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Abstract. In this paper, a modified version of the discrete reversible (integer-to-integer) Le Gall wavelet transform
(DLGT), distinguishing itself by apparently improved space localization properties and visibly extended potential
capabilities, is proposed. The key point of the proposal — ensuring full decorrelation of Le Gall wavelet coefficients
across the lower scales. Based on the latter circumstance, a novel exceptionally fast procedure for computing the
integer DLGT spectra of the selected image blocks (regions of interest - ROI) is presented. It is shown that the new
developments can be efficiently applied to progressive encoding and transmission of image blocks. Progressive
encoding and transmission of image blocks is achieved by first transmitting a “rough” estimate of the original image,
then sending further details related to one or another image block (ROI). To translate the idea into action, the zero-tree-
based encoder SPIHT (Set Partitioning in Hierarchical Trees) with an improved quad-tree analysis scheme is

employed.
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1. Introduction

Progressive encoding and subsequent transmission
of digital images refers to image compression
techniques that allow both the original image
reconstruction without loss of any detail and the
construction of image approximations (estimates) with
the accuracy level depending on the amount of data
available. Lossless compression is highly important
for images obtained at a great cost, such as space or
medical images. In this case, even negligible loss of
data may destroy some details needed during further
processing, or add artefacts that lead to
misinterpretation. In  various  problem-oriented
applications fast extraction of image estimates with a
priori prescribed levels of accuracy may also be
necessary. Surely, the speed of this operation depends
on the amount of data that should be retrieved from
the storage for image reconstruction. On the other
hand, in the case of non-progressive compression,
neither an image estimate nor the original image is
available until the whole image data are retrieved.

Nowadays, most modern image compression
techniques employ a discrete wavelet transform,
usually followed by quantization and entropy coding
[1-6]. Especially practicable are image coders that
allow progressive encoding with an embedded bit
stream, such as the embedded zero-tree wavelet
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(EZW) image coder, suggested by Shapiro [7]. With
embedded bit streams, the wavelet coefficients are
encoded in bit planes, with the most significant bit
planes being transmitted first. In that way, the decoder
can stop decoding at any point in the bit stream, and it
will reconstruct an image with required level of
accuracy. There have been many variants of zero-tree-
based progressive image coders since Shapiro
introduced his algorithm in 1993. The SPIHT (Set
Partitioning in  Hierarchical Trees) algorithm,
proposed by Said and Pearlman, deserves special
attention in this class of coders because it provides the
highest image quality, lossless compression,
progressive image transmission and so forth [8]. The
SPIHT algorithm appears to be very useful for
applications where the user can quickly inspect the
image and decide if it is good enough to be saved, or
need a refinement.

Some other interesting ideas and developments in
the wavelet-based image compression field are
presented in [9-14].

The locally progressive image coding idea is not a
new one. The possibility of defining regions of interest
in an image is a significant feature of the latest image
compression standard JPEG 2000 [2]. These regions
of interest are coded with better quality than the rest of
the image. This is done by scaling the wavelet



coefficients so that the bits associated with the regions
of interest are placed in higher bit planes. So, the
regions of interest are decoded before the part of the
image that is not of interest.

In this paper, the locally progressive image
encoding and transmission is achieved by first
transmitting a “rough” estimate of the original image
to the user, then sending further details related to one
or another selected block (ROI) of the image. The idea
(proposed approach) explores improved space
localization properties of the new version of the
discrete reversible (integer-to-integer) Le Gall wavelet
transform (DLGT) and the newly developed
exceptionally fast procedure for finding the DLGT
spectra of the selected (at the user’s request) image
blocks (ROI). The latter procedure leans upon the
assumption that the modified DLGT spectrum of the
image under processing is known and plays a key role
in ensuring reasonably high overall performance of the
approach.

The rest of the paper is organized as follows.
Section 2 introduces the DLGT transform and
describes procedures for finding the DLGT spectrum
of a digital image (signal). Section 3 passes a
comment on factors ensuring improved space
localization properties of the modified DLGT and
presents a novel fast procedure (algorithm) for finding
the integer DLGT spectra of the selected image blocks
(ROI). Experimental results and some commentary on
the energy compaction property of the new version of
DLGT are presented in Section 4.

2. Implementing the discrete reversible
Le Gall wavelet transform

Any discrete wavelet transform (DWT) represents
an iterative procedure. Each iteration (step) of the
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DWT applies the scaling function to the data input
(digital signal). If the original signal X has N
(N=2",neN) values, the scaling function will be

applied in the wavelet transform iteration to calculate
N/2 averaged (smoothed) values. In the ordered

wavelet transform the smoothed values are stored in
the upper half of the N element input vector. The
wavelet function (in each step of the wavelet
transform) is also applied to the input data. If the
original signal has N values, the wavelet function
will be applied to calculate N/2 differences

(reflecting change in the data). In the ordered wavelet
transform, the wavelet (differenced) values are stored
in the lower half of the N element input vector. On
the subsequent iteration, both mentioned functions
(scaling and wavelet) are applied repeatedly to the
ordered set of smoothed values calculated during the
preceding iteration. After a finite number of iterations
(n steps) the DWT spectrum Y of the digital signal
X is found. The vector Y comprises the only
smoothed value (obtained in the »-th iteration) and
the ordered set of differenced values (obtained in the
n—1 preceding iterations).

The discrete reversible (integer-to-integer) Le Gall
wavelet transform (DLGT) has five scaling and three
wavelet function coefficients. The scaling function
coefficients are - h, =-1/8 , h =14, h,=3/4,
hy=1/4 and h, =-1/8, while the wavelet function
coefficient values are - g, =-1/2 , g =1, and
g, =-1/2. The scaling and wavelet functions are

calculated by taking the (integer) scalar product of the
coefficients and five or three input data values
(Figure 1).

X10
X11
X12
X13

X14
X15 i

Wavelet
coefficients

Wavelet
coefficients

Scaling coefficient
Wavelet coefficient

Wavelet coefficients

Scaling function:

hy=——=hy=—hy == hy=— hy =——
0 g2 1T 42T g3 T g 8

Wavelet function:

1 — 1
8o = 2-&1—-5»2— Py

Figure 1. Finding the DLGT spectrum of a digital signal (N =16)
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In practice, to compute the integer DLGT spectrum
Y of the digital input signal X of size n =2~
(neN ), an efficient iterative procedure (Lifting
Scheme [15, 16]) can be applied.
(@)

Let us assume that S = (s s¥ ... syl )

and DV =(dg’ d” ... d{, )" stand for the result
of application of the Le Gall scaling and wavelet
functions to the data vector SUP | respectively

0) —

(iefL2,...,n}; SO =x,ie. S =X, , for all
k=0,1,...,N-1). Then:
dD = g9 _ 1(5(1—1) +S(t—1))
k 2k+1 2 2k 2k+2 ’
i i 1 i i 1
S,E) =S§k1)+Lz(dlfjl+d£))+EJ,
(G-1) ._ (-1

for all k=0,1...,2""-1; here Synia = Spnia_, |

d¥ =d and ie{L,2,...,n}. Thus, the integer DLGT
spectrum Y of the digital signal X is obtained in n
iterations and takes the form:

Y=(Sé”) dén) dénfl) dfnfl) dénfz) d]fnfz) dénfz) dénfz).“
@ 7@ (9] T
e d®dY . dB, )

The inverse integer-to-integer DLGT s specified

this way:
i— i 1 i i 1
7 =3 | et ra?) 3 |
0D = g _{E(S(il) + D )J
2k+1 k 2 2k 2k+2 ’

forall k=0,1,...,2"" -1 and ie{,,2,...,n}.
The “edge” problem, which takes place at both
ends of the data vector SV (ie{l,2,...,n}) and

determines the partially localized nature of the discrete
Le Gall wavelet transform, here (Lifting Scheme) is
solved by treating the data vector as if it is mirrored at
the ends (Figure 1).

In order to compute the integer DLGT spectrum of
a two-dimensional digital image X of size N,xN,

(N, =2", n,eN,i=12) , the one-dimensional

discrete reversible Le Gall wavelet transform should
be applied N, + N, times, i.e. N, times along the first

spatial axis and then A, times along the second spatial
axis.

3. A novel approach to progressive encoding
and transmission of image blocks

In the subsections below, we present a new
approach to progressive encoding and transmission of
grey-level image blocks. The essence of the approach
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— additional bit streams are used to improve quality
not of the whole image under reconstruction but that
of selected smaller image blocks (ROI).
Implementation of the approach is based on the
improved space localization properties of the modified
integer DLGT and the newly developed fast procedure
for finding (modified) integer DLGT spectra of the
selected ROI.

3.1. Full decorrelation of Le Gall wavelet
coefficients at lower scales

The characteristic feature of DWT is that
individual basis functions are localized in space
(compact support). Full localization in space (or, what
is the same, full decorrelation of wavelet coefficients)
means that numerical values of wavelet coefficients,
computed on the same iteration (at the same scale!),
are specified exclusively by image (signal) blocks that
cover the whole image (signal) and do not overlap.
Unfortunately, only the simplest Haar (Daubechies
D2) wavelet transform, most frequently used in
educational environment, is fully localized in space
[17]. Higher order wavelet transforms (DLGT,
Daubechies D4, CDF 9/7, etc. [11, 16]) are partially
localized in space since image (signal) blocks which
specify numerical values of any adjacent wavelet
coefficients overlap (Figure 1; the overlapping part is
coloured in grey). This gives some limitations to
practical application of higher order DWT, especially
in such areas where block-processing of digital data is
preferable (e.g. image feature extraction, locally
progressive image encoding, localization of defects in
textural images.

In the paper, full decorrelation of Le Gall integer
wavelet coefficients across the lower scales is
achieved by partitioning the original data vector
(signal) X of size N (N =2",neN) into a finite set
of non-overlapping blocks (ROI) of a priori prescribed
size 27 (1< p<n) and by transferring the before-

mentioned “edge” problem (Section 2) to those
blocks. That is to say, when solving the “edge”
problem, not only the (intermediate) data vector S
(ief{0,1,...,p-1}) but also its component blocks of

size 27~ are mirrored at the ends. This way, improved
(full) localization in space is ensured for all Le Gall
integer wavelet coefficients across the i -th
(ie{p,p+1,...,n}) scale.

Following this perception, we have developed a
new iterative procedure (Lifting Scheme) for
computing the modified integer DLGT spectrum Y of

X , namely (for all £=01...,2""-1 and
ie{l,2,...,n}):
s ke{l 1,21 -1,...,q,1 -1,
d? =

1, - _
o —b(sgk Do) |, otherwise,



i 1 i
s 4| 30

:
+= |,
2

s = forall k€{0,7,2L,...,(q,-1)1};
1 .
(1) @ 4 g0 :
s +{4(dk L +d)+ EJ' otherwise;
here: [, =2"", q,=2"" for i=12,...,p, and [ =1,

q, =2"" fori=p+lp+2,...,n

The new Lifting Scheme for the inverse modified
DLGT has also been developed, and is presented

below, ie. (for all k£=0,1,...,2""-1 and
ie{n,n-1,...,2,1}):
1 .45 1
O_| 24042
‘ Lz ‘ 2J
si = forall ke{0,7,2,...,(q,-1) 1},
59— l(d,g?1+d,f"))+l , otherwise,
4 2 |
d”+s2k Jke{l -1,2[-1,...,q,0 -1},
(1) _ 1
S I O Lz(s;; Y4557 |, otherwise.
Thus, in n iterations, the original data vector
(signal) X =S is restored.

The modified integer DLGT spectrum of a two-
dimensional digital image X of size N, xN,

(N, =2", n,eN, i=12) is obtained by repeated use
of the one-dimensional modified integer DLGT, i.e.
N, times along the first spatial axis and then N,
times along the second spatial axis.

3.2. Fast evaluation of the modified DLGT spectra
for image blocks

To show extended potential capabilities of the
modified integer-to-integer DLGT (Section 3.1) and to
proclaim viability of the locally progressive image
coding idea, we here propose a novel fast procedure
(algorithm) for evaluating the (modified) integer
DLGT spectra of the selected blocks (ROI) of the
digital image. The proposed algorithm refers to the
assumption that the modified integer DLGT spectrum
of the original image is known.

To begin with, we briefly survey the situation
concerning the one-dimensional case. Let

Y:(S[()n) dén) dén—l) dl(n—l) dén—z) dl(mz) dz(n—z) dén—z).”

® 4@ @)
AP a0 ... d9, )

be the modified integer DLGT spectrum of the data
vector (signal) X =(x,xx,...x, ,x,,) . Each

wavelet coefficient @ ( ie{p,p+L....n} ,
je{0,,...,2"7 -1}), evidently, can be put into one-
to-one correspondence with the signal block

o — : :
X = (x Xy 2'(j+1>—1) , i.e. numerical value

242

D. Kancelkis, J. Valantinas

of d? is specified uniquely by X @ (full localization
manifests itself on the i -th scale).

To find the (modified) integer DLGT spectrum
Y of X1, the following two steps should be carried
out:

1. The very first spectral coefficient (smoothed value
s¥)in Yj(") is determined by:

Ci1- (- 1) 1 oy 1
(n) i (z+r) =d §z+r) += :

here: j, =j, j. =Lj,,71/2J,for all r=1,2,...,n-i;
2. The rest spectral coefficients (differenced values)
in Y are extracted from the modified integer

DLGT spectrum Y of X, i.e. they are identified
with the ordered set of wavelet coefficients

@0, dP, dgh, P, iR, D, i, di?,
(i-3) 1) [65) (Y]
d81+7’ d i-L, ’dz Lt ’dz”l(j+1)-1}'
Thus, the discrete (modified) integer DLGT

spectrum Y, of the signal block (ROI) X @ of size

not less than 27 (pe{l,?2,...,
takes the form:

0 — (O g0 g6 G- G-2)
Y0 =(sd) dy " dyyy dy

@) @
d® dY,

n—1}) is computed and

d(l)

T

J+l 27 +1)-1) )
Now, let X =[X(m,m,)] be a two-dimensional
grey-level image of size NxN (N=2", neN) and
let Y =[Y(k, k)] be its two-dimensional modified

(full decorrelation of wavelet coefficients across the
scales not higher than p, 1< p<n) integer DLGT

spectrum.

Consider a wavelet
kk, e{l,2,...,2" "t 1},
k, and k, can be presented in the form: k, = 2
ky=2""+j,, i,i,e{,,2,...,n} j, €{0,1...,2""
j,€{0,1,...,2""% -1},

One can easily ascertain that Y (k,,k,) is associated
with the image block (ROI) x“*)[x (sn,,m,)], Where
(i, iy) eV, xV, and y =g 20 2v 11 (), +1)2" 13
r=1,2. Let us denote the (modified) integer DLGT
spectrum  of the image block X% py
y®R) =[y%*®) (u,u,)], where u, €{0,1,...,2" -1},
r=12.

A newly developed fast procedure (algorithm) for
computing the two-dimensional (modified) integer

DLGT spectrum Y&k) of the image block (ROI)
X %) s presented below.

coefficient Y(k,.k,)
It is evident that indices
R

-1,
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Algorithm.
1. The following sets are formed:
Sy ={ay. .00, }, Wherer a, =k, ;
a =|a,/2], s=12,.,n-i;
Sy =8, B.,.... B,..,}, where: f,
B=|B./2], t=12, .. ,n—iy;
7 ={n0), n@,..., ,(n—i, -1}, where:

70)=Jji; 7(s) :|_71(S_1)/2J ,
-1;

k,;

s=12,...,n—q
72 ={,(0), 7, (), ..., 7,(n—i, 1)}, where:
7,(0)=J,, 72(t):L72(t_1)/2J,
t=12,...,n—-i,-1;
{k.} U{ U;:_lliik (9) } , where:

3y, (¢)={2%k,, 29k, +1,...,29(k, +1) -1},
r=12.

< —_—
3 =

"

2. An array of intermediate data [;1“'1*2)(11,12)] (
Le{tus, v3, , Le{0}u3, ) is found,
namely:

ky

AWk (1,0)=Y(1,0) +

n-i, 1— (_1)72(#1)
e

t=1

1 1
Y(L,B)-| ZY(.B)+=||,
wh-|rend]]
forall ;, e{0}u S, U, ;
Ia(kl'kZ)(llllz) =Y(@l,1,),
forall /, e{0}u S, U3, and [, €3, .

3. The inverse (modified) integer DLGT is applied to
the [ -th ([, e{0}u S, ) row of the data array

[,:1“1’*2>(ll,l2 )]. The resulting vector is designated as
(A“lvkz) (Z,0)... 4%k (], lz)...) .

4. A vector Btk :(B(W)(O, 0) ...B“‘lvk2>(0,lz)...) :
I, e{0}u 3, , is formed, namely:

B(kl’kZ)(O, 12) :A(kl*kz)(ollz)_’_

noi (4 qyalsD)
+Z(1 (—? A% @, 1,) -
s=1

1 1
—| =A%) (@, L)+ | |.
LZ (as 2) 2
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5. The (modified) integer DLGT is applied to B%“* .
The resulting DLGT spectrum is

(B42(0,0)... 5% (0,1)...).

6. Finally, the integer Le Gall wavelet coefficients of

the image block X“*) are found in accordance
with:

y*uk2)(0,0) = Btk (0,0) ;
ek (4,00 = 4%k) (4,0) , w=1,2,...,2" -1;

here /, is the u-th element of the ordered set 3,

(numbering of elements starts with 1);
y*52) (0,v) = Bk (0,1,), v=12,...,2" -1;

here /, is the v-th element of the ordered set 3,
(numbering of elements starts with 1);

YOk ) = A1) w=12,...,20 -1,
v=12,...,2% —1; [, and I, are the u-th and the
v-th elements of the ordered sets 3, and 3,

respectively (numbering of elements in 3, and

3y, starts with 1).

7. The end. The two-dimensional (modified) integer
DLGT spectrum Y%*) of the image block (ROI)
X %) s computed.

Some comments on the efficiency of the newly
developed algorithm for computing the (modified)
integer DLGT spectra of the selected image blocks are
presented in Section 4.

4. Experimental analysis and discussion

To motivate the proposed progressive image block
encoding and transmitting idea, a couple of test
images have been processed (Figure 2).

Computer simulation was performed on a PC with
CPU Intel® Core i7 CPU@3.4GHz, 8 GB RAM,
Windows7 x64, Programming language Java.

First and foremost, the efficiency of the newly
developed algorithm for computing the (modified)
integer DLGT spectra of the selected image blocks
(Subsection 3.2), in comparison with direct evaluation
of DLGT spectra for the same blocks (Lifting Scheme;
Section 2), was analysed.

The achievable impressive speed gains, expressed
interms of p=7,/ 7, (7, specifies the time needed

for direct evaluation of DLGT spectra for image
blocks and 7, - that needed by the proposed

procedure), are presented in Table 1.



Table 1. Comparison of two approaches to finding DLGT
spectra for ROl of size 27 x 27

p
NxN 6 7 8 9 10
512x512 | 165.6 3345 526.1 - -
1024x1024 | 1549 3133 5059 678.5 -
2048x2048 | 148.9 302.8 489.6 648.2 629.0

Undoubtedly, fast passage from the modified
integer DLGT spectrum of the image under processing
to DLGT spectra of the selected image blocks (ROI)
opens the door to many new real-time applications of
the modified version of integer DLGT, say, image
feature extraction in the Le Gall wavelet domain,
locally progressive image encoding, localization of
defects in textural images, etc. One interesting
application of the modified DLGT to locally

(@)
Figure 2. Test grey-level images: () Neck.bmp 1024 x1024 ; (b) Power.bmp 512 x512

Three cases were analysed and compared: first of
all, a non-compressed image was sent across the low
communications channel to the user (Figure 3, a);
secondly, lossless encoding (SPIHT algorithm with an
improved quad-tree analysis scheme [9]) in the Le
Gall wavelet domain was applied to the image, and
compressed image was sent to the user (Figure 3, b);
thirdly, the image was processed (lossy encoding by
SPIHT), a “rough” estimate of the original image was
sent to the user, the selected image blocks (ROI) were
processed by applying both the (modified) integer
DLGT and the SPIHT encoder, and then a high quality
estimate of the selected ROI were sent again to the
user’s PC (Figure 3, c).

We have assumed that the capacity (data rate) of
the low communications channel equals 100 KBps.

Obviously, transmitting of non-processed image
Neck.bmp of size 1024x1024 (Figure 2, a) across the
channel (Figure 3, a) requires 7 =7, =10.49s.
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progressive encoding of regions of interest in a digital
signal is described in [6].

In the context of progressive encoding and
transmission of image blocks (ROI), the above results
(achievable speed gains in computing the integer
DLGT spectra for the ROI selected at the user’s
request) are highly valuable.

To simplify description of the obtained results, we
here introduce the following notations: the CPU time
required to perform the (modified) integer Le Gall
wavelet transform (DLGT) of the digital image (or
that of ROI) is denoted by 7,, to perform wavelet-
based (SPIHT) encoding of the image (or that of ROI)
- by 7,, to transmit data across a low communications
channel — by z,, to perform both the inverse SPIHT

and the inverse integer DLGT, i.e. to reconstruct the
image, — by z,.

Computing the modified ( p=7) integer DLGT
spectrum of the same image, lossless encoding
(SPIHT algorithm; 7 =1), sending across the channel
and reconstruction (Figure 3, b) requires
T=1,+7,+7,+7, =0.038+405.46+2.85+11.97 =
=420.318 s. Evidently, application of the SPIHT
algorithm, with threshold value T =1, is unacceptable
(for the given capacity of the channel).

The developed approach (Figure 3, c) requires: as
before, 7, =0.038 s for computing the modified
integer DLGT spectrum of the image Neck.bmp;
7, =0.041s for SPIHT encoding (7'=32; 0.5 KB of

compressed data Z ; f=2097); 7, =0.005s for

transmitting of Z to the user’s PC across the channel,
and 7, =0.036 s for reconstructing the “rough”

estimate of the image (Figure 4, a).
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Figure 3. The digital image processing and transmission: (a) the image is sent across the low
communications channel to the user; (b) lossless encoding (SPIHT) is applied to the image,
whereupon compressed image is sent to the user; (c) the proposed locally progressive
digital image encoding and transmitting approach

@)

(b)

(©

Figure 4. Progressive encoding of image blocks (ROI) in the image Neck.bmp: (a) “rough” estimate of the original
image; (b) additional bits are added to the ROl X 4% (T =8,1.38 KB, 7' =0.02); (c) third quarter
of the ROI X9 j.e.image block X% | in greater detail (7 =2, 3 KB, ¢"=0.08)

Consequently, the total image processing time
equals 7' =7, +7,+7,+7, =012 s.

In Figure 4 (b, c), some additional blocks (ROI) of
the image Neck.bmp, namely, X“*® and X©  are
processed and analysed. Compression details of the
selected ROI are also indicated.
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Thus, block-processing of the image Neck.bmp, in
accordance with the third approach (Figure 3, c), takes
(in total) z+7'+7"=0.12+0.02+0.08 =0.22 s, and
appears to be nearly 50 times faster than in the first
approach (Figure 3, a).



The proposed locally progressive image encoding
idea (Figure 3, c¢) has also been applied to visual
inspection of several image blocks (ROI) in the image
Powerbmp 512x512 (Figure 2, b). The obtained
image processing speed gains are really hopeful: to
generate a “rough” estimate (Figure 5, a; 7 =64, 4.41
KB; [f=5944 ) of the image requires
r=1,+71,+7,+7, = 0.007+0.27+0.044+0.012 =
=0.333 s; to prepare (for coherent analysis) the high
quality image blocks X©»  x©6 = x©67 and x .1
(T =2; 42.14 KB), requires (in total) 1.488 s. So, the
very first high quality image block (ROI) X®9 is
made available to the user in 0.697 s, i.e. 3.76 times

(@)
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faster than in the first approach (Figure 3, a; sending
of the original image Power.bmp to the user’s PC
requires 2.62 s). Processing and visual inspection of
coherent image blocks (ROI) X©®  x®67 and X7
runs on the real-time scale.

Since in each case (Figure 4, b, c; Figure 5, b) the
user has the necessary ROl available, we come to the
conclusion that the proposed Le Gall wavelet-based
progressive image encoding and transmitting idea
(Figure 3, c) may lead (especially, when applied to
medical or space images characterized by large
amounts of data) to auspicious and fast-track results.

(b)

Figure 5. Fast visual inspection of image blocks (ROI) in the image Power.bmp 512 x512 : (a) “rough”
estimate of the image; (b) “rough” estimate of the image with image blocks (ROI)
X©9  x68 X6 and X7 in greater detail

5. Conclusions

In the paper, a novel fast procedure for the
computation of the (modified) discrete integer Le Gall
wavelet (DLGT) spectra for the selected blocks
(regions of interest - ROI) in the digital image is
presented. The procedure employs improved space
localization properties of a newly developed version
(modification) of DLGT and refers to the fact that the
modified DLGT spectrum of the original image is
known.

It is shown that the developed procedure can be
efficiently applied to implementing of a locally
progressive digital image encoding and transmitting
idea (approach). The essence of the approach -
additional bit streams are used to add new details not
to the whole image under processing but to the
selected (at the request of the user!) blocks (ROI) in
the image. The ultimate implementation of the
approach is supported by the use of SPIHT encoder
with an enhanced quad-tree analysis scheme.
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Evidently, the developed approach (progressive
encoding and transmission of image blocks) can also
be put into practice using other zero-tree-based image
compression algorithms, suchi as EZW (Embedded
Zero-tree  Wavelet), EBCOT (Embedded Block
Coding with Optimized Truncation), etc. Which
algorithm performs better? It goes without saying, the
faster image encoding algorithm the better overall
performance of the proposed approach.

Comparison of the developed locally progressive
digital image coding technique with the new image
compression standard JPEG 2000 [2], which also
provides the possibility for defining ROI in an image,
is scarcely pointful (both approaches have essential
differences). In JPEG 2000, selected image blocks
(ROI) are coded with better quality than the rest of the
image, and this is done (just after the pre-processing
step) by scaling up the wavelet coefficients so that the
bits associated with the ROI are placed in higher bit
planes, i.e. at the front of bit streams. Moreover, in
JPEG 2000, the visual inspection of coherent ROI in
the image (an interactive dialogue with the user) is
limited.



A New Le Gall Wavelet-Based Approach to Progressive Encoding and Transmission of Image Blocks

We unreservedly believe that the proposed idea
will find various applications in implementing
efficient and up-to-date digital data processing
technologies. In particular, the proposed locally
progressive digital image coding idea can be
employed when large amounts of requested graphical
data are sent across a low communications channel
(say, the Internet).
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