
162

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2012, Vol.41, No.2

Data Evolvement Analysis Based on Topology Self-Adaptive Clustering
Algorithm

Ming Liu*, Bingquan Liu, Yuanchao Liu, Chengjie Sun

School of Computer Science and Technology, Harbin Institute of Technology, Harbin150001, China
e-mail: mliu@insun.hit.edu.cn

 http://dx.doi.org/10.5755/j01.itc.41.2.974

Abstract. Along with the fast advance of internet technique, internet users have to deal with tremendous data every
day. One of the most useful knowledge exploited from web is about the transfer of the information expressed by two
data sets collected in different time phases. With this kind of knowledge, we can further apprehend what information
newly appears, what information is antiquated, and what information maintains unchanged along with time passing.
The task aiming at acquiring this kind of knowledge is formally entitled as data evolvement analysis. Clustering is a
good solution to this task. By comparing the clustering results respectively formed in different time phases, it is easy to
acquire the transfer of the information. Unfortunately, aforementioned plan is time- consuming, since it needs to
perform clustering algorithm once again, once input data are updated. Therefore, we need to design a dynamic
clustering algorithm. Once input data are updated, it can form clustering results by adjusting the existent cluster
partition instead of performing clustering algorithm again. For this reason, a novel Topology Self-Adaptive Clustering
algorithm (abbreviated as TSAC) is proposed in this paper. This algorithm comes from Self Organizing Mapping
algorithm (abbreviated as SOM), whereas, it doesn't need to make any assumption about neuron topology beforehand.
Besides, when input data are updated, its topology remodels meanwhile. For further enhancing its performance, it
imports minimum spanning tree to preserve its topology order, which is never performed by any traditional SOM based
algorithms. For clearly measuring the magnitude of the transfer of the information, it partitions data space into several
grids, and calculates the density of each grid to quantify the transfer. Experiment results demonstrate that TSAC can
automatically tune its topology. By this algorithm and in addition to grid structure, the transfer of the information can
be legibly visualized.

Keywords: topology adaptation; competitive learning; data evolvement analysis; minimum spanning tree; self-
organizing-mapping.

* Corresponding author

1. Introduction

Due to the fast advance of internet technique,
internet users have to face to new data everywhere and
anytime. Along with time passing, some knowledge
implied by old data is antiquated and is never covered
by new data. On the other hand, some knowledge is
novel and is only revealed by new appearing data. As
a result, the research, which aims at analyzing the
transfer of the information expressed by the data sets
collected in different time phases, becomes popular.
This task is nominated as data evolvement analysis
and related in Ref. [1–3].

In general, the purpose of data evolvement
analysis is to exploit the knowledge about, what
information appears, what information disappears, and
what information maintains. This kind of knowledge
is essential to the men who need to make the decisions

via observing on the dynamic data, such as stock
estimator, economy analyzer, policy designer, etc.

As indicated by the following literatures, there are
many related methods proposed for this task. For
example:

The algorithm proposed by Silber and McCoy in
Ref. [4] regards data evolvement analysis as an
upgrade of the task of multiple document abstract
generation. The significant distinction between them is
that Silber and McCoy add a supplementary analysis
process to illustrate the transfer of the information,
whereas, this plan needs additional training corpus to
form an abstract generation model.

Roberto in Ref. [5] regards data evolvement
analysis as an extension of classification. He carries
out an additional analysis process based on the
classification results to show the transfer of the
information. However, the class labels are predefined
by users. They mayn’t cover the various kinds of

Data Evolvement Analysis Based on Topology Self-Adaptive Clustering Algorithm

163

information expressed by input data. That lets the
analysis results improper.

Due to the limitation of training corpus and the
deficiency of predefined labels aroused by supervised
plan, the unsupervised plan becomes overwhelming.
Clustering is one of the most prevalent unsupervised
method for data analysis, since it is totally
unsupervised and easy to be carried out [6~8]. For
example, Dhillon et al in Ref. [9] just utilize the
clustering results to help analyze the transfer of the
information. Unfortunately, it is time-consuming,
since it needs to run clustering algorithm several times
and consequently impractical. Ghaseminezhad and
Karami in Ref. [10] solve this problem by employing
SOM algorithm, which forms an initial neuron
topology at first and dynamically tunes its topology
once input data are updated. However, its neuron
topology is fixed in advance and too rigid to be
altered.

In order to let neuron topology easily be altered,
some topology adaptive algorithms have been
proposed. The prominent merit of them is that they
don’t need to set any assumption about neuron
topology in advance. For example, Melody in Ref.
[11] initializes a neuron topology of small scale at first
and then gradually expands it following the update of
input data. Tseng et al in Ref. [12] improve this
algorithm by tuning neuron topology in virtue of
dynamically creating and deleting the arcs between
different neurons.

Unfortunately, aforementioned topology adaptive
algorithms have two problems. One is that, when
neuron topology isn’t suitable for current input data,
they will insert or split neurons, whereas, these newly
created neurons may locate out of the area where input
data distribute. The other is that, they fail to preserve
topology order. Therefore, they can’t perform
competitive learning as transitional SOM algorithms,
which will generate some dead neurons and they will
never be tuned. The detailed discussions are indicated
in Ref. [13, 14].

For effectively clustering dynamic data, a novel
Topology Self-Adaptive Clustering algorithm
(abbreviated as TSAC) is proposed in this paper. Its
neuron topology can be dynamically tuned following
the update of input data. At the end of this paper,
TSAC is applied to perform data evolvement analysis
to acquire the transfer of the information expressed by
the data sets collected in different time phases. For
quantitatively measuring the transfer of the
information, neuron topology is partitioned into
several grids, and density is adopted as measure
criterion.

2. Neuron model analysis

Self-Organizing-Mapping (abbreviated as SOM),
proposed by Kohonen in Ref. [15], is one of the most
extensively applied clustering algorithm for data
analysis, because of its characteristic that its neuron
topology is identical with the distribution of input
data. For this reason, we also employ it to cluster
dynamic data in this paper. However, the
inconvenience, that it needs to predefine two
parameters of cluster quantity and neuron topology,
prevents it from prevailing in online situation.

For avoiding predefining cluster quantity, some
scalable SOM based clustering algorithms are
proposed, such as GSOM in Ref. [16] and GHSOM in
Ref. [17]. Nevertheless, neuron topologies of them are
fixed as liner, cycle, square or rectangle in advance.
These kinds of topologies are too rigid, and hardly to
be altered.

To illustrate this situation, we use GSOM to cluster
the synthetic data and show the results in Figure 1.

It is easy to see, the distribution of the neurons in
the first picture of Figure 1 is identical with the
distribution of the synthetic data. This is because the
predefined neuron topology is square, and it is
consistent to the distribution of the synthetic data in
this picture. On the contrary, if the predefined neuron
topology is inconsistent with the distribution of the

Figure 1. Use GSOM to form neuron topology to simulate the distribution of the synthetic data which distribute symmetrically in
the gray area, where the black dots represent the neurons which are organized as (4*4) square topology in advance

M. Liu, B. Liu, Y. Liu, C. Sun

164

synthetic data, even if the distinctness is between
square (for neurons) and rectangle (for the synthetic
data), the topology of the neurons will be distorted and
no longer can simulate the distribution of the synthetic
data, such as demonstrated in the last three pictures of
Figure 1.

Another deficiency of SOM and its scalable
versions is that they can’t cluster dynamic data. This
situation is shown in Figure 2, where the distribution
of the synthetic data is the same to that in the first
picture of Figure 1. In order to simulate dynamic
training process, the data are firstly symmetrically
chosen from the bellow part of the gray area to train
neuron model. After several training steps (e.g. one
thousand times), the data are symmetrically chosen
from the entire area to train neuron model.

Figure 2. Use GSOM of square topology to simulate the
distribution of the synthetic data in the gray area, where the

data are firstly sampled form the below part and then
sampled from the entire area to simulate dynamic training

process

It is easy to see, the neuron topology in the first
picture of Figure 1 is dissimilar to that in this figure,
where the neuron topology can’t simulate the
distribution of the synthetic data. The reason to this
situation is that topology assumption predefined by
SOM and its scalable versions is always too rigid, and
can’t be plastically altered following the update of
input data.

In order to solve this problem, some topology
adaptive algorithms have been proposed, such as GNG
in Ref. [18], PSOM in Ref. [19], and DASH in Ref.
[20]. These algorithms free of predefining neuron
topology and can automatically construct it to let it
conform to the distribution of input data. We take
DASH for example and show the clustering results in
Figure 3.

As stated in the introduction, there are two
deficiencies of traditional topology adaptive
algorithms. One is that they will insert some neurons
which locate out of the area where input data
distribute. The other is that competitive learning can’t
be performed by them. Figure 4 shows the simulation
results affected by these two deficiencies.

Although there are some neurons out of the area
where input data distribute in Figure 4, it doesn’t
hamper us from drawing the conclusion that topology
adaptive algorithms can better cluster dynamic data
than SOM and its scalable versions. This proof is
shown in Figure 5.

Figure 3. Use DASH to form neuron topology to simulate the distribution of the synthetic data in the gray area

Figure 4. Use DASH to form neuron topology to simulate
the distribution of the synthetic data as round and cross

shapes

Figure 5. Use DASH to form neuron topology to simulate
the distribution of the synthetic data in the gray area. In

order to simulate dynamic training process, the method to
sample training data is the same to that adopted in Figure 2

Data Evolvement Analysis Based on Topology Self-Adaptive Clustering Algorithm

165

In order to accurately cluster dynamic data which
isn’t effectively solved by traditional topology fixed
algorithms and topology adaptive algorithms, a novel
Topology Self-Adaptive Clustering algorithm
(abbreviated as TSAC) is proposed in this paper. It can
dynamically alter its neuron topology following the
update of input data through fulfilling two sub-
processes. They are: (a) initialization of neuron
topology; (b) training on neuron topology. In the
former sub-process, an initial neuron topology is
rapidly constructed according to input data, which is
partially similar to the distribution of input data. In the
latter sub-process, the neuron topology is iteratively
altered by training samples to let it gradually conform
to the distribution of input data.

3. Topology self-adaptive clustering algorithm
(TSAC)

3.1. Initialization of neuron topology

In this section, we will elaborate how to rapidly
initialize neuron topology, which is roughly similar to
the distribution of input data and only needs a few
training steps to make it converge in the next training
sub-process.

As indicated by Ref. [21], the general way to
expand neuron topology is to combine the neuron
which has the largest accumulation error with its least
similar neighbor to form a new one. Unfortunately,
this plan brings an inconvenient consequence that it
may create the neurons which locate out of the area
where input data distribute.

For dealing with this issue, TSAC imports local
density, proposed by Duan et al. in Ref. [22], to
construct the new neuron.

Let Di represent one datum among input data. The
neuron which is constructed from Di is marked as Ni.
The process that constructs Ni from Di by local density
is shown as follows:

Choose t samples from input data, where t is
decided by user. Among them, the kth sample has kth
similarity to Di. Calculate local density of Di and each
sample among those t data by

1

()

((,))
()

m
ik

ikr
ik

Density SD

Density Neighbor SD r
LocalDensity SD

m



, (1)

where SDik represents the datum which has kth
similarity to Di. Neighbor(SDik,r) represents the datum
which has rth similarity to SDik. m represents the
quantity of the neighbors which are adjacent to SDik,
and it often equals to t. Density(SDik) represents the
density of the district around SDik, and can be
calculated by

2

1

| (,) |
()

m

ik ik

r
ik

SD Neighbor SD r
Density SD

m






. (2)

After previous calculations, treat the datum, which
has the maximal local density, as the neuron to
represent the cluster which includes Di.

The detailed procedure of initialization sub-
process of TSAC is listed as follows.

1. Arrange input data by random order, and put them
in the set marked as InSet. Let the symbol
NEURON stand for the neuron set. Let the symbol
LINK stand for the set which includes the links
between different neurons, where each link has
two parameters, which are relation to express its
weight and age to note its creating time.

2. Choose two data from Inset which has the minimal
similarity, and mark them as Dp and Dq. Apply
previous local density plan to construct two
neurons from them, and mark them as Np and Nq.
Insert them in NEURON. Remove Dp and Dq from
Inset.

3. Create a link between Np and Nq, mark it as lpq,
and insert it in LINK. Mark time parameter of lpq

as Agepq, and assign it with 0. Mark relation
parameter of lpq as Rpq, and calculate it by

2

1 1

pq
pq

C C

pq

p q

Sim
R

Sim
 




, (3)

where C represents the quantity of the clusters,
which equals to the number of the neurons. Simpq
represents the similarity between two neurons,
such as Np and Nq.

2

1

()
| | *

()

z
p

pq pk qk
qk

LocalDensity N
Sim W W

LocalDensity N

  , (4)

where z represents the dimension of neuron vector,
Wpk represents the weight of kth entry in Np.
Traditional concurrence based similarity
calculations, e.g. Euclidean distance or Cosine,
have a flaw that the neurons, which locate at the
two opposite boundaries of the same cluster, have
less similarity, if the similarity is calculated by
them. Actually, those neurons should have larger
similarity, because they are in the same cluster.
Thus, we integrate local density into Eq.4 to deal
with this shortcoming.

4. Scan InSet from top to bottom, mark Di as the
datum which is just selected, and remove it from
InSet. Use previous local density plan to construct
one neuron from Di, and mark it as Ni. Insert Ni in
NEURON.

5. Apply Eq.4 to calculate the similarity between Ni
and each neuron in NEURON.

6. Let Nm represent the neuron which has the
maximal similarity to Ni in NEURON. Create a
link between Ni and Nm, mark it as lim, and insert it
in LINK. Assign the age parameter-Ageim of lim
with 0. Calculate the relation parameter-Rim of lim
by Eq.3.

M. Liu, B. Liu, Y. Liu, C. Sun

166

7. If the similarity between Ni and Nm is beyond
certain threshold, such as the mean of the total
similarities among all the neuron-pairs, go to step
[8]. If not, go to step [12].

8. Tune Nm by

1

exp()* | |
z

m m im ik mk

k

N N R N N


    . (5)

This equation is just borrowed from Ref. [23].
Where, z represents the number of the neurons, Rim
represents the relation value between two neurons
of Ni and Nm, acquired by Eq.3.

9. Choose the neuron from NEURON which has the
secondly maximal similarity to Ni, and mark it as
Nj.

10. If there is no link between Nj and Nm, go to step
[11]. If not, go to step [12].

11. Create a link between Nj and Nm, mark it as ljm,
and insert it in LINK.

12. Apply Eq.3 to calculate the relation parameter-Rjm
of link ljm. Assign the age parameter-Agejm of ljm
with 0.

13. Add age parameters of all the links to 1. If there is
a link whose age parameter is beyond the
threshold calculated by the following equation,
remove it.

x/(/) mai T
u u dThreshold T T T , (6)

where i represents the index of running steps. Tu,
Td, Tmax are respectively evaluated with 20, 200,
10000. Those values are validated by a large
amount of experiments and exhibited in Ref. [23].
Apparently, along with proceeding of initialization
sub-process, the threshold of age parameter
calculated by Eq.6 becomes larger and larger. The
reason is that, along with continuing of
initialization sub-process, cluster partition is more
and more accurate, thus, the links between
different neurons should maintain stable.
Therefore, we gradually increase the threshold of
age parameter to make the links difficult to be
deleted.

14 Choose i+1th datum from InSet, and repeat steps
[4] ~ [14] until InSet is empty.

Figure 6 shows the neuron topology formed after
initialization sub-process. It is easy to see, the neuron
topology is partially similar to the distribution of the
synthetic data. For example, certain area has too many
neurons, and certain area has few neurons.

3.2. Training on neuron topology

As Figure 6 shows, the neuron topology formed
after initialization sub-process is inaccurate. In order

Figure 6. Neuron topology formed by TSAC after
initialization sub-process

to amend it, we add a training process, and import
competitive learning proposed by Ref. [24] into it.

Due to lacking of topology order, the adjacent
neurons of the winner neuron (the neuron which has
the maximal similarity to training sample) can’t be
found by traditional topology adaptive algorithms to
perform competitive learning. Since our algorithm is
also a kind of topology adaptive algorithms, we
employ minimum spanning tree addressed by Ref.
[25] to form topology order. The minimum spanning
tree formed by TSAC after training sub-process is
shown in Figure 7. It is easy to see, the structure of
minimum spanning tree is similar to the distribution of
the synthetic data.

Figure 7. Minimum spanning trees formed by TSAC after
training sub-process, where the dots represent the neurons

and the links represent the arcs of the tree

In virtue of minimum spanning tree, we can define
neuron adjustment range in the following equation,
which is never carried out by traditional topology
adaptive algorithms.

2
m(,) () * max(| |)

b

b
N

m t a t N N





  , (7)

where Nm represents the winner neuron. ε represents
the set which includes the neurons that are directly
connected to Nm in the minimum spanning tree, such
as Nb. a(t) is learning rate.

By means of neuron adjustment range, we can tune
the neurons by

 exp(*)()()1(tatNtNL bb

)];([*)
),(2 2

tND
tm

R
bi

bm 


),(tmNb  , (8)

Data Evolvement Analysis Based on Topology Self-Adaptive Clustering Algorithm

167

where Nm represents the winner neuron which has the
maximal similarity to Di. Rbm is the relation value
between Nm and Nb, which can be acquired by Eq.3. t
represents the index of training steps. a(t) is learning
rate which monotonously drops along with training
process, and is specified in Ref. [26].

So, why we choose the neurons, which are directly
connected to the winner neuron, to form neuron’s
adjustment range? The reason is proved as follows.

Theorem: The neurons which are directly connected
to the winner neuron are more similar to
the winner neuron than to other neurons.

▼Proof: Let Tree1 represent the minimum
spanning tree displayed in Figure 8, where each node
represents one neuron. Let T1 represent the winner
neuron, and T2 represent the neuron which is directly
connected to T1. Let ARCT1T2 represent the arc linking
T1 and T2. Let RT1T2 represent the relation parameter
of ARCT1T2 acquired by Eq.3. Let WAT1T2 represent the
weight of ARCT1T2. Since we reverse the value of the
relation parameter as the weight of the arc, WAT1T2=1/
RT1T2.
In order to prove this theorem is valid, we can prove
its opposite assumption is false. If we assume this
theorem were invalid, we can find a neuron, labeled
by T3, which is directly connected to T2 but not
directly connected to T1. After connect T1 to T3 by
the dotted line in Tree1, we will have

1 2 1 3T T T TR R or 1 2 1 3T T T TWA WA . It means T3 is
more similar to T1 than to T2.
Apparently, after connect T1 to T3, there will be a
circle through T1, T2 and T3 in Tree1. If we remove
the arc linking T1 and T2, there will be a new tree and
we label it as Tree2. According to the assumption that

1 2 1 3T T T TWA WA , the weight of Tree1 is bigger than
that of Tree2. However, Tree1 is the minimum
spanning tree through T1, T2 and T3. Thus, the
assumption that 1 2 1 3T T T TR R or 1 2 1 3T T T TWA WA
is false. Then, we can say that the aforementioned
theorem we are just proving is valid. ▲

Figure 8. Minimum spanning tree of neuron topology

The detailed procedure of training sub-process of
TSAC is listed as follows.

1. Mark the neuron set and the link set formed from
initialization sub-process as NEURON and LINK.
Initialize error coefficient of each neuron with 0.
Let Inset represent the set containing input data.

Let t represent the index of training steps, and
initialize it with 0.

2. Randomly choose a datum from Inset, and mark it
as Di. Calculate the similarity between Di and each
neuron in NEURON by Eq.4.

3. Choose the neuron which has the maximal
similarity to Di as the winter neuron, and mark it
as MBN. Tune MBN and its adjacent neurons by
Eq.8. Increase the error coefficient of MBN by

2| |m m ierr err D MBN   , (9)

where, errm represents the error coefficient of
MBN.

4. Choose the neuron which has the secondly
maximal similarity to Di, and mark it as SBN. If
there is no link between MBN and SBN, go to [5].
If not, go to [6].

5. Create a link between MBN and SBN, mark it as
lms, and insert it in LINK.

6. Apply Eq.3 to calculate the relation parameter-Rms
of lms. Assign age parameter-Agems of lms with 0.

7. Add age parameters of all the links in LINK to 1.

8. Check each link in LINK. If there is a link whose
age parameter is beyond the threshold calculated
by Eq.6, remove it.

9. Check each neuron in NEURON. If there is a
neuron which isn’t connected by any link, remove
it.

10. Increase t to t+1.

11. If t is the integral times of the quantity of input
data, go to step [12]. If not, go to step [2].

12. Choose the neuron which has the maximal error
coefficient, and mark it as Nq. Choose the neuron
which is adjacent to Nq and has the minimal
similarity to Nq, and mark it as Nf.

13. Combine Nq and Nf to construct a new neuron by

2

q f
r

N N
N


 (10)

Mark this created neuron as Nr. Create the links
between Nq and Nr, Nf and Nr, and insert them in
LINK. Initialize age parameter of each newly
created link with 0.

14. Reduce error coefficients of Nq and Nf by

/ 2q qerr err , (11)

/ 2f ferr err . (12)

Assign Nr with the new error coefficient by

2

q f
r

err err
err


 . (13)

15. Check whether neuron topology has met
convergence condition or not. If yes, stop. If not,
go to step [2].

M. Liu, B. Liu, Y. Liu, C. Sun

168

Neuron topology formed after training sub-process
is shown in Figure 9. Comparing Figure 6 with Figure
9, it can be concluded that, by dynamically creating
and removing the neurons, the neuron topology
displayed in Figure 9 is more identical with the
distribution of the synthetic data than that displayed in
Figure 6.

Figure 9. Neuron topology formed by TSAC after training
sub-process

Since only the winner neuron and its adjacent
neurons of small number are adjusted in each
circulation of training sub-process, it makes the entire
neuron topology change very slightly after each
training circulation. Thus, there is no need to construct
minimum spanning tree again after each training
circulation. For this reason, when TSAC runs for
about the integral times of 100 training circulations,
minimum spanning tree is constructed once more.

In our algorithm, Mean Quantization Error
(abbreviated as MQE) is adopted as convergence
condition as performed by many literatures [15~17].
Since MQE can measure the average agglomeration
degree of clustering results, when its value is less than
a threshold such as 0.01 (which is adopted by
Kohonen in Ref. [27]), our algorithm stops.

2

1

| - |
| |i j

C
i j

jj D C

D N
C

MQE
C

 
 

, (14)

where C represents the quantity of the clusters. Nj
represents one neuron. Cj represents the cluster,
including the texts which are more similar to Nj than
to other neurons. |Cj| represents the quantity of the
data included by Cj. Di represents one datum among
Cj.

4. Data evolvement analysis

In this paper, TSAC is applied to perform data
evolvement analysis to help users apprehend the
transfer of the information expressed by the data sets
collected in different time phases, which also
demonstrates that TSAC can cluster dynamic data on
the other side.

4.1. The process to cluster dynamic data

For helping explain how to cluster dynamic data,
let’s adopt some symbols. Let t1 and t2 represent two

time phases. Let InSett1 and InSett1 represent the data
sets respectively collected in t1 and t2. For clustering
the dynamic data from t1 to t2, we first use TSAC to
form a neuron topology according to InSett1. When
InSett1 is updated, for example, changing to InSett2,
we use TSAC to alter the existent neuron topology
according to InSett2. The altering process is just the
same to the training sub-process of TSAC. Once data
set is updated again, it only needs to run this training
sub-process once more to alter the existent neuron
topology according to the updated data set.

From Figure 10, it is easy to find, when input data
are updated, neuron topology is reconstructed to
simulate the distribution of the updated data.

Figure 10. Use TSAC to form neuron topology to simulate
the distribution of the synthetic data. For simulating

dynamic data, we partition the circle into three rings marked
as R1, R2, and R3 form inside to outside. We firstly use the
data in R1 and R2 to form a neuron topology by TSAC, and
the result is shown in the left picture. After that, we use the

data in R2 and R3 to alter this neuron topology, and the
result is shown in the right picture

4.2. Grid analysis

Grid structure is applied to measure the transfer of
the information expressed by the data sets collected in
different time phases.

At first, data space is partitioned into some grids.
The scale of each dimension of each grid is . After
partition, the neurons are projected into those grids. As
indicated by Herbert and Yao in Ref. [28], each neuron
represents one cluster which aggregates similar data,
and the data included by the clusters represented by
the adjacent neurons are also similar to each other.
Hence, the clusters represented by the neurons in the
same grid should imply similar information.
Consequently, the quantity of the neurons contained
by each grid can be used to measure the importance of
the information expressed by the data included by this
grid.

Obviously, λ controls the range of each grid. If λ is
larger, each grid will include more neurons and we can
make analysis more comprehensively. On the other
side, if λ is smaller, we can make analysis more
particularly.

Let Gt1 represent the grid structure constructed in
t1. Let Gt2 represent the grid structure constructed in t2.
We can acquire the knowledge about the transfer of
the information from t1 to t2 through digging the
distinctions between Gt1 and Gt2. For quantitatively

Data Evolvement Analysis Based on Topology Self-Adaptive Clustering Algorithm

169

measuring the transfer, we calculate the density of
each grid in Gt1 by

1

1
1

| |
2

1

(())
(())

(())

i
i

Gt

i

i

Number P Gt
Denstiy P Gt

Number P Gt





, (15)

where Pi(Gt1) represents one grid in Gt1.
Number(Pi(Gt1)) represents the quantity of the neurons
included by Pi(Gt1). |Gt1| represents the quantity of the
grids included by Gt1. The density of each grid in Gt2

can also be calculated by this equation.
For measuring the transfer of the information, we

set a threshold in advance, and consider the
information expressed by the data in the grid which is
beyond the threshold is more important. The density
threshold is set as the mean density through all the
grids. Let DGt1 and DGt2 respectively represent the
sets storing the dense grids in Gt1 and Gt2. Then, we
can acquire the following three
subsets: 1 2DGt DGt , 2 1DGt DGt , 1 2DGt DGt .
Among them, 1 2DGt DGt implies the information,
which appears at t1 and disappears at t2; 2 1DGt DGt
implies the information, which newly appears at t2;

1 2DGt DGt implies the information, which keeps
from t1 to t2.

5. Experiments and analysis

5.1. Experiments on clustering performance

As indicated by Ref. [29], UCI data set is one of
the most prevalent testing corpora for clustering
algorithms. Since it contains too many kinds of data
sets, we only select some extensively applied sets as
the standard testing corpus to compare the
performance of TSAC with that of other clustering
algorithms. They are GNG [18], PSOM [19], DASH
[20], SOM [15], GSOM [16], and GHSOM [17]. The
details about the selected sets are listed in Table 1.

Table 1. The details about the selected data sets from UCI
data set

#DATA SETS #Features #Samples #Classes

Thyroid Gland 5 215 3
Japanese Credit Approval 15 688 2

Wine Recognition 13 178 3
Breast Cancer 10 699 2

Iris 4 150 3
Sonar Target 60 208 2
Ionosphere 34 51 2

Heart Disease 13 135 2
Waveform 21 5000 3

Pima Diabetes 8 768 2
Multiple Feature 649 2000 10

Optical Digit 64 5620 10
German Credit Approval 24 1000 2

Car Evaluation 6 1728 4

Purity, indicated by Ref. [30], is employed as the
testing criterion, and calculated by

1

()
z

r
r

r

n
Purity P S

n

  , (16)

where z represents the quantity of the clusters. n
represents the quantity of input data. Sr represents rth
cluster formed by clustering algorithm. nr represents
the quantity of the data included by Sr. P(Sr) is
calculated by

1

1
() max()

z
q

r r
q

r

P S n
n 

 . (17)

In UCI, it already partitions the testing data into some
predefined clusters. Thus, let Cq represent qth cluster
among the predefined clusters. Let nq represent the

quantity of the data included by Cq. =q q
r rn n n ,

which represents the quantity of the data, belonging to
Cq in testing corpus and belonging to Sr after
clustering algorithm.

Table 2. Purities of different clustering algorithms on the selected data sets

#DATA SETS/METHODS SOM GSOM GHSOM GNG PSOM DASH TSAC

Thyroid Gland 78.37 79.64 81.25 77.56 76.22 78.38 82.19
Japanese Credit Approval 74.18 76.36 79.94 74.93 73.48 77.50 79.86

Wine Recognition 75.32 77.32 81.04 76.58 75.83 80.21 81.56
Breast Cancer 76.54 78.43 80.07 73.61 74.69 79.54 82.04

Iris 81.12 82.01 83.25 78.82 76.31 82.07 84.59
Sonar Target 75.40 77.51 79.37 76.80 75.65 78.93 80.31
Ionosphere 78.33 80.17 81.95 79.56 77.30 80.03 82.73

Heart Disease 72.09 73.24 75.81 72.51 69.33 74.96 77.20
Waveform 70.66 71.83 73.87 70.91 69.07 73.09 75.11

Pima Diabetes 74.59 78.11 80.34 76.82 74.33 79.22 81.55
Multiple Feature 71.60 75.88 77.93 72.11 70.39 76.78 78.27

Optical Digit 78.62 80.13 82.31 79.58 77.54 80.43 82.68
German Credit Approval 72.17 73.45 75.71 73.36 70.08 72.69 77.08

Car Evaluation 76.76 79.86 81.65 78.65 76.34 80.77 82.51

M. Liu, B. Liu, Y. Liu, C. Sun

170

Obviously, TSAC has the best performance than
any other clustering algorithm. This is because, it
doesn’t need to perform any assumption about neuron
topology beforehand, and can dynamically form it
according to input data. Besides, to further boost its
performance, it constructs minimum spanning tree to
perform competitive learning. Through pervious
operations, TSAC can simulate the distribution of
input data very well, and consequently has the best
performance.

5.2. Experiments on data evolvement analysis

The data from UCI set don’t change along with
time passing. Therefore, we can’t utilize them to test
the performance of TSAC for dynamic data. For this
reason, we crawl ten thousands news webpages from
website over the entire year of 2010 as testing corpus,
and separate it into two sets to represent the dynamic
data collected in two time phases. Let InSett1 represent
the set which includes the news from January to June.
Let InSett2 represent the set which includes the news
from July to December.

As indicated in the section 4.1, data evolvement
analysis performed by TSAC has two steps. In the
former step, it clusters InSett1 to form neuron
topology. In the latter step, it alters neuron topology
according to InSett2. For measuring the transfer of the
information expressed by the data in InSett1 and
InSett2, we partition the neuron topologies respectively
formed by InSett1 and InSett2 into some grids, and
extract the labels to represent the information
expressed by the data in each grid. The grid structure
and its labels are shown in Table 3.

In Table 3, the grid colored with gray means the
information expressed by the data in this grid is
important. The grid colored with white means the
information expressed by the data in this grid is little
important. The blank grid means the information
expressed by the data in this grid isn’t important in
sub-table (a) but appears or becomes important in sub-
table (b), or on the contrary.

Table 3 (a). The grids constructed from the news sampled from January to June

Microsoft;
Operation;

Football;
Club title;

College
education;

Missile;
Defense;

Basketball;
Rocket;
Score;

Stock advancing;

America;
Afghanistan;

Conflict;

Payment;
Innovation;
Improve;

Market;
Circulation;
Currency;

Phone;
Apple;

Quality;

Amusement
star;

Sports star;

Africa;
Diamond;

U.N.;
Seat;

Fashion;
Dress;

Medicine;
High-price;

Car;
Sell;

Diving;

Champion;
Short- commons;

Spring- Festival;

Evening;

Commerce;
Advance;

China;

Table 3 (b). The grids constructed from the news sampled from July to December

Olympic-
Games;

Institution;

College
education;

Basketball;

Rocket;
Score;

Stock
advancing;

Teacher;
Wage;

Children

education;

Market;
Circulation;
Currency;

Exam;
Senior- school;

Student;
Game

enthrall;

Computer;
Software;

Price;

Amusement star;
Sports star;

Taiwan;
Leader;
Voting;

Medicine;
High-price;

Petroleum;
Transport;
Seabed;

 Short- commons;
Atmosphere
pollution;

Bank
administer;

Train ticket;
Traffic;

Military bother;
Spring- Festival;

Evening;
Justice;

Law case;

Forest fire;
Shandong
province;

Commerce;
Advance;

China;

Fruitage;
Winter;

Data Evolvement Analysis Based on Topology Self-Adaptive Clustering Algorithm

171

In comparison with two sub-tables of Table 3, we
can see that some information which sub-table (a)
labels has disappeared in sub-table (b) such as
confliction between America and Afghanistan. Some
information which sub-table (a) doesn’t label has
appeared in sub-table (b), such as leader voting in
Taiwan. Some information which labels in sub-table
(a) has changed their importance in sub-table (b), such
as advance of stock. There is also some information
which keeps its importance form sub-table (a) to sub-
table (b), such as score of Rocket team in basketball.
Previous results explicitly illustrate that TSAC can
detect the transfer of the information when input data
are updated.

6. Conclusions

Along with the fast advance of internet technique,
new information appears every day. In order to
apprehend the transfer of the information expressed by
the data collected in different time phases, a novel
topology adaptive clustering algorithm is proposed in
this paper, which is abbreviated as TSAC. This
algorithm doesn’t need to make any assumption about
neuron topology in advance, and can dynamically
form it to simulate the distribution of input data. For
avoiding the neurons from locating out of the area
where input data distribute, it adopts local density to
construct new neurons. Besides, minimum spanning
tree is imported to perform competitive learning to
further enhance its performance. Experiment results
demonstrate that TSAC works better than most of
traditional clustering algorithms. Another ability of
TSAC is that it can cluster dynamic data. For
illustrating it, TSAC is used to display the transfer of
the information expressed by the news crawled from
website through the entire year of 2011. For
quantitatively measuring the transfer, data space is
partitioned into several grids and density is adopted as
the measure criterion.

Acknowledgements

The research in this paper is supported by National
Natural Science Foundation of China (NO. 60973076,
61073127), and Key Laboratory Opening Funding of
China MOE-MS Key Laboratory of Natural Language
Processing and Speech.

References

[1] S. Martin, N. Detlef. Towards the automation of
intelligent data analysis. In: Applied Soft Computing,
vol. 6, no. 4, pp. 348-356, 2006. http://dx.doi.org/
10.1016/j.asoc.2005.11.002.

[2] X.-Y. Zhou, Z.-H. Sun, B.-L. Zhang, Y.-D. Yang.
Research on clustering and evolution analysis of high
dimensional data stream. In: Journal of Computer
Research and Development, vol. 43, pp. 2005-2011,
2006. http://dx.doi.org/10.1360/crad20061122.

[3] I.-D. Alfonso, P. Francesco, G. Michael. Exploratory
data analysis leading towards the most interesting
simple association rules. In: Computational Statistics
& Data Analysis, vol. 52, no. 6, pp. 3269-3281, 2008.
http://dx.doi.org/10.1016/j.csda.2007.10.006.

[4] H.-G. Silber, K.-F. McCoy. Efficiently computed
lexical chains as an intermediate representation for
automatic text summarization. In: Computational
Linguistics, vol. 28, no. 4, pp. 487-496, 2002.
http://dx.doi.org/10.1162/089120102762671954.

[5] A. Roberto. Multivariate classification of constrained
data: problems and alternatives. In: Analytica Chimica
Acta, vol. 527, no. 1, pp. 45-51, 2004. http://dx.
doi.org/10.1016/j.aca.2004.07.068.

[6] R. Krishnapuram, A. Joshi, O. Nasraoui, L. Y. Yi.
Low-complexity fuzzy relational clustering algorithms
for web mining. In: IEEE Transactions on Fuzzy
Systems, vol. 9, no. 4, pp. 595-607, 2001. http://dx.
doi.org/10.1109/91.940971.

[7] S. Huang, Z. Chen, Y. Yu, W.-Y. Ma. Multitype
features coselection for web document clustering. In:
IEEE Transactions on Knowledge and Data
Engineering, vol. 18, no. 4, pp. 448-459, 2006.
http://dx.doi.org/10.1109/TKDE.2006.1599384.

[8] D. A. Viattchenin. Validity measures for heuristic
possibilistic clustering. In: Information Technology
and Control, Vol. 39, No. 4, pp.321-332, 2010.

[9] I.-S. Dhillon, Y.-Q. Guan, J. Kogan. Iterative
clustering of high dimensional text data augmented by
local search. In: Proceedings of the Second IEEE
International Conference on Data Mining, IEEE,
Maebashi, Japan, pp. 131-138, 2002.

[10] M.-H. Ghaseminezhad, A. Karami. A novel self-
organizing map (SOM) neural network for discrete
groups of data clustering. In: Applied Soft Computing,
vol. 11, no. 4, pp. 3771-3778, 2011. http://dx.doi.org/
10.1016/j.asoc.2011.02.009.

[11] Y.-K. Melody. Extending the Kohonen self-organizing
map networks for clustering analysis. In:
Computational Statistics & Data Analysis, vol. 38, no.
2, pp. 161-180, 2001. http://dx.doi.org/10.1016/S0167-
9473(01)00040-8.

[12] C.-L. Tseng, Y.-H. Chen, Y.-Y. Xu, H.-T. Pao, H.-C.
Fu. A self-growing probabilistic decision-based neural
network with automatic data clustering. In:
Neurocomputing, vol. 61, pp. 21-38, 2004. http://
dx.doi.org/10.1016/j.neucom.2004.03.002.

[13] C.-F. Tsai, C.-W. Tsai, H.-C. Wu, T. Yang. ACODF:
a novel data clustering approach for data mining in
large databases. In: Journal of Systems and Software,
vol. 73, no. 1, pp. 133-145, 2004. http://dx.doi.org/10.
1016/S0164-1212(03)00216-4.

[14] S. Lee, G. Kim, S. Kim. Self-adaptive and dynamic
clustering for online anomaly detection. In: Expert
Systems with Applications, vol. 38, no. 12, pp. 14891-
14898, 2011. http://dx.doi.org/10.1016/j.eswa.2011
.05.058.

[15] T. Kohonen. “Self-organizing maps”. Springer,
Berlin, 1995, (Second, Extended Edition 1997).

[16] D. Alahakoon, S.-K. Halganmuge, B. Srinivasan.
Dynamic self-organizing maps with controlled growth
for knowledge discovery. In: IEEE Transactions on
Neural Networks, vol. 11, no. 3, pp. 601-614, 2000.
http://dx.doi.org/10.1109/72.846732.

M. Liu, B. Liu, Y. Liu, C. Sun

172

[17] A. Rauber, D. Merkl, M. Dittenbach. The growing
hierarchical self-organizing map: exploratory analysis
of high-dimensional data. In: IEEE Transactions on
Neural Networks, vol. 13, no. 6, pp. 1331-1341, 2002.
http://dx.doi.org/10.1109/TNN.2002.804221.

[18] A.-K. Qin, P.-N. Suganthan. Robust growing neural
gas algorithm with application in cluster analysis. In:
Neural Networks, vol. 17, no. 8-9, pp. 1135-1148,
2004.

[19] L.-K. Robert, K. Warwick. The plastic self
organising map. In: Proceedings of the 2002
International Joint Conference on Neural Networks,
IEEE, Hawaii, pp. 727-732, 2002.

[20] C. Hung, S. Wermter. A dynamic adaptive self-
organising hybrid model for text clustering. In:
Proceedings of the Third IEEE International
Conference on Data Mining, IEEE, Melbourne,
Florida, USA, pp. 75-82, 2003. http://dx.doi.org/
10.1109/ICDM.2003.1250905.

[21] V.-J. Hodge, J. Austin. Hierarchical growing cell
structures: TreeGCS. In: IEEE Transactions on
Knowledge and Data Engineering, vol. 13, no. 2, pp.
207-218, 2001. http://dx.doi.org/10.1109/69.917561.

[22] L. Duan, L.-D. Xu, F. Guo, J. Lee, B.-P. Yan. A
local-density based spatial clustering algorithm with
noise. In: Information Systems, vol. 32, no. 7, pp. 978-
986, 2007. http://dx.doi.org/10.1016/j.is.2006.10.006.

[23] H. Barbara, M. Alessio, S. Alessandro, S. Marc.
Recursive self-organizing network models. In: Neural
Networks, vol. 17, no. 8-9, pp. 1061-1085, 2004.
http://dx.doi.org/10.1016/j.neunet.2004.06.009.

[24] H.-D. Jin, W.-H. Shum, K.-S. Leung, M.-L. Wong.
Expanding self-organizing map for data visualization
and cluster analysis. In: Information Sciences, vol. 163,
no. 1-3, pp. 157-173, 2004. http://dx.doi.org/
10.1016/j.ins.2003.03.020.

[25] L.-R. Ezequiel. Probabilistic self-organizing maps for
qualitative data. In: Neural Networks, vol. 23, no. 10,
pp. 1208-1225, 2010. http://dx.doi.org/10.1016/
j.neunet.2010.07.002.

[26] K. Tokunaga, T. Furukawa. Modular network SOM.
In: Neural Networks, vol. 22, no. 1, pp. 82-90, 2009.
http://dx.doi.org/10.1016/j.neunet.2008.10.006.

[27] T. Kohonen, S. Kaski, K. Lagus, J. Salojarvi, V.
Paatero, A. Saarela. Self organization of a massive
document collection. In: IEEE Transactions on Neural
Networks, vol. 11, no. 3, pp. 574-585, 2000.
http://dx.doi.org/10.1109/72.846729.

[28] J.-P. Herbert, J.-T. Yao. A granular computing
framework for self-organizing maps. In:
Neurocomputing, vol. 72, no. 13-15, pp. 2865-2872,
2009. http://dx.doi.org/10.1016/j.neucom.2008.06.031.

[29] C. Blake, E. Keogh, C.-J. Merz. UCI repository of
machine learning databases. In: http://www.ics.uci.edu
/~mlearn/MLRepository.html, Irvine, CA: University
of California, 1998.

[30] M. Gu, H. Zha, C. Ding, X. He, H. Simon, J. Xia.
Spectral relaxation models and structure analysis for k-
way graph clustering and bi-clustering. In: Technical
Report, CSE-01-007, Penn State University, 2001.

Received December 2011.

