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1. Introduction 

The paper is devoted to the analysis of queueing 
systems in the context of the network and 
communications theory. We investigate a theorem on 
the law of the iterated logarithm (LIL) for the queue of 
jobs in an open multiserver queueing network and its 
applications to the mathematical models of the 
generalized Internet system and a multiserver 
computer system. Queueing networks have been 
extensively used for the analysis of manufacturing 
systems, transportation systems, and computer and 
communication networks. Therefore, many 
approximation methods have emerged, and LIL are 
among them. 

Limit theorems (diffusion approximations) and 
LIL under the conditions of heavy traffic belong to a 
special area of investigations on the queueing theory 
in heavy traffic. Therefore, first we shall try to trace 
the development of research on the general queueing 
theory in heavy traffic. The history of investigation of 
the diffusion approximation of a queueing system in 
heavy traffic has lasted for 40 years, and that of 
diffusion approximation of queueing networks – about 
20 years. Though as far back as in the 50-ies 
Kolmogorov raised a hypothesis on an approximate 
description of the number of busy channels with 
failures by means of the diffusion process with 
reflection from the true boundary, a systematic 
investigation of the problem began only after 
publishing J. Kingman’s works [21, 22] and especially 
that of Prokhorov [31]. The methods of investigation 
of single-server queueing systems in heavy traffic 
were considered in Borovkov [3], Kendall [20], 

Iglehart and Whitt [15, 16], etc. Later on, there 
appeared a large number of works devoted to various 
aspects of diffusion approximation of the queueing 
models (see survey papers by Iglehart [14] as well as 
Whitt [36], the book and the article of Karpelevich 
and Kreinin [18, 19]). The works of Reiman [33] and 
Kobyashi et al. [23] laid the basis for investigations of 
diffusion approximation of queueing networks. There 
is a vast literature on the diffusion approximation. 
Readers are referred to Whitt [36], Lemoine [24], 
Flores [6] and Glynn [7] for a general survey of the 
subject. The present work extends the studies by 
Iglehart and Whitt [15, 16] for a single station of 
multiserver queues, and by Reiman [33], Johnson 
[17], Chen and Mandelbaum [4] for networks of 
single server queues. Other closely related papers are 
written by Harrison and Lemoine [10] for networks of 
infinite server queues, and Whitt [37] for a GI/G/∞ 
queue. 

One can familiarize with the general theory on the 
LIL and its numerous applications in various fields of 
probability theory in the survey by Bingham [2]. The 
main part in the development of the theory on the LIL 
was played by Strassen [35] in the fundamental work 
where the functional variant of the LIL for a Wiener 
process was proved. The paper of Iglehart [11] can be 
considered as the first work on the LIL in the queueing 
theory. Applying the approach of Strassen [35], 
Iglehart [11] proved the LIL in it, under the conditions 
of heavy traffic, for the queue length of customers, 
waiting time of a customer, a virtual waiting time of a 
customer, and other important probability 
characteristics of the classical queueing system 
G1/G/1 and more general systems (e.g., 
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for a multiple queueing system). Also, a functional
variant of the LIL for a renewal process was proved
by Iglehart [11]. Using the results of Iglehart [12, 13],
the survey by Whitt [36] presented the proof of the-
orems on the LIL for the waiting time of a customer,
the occupation time process, and the extreme value of
the waiting time of a customer in the queueing sys-
tem G1/G/1. Also, Glynn and Whitt [8, 9] proved
theorems on the LIL for a cumulative process associ-
ated with the queue length of customers and waiting
time of a customer in an ordinary queueing system
G1/G/1.

Note that the research of the LIL in more general
systems than the queueing system G1/G/1 or mul-
tiphase queues has just started (see Asmussen [1]).
In Minkevičius [25, 26], the LIL was proved in heavy
traffic for the queue length of customers, waiting time
of a customer, a virtual waiting time of a customer
in a multiphase queueing system. Sakalauskas and
Minkevičius [34, 28] also give the proof of the theo-
rem on the LIL under “overload conditions" of heavy
traffic for a virtual waiting time of a customer and
queue length of customers in the open Jackson net-
work.

The classical papers of Iglehart and Whitt [15,
16] began the research of multiple (multichannel,
multiserver) queueing systems in heavy traffic. Mod-
ern topics of these researches include performance
of modeling techniques for server farms, scheduling
and prioritization algorithms for multiserver systems,
load balancing and load sharing, queueing analysis
and sensitivity analysis of multiserver systems, work-
load characterization for multiserver systems, com-
putational methods for multi-dimensional optimiza-
tion, impact of heavy-tailed workloads on the multi-
server system performance, etc. Modern applications
of multiserver systems include web server farms,
servers for high-performance computing and grid
computing, manufacturing applications, etc. Modern
methods of investigation of multiserver systems in
heavy traffic include moment results, tail asymptotic
results for some specialized systems, methods for re-
ducing 2- dimensionally infinite Markov chains to 1-
dimensionally infinite Markov chains, time and unit-
scaling techniques, new results in scheduling theory
and task assignment, etc. The books of Whitt [38] as
well as Chen and Yao [5] present the results of the the-
ory of multiserver queueing systems in heavy traffic,
its present state, and the problems to be solved. Note
that the research of the multiple queueing systems
in more general systems than the queueing system
G1/G/1/n or multiphase/multiple queueing systems
has just started (see papers of Whitt [39, 40], Puhal-
skii and Reed [32], Pang, Talreja and Whitt [30]). The

present paper, which investigates the queue length of
customers in the open multiserver network, extends
the results of Sakalauskas, Minkevicius [28] in the
open Jackson network under “overload conditions" of
heavy traffic.

In this paper, we investigate an open multiserver
queueing network model in heavy traffic. We present
the LIL for a queue of jobs in an open multiserver
queueing network. The main tool for the analysis of
these queueing systems in heavy traffic is a functional
LIL for the renewal process (the proof can be found
in Strassen [35] and Iglehart [11]).

2. The network model

Consider a network of j stations, indexed by
j = 1, 2, . . . , J. Suppose that the station j has cj

servers, indexed by (j, 1), . . . , (j, cj). A description
of the primitive data and construction of processes of
interest are the focus of this section. No probability
space will be mentioned in this section, and of course,
one can always think that all the variables and pro-
cesses are defined on the same probability space.

First, let {uj(e), e ≥ 1}, j = 1, 2, . . . , J, be
J sequences of exogenous interarrival times, where
uj(e) ≥ 0 is the interarrival time between the (e−1)-
st job and the e-st job that arrive at the station j
exogenously (from the outside of the network). De-

fine Uj(0) = 0, Uj(n) =
n∑

e=1
uj(e), n > 1

and Aj(t) = sup{n > 0 : Uj(n) ≤ t}, where
Aj = {Aj(t), t ≥ 0} is called an exogenous arrival
process of the station j, i.e., Aj(t) counts the number
of jobs that arrived at the station j from the outside of
the network at the moment t.

Second, let {vjkj (e), e ≥ 1}, j = 1, 2, . . . , J,
kj = 1, 2, . . . , cj , be c1 + . . . + cJ sequences of ser-
vice times, where vjkj (e) ≥ 0 is the service time for
the e-th job served by the server kj of the station j.

Define Vjkj (0) = 0, Vjkj (n) =
n∑

e=1
vjkj

(e), n ≥ 1

and xjkj (t) = sup{n ≥ 0 : Vjkj (n) ≤ t}, where
xjkj = {xjkj (t), t ≥ 0} is called a service process
for the server kj at the station j, i.e., xjkj (t) counts
the number of services completed by the server kj

at the station j during the server’s busy time. We
define µjkj =

(
E

[
vjkj (e)

])−1
> 0, σjkj

=
D

(
vjkj (e)

)
> 0 and λj = (E [uj(e)])

−1
> 0,

aj = D (uj(e)) > 0, j = 1, 2, ..., k; with all of
these terms assumed finite.

Also, let τ̃j(t) be the total number of jobs routed
to the jth station of the network in the interval [0, t],
τj(t) be the total number of jobs after service depar-
ture from the jth station of the network in the inter-
val [0, t], τ̃jkj (t) be the total number of jobs routed
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to the kj server of the jth station of the network
in the interval [0, t]. Let τjkj (t) be the total num-
ber of customers after service departure from the kj

server of the jth station of the network in the inter-
val [0, t], and τijki(t) be the total number of jobs
after service departure from the ki server of the ith
station of the network and routed to the kj server of
the jth station of the network in the interval [0, t].
Let pij be a probability of the job after service at
the ith station of the network routed to the jth sta-

tion of the network. Denote pt
ijki

=
τijki(t)
τiki(t)

to be a

part of the total number of jobs which, after service
at the ki server of the ith station of the network, are
routed to the jth station of the network in the interval
[0, t], i, j = 1, 2, . . . , J, ki = 1, . . . , ci and t > 0.

The process of primary interest is the queue
length process Q = (Qj) with Qj = {Qj(t), t ≥ 0},
where Qj(t) indicates the number of jobs at the sta-
tion j at time t. Now we introduce the processes
Qjkj = {Qjkj (t), t ≥ 0}, where Qjkj (t) indi-
cates the number of jobs waiting to be served by the
server kj of the station j at time t; clearly, we have

Qj(t) =
cj∑

ki=1

Qjki(t), j = 1, 2, . . . , J.

The dynamics of the queueing system (to be
specified) depends on the service discipline at each
service station. To be more precise, “first come, first
served” (FCFS) service discipline is assumed for all
J stations. When a job arrives at a station and finds
more than one server available, it will join one of the
servers with the smallest index. We assume that the
service station is work-conserving; namely, not all
servers at a station can be idle when there are cus-
tomers waiting for service at that station. In partic-
ular, we assume that a station must serve at its full
capacity when the number of waiting jobs is equal to
or exceeds the number of servers at that station. We
assume that the queue of jobs in each station of the
open queueing network is unlimited.

3. The main results

Let βj =
J∑

i=1

ci∑
ki=1

µiki
·pij+λj−

cj∑
kj=1

µjkj
, σ̂2

j =

J∑
i=1

ci∑
ki=1

µ3
iki
· σiki

· p2
ij + λ3

j · aj +
cj∑

kj=1

µ3
jkj
· σjkj

>

0, j = 1, 2, . . . , J.
We assume that the following conditions are ful-

filled:

J∑

i=1

ci∑

ki=1

µiki
· pij +λj >

cj∑

kj=1

µjkj
, j = 1, 2, . . . , J.

(1)

Note that these conditions quarantee that there exists
a queue of jobs and it is constantly growing. One of
the results of the paper is the following theorem on the
LIL for the total queue of jobs in an open queueing
network.

Theorem 3.1. If conditions (1) are fulfilled, then

P

(
lim

t→∞
Qj(t)− βj · t

σ̂j · a(t)
= 1

)
=

P

(
lim

t→∞
Qj(t)− βj · t

σ̂j · a(t)
= −1

)
= 1,

j = 1, 2, . . . , J and a(t) =
√

2t ln ln t.

Proof. First, define x̂j(t) =
J∑

i=1

ci∑
ki=1

xiki(t) · pij +

Aj(t)−
cj∑

kj=1

xjkj (t), w(t) =

J∑
j=1

J∑
i=1

ci∑
ki=1

xiki(t) · |p t
ijki

− pij |, γ(t) =

J∑
i=1

ci∑
ki=1

sup
0≤s≤t

(xiki(s)− τiki(s)), j = 1, 2, . . . , J.

By the definition of the queue of jobs at the sta-
tions of the network, we get that, for j = 1, 2, . . . , J,
kj = 1, 2, . . . , cj and t > 0

Qj(t) = τ̃j(t)− τj(t) =
cj∑

ki=1

Qiki(t) =
cj∑

ki=1

τ̃iki(t)

−
cj∑

ki=1

τiki(t) =
cj∑

ki=1

τ̃iki(t)−
cj∑

ki=1

xiki(t)

+
cj∑

ki=1

xiki
(t)−

cj∑

ki=1

τiki
(t) ≤

cj∑

ki=1

τ̃iki
(t)

−
cj∑

ki=1

xiki
(t) +

cj∑

ki=1

sup
0≤s≤t

(xiki
(s)− τiki

(s))

=
J∑

i=1

ci∑

ki=1

τijki(t) + Aj(t)−
cj∑

ki=1

xiki(t)

+
cj∑

ki=1

sup
0≤s≤t

(xiki
(s)− τiki

(s)) ≤ Aj(t)

−
cj∑

kj=1

xjkj (t) +
J∑

i=1

ci∑

ki=1

τiki(t) ·
τijki(t)
τiki(t)

+
cj∑

ki=1

sup
0≤s≤t

(xiki(s)− τiki(s))
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≤
J∑

i=1

ci∑

ki=1

xiki(t) · pt
ijki

+ Aj(t)−
cj∑

kj=1

xjkj (t)

+ sup
0≤s≤t

(xjkj (s)− τjkj (s)) = Aj(t)−
cj∑

ki=1

xiki(t)

+
J∑

i=1

ci∑

ki=1

xiki(t) · (pt
ijki

− pij + pij) ≤

≤
J∑

i=1

ci∑

ki=1

xiki(t) · pij + Aj(t)−
cj∑

ki=1

xiki(t)+

+
J∑

i=1

ci∑

ki=1

xiki(t) · |pt
ijki

− pij |

+
cj∑

ki=1

sup
0≤s≤t

(xiki(s)− τiki(s))

= x̂j(t) + w(t) + γ(t).

Hence it follows that

Qj(t) ≤ x̂j(t) + w(t) + γ(t), j = 1, 2, . . . , J (2)

and t > 0. Also, note that

Qj(t) ≥ τ̃j(t)−
cj∑

ki=1

xiki(t) = Aj(t)−
cj∑

ki=1

xiki(t)

J∑

i=1

ci∑

ki=1

τiki(t) · p t
ijki

+ = Aj(t)−
cj∑

ki=1

xiki(t)

+
J∑

i=1

ci∑

ki=1

(xiki(t) + τiki(t)− xiki(t)) · pt
ijki

=
J∑

i=1

ci∑

ki=1

xiki(t) · pt
ijki

+ Aj(t)−
cj∑

ki=1

xiki(t)

+
J∑

i=1

ci∑

ki=1

(τiki(t)− xiki(t)) · pt
ijki

= Aj(t)+

+
J∑

i=1

ci∑

ki=1

xiki
(t) · pt

ijki
−

cj∑

kj=1

xjkj (t)

−
J∑

i=1

ci∑

ki=1

(xiki
(t)− τiki

(t)) · pt
ijki

≥
J∑

i=1

ci∑

ki=1

xiki
(t) · pt

ijki
+ Aj(t)−

cj∑

kj=1

xjkj (t)

−
J∑

i=1

ci∑

ki=1

(xiki
(t)− τiki

(t)) ≥ +Aj(t)

−
cj∑

kj=1

xjkj (t) +
J∑

i=1

ci∑

ki=1

xiki(t) · pt
ijki

− sup
0≤s≤t

J∑

i=1

ci∑

ki=1

(xiki(s)− τiki(s)) ≥

J∑

i=1

ci∑

ki=1

xiki(t) · pt
ijki

+ Aj(t)−
cj∑

kj=1

xjkj (t)−

J∑

i=1

ci∑

ki=1

sup
0≤s≤t

(xiki(s)− τiki(s)) = −
cj∑

kj=1

xjkj (t)

−
J∑

i=1

ci∑

ki=1

xiki(t) · (pt
ijki

− pij + pij) + Aj(t)

−
J∑

i=1

ci∑

ki=1

sup
0≤s≤t

(xiki(s)− τiki(s))

=
J∑

i=1

ci∑

ki=1

xiki(t) · pij + Aj(t)−
cj∑

ki=1

xiki(t)

+
J∑

i=1

ci∑

ki=1

xiki(t) · (pt
ijki

− pij)

−
J∑

i=1

ci∑

ki=1

sup
0≤s≤t

(xiki(s)− τiki(s)) ≥ x̂j(t)

−
J∑

i=1

ci∑

ki=1

xiki(t) · |pt
ijki

− pij |

−
J∑

i=1

ci∑

ki=1

sup
0≤s≤t

(xiki(s)− τiki(s)) = x̂j(t)

− w(t)− γ(t), j = 1, 2, . . . , J and t > 0.

(3)

Hence it follows that

Qj(t) ≥ x̂j(t)−
k∑

i=1

wi(t)−
k∑

i=1

γi(t), (4)

j = 1, 2, . . . , J and t > 0.
By combining (2) and (4), we can write

|Qj(t)− x̂j(t)| ≤
k∑

i=1

wi(t) +
k∑

i=1

γi(t), (5)

j = 1, 2, . . . , J and t > 0. The further proof is the
same as in Minkevičius and Kulvietis [27]. The proof
of the theorem is complete.

Note that inequality (5) is the key inequality used
to prove several laws (fluid approximations, func-
tional limit theorems and LIL) for a queue of jobs
in open multiserver queueing networks under heavy
traffic conditions.
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4. On the model of the generalized Internet net-
work

In this section, we consider a generalized Internet
network with three resources and six routes (see Fig-
ure 1). We now assume that the network is composed
of three nodes, each modelled as a multiserver queue.
In other words, external arrivals of jobs at the first
node are λ11, λ12 and λ13. The packages are served
at the first node in the servers of node with the rate
µ11, µ12, µ13 and µ14, afterwards Internet packages
of data (jobs, queries or messages) with probability
p12 = p (usually p = 0.1) are sent to the second
node and with probability p10 = 1− p leave λ22. The
packages are served in the second node with the inten-
sity values µ21 and µ22. Then Internet packages, with
probability p23 = q (usually q = 0.1), arrive at the
third node in one direction, and with probability 1−q
they leave the network in another direction. External
routes to the third node are characterized by intensity
values λ3. The packages are served in the third node
with the intensity values µ31 and µ32. Then Internet
packages, with probability p30 = r (usually r = 0.9),
leave the network in one direction and they leave the
network in another direction (with probability 1− r).

Next, denote by Q̄j(t), j = 1, 2, 3 the total
queue of Internet packages in the jth node of the
Internet-type network at the time moment t, t > 0.
Define

β̄1 = λ11 + λ12 + λ13 − µ11 − µ12 − µ13

− µ14 > 0, β̄2 = λ21 + λ22 − µ21 − µ22+
+ (µ11 + µ12 + µ13 + µ14) · p12 > 0, β̄3 =
= λ3 + (µ21 + µ22) · p23 − µ31 − µ32 > 0,

σ̄2
1 = a1 · (λ3

11 + λ3
12 + λ3

13) + σ1

· (µ3
11 + µ3

12 + µ3
13 + µ3

14) > 0, σ̄2
2 = a1·

· (λ3
21 + λ3

22) + σ1 · (µ3
11 + µ3

12 + µ3
13 + µ3

14)·
· p2

12 + σ2 · (µ3
21 + µ3

22) > 0, σ̄2
3 = a1 · λ3

3+

σ1 · (µ3
21 + µ3

22) · p2
23 + σ3 · (µ3

31 + µ3
32) > 0,

(6)

Applying Theorem 3.1, we obtain the following
theorem on the total queue of packages in the gener-
alized Internet network system.

Theorem 4.1. If conditions (1) are fulfilled,
then

P
(

lim
n→∞

Q̄j(t)− β̄j · t
σ̃j · a(t)

= 1
)

= 1, j = 1, 2, 3.

Similarly as in Minkevičius and Kulvietis [27],
we can obtain

MQ̄j(t)
t

= β̄j + σ̄j ·
√

2 ln ln t

t
, j = 1, 2, 3. (7)

Note that MQ̄j(t), j = 1, 2, 3 is the total av-
erage queue of packages in the generalized Internet
network at the time moment t, t > 0.

Now we give an example from the generalized
network. Assume that packages are routed to the first
node W1 at the rate λ11 of 13700, λ12 of 13800 and
λ13 of 13600 per second. These packages are served
at the rate µ11 of 10000, µ12 of 10000, µ13 of 10000
and µ14 of 10000 per second. After service in the
node W1 the packages are routed to the second node
W2 at the rates of (µ11+µ12+µ13+µ14)·p12 of 4000,
λ21 of 8500 and λ22 of 8500 per second. The pack-
ages are served at the rates µ21 of 10000 and µ22 of
10000 per second in the node W2, then the packages
are routed to the third node at the rates (µ21+µ22)·p23

of 2000 and λ3 of 19000 per second. The packages
are served at the rates µ31 of 10000 and µ32 of 10000
per second in the node W3. After the packages have
been served in the node W3, they leave the system.
So, β̄1 = 1100, σ̄1 = 31033, β̄2 = 1000, σ̄2 =
16620, β̄3 = 1000 and σ̄3 = 23727.

Thus, from (6) we get (see Figures 2-4)

MQ̄1(t)
t

= 1150 + 31033 ·
√

2 ln ln t

t
,

MQ̄2(t)
t

= 1000 + 16620 ·
√

2 ln ln t

t
,

MQ̄3(t)
t

= 1000 + 23727 ·
√

2 ln ln t

t
.

5. On the model of the multiserver computer sys-
tem

In this section, we consider a multiserver com-
puter system (see Figure 5). We assume that this sys-
tem is composed of two multiserver nodes. In other
words, we now have an open multiserver Jackson net-
work, where there is external arrival λ11 at the first
node at the rates µ11 and µ12. Afterward the pack-
ages of data are sent with probability p12 = p (usu-
ally p = 0.1) to the second node and leave the net-
work with probability p10 = 1− p. The packages are
served in the second node at the rates µ21 and µ22.
We denote by Q̃(t), j = 1, 2, the total of packages in
nodes at the time moment t, t > 0.

Let us denote β̃1 = λ11 − µ11 − µ12 > 0, σ̃2
1 =

a1 · λ3
11 + σ1 · (µ3

11 + µ3
12) > 0,

β̃2 = (µ11 + µ12) · p12 − µ21 − µ22 > 0, σ̃2
2 =

σ1 · (µ3
11 + µ3

12) · p2
12 + σ2 · (µ3

11 + µ3
22) > 0,

Similarly as in (7) we can obtain

MQ̃j(t)
t

= β̃j + σ̃j ·
√

2 ln ln t

t
, j = 1, 2.
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µ21 µ22

λ11 λ12 λ13 λ21 λ22 λ3

p q

1− p 1− q

r

1− r

µ31 µ32µ11 µ12 µ13 µ14

Figure 1. Model of the generalized Internet network

Figure 2. Values for MQ̄1(t)
t

Now we present an example from the network
practice. Assume that packages of data are routed to
the first device V1 at the rate λ11 of 2200 per sec-
ond. These packages are served at the rates µ11 of
10000 and µ12 of 10000 per second. Then the pack-
ages of data arrive at the second node V2 with prob-
ability p12 = p (usually p = 0.9). The packages are
served at the rates µ21 of 8500 and µ22 of 8500 per
second. After service in the node V2, the packages are
routed to the first node V1. So, β̃1 = 2000, σ̃1 =

26153, β̃2 = 1000, σ̃1 = 17507.
Consequently, (see Figures 6 and 7)

MQ̃1(t)
t

= 2000 + 26153 ·
√

2 ln ln t

t
,

MQ̃2(t)
t

= 1000 + 17507 ·
√

2 ln ln t

t
.

Remark 5.1. When modelling an Internet net-
work system, we apply an heuristic argument, that in
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Figure 3. Values for MQ̄2(t)
t

Figure 4. Values for MQ̄3(t)
t

real conditions, an average Internet network system
receives 40 Mg data per second. The size of average
IP package of data is about 1100 bytes. Thus, the av-
erage number of packages of data in a system is about
40000 packages per second.

6. Application of the main results

At first we present a theorem about fluid approx-
imation for a queue of jobs in multiserver queueing
networks in heavy traffic conditions.

Theorem 6.1. If conditions (1) are fulfilled,
then

(
Q1(t)

t
;
Q2(t)

t
; . . . ;

QJ(t)
t

)
⇒ (β1; β2; . . . ; βJ ) ,

0 ≤ t ≤ 1.
Next, we present a functional limit theorem for

a queue of jobs in multiserver queueing networks in
heavy traffic conditions.
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Figure 5. Model of the multiserver computer system

Figure 6. Values for MQ̃1(t)
t

Theorem 6.2. If conditions (1) are satisfied,
then

(
Q1(nt)− β1 · n · t

σ1 ·
√

n
;
Q2(nt)− β2 · n · t

σ2 ·
√

n
; . . . ;

QJ(nt)− βJ · n · t
σJ ·

√
n

)
⇒ (z1(t); z2(t); . . . ; zJ(t)) ,

where zj(t), j = 1, 2, . . . , J, 0 ≤ t ≤ 1 are inde-
pendent standard Wiener processes.

Proof. The proof of Theorems 6.1 and 6.2 is based
on the proof of Theorem 4.1, and we omit it.

Remark 6.1. We see that the constants σ̂j >
0, j = 1, 2, . . . , J, are the same in the formulation
of Theorems 3.1 and 6.2.

Finally, we denote P (Qj(t) > 0) as a probabil-
ity of blocking of the node j in a multiserver com-
puter network. So, P ( min

1≤j≤J
Qj(t) > 0) is the prob-

ability of blocking of the whole multiserver com-
puter network (because if min

1≤j≤J
Qj(t) > 0, then
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Figure 7. Values for MQ̃2(t)
t

Qj(t) > 0, j = 1, 2, . . . , J). We will prove the fol-
lowing corollary about the probability of blocking of
multiserver computer network.

Corollary 6.1. If conditions (1) are fulfilled,
then

lim
t→∞

P ( min
1≤j≤J

Qj(t) > 0) = 1.

Proof. Let us Ac denote as a complement of set A.
We can write that

lim
t→∞

P (( min
1≤j≤J

Qj(t) > 0)c)

= lim
t→∞

P








J⋂

j=1

(Qj(t) > 0)





c


= lim
t→∞

P




J⋃

j=1

(Qj(t) > 0)c




≤ lim
t→∞

J∑

j=1

P ({Qj(t) > 0}c)

=
J∑

j=1

lim
t→∞

P ({Qj(t) > 0}c)

=
J∑

j=1

(
1− lim

t→∞
P (Qj(t) > 0)

)
.

(8)

Suppose conditions (1) are satisfied. Then we
prove that lim

t→∞
P (Qj(t) > 0) = 1, j = 1, 2, . . . , J.

For j = 1, 2, . . . , J, by applying Theorem 6.2 we ob-

tain

lim
t→∞

P (Qj(t) > 0)

= lim
t→∞

P

(
Qj(t)− βj · t

σj ·
√

t
> − βj · t

σj ·
√

t

)

= 1− lim
t→∞

P

(
Qj(t)− βj · t

σj ·
√

t
≤ − βj · t

σj ·
√

t

)

= 1− Φ(−∞) = 1,

(9)

where Φ(·) is the normal distribution function.
Consequently, we conclude that (see (8) and (9))

lim
t→∞

P (( min
1≤j≤J

Qj(t) > 0)c) = 0

or

lim
t→∞

P ( min
1≤j≤J

Qj(t) > 0) = 1.

The proof of Corollary 6.1 is complete.

Thus, if conditions (1) are fulfilled, then the
whole multiserver network is busy.

Let βjkj
=

J∑
ki=1

µiki
·pij +λj−µjkj

> 0, , j =

1, 2, . . . , J, kj = 1, 2, . . . , cj . In this section, we also
present the following corollary on the probability that
a computer network fails due to overload.

Corollary 6.2. If t ≥ max
1≤j≤J

max
1≤kj≤cj

mjkj

βjkj

and

conditions (1) are fulfilled, then the computer network
becomes unreliable (all computers fail).
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Proof. The proof of Corollary 6.2 is presented in
Minkevičius and Kulvietis [29], and we omit it. The
proof of Corollary 6.2 is complete.

7. Concluding remarks and future research

1. If the conditions of the theorem on LIL are
fulfilled (i. e., conditions (1) are satisfied), then the
network is occupied (see Corollary 6.1) and if condi-
tions (1) are satisfied later on, the network becomes
uncontrollable after a certain time
(as t ≥ max

1≤j≤J
max

1≤kj≤cj

mjkj

βjkj

) (see Corollary 6.2).

2. Conditions (1) are fundamental - the behaviour
of the whole network and its evolution is not clear if
conditions (1) are not satisfied. Therefore, this fact is
the object of further research and discussion.

3. Note that the computer with the Windows op-
eration system functions steadily if the number of
jobs does not exceed 5 (therefore, mjkj ≥ 5). In other
cases, the computer fails (see paragraph 1).

4. The theorems of this paper are proved for
a class of open multiserver queueing network in
heavy traffic with the service principle “first come,
first served", endless waiting time of a customer in
each node of the queueing system, and the times be-
tween the arrival of customers at the open multiserver
queueing networks being independent identically dis-
tributed random variables. However, analogous theo-
rems can be applied to a wider class of open multi-
server queueing networks in heavy traffic: when the
arrival and service of customers in a queue is by
groups, when interarrival times of customers at the
open multiserver queueing network are weakly de-
pendent random variables, etc.
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