly use the 
data in R1 and R2 to form a neuron topology by TSAC, and 
the result is shown in the left picture. After that, we use the 

data in R2 and R3 to alter this neuron topology, and the 
result is shown in the right picture 

4.2. Grid analysis 

Grid structure is applied to measure the transfer of 
the information expressed by the data sets collected in 
different time phases. 

At first, data space is partitioned into some grids. 
The scale of each dimension of each grid is . After 
partition, the neurons are projected into those grids. As 
indicated by Herbert and Yao in Ref. [28], each neuron 
represents one cluster which aggregates similar data, 
and the data included by the clusters represented by 
the adjacent neurons are also similar to each other. 
Hence, the clusters represented by the neurons in the 
same grid should imply similar information. 
Consequently, the quantity of the neurons contained 
by each grid can be used to measure the importance of 
the information expressed by the data included by this 
grid. 

Obviously, λ controls the range of each grid. If λ is 
larger, each grid will include more neurons and we can 
make analysis more comprehensively. On the other 
side, if λ is smaller, we can make analysis more 
particularly. 

Let Gt1 represent the grid structure constructed in 
t1. Let Gt2 represent the grid structure constructed in t2. 
We can acquire the knowledge about the transfer of 
the information from t1 to t2 through digging the 
distinctions between Gt1 and Gt2. For quantitatively 
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measuring the transfer, we calculate the density of 
each grid in Gt1 by 

1
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, (15) 

where Pi(Gt1) represents one grid in Gt1. 
Number(Pi(Gt1)) represents the quantity of the neurons 
included by Pi(Gt1). |Gt1| represents the quantity of the 
grids included by Gt1. The density of each grid in Gt2 

can also be calculated by this equation. 
For measuring the transfer of the information, we 

set a threshold in advance, and consider the 
information expressed by the data in the grid which is 
beyond the threshold is more important. The density 
threshold is set as the mean density through all the 
grids. Let DGt1 and DGt2 respectively represent the 
sets storing the dense grids in Gt1 and Gt2. Then, we 
can acquire the following three 
subsets: 1 2DGt DGt , 2 1DGt DGt , 1 2DGt DGt . 
Among them, 1 2DGt DGt  implies the information, 
which appears at t1 and disappears at t2; 2 1DGt DGt  
implies the information, which newly appears at t2; 

1 2DGt DGt  implies the information, which keeps 
from t1 to t2. 

5. Experiments and analysis 

5.1. Experiments on clustering performance 

As indicated by Ref. [29], UCI data set is one of 
the most prevalent testing corpora for clustering 
algorithms. Since it contains too many kinds of data 
sets, we only select some extensively applied sets as 
the standard testing corpus to compare the 
performance of TSAC with that of other clustering 
algorithms. They are GNG [18], PSOM [19], DASH 
[20], SOM [15], GSOM [16], and GHSOM [17]. The 
details about the selected sets are listed in Table 1. 

 

Table 1. The details about the selected data sets from UCI 
data set 

#DATA SETS #Features #Samples #Classes 

Thyroid Gland 5 215 3 
Japanese Credit Approval 15 688 2 

Wine Recognition 13 178 3 
Breast Cancer 10 699 2 

Iris 4 150 3 
Sonar Target 60 208 2 
Ionosphere 34 51 2 

Heart Disease 13 135 2 
Waveform 21 5000 3 

Pima Diabetes 8 768 2 
Multiple Feature 649 2000 10 

Optical Digit 64 5620 10 
German Credit Approval 24 1000 2 

Car Evaluation 6 1728 4 
 

Purity, indicated by Ref. [30], is employed as the 
testing criterion, and calculated by 

1

( )
z

r
r

r

n
Purity P S

n

  , (16) 

where z represents the quantity of the clusters. n 
represents the quantity of input data. Sr represents rth 
cluster formed by clustering algorithm. nr represents 
the quantity of the data included by Sr. P(Sr) is 
calculated by 

1

1
( ) max( )

z
q

r r
q

r

P S n
n 

 . (17) 

In UCI, it already partitions the testing data into some 
predefined clusters. Thus, let Cq represent qth cluster 
among the predefined clusters. Let nq represent the 

quantity of the data included by Cq. =q q
r rn n n , 

which represents the quantity of the data, belonging to 
Cq in testing corpus and belonging to Sr after 
clustering algorithm. 

Table 2. Purities of different clustering algorithms on the selected data sets 

#DATA SETS/METHODS SOM GSOM GHSOM GNG PSOM DASH TSAC 

Thyroid Gland 78.37 79.64 81.25 77.56 76.22 78.38 82.19 
Japanese Credit Approval 74.18 76.36 79.94 74.93 73.48 77.50 79.86 

Wine Recognition 75.32 77.32 81.04 76.58 75.83 80.21 81.56 
Breast Cancer 76.54 78.43 80.07 73.61 74.69 79.54 82.04 

Iris 81.12 82.01 83.25 78.82 76.31 82.07 84.59 
Sonar Target 75.40 77.51 79.37 76.80 75.65 78.93 80.31 
Ionosphere 78.33 80.17 81.95 79.56 77.30 80.03 82.73 

Heart Disease 72.09 73.24 75.81 72.51 69.33 74.96 77.20 
Waveform 70.66 71.83 73.87 70.91 69.07 73.09 75.11 

Pima Diabetes 74.59 78.11 80.34 76.82 74.33 79.22 81.55 
Multiple Feature 71.60 75.88 77.93 72.11 70.39 76.78 78.27 

Optical Digit 78.62 80.13 82.31 79.58 77.54 80.43 82.68 
German Credit Approval 72.17 73.45 75.71 73.36 70.08 72.69 77.08 

Car Evaluation 76.76 79.86 81.65 78.65 76.34 80.77 82.51 
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Obviously, TSAC has the best performance than 
any other clustering algorithm. This is because, it 
doesn’t need to perform any assumption about neuron 
topology beforehand, and can dynamically form it 
according to input data. Besides, to further boost its 
performance, it constructs minimum spanning tree to 
perform competitive learning. Through pervious 
operations, TSAC can simulate the distribution of 
input data very well, and consequently has the best 
performance. 

5.2. Experiments on data evolvement analysis 

The data from UCI set don’t change along with 
time passing. Therefore, we can’t utilize them to test 
the performance of TSAC for dynamic data. For this 
reason, we crawl ten thousands news webpages from 
website over the entire year of 2010 as testing corpus, 
and separate it into two sets to represent the dynamic 
data collected in two time phases. Let InSett1 represent 
the set which includes the news from January to June. 
Let InSett2 represent the set which includes the news 
from July to December. 

As indicated in the section 4.1, data evolvement 
analysis performed by TSAC has two steps. In the 
former step, it clusters InSett1 to form neuron 
topology. In the latter step, it alters neuron topology 
according to InSett2. For measuring the transfer of the 
information expressed by the data in InSett1 and 
InSett2, we partition the neuron topologies respectively 
formed by InSett1 and InSett2 into some grids, and 
extract the labels to represent the information 
expressed by the data in each grid. The grid structure 
and its labels are shown in Table 3. 

In Table 3, the grid colored with gray means the 
information expressed by the data in this grid is 
important. The grid colored with white means the 
information expressed by the data in this grid is little 
important. The blank grid means the information 
expressed by the data in this grid isn’t important in 
sub-table (a) but appears or becomes important in sub-
table (b), or on the contrary. 

 

 

Table 3 (a). The grids constructed from the news sampled from January to June 
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Table 3 (b). The grids constructed from the news sampled from July to December 
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In comparison with two sub-tables of Table 3, we 
can see that some information which sub-table (a) 
labels has disappeared in sub-table (b) such as 
confliction between America and Afghanistan. Some 
information which sub-table (a) doesn’t label has 
appeared in sub-table (b), such as leader voting in 
Taiwan. Some information which labels in sub-table 
(a) has changed their importance in sub-table (b), such 
as advance of stock. There is also some information 
which keeps its importance form sub-table (a) to sub-
table (b), such as score of Rocket team in basketball. 
Previous results explicitly illustrate that TSAC can 
detect the transfer of the information when input data 
are updated. 

6. Conclusions 

Along with the fast advance of internet technique, 
new information appears every day. In order to 
apprehend the transfer of the information expressed by 
the data collected in different time phases, a novel 
topology adaptive clustering algorithm is proposed in 
this paper, which is abbreviated as TSAC. This 
algorithm doesn’t need to make any assumption about 
neuron topology in advance, and can dynamically 
form it to simulate the distribution of input data. For 
avoiding the neurons from locating out of the area 
where input data distribute, it adopts local density to 
construct new neurons. Besides, minimum spanning 
tree is imported to perform competitive learning to 
further enhance its performance. Experiment results 
demonstrate that TSAC works better than most of 
traditional clustering algorithms. Another ability of 
TSAC is that it can cluster dynamic data. For 
illustrating it, TSAC is used to display the transfer of 
the information expressed by the news crawled from 
website through the entire year of 2011. For 
quantitatively measuring the transfer, data space is 
partitioned into several grids and density is adopted as 
the measure criterion. 
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