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Abstract. The consensus problem in distributed systems is mainly solved by message exchange. Most of previous 
consensus algorithms rely on exchange of oral messages to achieve consensus among processors. As oral messages are 
susceptible to influences from malicious attackers, this type of consensus protocols usually requires a large number of 
rounds of message exchange, and the complexity of message exchange is also excessively high. In light of this 
drawback of oral message-based consensus algorithms, some scholars proposed signed message-based consensus 
algorithm to reduce the number of rounds of message exchange required. However, some signed message-based 
consensus algorithms still have certain drawbacks which make them ineffective in some conditions. To address this 
issue, we propose a new signed message-based consensus algorithm in this paper. We integrate the concept of grouping 
into the proposed algorithm and find the best number of groups through mathematical analysis to further reduce the 
rounds of message exchange required. In other words, the proposed algorithm makes use of digital signature and the 
concept of grouping to solve the consensus problem. This algorithm can not only increase the fault-tolerance of 
distributed systems but also significantly reduce the rounds of message exchange required to achieve consensus. 

Keywords: distributed consensus problem; oral message; signed message; dormant fault; malicious fault and 
grouping. 
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1. Introduction 

With high scalability, distributed systems are less 
likely to have single point of failure (SPOF) problems. 
This advantage has considerably increased the 
importance and applications of distributed systems. 
Because a distributed system consists of a number of 
processors that work together in a network to provide 
computing power, how to maintain normal operation 
of the system in the presence of faulty components is 
an important issue. This issue is also called the fault-
tolerance problem in distributed systems. The 
consensus problem is a well-known type of fault-
tolerance problems [7][19]. By solving the consensus 
problem, we can enhance the reliability and fault-
tolerance of distributed systems. An introduction of 
the consensus problem is provided as follows. 

1.1. The Consensus problem 

In any distributed system, some processors may 
operate abnormally due to damage of an internal 
component, external disturbance or malicious attacks. 
The abnormal operation of these processors may affect 

the computing results of the entire system. Helping 
distributed systems keep away disturbance of faulty 
components and accurately perform assigned tasks is 
the primary goal of consensus algorithms. The 
consensus problem is usually solved by designating 
one or multiple commanders to broadcast the intended 
initial value and performing message exchange among 
processors to make all processors ultimately agree 
upon the consensus value. 

There are two types of the consensus problem: (1) 
The consensus problem with a single commander: In a 
distributed system consisting of n processors, one 
processor is assigned to be the commander with an 
initial value. This problem is also called The 
Byzantine Agreement Problem [3][16][17] . (2) The 
consensus problem with n commanders: In a 
distributed system consisting of n processors, all 
processors are commanders respectively having 
an initial value [4][5][21]. Although these two types 
of the consensus problems differ in the number of 
commanders, the second type of the problem can be 
solved using the consensus protocol for the first type 
of the problem. The consensus problem with n 
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commanders can be solved by running n copies of the 
protocol for the problem with a single commander in 
parallel. Through n runs of the protocol, each 
processor in the problem with multiple commanders 
will get n agreement values. Later, we can select the 
majority value to achieve the consensus. Protocols 
designed to deal with the consensus problem with a 
single commander should satisfy the following 
conditions: 

(Termination): All non-faulty processors agree on the 
same value; 

(Validitysv): If the commander is non-faulty, then 
all non-faulty processors agree on the 
initial value that the commander 
sends. 

Protocols designed to deal with the consensus 
problem with n commanders should satisfy the 
following conditions: 

(Termination): All non-faulty processors agree on the 
same value; 

(Validitymv): If the initial value of each non-faulty 
processor is vi, then all non-faulty 
processors agree on vi. 

We know that solution to the consensus problem 
relies on message exchange. Past research has 
classified messages exchanged by use of the digital 
signature technology into oral messages and signed 
messages [17]. The algorithms that achieve consensus 
by exchanging oral messages are called Oral Message-
based Consensus Protocol (OMC protocol), and those 
that achieve consensus by exchanging signed 
messages are called Signed Message-based Consensus 
Protocol (SMC protocol). The use of digital signature 
is a key factor affecting the fault-tolerance of a 
consensus protocol. Given n processors in a 
distributed computing network, OMC protocols can 
tolerate (n-1)/3 faulty processors [17]. In the same 
setting, SMC protocols can tolerate more than (n-
1)/3 faulty processors due to the use of digital 
signature. For example, the SM algorithm proposed by 
Lamport et al. [17] and Quick Consensus algorithm 
proposed by Dalui et al. [8] can tolerate n-2 faulty 
processors. We will give a brief introduction of the 
above protocols in Section 1.2. 

1.2. An Overview 

OM algorithm is the first OMC protocol. It was 
introduced in a paper co-authored by Lamport, 
Shostak, and Pease in 1982 [17]. In this paper, the 
authors also developed an SMC protocol called SM 
algorithm [17]. OM algorithm can tolerate (n-1)/3 
faulty processors whereas SM can tolerate n-2 faulty 
processors. Both algorithms require (n-1)/3+1 
rounds of message exchange, and each round of 
message involves three steps as follows (1) sends 
messages to other processors, (2) receives messages 
from other processors, and (3) local processing 

[3][12][17]. Due to high complexity of message 
exchange, many later researchers have proposed 
solutions to reduce the complexity. 

For OMC protocols, some researchers proposed to 
determine termination of message exchange based on 
sufficiency of messages collected. This kind of 
algorithm is called the Eventual Consensus Algorithm 
(ECA). Another algorithm which requires a fixed 
number of rounds of message exchange ((n-1)/3+1) 
is called the Immediate Consensus Algorithm (ICA). 
The Ensure Algorithm developed by Krings et al. [16] 
and the SMBTC (Synchronous Mortal Byzantine 
Tolerant Consensus) algorithm by Widder et al. [22] 
all belong to ECA. For SMC protocols, some 
researchers attempted to reduce the number of rounds 
of message exchange by employing the digital 
signature technology or improving the algorithm. For 
instance, Dalui et al. [8] introduced the Quick 
Consensus algorithm. A classification of consensus 
protocols is shown in Figure 1. 

In the following sections, we will introduce the 
algorithms proposed to mainly reduce the rounds of 
message exchange required. These algorithms include 
the SMBTC algorithm [22], the Quick Consensus 
algorithm [8], and the Ensure Algorithm [16]. 

 
Figure 1. A classification of consensus protocols 

1.2.1. The ensure algorithm by Krings et al.  

The Ensure algorithm was proposed by Krings and 
Feyer [16]. During execution of the Ensure algorithm, 
each processor pi (piN, where N is the set of 
processors in the network, n=|N| and i1~n) will 
check if it has collected sufficient messages after each 
round of message exchange. If the processor has 
collected sufficient messages for reaching the 
consensus, it will terminate the message exchange 
operation immediately and compute the consensus 
value. Through this mechanism, the Ensure algorithm 
can avoid unnecessary message exchange operations 
and reach the consensus earlier. The maximum 
number of faulty processors it can tolerate is (n-
1)/3. 

That is, the number of rounds of message 
exchange required by the Ensure algorithm depends 
on the influences, i.e. the number of actual faulty 
processors f, not on the total number of processors n 
(required rounds = (n-1)/3+1). To be succinct, the 
Ensure algorithm requires min{f+2, (n-1)/3+1} 
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rounds of message exchange [16]. When applied to 
systems with less than (n-1)/3 faulty processors, this 
algorithm can effectively reduce the rounds of 
message exchange required. Although the Ensure 
algorithm can determine the number of required 
rounds of message exchange based on actual number 
of faulty processors, it still requires a large number of 
rounds of message exchange (min{f+2, (n-1)/3+1}). 

1.2.2. The SMBTC algorithm by Widder et al. 

The Synchronous Mortal Byzantine Tolerant 
Consensus (SMBTC) algorithm was proposed by  
Widder, Gridling, Weiss and Blanquart [22]. During 
execution of the SMBTC algorithm, each processor 
will broadcast its initial value to all the processors and 
receive the initial values from other processors in the 
first round of message exchange. In the second round, 
each processor will send the initial values (a vector) 
obtained from other processors in the previous round 
to all processors in the network and receive the vector 
from other processors. Later, it will compare the 
messages sent with the messages received. If it detects 
any inconsistency between them, it will re-execute the 
algorithm. This operation continues until no 
inconsistency is detected. The maximum number of 
faulty processors this algorithm can tolerate is n/2. 

The following is an example of “inconsistency”. 
Suppose that five processors are given in a network, 
namely p1, p2, p3, p4, and p5. The initial values of 
these processors are 1, 0, 1, 1, and 0, respectively. 
Assume that p4 is a faulty processor. Thus, p4 may 
send inconsistent messages to other processors in the 
network. From the perspective of p1, this processor 

will send its initial value [1] to p2, p3, p4, and p5 and 
receive the initial values from them in the first round 
of message exchange. Assume that the initial values it 
receives from other processors are [0], [1], [1], and 
[0], respectively. In the second round, p1 will 
broadcast the vector consisting of initial values it has 
obtained in the previous round ([1][0][1][1][0]) and 
receive the vectors from p2, p3, p4, and p5 (as shown 
in Figure 2). Through comparison of the vectors, p1 
will detect inconsistency in the 4-th column of the 
matrix (as shown in Figure 2) and re-execute the 
SMBTC algorithm until it finds no inconsistency in 
any column. Therefore, the SMBTC algorithm 
requires 2*(1 + rounds of re-executing the algorithm) 
rounds of message exchange, which is variable, not 
fixed. 

However, endless re-execution of this algorithm 
may occur if there is always inconsistency in the 
matrix. To avoid this problem, Widder et al. [22] 
introduced the following constraint: processors with 
Byzantine fault will finally crash. It should be noted 
that this assumption does not meet the definition of 
the Byzantine fault. The definition of Byzantine fault 
is as follows: In a Byzantine fault, the behavior of a 
faulty component is "unpredictable" and "arbitrary". A 
faulty processor with Byzantine fault may lie, lose or 
tamper messages so it causes the most damaging type 
of fault and is the worst problem [1][6][23].  

In this paper, we will remove the above 
unreasonable assumption (processors with Byzantine 
fault will finally crash) and revisit the consensus 
problem to propose a new solution. 

 

Figure 2. An example of execution of the SMBTC algorithm 

1.2.3. The Quick Consensus algorithm by Dalui et al.  

The Quick Consensus algorithm was proposed by 
Dalui et al. [8]. It is based on the SMBTC algorithm 
but uses digital signature to reduce the rounds of 
message exchange required. Hence, the Quick 
Consensus algorithm is also a kind of SMC protocol. 
In addition, this algorithm integrates the concept of 
grouping. It finds the optimal number of groups 
through mathematical analysis to reduce the rounds of 
message exchange required. The maximum number of 

faulty processors it can tolerate is n-2 and the number 
of rounds of message exchange is 2. 

During execution of this algorithm, each processor 
pi will send its initial value (vi) after signed (denoted 
by [vi]pi) and receive signed initial values from other 
processors in the first round of message exchange. In 
the next round, each processor pi will sign the initial 
values it has received in the previous round (a vector), 
send them (denoted by [v1]p1pi[v2]p2pi, …, [vn]pnpi) to 
other processors, and receive the vector from other 
processors. Through two rounds of message exchange, 
each processor pi will obtain a matrix of initial values. 



C. F. Cheng, K. T. Tsai, H. C. Liao 

186 

Each processor pi will immediately check presence of 
any inconsistent value in the matrix and remove the 
values immediately. For instance, if the message from 
pj is inconsistent with the messages from other 
processors, pi will remove all messages related to pj, 
namely [v1]p1pj[v2]p2pj…[vn]pnpj and [vj]pjp1[vj]pjp2… 
… [vj]pjpn (i.e. all values in the j-th row and the j-th 
column). Finally, the algorithm selects the majority 
value to be the consensus value.  

The Quick Consensus algorithm has the "chance" 
to reach the consensus in merely two rounds. We 
quote the word "chance" because this algorithm has 
some drawbacks, which may make the consensus 
impossible to reach. Below is an example of problems 
which this algorithm cannot solve. A network consists 
of five processors p1, p2, p3, p4, and p5, and p4 is a 
faulty processor. We will explain the operation of the 
algorithm from the perspectives of p1 and p2. From 
the perspective of p1, given the initial value of 1, p1 
will send [1]p1 and receive the initial values from p2, 
p3, p4, and p5 ([0]p2, [1]p3, [1]p4, and [0]p5) in the first 
round. In the second round, p1 will broadcast the 
vector [1]p1p1[0]p2p1[1]p3p1[1]p4p1[0]p5p1 and receive the 
vectors from p2, p3, p4, and p5 to form a vector as 
shown in Figure 3(a). The values in the 4-th column of 
the matrix are not entirely consistent, meaning that the 
initial value sent from p4 in the first round is not the 
same as the values from other processors. Meanwhile, 

the Quick Consensus algorithm will ignore all 
messages related to p4 (including values in the 4-th 
row and the 4-th column) and find the majority value 
from the remaining values. In this case, the consensus 
value is the default value . 

From the perspective of p2, the message denoted 
by [0]p4p4 has been signed by p4 two times. If p4 alters 
this value, its tampering will not be detected by other 
processors (for example, p4 sends [0] p4p4 to p1 but [1] 

p4p4 to p2). For p2, it has a matrix consisting of 
consistent values in each column (as shown in 
Figure 3(b)). As no message will be ignored by the 
algorithm, p2 will obtain 1 as the consensus value. In 
this example, the Quick Consensus algorithm is 
unable to make all processors reach a consensus, 
because non-faulty processors p1 and p2 have 
different consensus values. 

1.3. Motivation 

As afore-mentioned, the Ensure Algorithm uses 
oral messages and thus requires a large number of 
rounds of message exchange to achieve consensus. 
The main drawback of the SMBTC algorithm is that 
the number of rounds of message exchange it requires 
is not fixed. Besides, its assumption that all Byzantine 
faults will finally become crash faults is unreasonable 

 

(a). An example of execution of Quick Consensus algorithm by processor p1 

 

(b). An example of execution of Quick Consensus algorithm by processor p2 

Figure 3. An example of execution of Quick Consensus algorithm
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and does not conform to the definition of Byzantine 
fault. The Quick Consensus algorithm requires only 
two rounds of message exchange but cannot achieve 
consensus in some conditions, as demonstrated in the 
preceding subsection. Therefore, we will revisit the 
consensus problem to improve the drawbacks of these 
algorithms. In order to reduce the complexity of 

message exchange, we will also employ the concept of 
grouping as Dalui et al. [8] did for their Quick 
Consensus algorithm, to find the optimal number of 
groups through mathematical analysis. Table 1 shows 
the results of previous works on the consensus 
problem. 

Table 1. The results of previous works on the consensus problem 

n is the number of processors, t is the maximum number of faulty processors allowed and f is the number of actual 
faulty processors in the network. 

*: The Quick Consensus algorithm may not reach a common consensus value. 
 

1.4. Roadmap 

This paper consists of six sections, and the 
remainder is organized as follows. Section 2 
introduces the concept and approach. Section 3 
presents the proposed protocols. Section 4 gives an 
example of executing the proposed protocols. 
Section 5 provides an analysis of the optimal number 
of groups. Finally, the conclusion is presented in 
Section 6. 

2. The concept and approach 

In this section, we will introduce the 
characteristics of the digital signature technology and 
the behavior of faulty processors and then explain the 
system model. 

2.1. A brief introduction of digital signature 

The increasing application of the digital signature 
technology to document processing and e-commerce 
in recent years can be attributed to five characteristics 
of this technology, including (1) Confidentiality: 
protecting confidential data from being stolen, 
illegally acquired or leaked; (2) Authentication: 
validating data sender; (3) Integrity: ensuring that data 
will not be tampered, resent or lost; (4) Non-
repudiation: ensuring that a sender/receiver cannot 
deny that it has sent/received a message earlier; (5) 
Access control: avoiding unauthorized data access. 
The common encryption techniques used for signing 
are RSA [18] and ElGamal [10]. RSA requires that all 
the same messages must correspond to a specific 
signature. This signing method is called fixed 
signature. In contrast, ElGamal may encrypt a single 
plaintext into many possible ciphertexts. This signing 

technique is called probabilistic signature. The digital 
signature operation involves two main processes, 
including signing process and verification process.  

Digital signature can effectively protect data from 
being tampered and facilitate detection of data 
tampering. We will integrate the digital signature 
technology into the proposed consensus protocol to 
reduce the rounds of message exchange. Thus, the 
proposed consensus protocol can also be classified as 
a SMC protocol. 

2.2. The behavior of faulty processors 

The behavior of a faulty processor can be 
classified by damaging level into two categories: 
dormant fault and malicious fault [4]. Dormant faults 
include crashes and omission. A crash fault occurs 
when a processor stops executing prematurely [15]. 
An omission fault occurs when a processor fails to 
send or receive a message on time or at all [20]. The 
malicious fault is the most damaging failure type 
because the behavior of a malicious processor is 
unpredictable and arbitrary [1][6][23]. Malicious 
processors may work with other faulty processors to 
disrupt normal operation of the system. So, this type 
of fault is viewed as a fault with intelligence. 

2.3. System model 

The main features of completely asynchronous 
distributed systems are: (1) no assumption on 
communication delays and relative speed of 
processors; and (2) no access to real-time clocks [11]. 
According to Fischer et al. [13], it is impossible to 
solve consensus deterministically in a completely 
asynchronous system. As a consequently, many 
researchers have proposed various ways to circumvent 
this limitation, including employing a partially 

 Message Types Failure Types Comparison 

Previous Works Oral Signed Dormant Malicious Grouping Constraint Rounds Note 

Lamport et al. [17] 
◆   ◆  n3t+1 (n-1)/3+1  

 ◆  ◆  nt+2 (n-1)/3+1  

Widder et al. [22] ◆  ◆ ◆  n2t+1 2~∞  

Dalui et al. [8]  
 ◆ ◆ ◆  n2t+1 2 * 

 ◆ ◆ ◆ ◆ n2t+1 4 * 

Krings et al. [16] ◆  ◆ ◆  n3t+1 min{f+2,(n-1)/3+1}  
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synchronous assumption [9], using randomization 
protocol [14], failure detectors [2][14] or stubborn 
channels with a finite average response time [11]. For 
the above reasons, the system model of this study is 
built with considerations of an asynchronous network 
with the partially synchronous assumption.  

To ensure proper operation of the system, we must 
set a reasonable limit on the number of faulty 
processors in the network. The number of faulty 
processors that can be tolerated in the network 
depends on use of digital signature. Tampering of 
unsigned messages is hard to detect. Thus, networks 
not using the digital signature technology certainly 
tolerate a much smaller amount of faulty processors 
than those using the technology. The network 
environment considered in this paper consists of n 
processors, and each of which has its initial value and 
always signs messages before delivering them. By 
using signed messages, all the processors can detect 
tampering of messages during message exchange. 
Through the time-out mechanism or encryption 
techniques, they can also detect loss of data packets 
and resend lost data immediately. Because of the 
characteristics of digital signature, the maximum 
number of faulty processors that can be tolerated in 
the network can be increased to n-2 [8][17]. More 
specifically, the number of processors in the network 
(n) must be greater or equal to the number of 
malicious processors tm plus the number of dormant 
processors td and 2. (n ≥ t+2 where t = tm+td), The 
assumptions we have made for the asynchronous 
network are as follows: 

 The underlying network is asynchronous with a 
partially synchronous assumption. 

 N is the set of processors in the network, where 
n=|N|. 

 Each processor has its own initial value and can 
be identified uniquely in the network. 

 The failure types of the fallible processors are 
malicious fault and dormant fault. 

 The maximum number of faulty processors 
allowed is n-2 (n ≥ t+2, where t=tm+td, tm is the 
number of malicious processors and td is the 
number of dormant processors).  

 A processor does not know the fault status of 
other processors. 

 All messages are signed; processors cannot 
falsify a message signed by other processors. 

3. The proposed protocol GCPsm 

In this section, we will introduce the proposed 
protocol, Grouping Consensus Protocol with signed 
message (GCPsm). GCPsm is used to solve the 
consensus problem with malicious and dormant 
processors in the asynchronous network. The basic 
operation of GCPsm is as follows: Each group will first 

decide its "local" consensus value through message 
exchange and then elect the chief of its group. Later, 
all the chiefs will exchange their local consensus 
values with each other to obtain the "global" 
consensus value. After obtaining the global consensus 
value, they will broadcast this value among the 
members of their group to make all non-faulty 
processors reach the consensus. The proposed protocol 
involves three tasks, including Group_Cons Task, 
Gmsg_Collect Task, and Re_Elect Task. The 
Group_Cons Task is mainly about computation of the 
global consensus value. The Gmsg_Collect Task is 
performed to collect the messages from other groups. 
The Re_Elect Task is performed to re-elect the chief 
of the group. Upon launch, GCPsm will perform these 
three tasks concurrently. In order to effectively reduce 
the rounds of message exchange, we refer to the 
concept of grouping to group processors before 
executing GCPsm. Details on how to determine the 
optimal number of groups will be presented in 
Section 5.  

Because GCPsm derives the "global" consensus 
value from "local" consensus values exchanged 
among groups, we must obtain the "local" consensus 
value of each group first. We develop the 
SignConsensus function to meet this need. A detailed 
introduction of the SignConsensus function is 
provided in the following sections. 

3.1. The SignConsensus function 

The SignConsensus function consists of two tasks, 
including Task Cons_Compute and Task Msg_Collect. 
These two tasks will be run concurrently when the 
SignConsensus function is called. Task Msg_Collect is 
dealing with receiving messages from other processors 
in the group, and Task Cons_Compute is responsible 
for computing the "local" consensus value. The 
notations of the SignConsensus function are shown as 
follows:  

 pi-Vector(pj) denotes the initial value from 
processor pj to processor pi. 

 pi-Vector denotes the received vector of processor 
pi, where piGc, Gc={pc1, p c2,…, pcn} and pi-
Vector=[pi-Vector(pc1) …, pi-Vector(pcn)].  

 pi-Matrix denotes the received matrix of processor 

pi, where pi-Matrix = 



























Vectorp

Vectorp

Vectorp

cn

c

c

...
2

1

. 

 pi-Matrix(pj, ) denotes the pj row of pi-Matrix, 
where pi-Matrix(pj, )=(pi-Matrix(pj, pc1), pi-
Matrix(pj, pc2), …, pi-Matrix(pj, pcn))= pj-Vector. 

 pi-Matrix(, pj) denotes the pj column of pi-Matrix, 
where pi-Matrix(, pj)=(pi-Matrix(pc1, pj), pi-
Matrix(pc2, pj), …, pi-Matrix(pcn, pj)). 

 pi-IntrSet denotes the set of intruders detected by 
processor pi. 
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 pi _Cons denotes the local consensus value of 
processor pi. 

The SignConsensus function can be presented with 
the following primitives and the formal description of 
SignConsensus function is shown in Figure 4.  

 activate task(T1, T2): start the tasks T1 and T2 
concurrently. 

 sign_send(〈msg〉, rcvr): send a message  
〈msg〉 using the digital signature technology to 
receiver rcvr. 

o sign_send(〈Val, pj, vj〉, Gc): send a Val 
message with the value vj proposed by 
processor pj to processors in group Gc. 

o sign_send(〈Vector, pj, pj-Vector〉, Gc): 
send a Vector message with the vector pj-

Vector proposed by processor pj to 
processors in group Gc. 

o sign_send(〈Intr, pi, pi-IntrSet, evidences
〉, Gc): send a Intr message with the set 
pi-IntrSet and evidences proposed by 
processor pi to processors in group Gc. 

 mark_self(pi-Matrix): mark each diagonal entities 
in pi-Matrix to avoid the influence from self, if j = 
k then pi-Matrix(pj, pk)=*. 

 chk_dif(pi-Matrix(, pj): ignore the -value, if the 
values in pj column are not the same, then return 
"true"; else return "false". 

 decision(pi-Matrix): compute the majority value 
according to pi-Matrix. 

 

Function: SignConsensus(vi, Gc)   //for each processor pi, where piGc and vi is the initial value of pi 

Initialization: 
1. activate task(Cons_Compute, Msg_Collect); 
Task Cons_Compute: 
/* Phase 1: Message Exchange */ 
//first round 
2. sign_send(〈Val, pi, vi〉, Gc);  
3. wait until (time-out interval) 
4.   for pj  Gc do 
5.      if receive 〈Val, pj,vj〉 from pj then 
6.         pi-Vector(pj) = vj; 
7.      else 
8.         pi-Vector(pj) = #; 
9.   end 
//second round 
10. sign_send(〈Vector, pi, pi-Vector〉, Gc);  
11. wait until (time-out interval) 
12.   for pj  Gc do 
13.      if receive 〈Vector, pj, pj-Vector〉 then 
14.         pi-Matrix(pj, ) = pj-Vector; 
15.      else  
16.         pi-Matrix(pj, ) = (##,…,##); 
17.   end 

/* Phase 2: Consensus */ 
//mark the messages from self 
18. pi-Matrixdec = mark_self(pi-Matrix);  

// detect the inconsistent values 
19. for pj  Gc do 
20.   if chk_dif(pi-Matrixdec(, pj))=true then 
21.     pi-IntrSet = pi-IntrSet∪{pj}; 
22.     pi-Matrixdec (, pj) = (*,…,* );  
23. end 
24. sign_send(〈Intr, pi, pi-IntrSet, evidences〉, Gc);  
25. wait until (time-out interval) 
26.   for pj  Gc do 
27.     if receive 〈Intr, pj, pj-IntrSet, evidences〉 then 
28.       pi-IntrSet = pi-IntrSet∪pj-IntrSet; 
//compute the Consensus value 
29. pi _Cons = decision(pi-Matrixdec);  
30. return (pi _Cons, pi-Matrix, pi-IntrSet);  

Task Msg_Collect: 
31. when 〈Val, pj, vj〉 is received do 

32.    Val_rec = Val_rec∪{〈Val, pj, vj〉}; 

33. when 〈Vector, pj, pj-Vector〉 is received do 

34.    Vector_rec =Vector_rec∪{〈Vector, pj, pj-Vector〉}; 

35. when 〈Intr, pj, pj-IntrSet, evidences〉 is received do 

36.    IntrSet_rec = IntrSet_rec∪〈Intr, pj, pj-IntrSet,        

                         evidences〉; 

Figure 4. SignConsensus Function

3.1.1. The Task Cons_Compute of SignConsensus 
function 

Task Cons_Compute has two phases, namely The 
Message Exchange Phase and The Consensus Phase. 
In the beginning, each processor in the group has an 
initial value. In The Message Exchange Phase, they 
will perform two rounds of message exchange and 

collect messages from other processors in the group 
through Task Msg_Collect. In the Consensus Phase, 
the local consensus value of the group will be 
computed. The operational process of Task 
Msg_Collect will be elaborated in Section 3.1.2. 
Below are explanations of the two phases of Task 
Cons_Compute. 
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3.1.1.1. Phase1: The Message Exchange Phase of Task 
Cons_Compute 

In the first round of The Message Exchange Phase, 
each processor pi (piN) will first sign its initial value 
and send it to other processors pj (j ≠ i) in the group. 
Meanwhile, other processors pj will also send their 
signed initial values to pi. Processor pi will place the 
signed values from other processors pj in the pi-
Vector(pj). If any processor (denoted by pk) fails to 
send its initial value to pi or has a dormant fault, we 
use # to represent the missing value from pk. In pi-
Vector(pk), # denotes no value from pk or pk has a 
dormant fault. After the first round of message 
exchange, each processor pi has a vector of values  
pi-Vector=[pi-Vector(pc1) …, pi-Vector(pcn)] (lines 2-9 
in SignConsensus function). 

In the second round, each processor pi will sign the 
values (a vector) obtained in the previous round and 

send them to other processors pj (j ≠ i) in the group. 
Concurrently, other processors will also send the 
message (a signed vector) they have obtained to pi. 
After receiving the vectors from other processors, pi 

will store all the vectors, including the vector it has 
sent to others, in pi-Matrix, which is in a matrix data 
structure. We use pi-Matrix(pj, ) to denote the j-th row 
of pi-Matrix. The values in the j-th row come from the 
vector that pi has received from pj, In this round, if any 
processor (denoted by pk) fails to send its vector to pi 

or has a dormant fault, we use ##,…,## to represent 
the missing vector from pk in pi-Matrix(pk, ). After 
this round of message exchange, each processor in 
each group will have a matrix of values (lines 10-17 in 
SignConsensus function). Figure 5 shows the flow 
chart of The Message Exchange Phase of Task 
Cons_Compute in the SignConsensus Function. 

 

 
Figure 5. The flow chart of The Message Exchange Phase of Task Cons_Compute in SignConsensus function 

 
3.1.1.2. Phase2: The Consensus Phase of Task 
Cons_Compute 

In each matrix derived through two rounds of 
message exchange, some messages are signed by a 
single processor two times (i.e. not signed by two 
different processors). If the processor that signs a 
message twice is a malicious processor, the message 
may have been altered, and other processors have no 
way to detect it (because the malicious processor owns 
the encryption key). To avoid this circumstance, the 
proposed protocol will mark diagonal entities in the 
matrix (i.e. replace all diagonal entities with *) 

before computing the consensus value (line 18 in 
SignConsensus function). 

In the next step, each processor pi will check 
consistency of values in each column. Assume that 
there is an inconsistent value in the j-th column. 
Because this value is sent by processor pj, pi will view 
pj as a malicious processor and replace all the values 
in this column with *,…,* . Further, it will put pj 

into pi-IntrSet, which is a logbook of faulty processors 
it has detected (lines 19-23 in SignConsensus 
function), and deliver the detection result (including 
evidence) to other processors in the group (lines 24-28 
in SignConsensus function). Finally, we will compute 
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the local consensus value of the group using the 
decision function (lines 29-30 in SignConsensus 
function). The decision function is explained as 
follows:  

 The process of the decision function 

The decision function is intended to compute the 
majority value in each matrix of values. The formal 
description of decision function is shown in Figure 6. 
It excludes the influences from malicious processors 
and dormant processors before computing the majority 
value. First of all, it will remove -value in each 
column and find the index value of the column. If this 
value is 0, the weight (count) of 0 increases by 1 (lines 
5-6 in decision function); if this value is 1, the weight 
(count) of 1 increases by 1 (lines 7-8 in decision 
function). Through this process, it can determine the 
majority value based on the weight (counts) of 0s and 
1s. In the case that 0 and 1 have an equivalent weight 
(count), it uses default value  as the consensus value. 
Here, we assume default value  = 0 (lines 12-15 in 
decision function). 
 

Function: decision(Matrix) 

1. for i = 1 to cn do  //cn is the total number of 
rows in Matrix 

2.   for j = 1 to j = cn do  //find out the non- value 
3.      if Matrix(pj, pi)  {-value} do 
4.         index-val = Matrix(pj, pi); 
5.         if index-val = 0 then 
6.            value0.count = value0.count + 1; 
7.         elseif index-val = 1 then 
8.                  value1.count = value1.count + 1; 
9.      break 
10.    end 
11.  end 
12. if value0.count ≥ value1.count then 
13.    return "0"; 
14.  else 
15.    return "1"; 

Figure 6. Decision function 

3.1.2. The Task Msg_collect of SignConsensus 
Function 

The Task Msg_collect is performed to collect 
messages from other processors in the group. Three 
types of messages will be collected: (1) the initial 
value that each processor sends in the first round 
(lines 31-32 in SignConsensus); (2) the vector that 
each processor sends in the second round (lines 33-34 
in SignConsensus); and (3) the list and evidence of 
faulty processors that each processor has detected 
(lines 35-36 in SignConsensus). The pseudo code of 
Task Msg_collected is shown in lines 31-36 of 
Figure 4. 

3.2. The three tasks of GCPsm 

After the SignConsensus Function, we will 
introduce the proposed GCPsm protocol. GCPsm 

performs three tasks concurrently (namely 
Grouping_Consensus Task, Gmsg_Collect Task, and 
Re_Elect Task) to compute the consensus value in the 
network (i.e. global consensus value). The 
Group_Consensus Task deals with most of the 
computation work, the Gmsg_Collect Task is intended 
to collect matrices sent by group chiefs, and the 
Re_Elect Task is performed to re-elect a new chief. 
Operational details of these three tasks are provided in 
Section 3.2.1, 3.2.2, and 3.2.3, respectively.  

The GCPsm protocol can be presented with the 
following primitives and the formal description of 
GCPsm protocol is shown in Figure 7. 

 sign_send(〈msg〉, rcvr): send a message 〈msg
〉 using the digital signature technology to 
receiver rcvr. 

o sign_send(〈Mat, pm, pm-Matrix〉, C): send a 
Mat message with the matrix pm-Matrix 
proposed by processor pm to C, where C is the 
set of chief processors. 

o sign_send(〈Re-elect, pm, pj-Matrix〉, Gj): 
send a Re-elect message with the evidence 
pj-Matrix proposed by processor pm to Gj, 〈
Re-elect, pm, pj-Matrix〉 is used to request 
the processors in Gj to re-elect the new 
chief, where Gj is the group of pj.  

o sign_send(〈Consensus, pk, ũ〉, Gl): send 
the Consensus message with the value ũ 
proposed by processor pk to processors in 
group Gl. 

 select_chief (Candidatel): elect the processor who 
has the minimum ID as chief in the set of 
Candidatel. 

3.2.1. The Group_Consensus Task of GCPsm 

In the beginning of the Grouping_Consensus Task, 
each processor pk can use the SignConsensus function 
to obtain the local consensus value (pk_Con), list of 
faulty processors in the group (pk-IntrSet), and the 
matrix formed after two rounds of message exchange 
(pk-Matrix) (line 2 in GCPsm). Later, one processor 
must be selected from each group to be the chief of the 
group. The faulty processors in each group will be 
first excluded (processors listed in pk-IntrSet). The 
remaining processors then form a set of candidates 
(line 3 in GCPsm). By using the SignConsensus 
function, all non-faulty processors in each group can 
get the same matrix, local consensus value, and the list 
of faulty processors in the group. Hence, any 
processor in the candidate set can be the chief of the 
group. The proposed protocol selects the processor 
with the minimum ID to be the chief (line 4 in 
GCPsm). The selected chiefs will exchange messages 
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with each other, and the matrix of their messages can 
be obtained using the SignConsensus function. In the 
message exchange process, each chief collects 
messages from other chiefs through the Gmsg_Collect 
Task. Details on the Gmsg_Collect Task are provided 
in Section 3.2.2. 

In this paragraph, we will explain how GCPsm 

computes the global consensus value based on 
messages exchanged between chiefs. Assume that 
processors in group Gl select pk to be the chief (line 5 
in GCPsm). Processor pk will send the matrix derived 
using the SignConsensus function to other chiefs pj, 
where pj  C and C is the set of chief processors. 
Likewise, the chiefs of other groups will also send 
their matrices to pk at the same time (line 6 in GCPsm). 
If the chief of group Gj (denoted by pj) does not send 

its matrix (Mat, pj, pj-Matrix) to pk, Processor pk  will 
put pj on its list of faulty processors and send a re-
elect message to all the other processors in group Gj, 
requesting them to elect a new chief (lines 7-12 in 
GCPsm). After receiving the Re-elect message, 
processors in group Gj (excluding pj) will run the 
Re_Elect Task to select a new chief among 
themselves. The detail description of Re_Elect Task is 
shown in Section 3.2.3. If all the processors in this 
group are faulty processors, no processor can be the 
chief candidate (i.e. Candidate= null). In this case, pk 

will use the mark_matrix function to mark the matrix 
delivered by this group so that all the messages from 
this group will be ignored (line 14 in GCPsm). After 
the message exchange operation, each chief has its 
own matrix and matrices from other group chiefs. The 

 

Protocol: Grouping Consensus Protocol with signed message (GCPsm)   //for each processor pk, where vk is the initial 
value of pk 
Initialization: 
1. activate task(Group_Cons, Gmsg_Collect, Re_Elect); 

Group_Cons Task:  
/* Local Processing */ 
2. (v, pk-Matrix, pk-IntrSet) = SignConsensus(vk, Gl); 
3. Candidatel = Gl – pk-IntrSet; 
4. pc = select_chief(Candidatel); 
/* Group Consensus */  
5. if pk = pc do 
6.  sign_send(〈Mat, pk, pk-Matrix〉, C); 
7.  wait until (time-out interval) 
8.  for pj  C do 
9.  if doesn't receive 〈Mat, pj, pj-Matrix〉 from pj then
10.  pk-IntrSet = pk-IntrSet∪{pj}; 
11.  if Candidatej  null then 
12.  sign_send(〈Re-elect, pk, pj-Matrix〉, Gj); 
13.  else 
14.  mark_matrix(pi-Matrix); 
15.  for pjC do 
16.  pj-Matrixdec = mark_self(pj-Matrix);  
17.  for ph  Gj do 
18.  if chk_dif(pj-Matrixdec(, ph))=true then 
19.  pk-IntrSet = pk-IntrSet∪{ph}; 
20.  pj-Matrixdec (, ph) = (*,…,* );  
21.  end 
22.  matrix-val = decision(pj-Matrixdec); 
23.  if matrix-val = 0 then 
24.  value0.count = value0.count + 1; 
25.  else 
26.  value1.count = value1.count + 1; 
27.  end 
28.  end 
29.  if value0.count ≥ value1.count then 
30.  sign_send(〈Consensus, pk, 0〉, Gl – pk-IntrSet); 
31.  else 
32.  sign_send(〈Consensus, pk, 1〉, Gl – pk-IntrSet); 
33. end 

 

Gmsg_Collect Task: 
34. when 〈Mat, pm, pm-Matrix〉 is received do 
35.  Mat_rec = Mat_rec∪{〈Mat, pm, pm-

Matrix〉}; 
36. when 〈Re-elect, pm, pj-Matrix〉 is received do 
37.  Re_rec = Re_rec∪{〈Re-elect, pm, pj-

Matrix〉}; 

Re_Elect Task:  
38. when 〈Re-elect, pe, pl-Matrix〉 is received do 
39.  pk-IntrSet = pk-IntrSet∪{pl}; 
40.  Candidatel = Gl – pk-IntrSet; 
41.  pc = select_chief(Candidatel); 
42.  goto line 5 
 
//line 2: pkGl 
//line 8: C is the set of chief processors 
//line 11: Candidatej is the set of candidate of Gj, pj 

 Gj. 
//line 38: pe  C, pl and pk  Gl  
 

Figure 7. Grouping Consensus Protocol with signed message (GCPsm) 
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proposed algorithm will mark the diagonal entities in 
each matrix and check consistency of entities in each 
column. Inconsistent entities will be marked, and the 
faulty processors will be put into pk-IntrSet to preclude 
influences from faulty processors (lines 15-21 in 
GCPsm). Later, the proposed algorithm will use the 
decision function to compute the index value of each 
matrix (line 22 in GCPsm) and find the majority value. 
The majority value is then the global consensus value. 
Finally, it relies on all the chiefs to broadcast this 
global consensus value among non-faulty processors 
within their groups to achieve consensus in the 
network (lines 23-32 in GCPsm). 

3.2.2. The Gmsg_Collect Task of GCPsm 

The Gmsg_Collect Task is performed to collect 
messages from other group chiefs. Two types of 
messages can be collected, including (1) Mat message 
from other chiefs (lines 34-35 in GCPsm) and (2) Re-
elect message that requests for re-election of a new 
chief (lines 36-37 in GCPsm). 

3.2.3. The Re_Elect Task of GCPsm 

The Re_Elect Task is performed to elect a new 
chief among non-faulty processors in the group. When 
any processor detects that a group chief is a faulty 
processor, it will send a Re-elect message to all the 
other processors of the group, requesting them to elect 
a new chief. The steps are as follows: When the Re-
elect message is received, pk will immediately put the 
faulty processor pl into pk-IntrSet and remove it from 
the chief candidate set. Later, it will select a new 
processor from the candidate set to be the chief and 
return to the Group_Cons Task (lines 38-42 in GCPsm). 

4. An example of executing GCPsm 

In this section, we use an example to explain the 
operation of the proposed protocol. The setting of this 
example is as follows: A network consists of 25 
processors, and each processor has an initial value. 
These processors are divided into five equal-sized 
groups, as shown in Table 2. For instance, group A 
comprises processors p1, p2, p3, p4, and p5, and their 
initial values are 1, 0, 0, 1, and 0, respectively. Among 
these processors, p3 and p4 are malicious processors. 
We will explain the operation of the proposed protocol 
from the perspective of p1. 

Table 2. The parameters of the scenario 

 Group A Group B Group C Group D Group E

group 
member 

p1, p2, 
p3, p4, 

p5 

p6, p7,
p8, p9,

p10 

p11, p12, 
p13, p14, 

p15 

p16, p17,
p18, p19,

p20 

p21, p22,
p23, p24,

p25 

initial 
values 

1,0,0,1,0 1,0,0,0,0 1,1,1,1,1 1,0,1,1,1 1,1,0,1,1

malicious 
processor 

p3, p4  p11, p15 p16 p21, p22

4.1. Local processing 

In the beginning, p1 uses the SignConsensus 
function to obtain the local consensus value of 
the group (group A). This operation requires two 
rounds of message exchange. In the first round, 
p1 will sign its initial value [1]p1 and send it to 
other processors within the group. At the same 
time, it will also receive signed initial values 
from p2, p3, p4, and p5. These signed values are, 
respectively, denoted by [0]p2, [0]p3, [1]p4, and 
[0]p5. Hence, p1 can obtain a vector consisting of 
[1]p1[0]p2[0]p3[1]p4[0]p5. It will store these values 
into p1-Vector=[p1-Vector(p1) …, p1-Vector(p5)], 
as shown in Figure 8(a). In the second round, p1 
will sign the vector it has obtained in the 
previous round and send it to other processors. At 
the same time, it will also receive signed vectors 
from other processors. After two rounds of 
message exchange, each processor can obtain a 
matrix of messages. As shown in Figure 8(b), p1 
can obtain a matrix consisting of the vector [1p1p2 

0p2p2 1p3p2 1p4p2 0p5p2] from p2, the vector [1p1p3 

0p2p3 1p3p3 0p4p3 0p5p3] from p3, the vector [1p1p4 

0p2p4 0p3p4 0p4p4 0p5p4] from p4, and the vector [1p1p5 

0p2p5 #p5 #p5 0p5p5] from p5.  
In the next step, p1 will mark all the diagonal 

entities in the matrix with * and check consistency of 
entities in each column. In this example, it will detect 
the inconsistency in the 3rd and 4th columns. Take the 
inconsistency in the third column as an example. The 
entity in row 1 and column 3 is 0, the entity in row 2 
and column 3 is 1, and the entity in row 4 and column 
3 is 0. It can detect that p3 and p4 are faulty 
processors. Hence, p1 will put p3 and p4 in p1-IntrSet 
and use *,…,* to take the place of values in the third 
and fourth column. Besides, it will also deliver the 
updated p1-IntrSet to other processors in the group to 
tell them that p3 and p4 are faulty processors. Later, it 
will use the decision function to compute the local 
consensus value. The computation process is as 
follows: First, it finds the index value of each column. 
The valid index values are 0 and 1. The index value of 
column 1 is 1, the index value of column 2 is 0, and 
the index value of column 5 is 0. As shown in Figure 
8(c), because 0 is the majority value among 1, 0, and 
0, the local consensus value of group A is 0. 

In the following step, a chief should be selected 
from non-faulty processors in each group. The 
processor with the minimum ID can be the chief of its 
group. Take group A as an example. Excluding faulty 
processors p3 and p4, p1 is the non-faulty processor 
with the minimum ID. Hence, p1 is selected to be the 
chief of group A. It will perform message exchange on 
behalf of group A to obtain the global consensus 
value. Meanwhile, all the other groups will also 
compute their local consensus values and select their 
chiefs. In this example, there is no faulty processor in 
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group B. As p6 is the non-faulty processor with the 
minimum ID, p6 is selected to be the chief of group B. 
Subgroup C has two faulty processors, namely p11 
and p15, so p12 is selected to be the chief. Subgroup 
D has one faulty processor, p16, so p17 is selected. 
Subgroup E has two faulty processors, p21 and p22. 
p23 will be selected be the chief of this group. 

4.2. Group Consensus 

In the Group Consensus phase, all the group chiefs 
will exchange messages to derive the global consensus 
value. Chiefs p1, p6, p12, p17, and p23 will exchange 
their Mat messages. Figure 9(a) shows the exchange 
of Mat messages between p1 and other chiefs. After 
exchanging Mat messages, p1 will have five matrices, 
including p6, p12, p17, p23, and itself, as shown on 
the top of Figure 9(b). It will mark the diagonal 

entities in all these matrices and check consistency of 
values in each column. As shown in the center of 
Figure 9(b), inconsistent values will be marked. Later, 
p1 will use the decision function to compute the index 
value of each matrix. 

In this example, the index values of the five 
matrices are 0, 0, 1, 1, and 1, respectively. Based on 
the majority rule, p1 will find 1 as the global 
consensus value, as shown in the bottom of Figure 
9(b). Finally, p1 will send this global consensus value 
to other non-faulty processors in the group. While p1 
is broadcasting the global consensus value, other 
chiefs are also broadcasting the global consensus 
values they obtain among their peer non-faulty 
processors. Therefore, all non-faulty processors in the 
network will end up having a consensus value. 

 

Figure 8 (a). The 1st round of Message Exchange phase of p1 in group A (SignConsensus function) 

 

Figure 8 (b). The 2nd round of Message Exchange phase of p1 in group A (SignConsensus function) 

 

Figure 8(c). The Consensus phase of p1 in group A (SignConsensus function) 



A Simple and Efficient Signature-based Consensus Protocol in the Asynchronous Distributed System 

195 

 
Figure 9(a). The message exchange of Mat message between the chiefs. 

 

5. The Analysis of the Number of Groups 

In this section, we will perform mathematical 
analysis to find the optimal number of groups for 
GCPsm. GCPsm involves the local processing phase and 
the global processing phase. The number of rounds of 
message exchange that each phase requires is as 
follows: 

Local processing: (n/g)((n/g)-1)g+(n/g)((n/g)- 
-1)g+(n/g)((n/g)-1)g (1) 

Global processing: g(g-1)+(g-1)(n/g)(n/g)(g)- 
-2(n/g)(g)+(n-g-(n-2)) (2) 

Given n processors in a network, we divide these n 
processors into g equal-sized groups. In other words, 
each group has n/g processors. In the local processing 
phase, each processor needs to perform two rounds of 
message exchange. In the first round of message 
exchange, each processor (n/g in total) in each group 
will send their signed initial values to other processors 
in the group ((n/g)-1 in total) and also receive signed 
values from them. Therefore, a total of (n/g)((n/g)-1) 
times of message exchange will be performed in the 
first round. In the second round, each processor will 
send the vector it has obtained in the previous round to 
(n/g)-1 other processors in the group and also receive 
the vectors from them. A total of (n/g)((n/g)-1) times 
of message exchange will be needed. Later, each 
processor will check consistency of obtained values to 
find faulty processors and send the detection result to 
other processors in the group. A total of (n/g)((n/g)-1) 
times of message exchange will also be required. In 
sum, because each processor in each group has to 
perform two rounds of message exchange and send 
fault detection results, the entire network needs to 
perform 
(n/g)((n/g)-1)g+(n/g)((n/g)-1)g+(n/g)((n/g)-1)g times 
of message exchange in the local processing phase. 

In the global processing phase, because each of the 
g group chiefs will exchange messages with g-1 
chiefs, g(g-1) times of message exchange are needed. 
If any chief is found to be a faulty processor, a Re-
elect message will be sent to all the processors in its 
group, requesting them to select a new chief. In other 
words, if any chief is a faulty processor, g-1 chiefs 
will send a total of n/g Re-elect messages to 
processors in its group. If all the n/g processors in this 
group become faulty while being the chief of their 
group, the above operation will be executed n/g times. 
As there are g groups and at most n-2 faulty 
processors in the network, GCPsm has to send the Re-
elect message (g-1)(n/g)(n/g)(g)-2(n/g)(g) times in the 
worst case. After the global consensus value is 
obtained, all the chief processors have to broadcast 
this value to other non-faulty processors in their 
groups. In the worst case, this value has to be sent 
(n-g-(n-2)) times. Therefore, the entire network needs 
to perform g(g-1)+(g-1)(n/g)(n/g)(g)-2(n/g)(g)+(n-g- 
-(n-2)) times of message exchange in the global 
processing phase. 

The total number of rounds of message exchange 
that GCPsm requires is as shown in Equation (3) (the 
sum of Equation (1) and Equation (2)). We conduct 
the following mathematical analysis to find the best 
number of groups.  

f = g2+2n2/g-2g+n2-5n+2 (3) 
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Figure 9(b). An example of computing the global consensus value (from the perspective of p1) 

Equation (5) is the result of quadratic partial 
differentiation. Both n and g are greater than zero, so 
Equation (5) must be greater than zero. We can infer 
that when Equation (4) (ordinary differentiation) is 
zero, the obtained g can result in a minimum f. In 
other words, the best number of groups for a network 

consisting of n processors is 3 219
3

1
ng  . This 

grouping method can minimize the complexity of 
message exchange required by the proposed protocol. 
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6. Conclusions  

As mentioned earlier, OMC protocols exchange 
oral messages to achieve consensus and therefore 
require a large number of rounds of message 
exchange. The OM algorithm, the Ensure algorithm, 
and the SMBTC algorithm are all OMC protocols. 
SMC protocols exchange signed messages to achieve 
consensus. Due to the characteristics of digital 
signature, they require a significantly smaller number 
of rounds of message exchange. The SM algorithm 
and the Quick Consensus algorithm belong to SMC 
protocols. However, the existing signed message-
based consensus algorithms still have some drawbacks 
which make them ineffective in some specific 
conditions. Therefore, we revisited the consensus 
problem in distributed systems in this paper. We 
proposed a signed message-based consensus algorithm 
that makes use of digital signature to effectively 
reduce the complexity of message exchange. In 
addition, we integrated the concept of grouping into 
the algorithm and obtained the optimal number of 
groups by mathematical analysis. That is, the proposed 
algorithm can not only facilitate achievement of 
consensus by removing influences from malicious and 
dormant processors but also reduce the complexity of 
message exchange. 
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