
183

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2012, Vol.41, No.2

A Simple and Efficient Signature-Based Consensus Protocol in the
Asynchronous Distributed System

Chien-Fu Cheng1, 2, *, Kuo-Tang Tsai2, Hsien-Chun Liao1
1 Department of Computer Science and Information Engineering,

2 Graduate Institute of Networking and Communication,
Tamkang University

No.151, Yingzhuan Rd., Tamsui Dist., New Taipei City 251, Taiwan (R.O.C.)
e-mail: cfcheng@mail.tku.edu.tw

 http://dx.doi.org/10.5755/j01.itc.41.2.931

Abstract. The consensus problem in distributed systems is mainly solved by message exchange. Most of previous
consensus algorithms rely on exchange of oral messages to achieve consensus among processors. As oral messages are
susceptible to influences from malicious attackers, this type of consensus protocols usually requires a large number of
rounds of message exchange, and the complexity of message exchange is also excessively high. In light of this
drawback of oral message-based consensus algorithms, some scholars proposed signed message-based consensus
algorithm to reduce the number of rounds of message exchange required. However, some signed message-based
consensus algorithms still have certain drawbacks which make them ineffective in some conditions. To address this
issue, we propose a new signed message-based consensus algorithm in this paper. We integrate the concept of grouping
into the proposed algorithm and find the best number of groups through mathematical analysis to further reduce the
rounds of message exchange required. In other words, the proposed algorithm makes use of digital signature and the
concept of grouping to solve the consensus problem. This algorithm can not only increase the fault-tolerance of
distributed systems but also significantly reduce the rounds of message exchange required to achieve consensus.

Keywords: distributed consensus problem; oral message; signed message; dormant fault; malicious fault and
grouping.

* Corresponding author

1. Introduction

With high scalability, distributed systems are less
likely to have single point of failure (SPOF) problems.
This advantage has considerably increased the
importance and applications of distributed systems.
Because a distributed system consists of a number of
processors that work together in a network to provide
computing power, how to maintain normal operation
of the system in the presence of faulty components is
an important issue. This issue is also called the fault-
tolerance problem in distributed systems. The
consensus problem is a well-known type of fault-
tolerance problems [7][19]. By solving the consensus
problem, we can enhance the reliability and fault-
tolerance of distributed systems. An introduction of
the consensus problem is provided as follows.

1.1. The Consensus problem

In any distributed system, some processors may
operate abnormally due to damage of an internal
component, external disturbance or malicious attacks.
The abnormal operation of these processors may affect

the computing results of the entire system. Helping
distributed systems keep away disturbance of faulty
components and accurately perform assigned tasks is
the primary goal of consensus algorithms. The
consensus problem is usually solved by designating
one or multiple commanders to broadcast the intended
initial value and performing message exchange among
processors to make all processors ultimately agree
upon the consensus value.

There are two types of the consensus problem: (1)
The consensus problem with a single commander: In a
distributed system consisting of n processors, one
processor is assigned to be the commander with an
initial value. This problem is also called The
Byzantine Agreement Problem [3][16][17] . (2) The
consensus problem with n commanders: In a
distributed system consisting of n processors, all
processors are commanders respectively having
an initial value [4][5][21]. Although these two types
of the consensus problems differ in the number of
commanders, the second type of the problem can be
solved using the consensus protocol for the first type
of the problem. The consensus problem with n

C. F. Cheng, K. T. Tsai, H. C. Liao

184

commanders can be solved by running n copies of the
protocol for the problem with a single commander in
parallel. Through n runs of the protocol, each
processor in the problem with multiple commanders
will get n agreement values. Later, we can select the
majority value to achieve the consensus. Protocols
designed to deal with the consensus problem with a
single commander should satisfy the following
conditions:

(Termination): All non-faulty processors agree on the
same value;

(Validitysv): If the commander is non-faulty, then
all non-faulty processors agree on the
initial value that the commander
sends.

Protocols designed to deal with the consensus
problem with n commanders should satisfy the
following conditions:

(Termination): All non-faulty processors agree on the
same value;

(Validitymv): If the initial value of each non-faulty
processor is vi, then all non-faulty
processors agree on vi.

We know that solution to the consensus problem
relies on message exchange. Past research has
classified messages exchanged by use of the digital
signature technology into oral messages and signed
messages [17]. The algorithms that achieve consensus
by exchanging oral messages are called Oral Message-
based Consensus Protocol (OMC protocol), and those
that achieve consensus by exchanging signed
messages are called Signed Message-based Consensus
Protocol (SMC protocol). The use of digital signature
is a key factor affecting the fault-tolerance of a
consensus protocol. Given n processors in a
distributed computing network, OMC protocols can
tolerate (n-1)/3 faulty processors [17]. In the same
setting, SMC protocols can tolerate more than (n-
1)/3 faulty processors due to the use of digital
signature. For example, the SM algorithm proposed by
Lamport et al. [17] and Quick Consensus algorithm
proposed by Dalui et al. [8] can tolerate n-2 faulty
processors. We will give a brief introduction of the
above protocols in Section 1.2.

1.2. An Overview

OM algorithm is the first OMC protocol. It was
introduced in a paper co-authored by Lamport,
Shostak, and Pease in 1982 [17]. In this paper, the
authors also developed an SMC protocol called SM
algorithm [17]. OM algorithm can tolerate (n-1)/3
faulty processors whereas SM can tolerate n-2 faulty
processors. Both algorithms require (n-1)/3+1
rounds of message exchange, and each round of
message involves three steps as follows (1) sends
messages to other processors, (2) receives messages
from other processors, and (3) local processing

[3][12][17]. Due to high complexity of message
exchange, many later researchers have proposed
solutions to reduce the complexity.

For OMC protocols, some researchers proposed to
determine termination of message exchange based on
sufficiency of messages collected. This kind of
algorithm is called the Eventual Consensus Algorithm
(ECA). Another algorithm which requires a fixed
number of rounds of message exchange ((n-1)/3+1)
is called the Immediate Consensus Algorithm (ICA).
The Ensure Algorithm developed by Krings et al. [16]
and the SMBTC (Synchronous Mortal Byzantine
Tolerant Consensus) algorithm by Widder et al. [22]
all belong to ECA. For SMC protocols, some
researchers attempted to reduce the number of rounds
of message exchange by employing the digital
signature technology or improving the algorithm. For
instance, Dalui et al. [8] introduced the Quick
Consensus algorithm. A classification of consensus
protocols is shown in Figure 1.

In the following sections, we will introduce the
algorithms proposed to mainly reduce the rounds of
message exchange required. These algorithms include
the SMBTC algorithm [22], the Quick Consensus
algorithm [8], and the Ensure Algorithm [16].

Figure 1. A classification of consensus protocols

1.2.1. The ensure algorithm by Krings et al.

The Ensure algorithm was proposed by Krings and
Feyer [16]. During execution of the Ensure algorithm,
each processor pi (piN, where N is the set of
processors in the network, n=|N| and i1~n) will
check if it has collected sufficient messages after each
round of message exchange. If the processor has
collected sufficient messages for reaching the
consensus, it will terminate the message exchange
operation immediately and compute the consensus
value. Through this mechanism, the Ensure algorithm
can avoid unnecessary message exchange operations
and reach the consensus earlier. The maximum
number of faulty processors it can tolerate is (n-
1)/3.

That is, the number of rounds of message
exchange required by the Ensure algorithm depends
on the influences, i.e. the number of actual faulty
processors f, not on the total number of processors n
(required rounds = (n-1)/3+1). To be succinct, the
Ensure algorithm requires min{f+2, (n-1)/3+1}

A Simple and Efficient Signature-based Consensus Protocol in the Asynchronous Distributed System

185

rounds of message exchange [16]. When applied to
systems with less than (n-1)/3 faulty processors, this
algorithm can effectively reduce the rounds of
message exchange required. Although the Ensure
algorithm can determine the number of required
rounds of message exchange based on actual number
of faulty processors, it still requires a large number of
rounds of message exchange (min{f+2, (n-1)/3+1}).

1.2.2. The SMBTC algorithm by Widder et al.

The Synchronous Mortal Byzantine Tolerant
Consensus (SMBTC) algorithm was proposed by
Widder, Gridling, Weiss and Blanquart [22]. During
execution of the SMBTC algorithm, each processor
will broadcast its initial value to all the processors and
receive the initial values from other processors in the
first round of message exchange. In the second round,
each processor will send the initial values (a vector)
obtained from other processors in the previous round
to all processors in the network and receive the vector
from other processors. Later, it will compare the
messages sent with the messages received. If it detects
any inconsistency between them, it will re-execute the
algorithm. This operation continues until no
inconsistency is detected. The maximum number of
faulty processors this algorithm can tolerate is n/2.

The following is an example of “inconsistency”.
Suppose that five processors are given in a network,
namely p1, p2, p3, p4, and p5. The initial values of
these processors are 1, 0, 1, 1, and 0, respectively.
Assume that p4 is a faulty processor. Thus, p4 may
send inconsistent messages to other processors in the
network. From the perspective of p1, this processor

will send its initial value [1] to p2, p3, p4, and p5 and
receive the initial values from them in the first round
of message exchange. Assume that the initial values it
receives from other processors are [0], [1], [1], and
[0], respectively. In the second round, p1 will
broadcast the vector consisting of initial values it has
obtained in the previous round ([1][0][1][1][0]) and
receive the vectors from p2, p3, p4, and p5 (as shown
in Figure 2). Through comparison of the vectors, p1
will detect inconsistency in the 4-th column of the
matrix (as shown in Figure 2) and re-execute the
SMBTC algorithm until it finds no inconsistency in
any column. Therefore, the SMBTC algorithm
requires 2*(1 + rounds of re-executing the algorithm)
rounds of message exchange, which is variable, not
fixed.

However, endless re-execution of this algorithm
may occur if there is always inconsistency in the
matrix. To avoid this problem, Widder et al. [22]
introduced the following constraint: processors with
Byzantine fault will finally crash. It should be noted
that this assumption does not meet the definition of
the Byzantine fault. The definition of Byzantine fault
is as follows: In a Byzantine fault, the behavior of a
faulty component is "unpredictable" and "arbitrary". A
faulty processor with Byzantine fault may lie, lose or
tamper messages so it causes the most damaging type
of fault and is the worst problem [1][6][23].

In this paper, we will remove the above
unreasonable assumption (processors with Byzantine
fault will finally crash) and revisit the consensus
problem to propose a new solution.

Figure 2. An example of execution of the SMBTC algorithm

1.2.3. The Quick Consensus algorithm by Dalui et al.

The Quick Consensus algorithm was proposed by
Dalui et al. [8]. It is based on the SMBTC algorithm
but uses digital signature to reduce the rounds of
message exchange required. Hence, the Quick
Consensus algorithm is also a kind of SMC protocol.
In addition, this algorithm integrates the concept of
grouping. It finds the optimal number of groups
through mathematical analysis to reduce the rounds of
message exchange required. The maximum number of

faulty processors it can tolerate is n-2 and the number
of rounds of message exchange is 2.

During execution of this algorithm, each processor
pi will send its initial value (vi) after signed (denoted
by [vi]pi) and receive signed initial values from other
processors in the first round of message exchange. In
the next round, each processor pi will sign the initial
values it has received in the previous round (a vector),
send them (denoted by [v1]p1pi[v2]p2pi, …, [vn]pnpi) to
other processors, and receive the vector from other
processors. Through two rounds of message exchange,
each processor pi will obtain a matrix of initial values.

C. F. Cheng, K. T. Tsai, H. C. Liao

186

Each processor pi will immediately check presence of
any inconsistent value in the matrix and remove the
values immediately. For instance, if the message from
pj is inconsistent with the messages from other
processors, pi will remove all messages related to pj,
namely [v1]p1pj[v2]p2pj…[vn]pnpj and [vj]pjp1[vj]pjp2…
… [vj]pjpn (i.e. all values in the j-th row and the j-th
column). Finally, the algorithm selects the majority
value to be the consensus value.

The Quick Consensus algorithm has the "chance"
to reach the consensus in merely two rounds. We
quote the word "chance" because this algorithm has
some drawbacks, which may make the consensus
impossible to reach. Below is an example of problems
which this algorithm cannot solve. A network consists
of five processors p1, p2, p3, p4, and p5, and p4 is a
faulty processor. We will explain the operation of the
algorithm from the perspectives of p1 and p2. From
the perspective of p1, given the initial value of 1, p1
will send [1]p1 and receive the initial values from p2,
p3, p4, and p5 ([0]p2, [1]p3, [1]p4, and [0]p5) in the first
round. In the second round, p1 will broadcast the
vector [1]p1p1[0]p2p1[1]p3p1[1]p4p1[0]p5p1 and receive the
vectors from p2, p3, p4, and p5 to form a vector as
shown in Figure 3(a). The values in the 4-th column of
the matrix are not entirely consistent, meaning that the
initial value sent from p4 in the first round is not the
same as the values from other processors. Meanwhile,

the Quick Consensus algorithm will ignore all
messages related to p4 (including values in the 4-th
row and the 4-th column) and find the majority value
from the remaining values. In this case, the consensus
value is the default value .

From the perspective of p2, the message denoted
by [0]p4p4 has been signed by p4 two times. If p4 alters
this value, its tampering will not be detected by other
processors (for example, p4 sends [0] p4p4 to p1 but [1]

p4p4 to p2). For p2, it has a matrix consisting of
consistent values in each column (as shown in
Figure 3(b)). As no message will be ignored by the
algorithm, p2 will obtain 1 as the consensus value. In
this example, the Quick Consensus algorithm is
unable to make all processors reach a consensus,
because non-faulty processors p1 and p2 have
different consensus values.

1.3. Motivation

As afore-mentioned, the Ensure Algorithm uses
oral messages and thus requires a large number of
rounds of message exchange to achieve consensus.
The main drawback of the SMBTC algorithm is that
the number of rounds of message exchange it requires
is not fixed. Besides, its assumption that all Byzantine
faults will finally become crash faults is unreasonable

(a). An example of execution of Quick Consensus algorithm by processor p1

(b). An example of execution of Quick Consensus algorithm by processor p2

Figure 3. An example of execution of Quick Consensus algorithm

A Simple and Efficient Signature-based Consensus Protocol in the Asynchronous Distributed System

187

and does not conform to the definition of Byzantine
fault. The Quick Consensus algorithm requires only
two rounds of message exchange but cannot achieve
consensus in some conditions, as demonstrated in the
preceding subsection. Therefore, we will revisit the
consensus problem to improve the drawbacks of these
algorithms. In order to reduce the complexity of

message exchange, we will also employ the concept of
grouping as Dalui et al. [8] did for their Quick
Consensus algorithm, to find the optimal number of
groups through mathematical analysis. Table 1 shows
the results of previous works on the consensus
problem.

Table 1. The results of previous works on the consensus problem

n is the number of processors, t is the maximum number of faulty processors allowed and f is the number of actual
faulty processors in the network.

*: The Quick Consensus algorithm may not reach a common consensus value.

1.4. Roadmap

This paper consists of six sections, and the
remainder is organized as follows. Section 2
introduces the concept and approach. Section 3
presents the proposed protocols. Section 4 gives an
example of executing the proposed protocols.
Section 5 provides an analysis of the optimal number
of groups. Finally, the conclusion is presented in
Section 6.

2. The concept and approach

In this section, we will introduce the
characteristics of the digital signature technology and
the behavior of faulty processors and then explain the
system model.

2.1. A brief introduction of digital signature

The increasing application of the digital signature
technology to document processing and e-commerce
in recent years can be attributed to five characteristics
of this technology, including (1) Confidentiality:
protecting confidential data from being stolen,
illegally acquired or leaked; (2) Authentication:
validating data sender; (3) Integrity: ensuring that data
will not be tampered, resent or lost; (4) Non-
repudiation: ensuring that a sender/receiver cannot
deny that it has sent/received a message earlier; (5)
Access control: avoiding unauthorized data access.
The common encryption techniques used for signing
are RSA [18] and ElGamal [10]. RSA requires that all
the same messages must correspond to a specific
signature. This signing method is called fixed
signature. In contrast, ElGamal may encrypt a single
plaintext into many possible ciphertexts. This signing

technique is called probabilistic signature. The digital
signature operation involves two main processes,
including signing process and verification process.

Digital signature can effectively protect data from
being tampered and facilitate detection of data
tampering. We will integrate the digital signature
technology into the proposed consensus protocol to
reduce the rounds of message exchange. Thus, the
proposed consensus protocol can also be classified as
a SMC protocol.

2.2. The behavior of faulty processors

The behavior of a faulty processor can be
classified by damaging level into two categories:
dormant fault and malicious fault [4]. Dormant faults
include crashes and omission. A crash fault occurs
when a processor stops executing prematurely [15].
An omission fault occurs when a processor fails to
send or receive a message on time or at all [20]. The
malicious fault is the most damaging failure type
because the behavior of a malicious processor is
unpredictable and arbitrary [1][6][23]. Malicious
processors may work with other faulty processors to
disrupt normal operation of the system. So, this type
of fault is viewed as a fault with intelligence.

2.3. System model

The main features of completely asynchronous
distributed systems are: (1) no assumption on
communication delays and relative speed of
processors; and (2) no access to real-time clocks [11].
According to Fischer et al. [13], it is impossible to
solve consensus deterministically in a completely
asynchronous system. As a consequently, many
researchers have proposed various ways to circumvent
this limitation, including employing a partially

 Message Types Failure Types Comparison

Previous Works Oral Signed Dormant Malicious Grouping Constraint Rounds Note

Lamport et al. [17]
◆ ◆ n3t+1 (n-1)/3+1

 ◆ ◆ nt+2 (n-1)/3+1

Widder et al. [22] ◆ ◆ ◆ n2t+1 2~∞

Dalui et al. [8]
 ◆ ◆ ◆ n2t+1 2 *

 ◆ ◆ ◆ ◆ n2t+1 4 *

Krings et al. [16] ◆ ◆ ◆ n3t+1 min{f+2,(n-1)/3+1}

C. F. Cheng, K. T. Tsai, H. C. Liao

188

synchronous assumption [9], using randomization
protocol [14], failure detectors [2][14] or stubborn
channels with a finite average response time [11]. For
the above reasons, the system model of this study is
built with considerations of an asynchronous network
with the partially synchronous assumption.

To ensure proper operation of the system, we must
set a reasonable limit on the number of faulty
processors in the network. The number of faulty
processors that can be tolerated in the network
depends on use of digital signature. Tampering of
unsigned messages is hard to detect. Thus, networks
not using the digital signature technology certainly
tolerate a much smaller amount of faulty processors
than those using the technology. The network
environment considered in this paper consists of n
processors, and each of which has its initial value and
always signs messages before delivering them. By
using signed messages, all the processors can detect
tampering of messages during message exchange.
Through the time-out mechanism or encryption
techniques, they can also detect loss of data packets
and resend lost data immediately. Because of the
characteristics of digital signature, the maximum
number of faulty processors that can be tolerated in
the network can be increased to n-2 [8][17]. More
specifically, the number of processors in the network
(n) must be greater or equal to the number of
malicious processors tm plus the number of dormant
processors td and 2. (n ≥ t+2 where t = tm+td), The
assumptions we have made for the asynchronous
network are as follows:

 The underlying network is asynchronous with a
partially synchronous assumption.

 N is the set of processors in the network, where
n=|N|.

 Each processor has its own initial value and can
be identified uniquely in the network.

 The failure types of the fallible processors are
malicious fault and dormant fault.

 The maximum number of faulty processors
allowed is n-2 (n ≥ t+2, where t=tm+td, tm is the
number of malicious processors and td is the
number of dormant processors).

 A processor does not know the fault status of
other processors.

 All messages are signed; processors cannot
falsify a message signed by other processors.

3. The proposed protocol GCPsm

In this section, we will introduce the proposed
protocol, Grouping Consensus Protocol with signed
message (GCPsm). GCPsm is used to solve the
consensus problem with malicious and dormant
processors in the asynchronous network. The basic
operation of GCPsm is as follows: Each group will first

decide its "local" consensus value through message
exchange and then elect the chief of its group. Later,
all the chiefs will exchange their local consensus
values with each other to obtain the "global"
consensus value. After obtaining the global consensus
value, they will broadcast this value among the
members of their group to make all non-faulty
processors reach the consensus. The proposed protocol
involves three tasks, including Group_Cons Task,
Gmsg_Collect Task, and Re_Elect Task. The
Group_Cons Task is mainly about computation of the
global consensus value. The Gmsg_Collect Task is
performed to collect the messages from other groups.
The Re_Elect Task is performed to re-elect the chief
of the group. Upon launch, GCPsm will perform these
three tasks concurrently. In order to effectively reduce
the rounds of message exchange, we refer to the
concept of grouping to group processors before
executing GCPsm. Details on how to determine the
optimal number of groups will be presented in
Section 5.

Because GCPsm derives the "global" consensus
value from "local" consensus values exchanged
among groups, we must obtain the "local" consensus
value of each group first. We develop the
SignConsensus function to meet this need. A detailed
introduction of the SignConsensus function is
provided in the following sections.

3.1. The SignConsensus function

The SignConsensus function consists of two tasks,
including Task Cons_Compute and Task Msg_Collect.
These two tasks will be run concurrently when the
SignConsensus function is called. Task Msg_Collect is
dealing with receiving messages from other processors
in the group, and Task Cons_Compute is responsible
for computing the "local" consensus value. The
notations of the SignConsensus function are shown as
follows:

 pi-Vector(pj) denotes the initial value from
processor pj to processor pi.

 pi-Vector denotes the received vector of processor
pi, where piGc, Gc={pc1, p c2,…, pcn} and pi-
Vector=[pi-Vector(pc1) …, pi-Vector(pcn)].

 pi-Matrix denotes the received matrix of processor

pi, where pi-Matrix =



























Vectorp

Vectorp

Vectorp

cn

c

c

...
2

1

.

 pi-Matrix(pj, ) denotes the pj row of pi-Matrix,
where pi-Matrix(pj, )=(pi-Matrix(pj, pc1), pi-
Matrix(pj, pc2), …, pi-Matrix(pj, pcn))= pj-Vector.

 pi-Matrix(, pj) denotes the pj column of pi-Matrix,
where pi-Matrix(, pj)=(pi-Matrix(pc1, pj), pi-
Matrix(pc2, pj), …, pi-Matrix(pcn, pj)).

 pi-IntrSet denotes the set of intruders detected by
processor pi.

A Simple and Efficient Signature-based Consensus Protocol in the Asynchronous Distributed System

189

 pi _Cons denotes the local consensus value of
processor pi.

The SignConsensus function can be presented with
the following primitives and the formal description of
SignConsensus function is shown in Figure 4.

 activate task(T1, T2): start the tasks T1 and T2
concurrently.

 sign_send(〈msg〉, rcvr): send a message
〈msg〉 using the digital signature technology to
receiver rcvr.

o sign_send(〈Val, pj, vj〉, Gc): send a Val
message with the value vj proposed by
processor pj to processors in group Gc.

o sign_send(〈Vector, pj, pj-Vector〉, Gc):
send a Vector message with the vector pj-

Vector proposed by processor pj to
processors in group Gc.

o sign_send(〈Intr, pi, pi-IntrSet, evidences
〉, Gc): send a Intr message with the set
pi-IntrSet and evidences proposed by
processor pi to processors in group Gc.

 mark_self(pi-Matrix): mark each diagonal entities
in pi-Matrix to avoid the influence from self, if j =
k then pi-Matrix(pj, pk)=*.

 chk_dif(pi-Matrix(, pj): ignore the -value, if the
values in pj column are not the same, then return
"true"; else return "false".

 decision(pi-Matrix): compute the majority value
according to pi-Matrix.

Function: SignConsensus(vi, Gc) //for each processor pi, where piGc and vi is the initial value of pi

Initialization:
1. activate task(Cons_Compute, Msg_Collect);
Task Cons_Compute:
/* Phase 1: Message Exchange */
//first round
2. sign_send(〈Val, pi, vi〉, Gc);
3. wait until (time-out interval)
4. for pj  Gc do
5. if receive 〈Val, pj,vj〉 from pj then
6. pi-Vector(pj) = vj;
7. else
8. pi-Vector(pj) = #;
9. end
//second round
10. sign_send(〈Vector, pi, pi-Vector〉, Gc);
11. wait until (time-out interval)
12. for pj  Gc do
13. if receive 〈Vector, pj, pj-Vector〉 then
14. pi-Matrix(pj, ) = pj-Vector;
15. else
16. pi-Matrix(pj, ) = (##,…,##);
17. end

/* Phase 2: Consensus */
//mark the messages from self
18. pi-Matrixdec = mark_self(pi-Matrix);

// detect the inconsistent values
19. for pj  Gc do
20. if chk_dif(pi-Matrixdec(, pj))=true then
21. pi-IntrSet = pi-IntrSet∪{pj};
22. pi-Matrixdec (, pj) = (*,…,*);
23. end
24. sign_send(〈Intr, pi, pi-IntrSet, evidences〉, Gc);
25. wait until (time-out interval)
26. for pj  Gc do
27. if receive 〈Intr, pj, pj-IntrSet, evidences〉 then
28. pi-IntrSet = pi-IntrSet∪pj-IntrSet;
//compute the Consensus value
29. pi _Cons = decision(pi-Matrixdec);
30. return (pi _Cons, pi-Matrix, pi-IntrSet);

Task Msg_Collect:
31. when 〈Val, pj, vj〉 is received do

32. Val_rec = Val_rec∪{〈Val, pj, vj〉};

33. when 〈Vector, pj, pj-Vector〉 is received do

34. Vector_rec =Vector_rec∪{〈Vector, pj, pj-Vector〉};

35. when 〈Intr, pj, pj-IntrSet, evidences〉 is received do

36. IntrSet_rec = IntrSet_rec∪〈Intr, pj, pj-IntrSet,

 evidences〉;

Figure 4. SignConsensus Function

3.1.1. The Task Cons_Compute of SignConsensus
function

Task Cons_Compute has two phases, namely The
Message Exchange Phase and The Consensus Phase.
In the beginning, each processor in the group has an
initial value. In The Message Exchange Phase, they
will perform two rounds of message exchange and

collect messages from other processors in the group
through Task Msg_Collect. In the Consensus Phase,
the local consensus value of the group will be
computed. The operational process of Task
Msg_Collect will be elaborated in Section 3.1.2.
Below are explanations of the two phases of Task
Cons_Compute.

C. F. Cheng, K. T. Tsai, H. C. Liao

190

3.1.1.1. Phase1: The Message Exchange Phase of Task
Cons_Compute

In the first round of The Message Exchange Phase,
each processor pi (piN) will first sign its initial value
and send it to other processors pj (j ≠ i) in the group.
Meanwhile, other processors pj will also send their
signed initial values to pi. Processor pi will place the
signed values from other processors pj in the pi-
Vector(pj). If any processor (denoted by pk) fails to
send its initial value to pi or has a dormant fault, we
use # to represent the missing value from pk. In pi-
Vector(pk), # denotes no value from pk or pk has a
dormant fault. After the first round of message
exchange, each processor pi has a vector of values
pi-Vector=[pi-Vector(pc1) …, pi-Vector(pcn)] (lines 2-9
in SignConsensus function).

In the second round, each processor pi will sign the
values (a vector) obtained in the previous round and

send them to other processors pj (j ≠ i) in the group.
Concurrently, other processors will also send the
message (a signed vector) they have obtained to pi.
After receiving the vectors from other processors, pi

will store all the vectors, including the vector it has
sent to others, in pi-Matrix, which is in a matrix data
structure. We use pi-Matrix(pj, ) to denote the j-th row
of pi-Matrix. The values in the j-th row come from the
vector that pi has received from pj, In this round, if any
processor (denoted by pk) fails to send its vector to pi

or has a dormant fault, we use ##,…,## to represent
the missing vector from pk in pi-Matrix(pk, ). After
this round of message exchange, each processor in
each group will have a matrix of values (lines 10-17 in
SignConsensus function). Figure 5 shows the flow
chart of The Message Exchange Phase of Task
Cons_Compute in the SignConsensus Function.

Figure 5. The flow chart of The Message Exchange Phase of Task Cons_Compute in SignConsensus function

3.1.1.2. Phase2: The Consensus Phase of Task
Cons_Compute

In each matrix derived through two rounds of
message exchange, some messages are signed by a
single processor two times (i.e. not signed by two
different processors). If the processor that signs a
message twice is a malicious processor, the message
may have been altered, and other processors have no
way to detect it (because the malicious processor owns
the encryption key). To avoid this circumstance, the
proposed protocol will mark diagonal entities in the
matrix (i.e. replace all diagonal entities with *)

before computing the consensus value (line 18 in
SignConsensus function).

In the next step, each processor pi will check
consistency of values in each column. Assume that
there is an inconsistent value in the j-th column.
Because this value is sent by processor pj, pi will view
pj as a malicious processor and replace all the values
in this column with *,…,* . Further, it will put pj

into pi-IntrSet, which is a logbook of faulty processors
it has detected (lines 19-23 in SignConsensus
function), and deliver the detection result (including
evidence) to other processors in the group (lines 24-28
in SignConsensus function). Finally, we will compute

A Simple and Efficient Signature-based Consensus Protocol in the Asynchronous Distributed System

191

the local consensus value of the group using the
decision function (lines 29-30 in SignConsensus
function). The decision function is explained as
follows:

 The process of the decision function

The decision function is intended to compute the
majority value in each matrix of values. The formal
description of decision function is shown in Figure 6.
It excludes the influences from malicious processors
and dormant processors before computing the majority
value. First of all, it will remove -value in each
column and find the index value of the column. If this
value is 0, the weight (count) of 0 increases by 1 (lines
5-6 in decision function); if this value is 1, the weight
(count) of 1 increases by 1 (lines 7-8 in decision
function). Through this process, it can determine the
majority value based on the weight (counts) of 0s and
1s. In the case that 0 and 1 have an equivalent weight
(count), it uses default value  as the consensus value.
Here, we assume default value  = 0 (lines 12-15 in
decision function).

Function: decision(Matrix)

1. for i = 1 to cn do //cn is the total number of
rows in Matrix

2. for j = 1 to j = cn do //find out the non- value
3. if Matrix(pj, pi)  {-value} do
4. index-val = Matrix(pj, pi);
5. if index-val = 0 then
6. value0.count = value0.count + 1;
7. elseif index-val = 1 then
8. value1.count = value1.count + 1;
9. break
10. end
11. end
12. if value0.count ≥ value1.count then
13. return "0";
14. else
15. return "1";

Figure 6. Decision function

3.1.2. The Task Msg_collect of SignConsensus
Function

The Task Msg_collect is performed to collect
messages from other processors in the group. Three
types of messages will be collected: (1) the initial
value that each processor sends in the first round
(lines 31-32 in SignConsensus); (2) the vector that
each processor sends in the second round (lines 33-34
in SignConsensus); and (3) the list and evidence of
faulty processors that each processor has detected
(lines 35-36 in SignConsensus). The pseudo code of
Task Msg_collected is shown in lines 31-36 of
Figure 4.

3.2. The three tasks of GCPsm

After the SignConsensus Function, we will
introduce the proposed GCPsm protocol. GCPsm

performs three tasks concurrently (namely
Grouping_Consensus Task, Gmsg_Collect Task, and
Re_Elect Task) to compute the consensus value in the
network (i.e. global consensus value). The
Group_Consensus Task deals with most of the
computation work, the Gmsg_Collect Task is intended
to collect matrices sent by group chiefs, and the
Re_Elect Task is performed to re-elect a new chief.
Operational details of these three tasks are provided in
Section 3.2.1, 3.2.2, and 3.2.3, respectively.

The GCPsm protocol can be presented with the
following primitives and the formal description of
GCPsm protocol is shown in Figure 7.

 sign_send(〈msg〉, rcvr): send a message 〈msg
〉 using the digital signature technology to
receiver rcvr.

o sign_send(〈Mat, pm, pm-Matrix〉, C): send a
Mat message with the matrix pm-Matrix
proposed by processor pm to C, where C is the
set of chief processors.

o sign_send(〈Re-elect, pm, pj-Matrix〉, Gj):
send a Re-elect message with the evidence
pj-Matrix proposed by processor pm to Gj, 〈
Re-elect, pm, pj-Matrix〉 is used to request
the processors in Gj to re-elect the new
chief, where Gj is the group of pj.

o sign_send(〈Consensus, pk, ũ〉, Gl): send
the Consensus message with the value ũ
proposed by processor pk to processors in
group Gl.

 select_chief (Candidatel): elect the processor who
has the minimum ID as chief in the set of
Candidatel.

3.2.1. The Group_Consensus Task of GCPsm

In the beginning of the Grouping_Consensus Task,
each processor pk can use the SignConsensus function
to obtain the local consensus value (pk_Con), list of
faulty processors in the group (pk-IntrSet), and the
matrix formed after two rounds of message exchange
(pk-Matrix) (line 2 in GCPsm). Later, one processor
must be selected from each group to be the chief of the
group. The faulty processors in each group will be
first excluded (processors listed in pk-IntrSet). The
remaining processors then form a set of candidates
(line 3 in GCPsm). By using the SignConsensus
function, all non-faulty processors in each group can
get the same matrix, local consensus value, and the list
of faulty processors in the group. Hence, any
processor in the candidate set can be the chief of the
group. The proposed protocol selects the processor
with the minimum ID to be the chief (line 4 in
GCPsm). The selected chiefs will exchange messages

C. F. Cheng, K. T. Tsai, H. C. Liao

192

with each other, and the matrix of their messages can
be obtained using the SignConsensus function. In the
message exchange process, each chief collects
messages from other chiefs through the Gmsg_Collect
Task. Details on the Gmsg_Collect Task are provided
in Section 3.2.2.

In this paragraph, we will explain how GCPsm

computes the global consensus value based on
messages exchanged between chiefs. Assume that
processors in group Gl select pk to be the chief (line 5
in GCPsm). Processor pk will send the matrix derived
using the SignConsensus function to other chiefs pj,
where pj  C and C is the set of chief processors.
Likewise, the chiefs of other groups will also send
their matrices to pk at the same time (line 6 in GCPsm).
If the chief of group Gj (denoted by pj) does not send

its matrix (Mat, pj, pj-Matrix) to pk, Processor pk will
put pj on its list of faulty processors and send a re-
elect message to all the other processors in group Gj,
requesting them to elect a new chief (lines 7-12 in
GCPsm). After receiving the Re-elect message,
processors in group Gj (excluding pj) will run the
Re_Elect Task to select a new chief among
themselves. The detail description of Re_Elect Task is
shown in Section 3.2.3. If all the processors in this
group are faulty processors, no processor can be the
chief candidate (i.e. Candidate= null). In this case, pk

will use the mark_matrix function to mark the matrix
delivered by this group so that all the messages from
this group will be ignored (line 14 in GCPsm). After
the message exchange operation, each chief has its
own matrix and matrices from other group chiefs. The

Protocol: Grouping Consensus Protocol with signed message (GCPsm) //for each processor pk, where vk is the initial
value of pk
Initialization:
1. activate task(Group_Cons, Gmsg_Collect, Re_Elect);

Group_Cons Task:
/* Local Processing */
2. (v, pk-Matrix, pk-IntrSet) = SignConsensus(vk, Gl);
3. Candidatel = Gl – pk-IntrSet;
4. pc = select_chief(Candidatel);
/* Group Consensus */
5. if pk = pc do
6. sign_send(〈Mat, pk, pk-Matrix〉, C);
7. wait until (time-out interval)
8. for pj  C do
9. if doesn't receive 〈Mat, pj, pj-Matrix〉 from pj then
10. pk-IntrSet = pk-IntrSet∪{pj};
11. if Candidatej  null then
12. sign_send(〈Re-elect, pk, pj-Matrix〉, Gj);
13. else
14. mark_matrix(pi-Matrix);
15. for pjC do
16. pj-Matrixdec = mark_self(pj-Matrix);
17. for ph  Gj do
18. if chk_dif(pj-Matrixdec(, ph))=true then
19. pk-IntrSet = pk-IntrSet∪{ph};
20. pj-Matrixdec (, ph) = (*,…,*);
21. end
22. matrix-val = decision(pj-Matrixdec);
23. if matrix-val = 0 then
24. value0.count = value0.count + 1;
25. else
26. value1.count = value1.count + 1;
27. end
28. end
29. if value0.count ≥ value1.count then
30. sign_send(〈Consensus, pk, 0〉, Gl – pk-IntrSet);
31. else
32. sign_send(〈Consensus, pk, 1〉, Gl – pk-IntrSet);
33. end

Gmsg_Collect Task:
34. when 〈Mat, pm, pm-Matrix〉 is received do
35. Mat_rec = Mat_rec∪{〈Mat, pm, pm-

Matrix〉};
36. when 〈Re-elect, pm, pj-Matrix〉 is received do
37. Re_rec = Re_rec∪{〈Re-elect, pm, pj-

Matrix〉};

Re_Elect Task:
38. when 〈Re-elect, pe, pl-Matrix〉 is received do
39. pk-IntrSet = pk-IntrSet∪{pl};
40. Candidatel = Gl – pk-IntrSet;
41. pc = select_chief(Candidatel);
42. goto line 5

//line 2: pkGl
//line 8: C is the set of chief processors
//line 11: Candidatej is the set of candidate of Gj, pj

 Gj.
//line 38: pe  C, pl and pk  Gl

Figure 7. Grouping Consensus Protocol with signed message (GCPsm)

A Simple and Efficient Signature-based Consensus Protocol in the Asynchronous Distributed System

193

proposed algorithm will mark the diagonal entities in
each matrix and check consistency of entities in each
column. Inconsistent entities will be marked, and the
faulty processors will be put into pk-IntrSet to preclude
influences from faulty processors (lines 15-21 in
GCPsm). Later, the proposed algorithm will use the
decision function to compute the index value of each
matrix (line 22 in GCPsm) and find the majority value.
The majority value is then the global consensus value.
Finally, it relies on all the chiefs to broadcast this
global consensus value among non-faulty processors
within their groups to achieve consensus in the
network (lines 23-32 in GCPsm).

3.2.2. The Gmsg_Collect Task of GCPsm

The Gmsg_Collect Task is performed to collect
messages from other group chiefs. Two types of
messages can be collected, including (1) Mat message
from other chiefs (lines 34-35 in GCPsm) and (2) Re-
elect message that requests for re-election of a new
chief (lines 36-37 in GCPsm).

3.2.3. The Re_Elect Task of GCPsm

The Re_Elect Task is performed to elect a new
chief among non-faulty processors in the group. When
any processor detects that a group chief is a faulty
processor, it will send a Re-elect message to all the
other processors of the group, requesting them to elect
a new chief. The steps are as follows: When the Re-
elect message is received, pk will immediately put the
faulty processor pl into pk-IntrSet and remove it from
the chief candidate set. Later, it will select a new
processor from the candidate set to be the chief and
return to the Group_Cons Task (lines 38-42 in GCPsm).

4. An example of executing GCPsm

In this section, we use an example to explain the
operation of the proposed protocol. The setting of this
example is as follows: A network consists of 25
processors, and each processor has an initial value.
These processors are divided into five equal-sized
groups, as shown in Table 2. For instance, group A
comprises processors p1, p2, p3, p4, and p5, and their
initial values are 1, 0, 0, 1, and 0, respectively. Among
these processors, p3 and p4 are malicious processors.
We will explain the operation of the proposed protocol
from the perspective of p1.

Table 2. The parameters of the scenario

 Group A Group B Group C Group D Group E

group
member

p1, p2,
p3, p4,

p5

p6, p7,
p8, p9,

p10

p11, p12,
p13, p14,

p15

p16, p17,
p18, p19,

p20

p21, p22,
p23, p24,

p25

initial
values

1,0,0,1,0 1,0,0,0,0 1,1,1,1,1 1,0,1,1,1 1,1,0,1,1

malicious
processor

p3, p4 p11, p15 p16 p21, p22

4.1. Local processing

In the beginning, p1 uses the SignConsensus
function to obtain the local consensus value of
the group (group A). This operation requires two
rounds of message exchange. In the first round,
p1 will sign its initial value [1]p1 and send it to
other processors within the group. At the same
time, it will also receive signed initial values
from p2, p3, p4, and p5. These signed values are,
respectively, denoted by [0]p2, [0]p3, [1]p4, and
[0]p5. Hence, p1 can obtain a vector consisting of
[1]p1[0]p2[0]p3[1]p4[0]p5. It will store these values
into p1-Vector=[p1-Vector(p1) …, p1-Vector(p5)],
as shown in Figure 8(a). In the second round, p1
will sign the vector it has obtained in the
previous round and send it to other processors. At
the same time, it will also receive signed vectors
from other processors. After two rounds of
message exchange, each processor can obtain a
matrix of messages. As shown in Figure 8(b), p1
can obtain a matrix consisting of the vector [1p1p2

0p2p2 1p3p2 1p4p2 0p5p2] from p2, the vector [1p1p3

0p2p3 1p3p3 0p4p3 0p5p3] from p3, the vector [1p1p4

0p2p4 0p3p4 0p4p4 0p5p4] from p4, and the vector [1p1p5

0p2p5 #p5 #p5 0p5p5] from p5.
In the next step, p1 will mark all the diagonal

entities in the matrix with * and check consistency of
entities in each column. In this example, it will detect
the inconsistency in the 3rd and 4th columns. Take the
inconsistency in the third column as an example. The
entity in row 1 and column 3 is 0, the entity in row 2
and column 3 is 1, and the entity in row 4 and column
3 is 0. It can detect that p3 and p4 are faulty
processors. Hence, p1 will put p3 and p4 in p1-IntrSet
and use *,…,* to take the place of values in the third
and fourth column. Besides, it will also deliver the
updated p1-IntrSet to other processors in the group to
tell them that p3 and p4 are faulty processors. Later, it
will use the decision function to compute the local
consensus value. The computation process is as
follows: First, it finds the index value of each column.
The valid index values are 0 and 1. The index value of
column 1 is 1, the index value of column 2 is 0, and
the index value of column 5 is 0. As shown in Figure
8(c), because 0 is the majority value among 1, 0, and
0, the local consensus value of group A is 0.

In the following step, a chief should be selected
from non-faulty processors in each group. The
processor with the minimum ID can be the chief of its
group. Take group A as an example. Excluding faulty
processors p3 and p4, p1 is the non-faulty processor
with the minimum ID. Hence, p1 is selected to be the
chief of group A. It will perform message exchange on
behalf of group A to obtain the global consensus
value. Meanwhile, all the other groups will also
compute their local consensus values and select their
chiefs. In this example, there is no faulty processor in

C. F. Cheng, K. T. Tsai, H. C. Liao

194

group B. As p6 is the non-faulty processor with the
minimum ID, p6 is selected to be the chief of group B.
Subgroup C has two faulty processors, namely p11
and p15, so p12 is selected to be the chief. Subgroup
D has one faulty processor, p16, so p17 is selected.
Subgroup E has two faulty processors, p21 and p22.
p23 will be selected be the chief of this group.

4.2. Group Consensus

In the Group Consensus phase, all the group chiefs
will exchange messages to derive the global consensus
value. Chiefs p1, p6, p12, p17, and p23 will exchange
their Mat messages. Figure 9(a) shows the exchange
of Mat messages between p1 and other chiefs. After
exchanging Mat messages, p1 will have five matrices,
including p6, p12, p17, p23, and itself, as shown on
the top of Figure 9(b). It will mark the diagonal

entities in all these matrices and check consistency of
values in each column. As shown in the center of
Figure 9(b), inconsistent values will be marked. Later,
p1 will use the decision function to compute the index
value of each matrix.

In this example, the index values of the five
matrices are 0, 0, 1, 1, and 1, respectively. Based on
the majority rule, p1 will find 1 as the global
consensus value, as shown in the bottom of Figure
9(b). Finally, p1 will send this global consensus value
to other non-faulty processors in the group. While p1
is broadcasting the global consensus value, other
chiefs are also broadcasting the global consensus
values they obtain among their peer non-faulty
processors. Therefore, all non-faulty processors in the
network will end up having a consensus value.

Figure 8 (a). The 1st round of Message Exchange phase of p1 in group A (SignConsensus function)

Figure 8 (b). The 2nd round of Message Exchange phase of p1 in group A (SignConsensus function)

Figure 8(c). The Consensus phase of p1 in group A (SignConsensus function)

A Simple and Efficient Signature-based Consensus Protocol in the Asynchronous Distributed System

195

Figure 9(a). The message exchange of Mat message between the chiefs.

5. The Analysis of the Number of Groups

In this section, we will perform mathematical
analysis to find the optimal number of groups for
GCPsm. GCPsm involves the local processing phase and
the global processing phase. The number of rounds of
message exchange that each phase requires is as
follows:

Local processing: (n/g)((n/g)-1)g+(n/g)((n/g)-
-1)g+(n/g)((n/g)-1)g (1)

Global processing: g(g-1)+(g-1)(n/g)(n/g)(g)-
-2(n/g)(g)+(n-g-(n-2)) (2)

Given n processors in a network, we divide these n
processors into g equal-sized groups. In other words,
each group has n/g processors. In the local processing
phase, each processor needs to perform two rounds of
message exchange. In the first round of message
exchange, each processor (n/g in total) in each group
will send their signed initial values to other processors
in the group ((n/g)-1 in total) and also receive signed
values from them. Therefore, a total of (n/g)((n/g)-1)
times of message exchange will be performed in the
first round. In the second round, each processor will
send the vector it has obtained in the previous round to
(n/g)-1 other processors in the group and also receive
the vectors from them. A total of (n/g)((n/g)-1) times
of message exchange will be needed. Later, each
processor will check consistency of obtained values to
find faulty processors and send the detection result to
other processors in the group. A total of (n/g)((n/g)-1)
times of message exchange will also be required. In
sum, because each processor in each group has to
perform two rounds of message exchange and send
fault detection results, the entire network needs to
perform
(n/g)((n/g)-1)g+(n/g)((n/g)-1)g+(n/g)((n/g)-1)g times
of message exchange in the local processing phase.

In the global processing phase, because each of the
g group chiefs will exchange messages with g-1
chiefs, g(g-1) times of message exchange are needed.
If any chief is found to be a faulty processor, a Re-
elect message will be sent to all the processors in its
group, requesting them to select a new chief. In other
words, if any chief is a faulty processor, g-1 chiefs
will send a total of n/g Re-elect messages to
processors in its group. If all the n/g processors in this
group become faulty while being the chief of their
group, the above operation will be executed n/g times.
As there are g groups and at most n-2 faulty
processors in the network, GCPsm has to send the Re-
elect message (g-1)(n/g)(n/g)(g)-2(n/g)(g) times in the
worst case. After the global consensus value is
obtained, all the chief processors have to broadcast
this value to other non-faulty processors in their
groups. In the worst case, this value has to be sent
(n-g-(n-2)) times. Therefore, the entire network needs
to perform g(g-1)+(g-1)(n/g)(n/g)(g)-2(n/g)(g)+(n-g-
-(n-2)) times of message exchange in the global
processing phase.

The total number of rounds of message exchange
that GCPsm requires is as shown in Equation (3) (the
sum of Equation (1) and Equation (2)). We conduct
the following mathematical analysis to find the best
number of groups.

f = g2+2n2/g-2g+n2-5n+2 (3)

2
2

2
2

2





g

n
g

g

f

 (4)

02
4

3

2

2

2





g

n

g

f

 (5)

C. F. Cheng, K. T. Tsai, H. C. Liao

196

Figure 9(b). An example of computing the global consensus value (from the perspective of p1)

Equation (5) is the result of quadratic partial
differentiation. Both n and g are greater than zero, so
Equation (5) must be greater than zero. We can infer
that when Equation (4) (ordinary differentiation) is
zero, the obtained g can result in a minimum f. In
other words, the best number of groups for a network

consisting of n processors is 3 219
3

1
ng  . This

grouping method can minimize the complexity of
message exchange required by the proposed protocol.

A Simple and Efficient Signature-based Consensus Protocol in the Asynchronous Distributed System

197

6. Conclusions

As mentioned earlier, OMC protocols exchange
oral messages to achieve consensus and therefore
require a large number of rounds of message
exchange. The OM algorithm, the Ensure algorithm,
and the SMBTC algorithm are all OMC protocols.
SMC protocols exchange signed messages to achieve
consensus. Due to the characteristics of digital
signature, they require a significantly smaller number
of rounds of message exchange. The SM algorithm
and the Quick Consensus algorithm belong to SMC
protocols. However, the existing signed message-
based consensus algorithms still have some drawbacks
which make them ineffective in some specific
conditions. Therefore, we revisited the consensus
problem in distributed systems in this paper. We
proposed a signed message-based consensus algorithm
that makes use of digital signature to effectively
reduce the complexity of message exchange. In
addition, we integrated the concept of grouping into
the algorithm and obtained the optimal number of
groups by mathematical analysis. That is, the proposed
algorithm can not only facilitate achievement of
consensus by removing influences from malicious and
dormant processors but also reduce the complexity of
message exchange.

References

[1] A.N. Bessani, M. Correia, J. da Silva Fraga, L.C.
Lung. An Efficient Byzantine-Resilient Tuple Space.
In: IEEE Transactions on Computers, Vol. 58, No. 8,
pp. 1080-1094, 2009. http://dx.doi.org/10.1109/
TC.2009.71.

[2] T.D. Chandra, S. Toueg. Unreliable Failure Detectors
for Reliable Distributed Systems. In: Journal of the
ACM, vol.43, no.2, pp.225-267, 1996. http://dx.
doi.org/10.1145/226643.226647.

[3] C.F. Cheng, S.C. Wang, T. Liang. Byzantine
Agreement Protocol & Fault Diagnosis Agreement for
Mobile Ad-Hoc Network. In: Fundamenta
Informaticae, vol. 89, no. 2, pp.161-187, 2008.

[4] C.F. Cheng, S.C. Wang and T. Liang. Investigation
of Consensus Problem over Combined Wired/Wireless
Network. In: Journal of Information Science and
Engineering, vol. 25, no. 4, pp.1267-1281, 2009.

[5] C.F. Cheng, S.C. Wang, T. Liang. File Consistency
Problem of File-Sharing in Peer-to-Peer Environment.
In: International Journal of Innovative Computing,
Information and Control, vol. 6, no. 2, pp.601-613,
2010.

[6] M. Correia, N. F. Neves, L. C. Lung, P. Verissimo.
Worm-IT – A Wormhole-based Intrusion-tolerant
Group Communication System. In: Journal of Systems
and Software, vol. 80, no. 2, pp.178–197, 2007.
http://dx.doi.org/10.1016/j.jss.2006.03.034.

[7] M. Correia, N. F. Neves, P. Verissimo. From
Consensus to Atomic Broadcast: Time-Free Byzantine-
Resistant Protocols without Signatures. In: The
Computer Journal, vol.49, no.1, pp.82-96, 2006.
http://dx.doi.org/10.1093/comjnl/bxh145.

[8] M. Dalui, B. Chakraborty, B.K. Sikdar. Quick
Consensus Through Early Disposal of Faulty
Processes. In: Proceedings of the 22nd IEEE
International Conference on Systems, Man and
Cybernetics. pp. 1989-1994, 2009.

[9] C. Dwork, N. Lynch, L. Stockmeyer. Consensus in
the Presence of Partial Synchrony. In: Journal of the
ACM, vol. 35, no. 2, pp.288-323, 1988.
http://dx.doi.org/10.1145/42282.42283.

[10] T. Elgamal. A Public-Key Cryptosystem and a
Signature Scheme Based on Discrete Logarithms. In:
IEEE Transactions on Information Theory, vol. 31, no.
4, pp.469-472, 1985. http://dx.doi.org/10.1109/TIT
.1985.1057074.

[11] C. Fetzer, U. Schmid, M. Susskraut. On the
Possibility of Consensus in Asynchronous Systems
with Finite Average Response Times. In: Proceedings
of the 25th IEEE International Conference on
Distributed Computing Systems, 2005.

[12] M.J. Fischer, N. A. Lynch. A Lower Bound for the
Time to Assure Interactive Consistency. In:
Information Processing Letters, vol.14, no.3, pp.183-
186, 1982. http://dx.doi.org/10.1016/0020-0190(82)90
033-3.

[13] M.J. Fischer, N.A. Lynch, M.S. Paterson.
Impossibility of Distributed Consensus with One
Faulty Process. In: Journal of the ACM, vol. 32, no. 2,
pp.374-382, 1985. http://dx.doi.org/10.1145/3149.2141
21.

[14] R. Friedman, A. Mostefaoui, M. Raynal. Simple and
Efficient Oracle-Based Consensus Protocols for
Asynchronous Byzantine Systems. In: IEEE
Transactions on Dependable and Secure Computing,
vol. 2, no. 1, pp.46-56, 2005. http://dx.doi.org/10.1109/
TDSC.2005.13.

[15] S. Jafar, A. Krings, T. Gautier. Flexible Rollback
Recovery in Dynamic Heterogeneous Grid Computing.
In: IEEE Transactions on Dependable and Secure
Computing, Vol. 6, No. 1, pp. 32-44, 2009.

[16] A. W. Krings, T. Feyer. The Byzantine Agreement
Problem: Optimal Early Stopping. In: Proceedings of
the 32nd Annual Hawaii International Conference on
System Sciences, LNCS 520, Springer-Verlag, Berlin,
1999.

[17] L. Lamport, R. Shostak, M. Pease. The Byzantine
Generals Problem. In: ACM Transaction on
Programming Language Systems, Vol.4, No. 3,
pp.382-401, 1982. http://dx.doi.org/10.1145/357172.35
7176.

[18] R.L. Rivest, A. Shamir, L. Adleman. A Method for
Obtaining Digital Signatures and Public-Key
Cryptosystems. In: Communications of the ACM, vol.
21, no. 2, pp.120–126, 1978. http://dx.doi.org/10.1145/
359340.359342.

[19] A. Silberschatz, P. B. Galvin, G. Gagne. In:
Operating System Concepts, 8th Edition, John Wiley &
Sons Inc, 2008.

[20] H.Y. Tzeng, K.Y. Siu. On the Message and Time
Complexity of Protocols for Reliable
Broadcasts/Multicasts in Networks with Omission
Failures. In: IEEE Journal on Selected Areas in
Communications, Vol. 13, No. 7, pp. 1296-1308, 1995.
http://dx.doi.org/10.1109/49.414647.

[21] S.C. Wang, K.Q. Yan, C.F. Cheng. Asynchronous
Consensus Protocol for the Unreliable Un-fully
Connected Network. In: ACM Operating Systems

C. F. Cheng, K. T. Tsai, H. C. Liao

198

Review, vol. 37, no. 3, pp. 43-54, July 2003,
http://dx.doi.org/10.1145/881783.881789.

[22] J. Widder, G. Gridling, B. Weiss, J.P. Blanquart.
Synchronous Consensus with Mortal Byzantines. In:
Proceedings of the 37th Annual IEEE/IFIP
International Conference on Dependable systems and
Networks, pp.102-112, 2007.

[23] W. Zhao. Design and Implementation of a Byzantine
Fault Tolerance Framework for Web Services. In:
Journal of Systems and Software, vol. 82, no. 6,
pp.1004–1015, 2009. http://dx.doi.org/10.1016/
j.jss.2008.12.037.

Received August 2011.

