
23 

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2012, Vol.41, No.1  

UNDERSTANDING OF HETEROGENEOUS MULTI-STAGE META-
PROGRAMS

Vytautas Štuikys, Robertas Damaševi�ius, Giedrius Ziberkas, K�stutis Valin�ius 
Software Engineering Department, 

Kaunas University of Technology (Lithuania) 
e-mail: vytautas.stuikys@if.ktu.lt, robertas.damasevicius@ktu.lt, ziber@soften.ktu.lt, kestutis.valincius@gmail.com 

 

Abstract. The paper analyzes an approach to understanding heterogeneous meta-programs and multi-stage meta-
programs. At the core of the approach is human-centred analysis combined with the Brook’s program cognition theory 
and the concept of reverse engineering. The use of the approach leads to extracting higher-level models (graphs 
representing meta-parameter — meta-function relationship models, feature diagrams and algorithms) from correct 
meta-specifications. The models and processes enable not only to better understand the multi-stage heterogeneous 
meta-programs but also to contribute to their evolution. The paper describes some properties of the multi-stage 
heterogeneous meta-programs. The approach is supported by the case study and complexity evaluation. 

Keywords: Meta-program comprehension; multi-stage heterogeneous meta-program; reverse engineering, meta-
program complexity. 

 

1. Introduction 

Program understanding (aka comprehension) is an 
increasingly important theme due to many reasons: 1) 
the number and size of software projects is growing; 
2) software complexity is increasing; 3) professional 
software developers are estimated to spend over 75% 
of their time trying to understand code [1, 2]; 4) it is 
impossible to apply reuse-based development (which 
prevails in modern software development 
methodologies, such as Product Line Engineering 
(PLE) [3]) without understanding of software 
components, component generators, component 
generation and integration processes [4]; 5) disciplines 
such as reverse engineering [5], software evolution 
[6], testing, etc., in fact, are based on program 
comprehension; and 6) it is important for knowledge 
extraction and learning [7]. 

Program understanding, however, is a hard 
cognitive task. Understanding even of a relatively 
small program is a complex process. It requires both 
knowledge and analysis of the programming language 
syntax, semantics, the computing machine and its 
operating environment, the application domain, etc. 
Typically, even for an expert a single pass over a 
program is insufficient to understand it. Multiple 
passes can help to answer global questions concerning 
variable use, execution paths, etc. 

Meta-program is a specific case of a program 
generalization [8] and can be seen as a program 

generator [9]. Meta-programs generating other 
programs are much more complex than the items they 
produce. Therefore, the understandability of meta-
programs is as important as comprehension of a 
program (or even at a larger degree knowing the fact 
that the extent of using generators is further expanding 
[4, 10]). 

Program (meta-program) understandability and 
complexity are related: e.g., when complexity grows, 
understandability tends to diminish. As for the 
intention to use meta-programs, one important reason 
should be stated in this context (e.g., user’s 
viewpoint): meta-programming helps the effective 
managing of complexity through the automatic 
generation of program instances. On the other hand, 
the complexity of a meta-program per se tends to 
grow as a logical consequence of the increase of the 
complexity of systems. As complexity of product 
families grows (in terms of features and their variants, 
especially due to the need to combine target domain 
features with the features of its context [11]), the 
complexity of meta-programs grows, too. The 
complexity (in terms of implemented feature variants) 
may achieve the level at which it is difficult to manage 
the product (e.g., to introduce changes) due to a 
diminished understandability. 

In this paper, we address the problem of how to 
manage the complexity and understandability of 
heterogeneous meta-programs specified using two 
different languages (meta- and target ones). We 

���
�����������������������������������$�<

http://dx.doi.org/10.5755/j01.itc.41.1.916


V. Štuikys, R. Damaševi�ius, G. Ziberkas, K. Valin�ius 

24 

suggest the concept of multi-stage meta-programming 
and propose the reverse engineering-based approach 
to tackle with the task. Our contribution is the higher-
level models to analyze and understand meta-
programs per se and the derivative models enabling to 
explain and understand multi-stage meta-programs 
using the proposed approach. The latter can be seen as 
a theoretical background to develop meta-generators. 

The paper is organized as follows. Section 2 
analyzes related works. Section 3 introduces the 
concept of multi-stage meta-programming and 
describes a reverse engineering approach to extract 
higher-level models from the meta-program 
specification. Section 4 presents some properties of 
multi-stage meta-programs. Section 5 provides a case 
study to approve the approach experimentally and 
evaluates complexity of multi-stage meta-programs. 
Section 6 summarizes and evaluates the approach. 
Finally, Section 7 formulates conclusions and outlines 
further research. 

2. Related work 

The beginning of program comprehension research 
can be tracked back to the Wirth’s proposal in 1968, 
when he suggested to refuse the use of go to 
statements in a program structure. A few years later, 
he reformulated the proposal as principles of structural 
programming. The aim was to improve the structure 
and understandability in order to make easier the 
program debugging procedures. Now research in the 
field is centred on theory, methods and tools [12, 13].  

According to the Brooks’ theory [12], there are 
two stages in program comprehension: hypothesis and 
verification. Hypothesis is conceptually driven, i.e., 
the comprehender generates an overall hypothesis 
about the program’s function from its brief 
description. This high-level hypothesis, combined 
with programmer’s knowledge and expectations, leads 
to the formation of subsidiary hypothesis about what 
major structures and operations ought to appear in the 
program. Verification is both data-driven and 
conceptually driven. Now working with the program 
text, the comprehender tries to find support for the 
hypothesis by looking for elements of a program, 
called beacons, as a mechanism to linking the 
hypothesis formation stage with the data of the 
program. 

As defined by Brooks [13, 14], beacons are ‘key 
features in a program that serve as typical indicators 
of a particular structure or operation’. Beacons serve 
as interpretive units that signal commonly 
recognizable elements of a program. Beacons “carry a 
lot of the meaning” in the code as it is illustrated by an 
example from a sorting program: 

temp�:=�a[j];�
a[j]�:=�a[i];�
a[i]�:=�temp;�

Other concepts, related to beacons, are fact finding 
[15] and concept assignment [16]. As it is very 
difficult task to recover human concepts embedded 
into a program text using some tools (e.g., due to 
location problem [16]), there are two general 
approaches in program comprehension: human-
centred approach and tool-based approach [17]. The 
first approach focuses more on human behaviour, 
activities and processes, program cognition models, 
program readability, commencing, documentation, 
etc.; whereas the second approach concentrates more 
on syntactical aspects (e.g., structure, representation, 
location and identification of features and concerns, 
slicing/chunking, etc.). 

More generally, the human-centred approach can 
be seen as a software psychology aiming to discover 
and describe human limitations in interacting with 
computers. Shneiderman [18], the pioneer of software 
psychology, defines the topic as the ‘study of human 
performance in using computer and information 
systems.’ It uses the techniques of experimental 
psychology to analyze aspects of human performance 
in computer tasks. It also applies the concepts of 
cognitive psychology to the cognitive and perceptual 
processes involved in computer interaction. In 
software maintenance, e.g., the understanding of 
human skills and capacity to work with software is 
necessary in order to facilitate the maintainer’s 
examination and understanding of source code. 
Software psychologists focus on such human factors 
as ease of use, simplicity in learning, improved 
reliability, enhanced user satisfaction, and cultural 
acceptability [19]. Strengths and limitations of human 
abilities serve as underlying factors, e.g., in 
determining the functionality of software maintenance 
tools. 

Many diverse tools exist to assist in program 
comprehension. The tools can be roughly categorized 
according to three categories [20]: extraction, analysis 
and presentation. Extraction tools include parsers and 
data gathering tools. Analysis tools perform static and 
dynamic analyses to support activities such as 
clustering, concept assignment, feature identification, 
transformations, domain analysis, slicing, and metrics 
calculations. Presentation tools include code editors, 
and browsers. 

There is some debate between two classes of 
models: text understanding models and problem 
solving models [21]. To assess what type of model to 
use for program understanding, one first should take 
into account the effect of purpose for understanding 
(e.g., modification, reuse, debugging or documenting). 
Another important issue is the type of a program and 
characteristics of a program under consideration (e.g., 
size, technology, etc.). As the role of domain-specific 
languages is constantly growing, the comprehension 
of such kind of programs is also at the focus [22]. 

Though the program complexity and 
understanding are closely related topics, here we 
restrict ourselves to analysis of the first and 



Understanding of Heterogeneous Multi-Stage Meta-Programs 

25 

recommend a reader to look at the extensive analysis 
on the program and meta-program complexity issues 
presented in [23]. We do not analyze the aspects of 
heterogeneous meta-programming here (an intensive 
study on that can be found in [9]). Instead, we focus 
on the concept of multi-stage programming. 

Taha, perhaps, was the first who have introduced 
the concept and presented an extensive study of multi-
stage programming in his dissertation [24]. The 
concept is related to the fundamental principle of 
information hiding through the introduction of a set of 
abstraction levels (stages) in order to gain a great deal 
of flexibility in managing the program construction 
process. Carette and Kiselyov [25] apply the 
techniques in the context of homogeneous meta-
programming for eliminating the abstraction overhead 
from generic code. Westbrook et al. [26] demonstrate 
multi-stage programming in an extension of Java, 
called Ligthweight Java. Megacz [27] also discusses 
some properties of multi-stage programs (such as 
generalized arrows within homogeneous meta-
programming). The concept is also exploited in other 
contexts, too. For example, Czarnecki et al. [28] use 
the staged configuration approach to manage multi-
level feature models. Rajlich and Bennett [29] discuss 
a staged model of software evolution. Having in mind 
the usefulness of multi-stage programming, in this 
paper we present a variant of multi-stage 
programming as it is applied to heterogeneous meta-
programming. 

3. Meta-program understanding and concept 
of multi-stage meta-programming 

We analyze understandability of a given 
heterogeneous meta-program assuming that it is 
syntactically and semantically correct. Our approach 
is based on the human-centred Brook’s program 
cognition theory and reverse engineering. The first 
gives the basic concepts and enables us to select the 
strategy in understanding the meta-program, while the 
second provides the methodology. The result is higher-
level models (expressed through beacons and their 
relationships) and the description of the generation 
process (algorithm) both extracted from the meta-
program specification. Next, we introduce the concept 
of a multi-stage meta-program and analyze its 
structure again using the introduced approach. The 
results of this analysis are high-level models and a 
process to understand the multi-stage meta-program 
behaviour. 

One important aspect should be emphasized here. 
A heterogeneous meta-program (see DEF. 1) depends 
neither on the meta-language type, nor on the domain 
language type. Usually we can use any programming 
language satisfying a set of minimal requirements in 
the role of a meta-language (has abstractions for 
output, looping, etc.). This has been proven, e.g., in 
[30], where Java was used in the role of the meta-
language, and in [31], where C++ was used as a meta-

language. However, the application domain and 
designer’s flavour are the most decisive attributes for 
selecting the languages.  Recently, we have stated the 
use of PHP as a meta-language for developing e-
commerce product line. 

In this paper, to illustrate the basic concepts and to 
validate the approach by the case study, we have 
selected Open PROMOL as a meta-language due to 
the following reasons: 1) it realizes the concept of 
external meta-functions very similar to those of pre-
processing commands such as well-known C (C++) 
directives; 2) it has a human-readable meta-interface 
easing to understand the meta-programming per se; 3) 
the approach and models we deal with here do not 
depend upon the languages used. 

3.1. Basic terms  

DEFINITION 1. Heterogeneous meta-program is a 
specification whose functionality is expressed at two 
different abstraction levels: the lower-level specifies 
the basic domain functionality using a domain 
language, and the meta-level specifies the anticipated 
variants of the domain functionality using a meta-
language.  

DEFINITION 2. Beacons are key features in a 
program or meta-program that ‘serve as typical 
indicators of a particular structure or operation’. 
Beacons of a heterogeneous meta-program are meta-
parameters within meta-interface and meta-functions 
within meta-body. 

DEFINITION 3. Beacons of the multi-stage meta-
program are a meta-parameter within the multi-level 
interface, and a meta-function within the meta-body, 
and meta-function label (“\”) to deactivate its 
interpretation when it is executed. 

DEFINITION 4. Stage is a logically and 
semantically separable part of a meta-program or a 
processing phase during execution of the multi-stage 
meta-program. 

DEFINITION 5. One-stage meta-program is a 
software generator. Two-stage meta-program is a 
meta-meta-program (aka meta-generator). The k-stage 
meta-program is the k-meta-program (or k-meta-
generator).  

DEFINITION 6. A meta-function is active if it 
performs its pre-scribed action as a construct of a 
meta-language at the current stage of meta-program 
execution.  

DEFINITION 7. A meta-function is passive if it 
has been deactivated and is treated as a part of a target 
language text at the current stage of meta-program 
execution. For example, ‘@sub [..]’ is an active meta-
function, ‘\@sub[..]’ is a passive meta-function, and 
‘\’ is the de-activation label. 

DEFINITION 8. Multi-stage meta-program can be 
derived from the one-stage meta-program by 
transforming its meta-interface into a multi-level 
interface, where meta-parameters are distributed 



V. Štuikys, R. Damaševi�ius, G. Ziberkas, K. Valin�ius 

26 

among different levels (stages), and by reconstructing 
its meta-body using the meta-function deactivation 
mechanism (labels) so that the relationship among 
stages and meta-functions satisfies some semantic 
rules and requirements. 

DEFINITION 9. Cyclomatic complexity (CC) of a 
heterogeneous meta-program is the number of 
different program instances that can be generated from 
it [23]. 

DEFINITION 10. Cyclomatic complexity of the k-
th stage meta-program is the number of different (k-
1)-stage meta-programs that can be generated from the 
first. 

3.2. Understanding of one-stage meta-programs 

The understanding of a meta-program (see an 
example in Figure 1) is based on two higher-level 
models: the meta-parameter relationship model (see 
Figure 1, a) and the parameter>meta-function 
relationship model (see Figure 1, c). Both are 
extracted from the meta-specification by reverse 
engineering, and represented as bipartite (bi-
chromatic) weighted graphs [32]. 

Though the models describe key relationships 
among beacons and provide knowledge on the 
structure of a semantically and syntactically correct 
meta-program, they say little about the process. The 
deeper knowledge is gained through the domain 
program generation process, which is described by the 
algorithm (see Figure 2). 

3.3. Understanding of multi-stage meta-programs 

The understanding of the multi-stage meta-
program is based on previous models and processes. 
For this purpose, we present an example in Figure 3 
illustrating the two-stage meta-program of the same 
functionality as the one given in Figure 1. However, 
the models and the generation processes are different 
from the previous ones. 

 

 

1 NOT 

 

f1 
 
f2 
 

f3 
 

f4 
 

f5

{AND, OR} 
p1 

 
 

p2 
 

{2, 3, 4} 

2 AND 
3  
4 OR 

2 AND
3 
4 OR

a) b) c)

@��meta�interface�of�the�meta�program��
$�
"Select�a�function:"����������{AND,�OR}��p1:=AND;�
"Enter�the�number�of�inputs:"�{2..4}�����p2:=3;�
$�
@��meta�body�of�the�meta�program�
ENTITY�GATE_@sub[p1]�IS�
��PORT�(@gen[p2,�{,},�{X},�1]:�IN�BIT;��

����Y�:�OUT�BIT�);�
END�GATE_@sub[p1];�
ARCHITECTURE�BEH�OF�GATE_@sub[p1]�IS�
��BEGIN�
����Y�<=�@gen[p2,�{�@sub[p1]�},�{X},�1];�
END�BEH;�

 

Figure 1. Models obtained through reverse transformation 
of meta-program: (a) parameter-value dependency; (b) 

modified parameter relationship; (c) parameter-function 
relationship 

Algorithm of (k-1)-stage meta-program 
generation from k-stage meta-program.  

Let a semantically and syntactically correct k-stage 
meta-program be given. Then the generation process 
of the (k-1)-stage meta-program is described by the 
algorithm shown in Figure 4. Note that if we want to 
generate all possible (k-1)-stage meta-programs, we 
need to repeat actions of the algorithm (steps 3-19) for 
all possible meta-parameter values at stage k. 

 
 

Figure 2. Algorithm to produce a domain program instance from one-stage meta-program 

algorithm OneStageMetaprogramming 
1. Identify higher-level beacons (i.e., meta-parameters) within meta-specification; 
2. Specify one value for each meta-parameter; 
3. i:= 1;  /* i - the sequential number of a meta-function within the meta-body */ 
4. while i < =m do loop:  /* m - the total number of functions within the meta-body  */ 
5.         Omit target program fragments (if any) laying before fi within the meta-body; 
6.         Select function fi  that follows after the omitted fragment in step 5; 
7.         Identify parameter-function (fi) relationships among beacons;  
8.         Calculate the value of fi; 

        Substitute the notion of the function fi by its value within the meta-body; 
9. i := i +1; 
10. end loop; 
11. Omit the target program fragment (if any) following after fm; 
end algorithm. 



Understanding of Heterogeneous Multi-Stage Meta-Programs 

27 

 

 
f1 
 
f2 
 
f3 
 
f4 
 
f5[f6] 

 
 
 
p1 
 
 
 
p2 

State of the (meta-) 
parameters at: 

Stage 1 Stage 2 

 
 
 
 
 
 
 
p2 
 

State of the (meta-) 
functions at: 

 Stage 1  Stage 2 

Legend: ^ – passive state; _ – active state 
– indicates relationship for calculation 
– no relationship at a given stage 

 
 
f2 
 
 
 
 
 
f5 

�
@��first�stage�interface�
$�
"Select�a�function:"�{AND,�OR}���p1:=AND;�
$�
@��second�stage�interface�
$�
"Set�the�number�of�inputs:"�{2..4}�p2:=3;�
$�
��ENTITY�GATE_@sub[p1]�IS�

PORT�(\@gen[p2,�{,�},�{X},�1]:�IN�BIT;�
������Y�:�OUT�BIT�);�

��END�GATE_@sub[p1];�
��ARCHITECTURE�BEH�OF�GATE_@sub[p1]�IS�
��BEGIN�

�Y�<=�\@gen[p2,�{�@sub[p1]�},�{X},�1];�
��END�BEH; 

 
Figure 3. Meta-parameter – meta-function relationship model in two-stage generation process  

(fi, i- the short name and sequential number of a function within the text, respectively) 

 
Figure 4. Algorithm to generate a (k-1)-stage meta-program from k-stage meta-specification 

 
4. Static and dynamic analysis and properties 
of introduced models  

The reverse engineering process is performed as 
follows. First, we consider the reverse transformation 
of a one-staged meta-program. The process can be 
accomplished using static analysis based on the 
human-centred recognition of beacons within the 
meta-program, their hierarchy, perception of the 
relationships among beacons and overall 
representation. The aim of the analysis is the 
extraction of a higher-level model. As the graphical 
representation is the best model for understanding and 
feature diagrams are widely accepted now, we have 
selected this notation here. We assume that: 1) a meta-
program is well-documented, and 2) the analyst is 

familiar with the feature diagram notation (see Figure 
6). 

The result of static analysis might be as it is 
presented in Figure 5. This model gives the structural 
(hierarchical) relationship among beacons which are 
represented as feature hierarchies. Features, in terms 
of using the feature-based domain modelling 
approaches (e.g., FODA [33] and its extensions [34]), 
are externally visible characteristics of a domain. 
When features are implemented, they represent meta-
parameters within the meta-program. What knowledge 
can be extracted from the feature diagram? The 
essential knowledge within the diagram is the 
variability representation described in terms of variant 
points and variants (aka alternative features). The 
relationship models among variant points / variants 

algorithm MultiStageMetaprogramming 
1. while k >= 1 then /* k – number of stages */ 
2.     read k-stage meta-program; 
3.     Interpret the first stage within the k-stage interface by specifying meta-parameter values; 
4.     i:= 1; /* i - the sequential number of a meta-function within the meta-body */ 
5.     while i <= m do loop: 
6.         Omit target program fragments (if any) following after fi  within the meta-body; 
7.         Select function fi that follows after the omitted fragment in step 6. 
8.         if fi  is active then  
9.              Identify relationship among beacons of argument-function (fi); 
10.              Calculate the value of fi;  
11.              Substitute the notion of the function fi by its value within the meta-body; 
12.         else  
13.              Exclude interpretation/calculation of fi; 
14.              Remove label “\” standing before fi ;
15.         end if; 
16.         i := i+ 1; 
17.     end loop i;
18.     write (k-1)-stage meta-program; 
19. k := k – 1; 
20. end loop k;
end algorithm. 



V. Štuikys, R. Damaševi�ius, G. Ziberkas, K. Valin�ius 

28 

and among variants / meta-functions are presented in 
Figure 1, a and c, respectively.  

 

 
Figure 5. Example of VHDL program generated from meta-

specification through forward transformation (a)  
after stage 1, and after stage 2 (b) 

The static analysis has a serious restriction: not all 
types of relationships among features (beacons) can be 
easily detected and represented since knowledge is 
woven within meta-functions. Though, e.g., this model 
(Figure 5) clearly separates beacons of the meta-
language (ML) from beacons of the domain language 
(DL), the understanding of the relationships is difficult 
and we need to move either to analysis of the process 
algorithm (see Figure 2) and meta-functions semantics 
or to use dynamic analysis. 

The dynamic analysis is a kind of forward 
transformation to extract a lower-level model based on 
the specification execution and analysis of the result 
obtained. For example, the analysis of the 
specification (Figure 1) gives the result (Figure 6). 
Both kinds of transformations (reverse and forward) 
are valuable for understanding. 

Now we are able to consider the multi-stage 
program understanding. For that, we formulate some 
properties of the one-stage and multi-stage meta-
programs. Meta-function is said to be a simple 
function if it does not have other functions as 
argument; otherwise, the function is a compound 
meta-function (see function f5 in Figure 3). 

PROPERTY 1. All meta-functions within a one-
stage meta-program are active; when executed, they 
return the constructs of a domain language. 

PROPERTY 2. A meta-function within a multi-
stage meta-program can be either active or passive, as 
prescribed by the designer. 

PROPERTY 3. The passive meta-function may 
have one or more labels (‘\’) indicating the number of 
stages at which the function remains in the passive 
state. When interpreted, the function is not executed, 
but its label (one of labels) is removed. After 
removing the last label, the function becomes active in 
the next stage. 

PROPERTY 4. Relationship model among meta-
parameters and their values is the bipartite 
graph )),,(( URVG , where V is a set of meta-
parameters values, R is a set of their properties; a set 
of edges U is a parameter value and its property  
relationship ( UuRrVvrvu ijjijiij ���� ;,);,( ; 

Vi ..1� ; Rj ..1� ). If all parameter values are 
orthogonal, the bipartite graph )),,(( URVG is 
complete (see Figure 1, a); otherwise, it is a disjoint 
incomplete bipartite graph (see Figure 1, b).  

PROPERTY 5. Meta-parameter / meta-function 
relationship model of the one-stage meta-program is a 
directed bipartite weighted graph )),,((  UFPG w , 
where P is a set of meta-parameters, w is a vector of 
the meta-parameter values; F is a set of meta-
functions;  U is a set of directed arcs 

);(),( FfPpUfp jiji ���   (see Figure 1, c).  

PROPERTY 6. Meta-parameter / meta-function 
relationship model of the multi-stage meta-program is 
a decomposition of a directed bipartite weighted 
graph )),,(),,((  UFFPPG pa

w
p

w
a , where 

),( a
w

a FP and ),( p
w

p FP are active and passive 
parameters and meta-functions, respectively; and the 
following conditions are valid:  

a) ;; !�"#� papa PPPPP    

b) ;; !�"#� papa FFFFF  

c) PROPERTIES 2 and 3 are valid (see also Figure 
3). 

PROPERTY 7. If meta-parameters of a multi-stage 
meta-program within different stages are orthogonal 
(independent), then Cyclomatic complexity kCC of 
the k-stage meta-program ( 1$k ) is the product of 
Cyclomatic complexities of lower-stage meta-
programs: 

%
�

�
�

1

1

k

j
jk CCCC . 

The feature-based model extracted from Figure 1 
(see text) as a result of reverse transformation is given 
in Figure 5. The model describes variability-
commonality in terms of parent-child feature 
relationships and constraints. Though the model 
specifies higher-level features (beacons) well, the 
constraints (denoted as Ri) are presented vaguely. The 

(a)�@��second�stage�interface�
$�
"Set�the�number�of�inputs:"�{2..4}��p2:=3;�
$�
ENTITY�GATE_AND�IS�

����PORT�(@gen[p2,�{,�},�{X},�1]:�IN�BIT;��
��Y�:�OUT�BIT�);�

END�GATE_AND�
ARCHITECTURE�BEH�OF�GATE_AND��IS�

����BEGIN�
������Y�<=�@gen[p2,�{�AND�},�{X},�1];�
����END�BEH;�
�
(b)��ENTITY�GATE_AND�IS�
�����PORT�(X1,�X2,�X3:�IN�BIT;�Y:�OUT�BIT);�
�����END�GATE_AND;�
�����ARCHITECTURE�BEH�OF�GATE_AND�IS�
�����BEGIN�
�������Y<=�X1�AND�X2�AND�X3;�
�����END;�



Understanding of Heterogeneous Multi-Stage Meta-Programs 

29 

model in Figure 1, a and c is a more precise 
representation of this relationship type. It is also 
difficult to extract the DL and ML relationship using 
the feature model. Such a relationship can be seen 
after forward transformation, when DL constructs are 
fully separated from ML (see Figure 6). 
 

 
Figure 6. Feature model extracted through reverse 
transformation for an example given in Figure 1 

What is the advantage of using high-level models 
such as the one given in Figure 5? Its value is the 
explicit communality-variability modelling and 
intuitive understanding. 

5. Case study and experiments 

We analyze two real components of different 
complexity that were developed as two-stage meta-
programs: majority vote function and matrix 
multiplication. 

5.1. Majority vote function  

Majority voting is defined as follows. Given a set 
of values � 	nxxxX ,...,, 21�  and a counting operator 

. , the majority MVx  of X  is as follows: 

}...1{,
2

, ninxifxx ii
MV �$� , n – voting order. 

The majority vote function is used in different 
applications such as fault tolerant computing and 
machine learning. One-stage meta-program for 
implementing the majority vote function using Open 
PROMOL [35] as meta-language and VHDL as 
domain language has been presented in [36]. Here we 
present a multi-stage version of it (Figure 7), one of its 
meta-program instances (Figure 8) and a fragment of 
generated VHDL program instance (Figure 9). The 
first stage of a multi-stage meta-program has one 
meta-parameter: the order of voting, and the second 
stage has another – the width of the data vector.  

 $
"Enter�the�order�of�voting"��{3,5,7}�� order:=3;�
$�
$�
"Enter�data�width"����������{8,16,24,32}��� width:=8;�
$�
�
entity�MAJORITY�is�
��port(@gen[order,{,�},{X},0]:��
���������in�bit_vector(0�to�\@sub[width�1]);�
����MAJ_OUT:�out�bit_vector(0�to�\@sub[width�1]);�
����IS_MAJ:�out�bit);�
end�MAJORITY;�
�
architecture�BEH�of�MAJORITY�is�
��type�arrtype�is�array�(0�to�@sub[order/2])�of�integer;�
��begin�
��process�(@gen[order,{,�},{X},0])�
����variable�count:�arrtype;�
����begin�
@for[i,0,order/2,{�
������count(@sub[i])�:=�0;}]�
@for[i,0,order/2,{�
@for[j,i+1,order�1,{�
������if�(X@sub[i]=X@sub[j])�then��
��������count(@sub[i])�:=�count(@sub[i])+1;��
������end�if;}]}]�
@for[i,0,order/2,{�
������if�(count(@sub[i])>=@sub[order/2])�then�
��������MAJ_OUT�<=�X@sub[i];�
��������IS_MAJ�<=�'1';�
������else}]�
��������IS_MAJ�<=�'0';�
@for[i,0,order/2,{�
������end�if;}]�
��end�process;�
end�BEH;�

 

Figure 7. Two-stage meta-program of majority vote 
function 

Figure 8 presents one of meta-program instances 
generated after first stage of forward transformation. 
 $�
"Enter�data�width"�����{8,16,24,32}���width:=8;�
$�
�
entity�MAJORITY�is�
��port(X0,�X1,�X2:�in�bit_vector(0�to�@sub[width�1]);�
����MAJ_OUT:�out�bit_vector(0�to�@sub[width�1]);�
����IS_MAJ:�out�bit);�
end�MAJORITY;�
�
architecture�BEH�of�MAJORITY�is�
��type�arrtype�is�array�(0�to�1)�of�integer;�
��begin�
��process�(X0,�X1,�X2)�
����variable�count:�arrtype;�
����begin�
������count(0):=0;��count(1):=0;�
������if�(X0=X1)�then�count(0)�:=�count(0)+1;�end�if;�
������if�(X0=X2)�then�count(0)�:=�count(0)+1;�end�if;�
������if�(X1=X2)�then�count(1)�:=�count(1)+1;�end�if;�
������if�(count(0)>=1)�then�
��������MAJ_OUT�<=�X0;��IS_MAJ�<=�'1';�
������else�
������if�(count(1)>=1)�then�
��������MAJ_OUT�<=�X1;��IS_MAJ�<=�'1';�
������else�IS_MAJ�<=�'0';�
������end�if;�
������end�if;�
��end�process;�
end�BEH;�

 

Figure 8. Instance of 3rd order one-stage meta-program of 
majority vote function generated from two-stage meta-

program 



V. Štuikys, R. Damaševi�ius, G. Ziberkas, K. Valin�ius 

30 

Figure 9 presents one of VHDL programs 
generated at the final stage of processing (note that 
architecture of the VHLD component is the same as in 
Figure 8). 
 entity�MAJORITY�is�
��port(X0,�X1,�X2:�in�bit_vector(0�to�7);�
����MAJ_OUT:�out�bit_vector(0�to�7);�
����IS_MAJ:�out�bit);�
end�MAJORITY;�
�
architecture�BEH�of�MAJORITY�is�
...�
end�BEH;�

 
Figure 9. Instance of 3rd order 8-bit width majority vote 

function (a fragment) 

5.2. Matrix multiplication 

Matrix multiplication is a binary operation that 
takes a pair of matrices, and produces another matrix. 
Matrix multiplication is widely used in image 
processing and physical modelling applications. 

The product of an n×n matrix A with an n×n 
matrix B is an n×n matrix C: 

�
�

&�
n

k
jkkiji BAC

1
,,, , 

where 1 ` i ` n is the row index, and 1 ` j ` n is the 
column index. 

We can extend the matrix multiplication operation 
to m, 1$m , matrices assuming that all matrices are of 
equal size n×n using recursion: 

�
�

� &�
n

k

m
jk

m
ki

m
ji ACC

1
,

1
,, , 

where mC  is the product of matrices 1A , … , mA . 
The two-stage meta-program implementing matrix 

multiplication is presented in Figure 10 (meta-
language – Open PROMOL, domain language – C). 
The number of matrices is defined at the 1st stage of 
multi-stage interface, and the size of matrices is 
defined at the 2nd stage. 

 $�
"Enter�number�of�the�matrices:"� {2..5}� m:=3;�
$�
$�
"Enter�size�of�the�matrices:"�� {2..8}� n:=2;�
$�
\@for[i,1,n,{�
\@for[j,1,n,{�
����C[\@sub[i],\@sub[j]]=@for[z,m�1,1,{@if[z/=m�1,{(}]�
\@for[k@sub[z],1,n,{�}]�
@for[z,0,m�1,{\�
����@if[z>1,{\}])}]@if[z>0,{�*�}]\�
A@sub[z+1][\@sub[@if[z=0,{i},{k@sub[z]}]],\@sub[�
@if[z/=m�1,{k@sub[z+1]},{j}]]]\�
@if[z/=0,{\@if[k@sub[z]/=n,{�+�\}]}]�
}]}];}]}]�

 

Figure 10. Two-stage meta-program of matrix 
multiplication 

After the 1st processing stage, meta-language 
processor generates meta-programs for generating 
multiplication of m matrices (see an instance for 3 
matrices in Figure 11). Note that in this case, not only 
domain language code, bus also parts of meta-
language code are generated. 
 $�
"Enter�size�of�the�matrices:"�� {2..8}� n:=2;�
$�
@for[i,1,n,{�
@for[j,1,n,{�
����C[@sub[i],@sub[j]]=�
@for[k2,1,n,{�(�
@for[k1,1,n,{��
����A1[@sub[i],@sub[k1]]�
�����*�A2[@sub[k1],@sub[k2]]�@if[k1/=n,{�+�}]�
����}])�*�A3[@sub[k2],@sub[j]]�@if[k2/=n,{�+�}]�
}];}]}]�

 

Figure 11. Instance of one-stage meta-program for 
multiplication of 3 matrices generated from two-stage meta-

program 

Finally, Figure 12 presents an example of code in 
C generated for multiplication of 3 matrices of 2×2 
size. 
 �C[1,�1]=�(�A1[1,�1]�*�A2[1,�1]�+��
������������A1[1,�2]�*�A2[2,�1]�)�*�A3[1,�1]�+��
����������(�A1[1,�1]�*�A2[1,�2]�+��
������������A1[1,�2]�*�A2[2,�2]�)�*�A3[2,�1];�
�C[1,�2]=�(�A1[1,�1]�*�A2[1,�1]�+��
������������A1[1,�2]�*�A2[2,�1]�)�*�A3[1,�2]�+��
����������(�A1[1,�1]�*�A2[1,�2]�+��
������������A1[1,�2]�*�A2[2,�2]�)�*�A3[2,�2];�
�C[2,�1]=�(�A1[2,�1]�*�A2[1,�1]�+��
������������A1[2,�2]�*�A2[2,�1]�)�*�A3[1,�1]�+��
����������(�A1[2,�1]�*�A2[1,�2]�+���
������������A1[2,�2]�*�A2[2,�2]�)�*�A3[2,�1];�
�C[2,�2]=�(�A1[2,�1]�*�A2[1,�1]�+��
������������A1[2,�2]�*�A2[2,�1]�)�*�A3[1,�2]�+��
����������(�A1[2,�1]�*�A2[1,�2]�+��
������������A1[2,�2]�*�A2[2,�2]�)�*�A3[2,�2];�

 
Figure 12. Instance of matrix multiplication code 

The meta-meta-component, in comparison to its 
counterpart meta-component, is a more flexible 
specification (in terms of the capability to manage 
complexity) with distributed functionality that is 
generated on demand dependent upon the context of 
use.  

Complexity of the meta-program is distributed 
within stages when the multi-stage approach is 
applied. We have applied the number of meta-
functions and Cyclomatic complexity as a metric of 
meta-program complexity [23]. The results are 
presented in Table 2.  

Table 1. Complexity of developed multi-stage meta-
programs 

Case study No. of 
meta-

functions 
at 1st stage

CC of 
1st 

stage 

No. of meta-
functions  

at 2nd stage 

CC of 
2nd 

stage 

Total 
CC 

Section 5.1 16 3 2 4 12 
Section 5.2 13 4 14 7 28 



Understanding of Heterogeneous Multi-Stage Meta-Programs 

31 

6. Discussion and evaluation of the approach 

We have analyzed the understandability of 
heterogeneous meta-programs. To deal with the 
problem, we have applied the reverse engineering 
approach combined with ideas of the Brook’s program 
cognition theory resulting in the extraction of higher-
level models from the correct executable meta-
specification (i.e., meta-program). The understanding 
of these models has enabled us to suggest the concept 
of multi-stage meta-programs and to analyze them 
using the same approach.  

Structurally, multi-stage meta-programs are 
derived from one-stage meta-programs. Conceptually, 
multi-stage meta-programs are constructed through 
the decomposition of the meta-level into separate sub-
levels of abstraction, called stages. To preserve 
semantic constraints, the decomposition has to be 
supported by a meta-function de-activation 
mechanism that changes the role of the meta-function 
from active to passive and vice versa at a particular 
meta-program execution stage.   

Multi-stage programs are applicable in the 
following cases: 1) when the variation of domain 
features is large enough and we need to manage 
complexity issues (in order to avoid the component 
over-generalization problem [37] when using meta-
programming); 2) when we need to achieve a higher 
degree of flexibility in managing groups of 
components that contain derivative features, e.g., in 
Product Line Engineering; 3) when we need to 
manage the library scaling problem [38].  

From the pure methodological viewpoint, all these 
cases can be seen as a contribution to the design of 
meta-generators (i.e., generator generators).  

The disadvantages of the proposed approach: 
maturity is not enough; reverse engineering is 
subjective: tools are needed, but it is little known 
about the use of the tools. It is not clear at what extent 
other meta-languages can support the concept of 
multi-stage meta-programming. The approach 
specifies well the only one side of the problem – the 
extraction of higher-level models from the correct 
specification thus contributing to its understandability. 
However, meta-program understanding is also related 
with program changeability and evolution. In this 
case, a synergetic approach should be applied, in 
which the reverse and forward transformation 
approaches are to be combined together in order to be 
able not only to understand the meta-program itself 
and required changes, but also to implement changes 
and approve their correctness. 

7. Conclusions and further work 

Though there is a wide front of research in the 
field of program comprehension, it is still little known 
about the understandability and complexity issues of 
meta-programs. We have shown that the models 
constructed to better understanding of heterogeneous 

meta-programs per se can disclose new useful features 
such as a multi-stage structure within the given meta-
program and its multi-stage processing.  

In general, the value of multi-stage meta-
programming is seen as a contribution to the 
theoretical background of meta-program 
transformations to develop meta-generators using 
meta-programming. Another value of the proposed 
approach is the opportunity to manage complexity 
issues easily (i.e., through the distribution of meta-
parameters among stages) in developing and using 
heterogeneous meta-programs.  

As the maturity level of meta-program 
comprehension is still low, further work on the 
equivalent transformations of multi-stage and multi-
linguistic meta-programs as well as their applications 
is needed. We intend to use the approach for the 
development of the platform to design collective e-
commerce systems (web application domain) and 
generative learning object (GLO) design (e-learning 
domain). 

Acknowledgements 

This research has been partially supported by the 
Lithuanian Agency of Science, Innovations and 
Technology via the e-CROWD project.  

References 
[1] S. L. Peeger. Software Engineering: Theory and 

Practice. Prentice Hall PTR, Upper Saddle River, NJ, 
USA, 2001.  

[2] P. Hallam. What Do Programmers Really Do anyway? 
Microsoft Developer Network (MSDN) C# Compiler, 
Jan 2006. 

[3] K. Kang, J. Lee, P. Donohoe. Feature-oriented 
Product Line Engineering. IEEE Software, 19 (4), 
2002, 58–65. 

[4] W. B. Frakes, K. Kang. Software Reuse Research: 
Status and Future. IEEE Transactions on Software 
Eng., 31(7), 2005, 529–536. 

[5] M. Garg, M. K. Jindal. Reverse Engineering – 
Roadmap to Effective Software Design. Int. Journal of 
Recent Trends in Engineering, 1(2), 2009. 

[6] M. Petrenko, V. Rajlich, R. Vanciu. Partial Domain 
Comprehension in Software Evolution and 
Maintenance. In R.L. Krikhaar, R. Lämmel, C. 
Verhoef (Eds.), 16th IEEE Int. Conf. on Program 
Comprehension, ICPC 2008, Amsterdam, The 
Netherlands, June 10-13, 2008, 13–22. 

[7] J. P. Gibson, J. O’Kelly. Software Engineering as a 
Model of Understanding for Learning and Problem 
Solving. Int. Computing Education Research 
Workshop (ICER’05), October 1–2, Seattle, 
Washington, USA, 2005, 87–97. 

[8] T.L. Veldhuizen. Tradeoffs in Metaprogramming. 
Proc. of ACM SIGPLAN Workshop on Partial 
Evaluation and Semantics-Based Program 
Manipulation. Charleston, SC, USA, 2006, 150–159.  

[9] R. Damaševi�ius, V. Štuikys. Taxonomy of the 
Fundamental Concepts of Metaprogramming. 



V. Štuikys, R. Damaševi�ius, G. Ziberkas, K. Valin�ius 

32 

Information Technology and Control, 37(2), 2008, 
124–132. 

[10] S. Trujillo, M. Azanza, O. Díaz. Generative 
Metaprogramming. Proc. of 6th Int. Conf. on 
Generative Programming and Component Eng. 
(GPCE 2007), Salzburg, Austria, October 1-3, 2007, 
105–114. 

[11] H. Hartmann, T. Trew. Using Feature Diagrams with 
Context Variability to Model Multiple Product Lines 
for Software Supply Chains. Proc. of 12th Int. 
Software Product Line Conf., SPLC '08, 8-12 Sept. 
2008, 12–21. 

[12] R. Brooks. Towards a Theory of Computer Program 
Comprehension. Int. Journal of Man-Machine Studies, 
Vol. 18, 1983, 543–554. 

[13] M.A. Storey. Theories, Methods and Tools in Program 
Comprehension: Past, Present and Future. In Proc. of 
the 13th Int. Workshop on Program Comprehension 
(IWPC’05), IEEE, 2005, 181–191. 

[14] S. Wiedenbeck. Beacons in Computer Program 
Comprehension. Int. Journal of Man-Machine Studies, 
25, 1986, 697–709. 

[15] T. D. LaToza, D. Garlan, J. D. Herbsleb, B .A. 
Myers. Program Comprehension as Fact Finding. 
Proc. of the 6th joint meeting of the European software 
engineering conference and the ACM SIGSOFT 
symposium on the foundations of software 
engineering, ESEC-FSE’07, September 3–7, Croatia, 
ACM, 2007, 361–370.  

[16] T. J. Biggerstaff, B. W. Mitbander, D. Webster. The 
concept assignment problem in program 
understanding. Proc. of the 15th International 
Conference on Software Engineering, 1993, 482–498. 

[17] S. Rugaber. Program Comprehension. Encyclopedia 
of Computer Science and Technology, 1995. 

[18] B. Shneiderman. Software Psychology: Human 
Factors in Computer and Information Systems. Little 
Brown, 1980. 

[19] R. Damaševi�ius. On The Human, Organizational and 
Technical Aspects of Software Development and 
Analysis. In Papadopoulos, G.A., Wojtkowski, W., 
Wojtkowski, G., Wrycza, S., Zupancic, J. (Eds.), 
Information System Development: Towards a Service 
Provision Society. Springer, 2009, 11–19. 

[20] S. R. Tilley, D. B. Smith. Coming Attractions in 
Program Understanding. Technical Report CMU/SEI-
96-TR-019, 1996. 

[21] F. Détienne. What Model(s) for Program 
Understanding? UCIS'96, Colloque Using Complex 
Information, Poitiers, France, September 4-6, 1996. 

[22] M. J. V. Pereira, M. Mernik, D. da Cruz, P. R. 
Henriques. Program Comprehension for Domain-
Specific Languages. Journal on Computer Science and 
Information Systems, 5(2), 2008, 1–17. 

[23] R. Damaševi�ius, V. Štuikys. Metrics for Evaluation 
of Metaprogram Complexity. Computer Science and 
Information Systems (ComSIS), 7(4), 2010, 769–787. 

[24] W. Taha. Multi-Stage Programming: Its Theory and 
Applications. PhD thesis, Oregon Graduate Institute of 
Science and Technology, 1999. 

[25] J. Carette, O. Kiselyov. Multi-stage Programming 
with Functors and Monads: Eliminating Abstraction 
Overhead from Generic Code. In R. Glück, M.R. 
Lowry (Eds.): Generative Programming and 

Component Engineering, 4th Int. Conf., GPCE 2005, 
Tallinn, Estonia, Springer 2005, 256–274. 

[26] E. Westbrook, M. Ricken, J. Inoue, Y. Yao, T. 
Abdelatif, W. Taha. Mint: Java multi-stage 
programming using weak separability. Proc. of ACM 
SIGPLAN Conf. on Programming language design and 
implementation (PLDI '10). ACM, NY, USA, 2010, 
400–411. 

[27] A. Megacz. Multi-Stage Programs Are Generalized 
Arrows. The Computing Research Repository (CoRR) 
abs/1003.5954, 2010. 

[28] K. Czarnecki, S. Helsen, U. Eisenecker. Staged 
Configuration through Specialization and Multi-Level 
Configuration of Feature Models. Software Process 
Improvement and Practice, 10, 2005, 143–169. 

[29] V. T. Rajlich, K. H. Bennett. The Staged Model of 
the Software Lifecycle. IEEE Computer, July 2000, 
66–71. 

[30] V. Štuikys, R. Damaševi�ius. Metaprogramming 
Techniques for Designing Embedded Components for 
Ambient Intelligence. In T. Basten, M. Geilen, H. de 
Groot (eds.), Ambient Intelligence: Impact on 
Embedded System Design. Kluwer Academic 
Publishers, 2003, 229–250. 

[31] R. Damaševi�ius, V. Štuikys. High Level Design of 
Soft IPs using C++ and SystemC. Information 
Technology and Control, 4(25), 2002, 54–64. 

[32] R. Diestel. Graph Theory (3rd ed.), Springer, 2005. 
[33] K. Kang, S. Cohen, J. Hess, W. Novak, S. Peterson. 

Feature-Oriented Domain Analysis (FODA) Feasibility 
Study. TR CMU/SEI-90-TR-21, Software Engineering 
Institute, Carnegie Mellon University, November 
1990. 

[34] P.-Y. Schobbens, P. Heymans, J.-Ch. Trigaux. 
Feature Diagrams: A Survey and a Formal Semantics. 
Proc. of the 14th IEEE Int. Requirements Engineering 
Conf., September 11 - 15, Washington, DC, 2006, 
136–145. 

[35] V. Štuikys, R. Damaševi�ius, G. Ziberkas. Open 
PROMOL: An Experimental Language for Target 
Program Modification. In A. Mignotte, E. Villar, L. 
Horobin (eds.), System on Chip Design Languages. 
Kluwer Academic Publishers, Boston, April 2002, 
235–246.  

[36] V. Štuikys, R. Damaševi�ius, G. Ziberkas, G. 
Majauskas. Soft IP Design Framework Using 
Metaprogramming Techniques. In B. Kleinjohann, K. 
H. (Kane) Kim, L. Kleinjohann, A. Rettberg (eds.). 
Design and Analysis of Distributed Embedded Systems. 
Kluwer Academic Publishers, Boston, 2002, 257–266. 

[37] J. Sametinger. Software Engineering with Reusable 
Components. Berlin: Springer, 1997. 

[38] T. Biggerstaff.  The Library Scaling Problem and the 
Limits of Concrete Component Reuse. Proc. of the 
Third Int. Conf. on Software Reuse: Advances in 
Software Reusability, Rio de Janeiro, Brazil, 1994, 
102–109. 

Received April 2011. 
 
 




