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Abstract. Reinforcement-based agents have difficulties in transferring their acquired knowledge into new different 
environments due to the common identities-based percept representation and the lack of appropriate generalization 
capabilities. In this paper, the problem of knowledge transferability is addressed by proposing an agent dotted with 
decision tree induction and constructive induction capabilities and relying on decomposable properties-based percept 
representation. The agent starts without any prior knowledge of its environment and of the effects of its actions. It 
learns a world model (the set of decision trees) that corresponds to the set of explicit action definitions predicting 
action effects in terms of agent’s percepts. Agent’s planning component uses predictions of the world model to chain 
actions via a breadth-first search. The proposed agent was compared to the Q-learning and Adaptive Dynamic 
Programming based agents and demonstrated better ability to achieve goals in static observable deterministic grid-
world environments different from those in which it has learnt its world model. 

Keywords: Adaptive agent; reinforcement learning; percept generalization; world model. 

1. Introduction 
Imagine a rat running in search for a food in lots of 

different mazes. An experimenter in animal cognition 
would be surprised to observe the rat perfectly 
navigating in one of the mazes but hitting walls and 
obstacles in the others. Otherwise stated, it seems that 
rats like other animals learn the effects of their basic 
actions in a way that is independent of their environ-
ment.  

Imagine a comparable situation of an adaptive 
agent placed in an artificial grid-world environment. 
Every cell of a grid is labeled with some symbol. The 
agent can perform a few basic actions. If it goes left, 
the contents of all cells shift right (imitating the 
movement of its “view of sight”). If it goes up, cell 
contents shift down and so on 1 . The agent starts 
without any knowledge of its environment and of the 
effects of its own actions. Having operated in one 
environment for some time the agent is transferred to 
some another. This new environment has a completely 
different rearrangement of cell labels (assuming that 
labels retain their meanings). Do the regularities 
learned by the agent in the first environment have any 
                                                           
1 This environment is not subject to the perceptual reference frame 
assumption which requires that agent actions change only a small 
part of the agent’s perceptual input, the remaining steady input 
providing a background or frame. 

sense in this second one? Should the agent continue 
learning or should it “reboot” and start learning from 
zero again? 

Though adaptive agents are often thought as 
computational models of biological intelligence, these 
questions would be hard to many of them. In many 
agent designs, the knowledge learnt by an adaptive 
agent must be invalidated when the agent is 
confronted to a different environment (or even a 
different goal in the same environment) than that in 
which it has been learning. The transferability of 
learned knowledge to different environments is an 
important aspect of adaptive behavior. This aspect 
seemed to be underemphasized in the reinforcement 
learning research until very recently.  

To address this challenge we have developed an 
adaptive agent called LEAD12 that is able to operate in 
a static observable deterministic grid-world 
environment roughly described above. The agent 
learns explicit action definitions in terms of its 
percepts and can predict the effects of its actions. This 
type of knowledge can be transferred and augmented 
in new environments that are different from those in 
which it has learnt its first experience. 

                                                           
2 Acronym for Learning Explicit Action Definitions.
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2. Related work 
An adaptive agent is the system that perceives and 

acts upon its environment and improves its 
performance by adjusting its internal configurations 
and actions in response to feedback from its 
environment. Figure 1 illustrates the agent-
environment interaction. The agent starts without any 
knowledge of its environment and of the effects of its 
own actions. At every discrete time step t it receives 
percept information ot through its sensors, processes 
this information, e. g. updates its internal world 
model, and selects some action at to be performed 
through its effectors. The action typically alters the 
state of the environment st+1 resulting in new percepts 
ot+1 and a new percept-action cycle begins (Figure 1). 

 
Figure 1. Illustration of an agent embedded into its 

environment

If agent’s percepts are representing the complete 
environment state (e. g. ot � st), the environment is 
called observable. If the environment state is changed 
solely by the agent’s actions, the environment is called 
static. If the same action performed in the same 
environment state but at two distinct time instants 
always results in the identical successor states, the 
environment is called deterministic. Otherwise the 
environment is called partially observable, dynamic 
and stochastic, respectively. 

There are different agent architectures capable of 
associating agent’s percepts to its actions. Detailed 
descriptions of many complete agent architectures can 
be found in A Survey of Cognitive and Agent 
Architectures [1]. We are mostly interested by the 
agents that learn some knowledge body from their 
experience and by the aspect of transferability of that 
knowledge.  

First, agents are provided their goals in different 
ways. The most widespread approach is that of 
reinforcement [11] [12] [14]. It assumes that there 
exists a dedicated reinforcement channel into an agent 
(Figure 1). Reinforcement values coming through this 
channel tell the agent which environmental states are 
preferred to the others, thus indirectly describing its 
goal. Another approach is to assume the existence of a 
dedicated “goal channel” through which agent’s goals 
are directly “injected”3 into the system [10]. There are 
other more biologically inspired approaches where an 
agent is supposed to have motivations, innate 
behaviors or to be able to extract reinforcement values 
from the ordinary sensory input [3] [16]. 

                                                           
3 In humans, this would correspond to having mystical experiences 
such as unexplained visions and desires. 

Second, agents make different architectural 
assumptions about their percepts. The most common 
assumption is to take percepts ot as an atomic state 
identity label [15]. An alternative approach is to 
assume that perceptual information is decomposable 
and/or structured. In this latter case, percepts may be 
represented by a set of properties [5] [13] [16], 
described in propositional or the first-order logic [10]. 
The generalization capabilities of an agent have sense 
only if decomposable percept representation is used. 

One of the most important dividing lines among 
agent architectures is the presence or absence of a 
world model. A world model is defined as a body of 
knowledge that tells the agent what are the expected 
outcomes of its actions in terms of its future percepts. 
The presence of a world model has clear architectural 
implications as only the world model makes an agent 
capable of planning, i. e. chaining sequences of its 
actions. We would distinguish three types of agent 
architectures: agents that learn utility values associa-
ted to percepts or the percept-action pairs (model-free 
agents), agents that learn both utility values and a 
world model (model-based agents) and agents that 
learn only a world model (model-rich agents). 

An example of a model-free method is Q-learning 
[15]. The Q-learning based agent selects its actions on 
the basis of the percept-action utility values (Q-
values). It improves its performance in terms of 
cumulative positive reinforcement. However the table 
of Q-values is a type of knowledge that bounds the 
agent to pursue a single goal in the same environment. 
Some extensions to Q-learning such as function 
approximation [2] and relational reinforcement 
learning [6] [7] aim to abstract from specific goals 
pursued and to exploit the results of previous learning 
phases in new situations. Function approximation 
approach uses properties-based percept represen-
tation [2] [7]. It generalizes over properties in order to 
approximate the Q-function. Relational reinforcement 
represents percepts as a set of ground facts stated in 
the first order logics [6]. It combines Q-learning and 
supervised learning by learning Q-function with 
relational regression tree algorithm [4]. These 
extensions to Q-learning make computationally intrac-
table learning problems tractable, and increase the 
transferability of learned knowledge. However they do 
not compensate for the fact that an agent still lacks a 
world model and explicit definitions of its actions. 

Examples of model-based architectures are Dyna 
[11], TD(	) [12], and ADP [9]. Model-based agents 
also rely on the identity-based percept representation. 
Besides percept utility values they learn a world 
model consisting of a set of conditional transition 
probabilities of percept identities p(ot+1 | ot, at). Model-
based agents, like model-free agents, select their 
actions on the basis of percept utility values. Thus, the 
probabilistic world model is seen not as a means for 
constructing explicit action plans but as a body of 
knowledge useful to the convergence of percept utility 
values to the optimal policy. Though model-based 
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agents would be able to adapt to changing goals in the 
same environment, they would not be capable to 
predict the effects of their actions in new environ-
ments. 

Among examples of model-rich agents are LIVE 
[10], the architecture proposed by Drescher [5], 
SRS/E [16], and CALM [13]. Model-rich agents learn 
their world model for the purpose of planning action 
sequences. Except for LIVE, model-rich agents rarely 
learn explicit action definitions. The world model of a 
model-rich agent often consists of the set of 
accumulated elementary experiences of the type <ot,
at, ot+1>. Model-rich agents use properties-based 
percept representation. Thus, part of the world-model 
experiences can be generalized by omitting (e. g. 
replacing by a wildcard) some properties within ot, at,
or ot+1 components. This capability of generalization is 
enough for pursuing different goals in the same 
environment, but not enough to solve the grid-world 
task outlined in the introductory section. On the other 
hand, SRS/E and CALM are advanced agent 
architectures in other respects. SRS/E can operate in 
stochastic environments, while CALM is designed to 
operate in deterministic but partially observable 
environments.  

LIVE is model-rich agent that learns explicit 
action descriptions. It represents its percepts as a set of 
ground facts stated in the language of the first order 
logics4. States are generalized into a set of the action-
defining STRIPS-like first-order logic rules. However, 
the LIVE approach relies on the perceptual frame 
hypothesis, which is not satisfied in the grid-world 
challenge outlined in the introductory section.  

3. LEAD1 architecture 
The underlying hypothesis of our approach is that 

the transferability of knowledge is intrinsically related 
to the generalization capabilities of an agent. An agent 
must learn to predict outcomes of its actions (a world 
model) on the basis of its percepts in such a way that 
regularities/laws establishing prediction hold for 
different unseen environments. This can be achieved 
only if decomposable percept representation is used 
and the agent is capable of extracting relevant 
properties and abstracting from irrelevant properties at 
the same time. 

This kind of reasoning has driven us to design the 
LEAD1 agent. The life of the agent is organized in 
epochs each epoch consisting of a number of discrete 
time steps until it reaches the goal state. Agent 
recognizes that a goal state is reached at time t if it 
receives positive reinforcement rt = 1. Otherwise it 
receives the reinforcement rt = 0. The LEAD1 agent 
operates in a grid-world environment. Agent’s

                                                           
4  This means that LIVE, if making part of a real-world robotic 
application, would delegate a significant processing burden to its 
sensors. LIVE is not a reinforcement-based agent as it expects goals 
to be directly injected into the system. 

percepts ot = {ot
i} correspond to the vector 5  of the 

grid-world cell labels called observations, where ot
i

denotes the observation of the ith cell at time t.
LEAD1 architecture is outlined in Figure 2. Though 

the idea of integrating learning and planning in this 
way is not original but it is quite novel in the context 
of reinforcement learning (see subsection 3.2.). Each 
component of this architecture is explained in more 
detail in the following subsections. 

 
Figure 2. The architecture of the LEAD1 agent 

 

3.1. Learning world model 

LEAD1 is based on Markov assumption. It assumes 
that any observation ot+1

i is a function of the previous 
vector of observations ot and of the action at. This 
functional relationship is expected to exist for every 
cell i and to hold for every time instant t.


i � fi  such that 
t ot+1
i = fi(ot, at) (1) 

If discovered, the functions {fi,} would predict 
future observations on the basis of past observations 
and agents actions. The entire set of functions {fi,} 
would make up the world model (one function per 
observation cell). The learner’s task is to discover 
these functions through supervised learning. A 
supervised training set is continuously extended at 
every discrete time step t out of the triplets of agent’s 
elementary experience <ot, at, ot+1>. Parts ot, at of this 
experience are taken as attribute values and ot+1

i
(individual components of ot+1) are taken as class-
values (Figure 3). 

                                                           
5  Though grid-world cells are organized in a two-dimensional 
matrix the observation vector ot obfuscates spatial relationships 
among individual observations during the supervised learning of the 
world model. 
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Figure 3. The transformation of the agent’s experience in a 3�3 grid world (top) into the set of training instances for supervised 

learning of a world model (bottom). Symbols {a, b, c, -} denote grid-world cell labels. The bottom training set is used for 
learning predictive functions f1, …, f9 (9 learning tasks in total). The area in gray shows one particular training set used to learn 

the function f3, such that ot+1
3 = f3(ot, at)

Many supervised learning techniques can be used 
to learn the set of functions {fi} satisfying (1). LEAD1
assumes it is operating in a deterministic and 
observable environment. This means that data 
noisiness problem can be neglected and suggests 
decision tree learner as a good candidate for solving 

this learning task. Pruning will not be required and 
decision trees built by the learner will always be 
consistent with all training instances stored in LEAD1’s 
memory. The outline of LEAD1’s decision tree learner 
algorithm is presented below: 

BuildTree (Node, Inst, Depth)
   // Node  – DT Node being processed; 
   // Inst  – set of training instances, associated to Node;
   // Depth – depth of Node.

   IF all members of Inst belong to the same Class THEN
      Label Node with Class
      return(success) 

   FOR EACH attribute Attrm
      IF Attrm values match class values for every member of Inst THEN
         Label Node with Attrm
         return(success) 

   IF CurrentDepth = MaxDepth6 THEN return(failure) 

   FOR EACH attribute Attrm
      Group the most scattered values of Attrm, into the “other” value 
      Estimate the utility of splitting Inst by Attrm

   Sort attributes in the order of decreasing utility 
   FOR EACH attribute Attrm
      FOR EACH Attrm value vmi (including the value “other”)
         Select instances Inst’�Inst for which Attrm = vmi
         result = BuildTree(Successor(Node), Inst’, Depth+1) 
         IF result = failure THEN break
      IF result = success return(success) 
END

                                                           
6 MaxDepth was set to 3 in our experiments.

The procedure outlined above and resulting 
decision trees have some differences with respect to 

decision trees built by other decision tree builders 
(e. g. C4.5). 

     ot                o0       a0   o1      a1         o2    a2           o3              time
ot

1 ot
2 ot

3  - a -  a - -  b - c  b - c 
ot

4 ot
5 ot

6  a - - right - - a up a - - up a - - 
ot

7 ot
8 ot

9  c b -  b - c  - - a  - - a 

Attribute values  
(time = t)

Class values  
(time = t+1)

ot
1 ot

2 ot
3 ot

4 ot
5 ot

6 ot
7 ot

8 ot
9 at ot+1

1 ot+1
2 ot+1

3 ot+1
4 ot+1

5 ot+1
6 ot+1

7 ot+1
8 ot+1

9

t=0 - a - a - - c b - right a - - - - a b - c 
t=1 a - - - - a b - c up b - c a - - - - a 
t=2 b - c a - - - - a up b - c a - - - - a 

 … … … … … … … … … … …  … … … … … … … 
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1. Terminal nodes. Besides terminal nodes 
associated to the pure (in the sense of class labels) 
subsets of training instances, terminal nodes are 
created for mixed subsets of training instances if 
there is an attribute called predictive attribute such 
that its values match class values of every training 
instance in the mixed subset. In this case a terminal 
node is labeled with an attribute name. Labeling 
nodes with predictive attributes can be thought of 
as generalizing the structure of a decision tree at the 
terminal level (Figure 4). 

 
Figure 4. Decision tree predicting ot+1

6 = f6(ot, at) (see 
Figure 3) by (a) the conventional decision tree builder and 

(b) by LEAD1. The second tree contains a single node that is 
labeled with the name of predictive attribute ot

2

2. Aggregating attribute values. Sometimes the split 
over different values of an attribute results in a few 
identically labeled terminal nodes. In this case, the 
attribute values leading to the identically labeled 
terminal nodes are aggregated together under the 
“other” branch. If more than one group is present, 
the larger one is selected for aggregating. This 
procedure helps to deal with unseen attribute values 
during percept prediction step (Figure 5). 

 
Figure 5. Decision tree predicting ot+1

1 = f1(ot, at)
(see Figure 3) by (a) the decision tree builder and (b) by 

LEAD1

3. Search space and search strategy. Decision tree 
builders usually follow a “divide and conquer” 
approach thus performing a hill-climbing, non-
backtracking search in the space of possible 
decision trees. The learner component of LEAD1 
performs a depth-first exhaustive search in the 
space of possible decision trees. The space of 
decision trees is constrained by the limit that is 
imposed on the depth of a tree. Failure to create a 
terminal node within a given depth limit under 
some branch of a tree causes backtracking. Then a 
different attribute is selected and sub-trees tied to 
neighboring branches are invalidated. This search 
strategy is more costly in computation time but 
helps in finding more compact decision trees. 

4. Node splitting criterion. Node splitting criterion is 
used to measure the utility of an attribute for 

splitting a particular node. Decreasing order of 
utility is the order in which attributes are tested 
during the search. The utility U(A) of the attribute A
for splitting a particular node is given by (Figure 
6):  

�
� 





�

Classesk kkk

kk

NPK
PKAU )( , where (2) 

Kk, Pk, and Nk are the quantities of nodes resulting 
from the node split over A values such that: 

Kk is the number of terminal nodes that would be 
labeled by the class k.

Pk is the number of terminal nodes that would be 
labeled with a predictive attribute and would cover at 
least one instance of class k.

Nk is the number of non-terminal nodes that would 
cover at least one instance of class k.

The node splitting criterion given by (2) avoids 
counting training instances in the  sub-nodes of the 
node under investigation. The criterion is in favor of 
attributes that obtain as many “purely” separated 
and/or predicted classes as possible (Figure 6). 

3.2. Learning goal test 

 LEAD1 can be provided with the goal either 
directly or indirectly. In the first case, the percepts 
corresponding to the goal state are directly “injected” 
into the agent. In the second case, the goal is specified 
indirectly by the signal coming through the reinforce-
ment channel. The indirect case is more complicated 
as the planner requires goal percepts or the goal test to 
be known prior to planning. To address this problem 
LEAD1 is dotted with the capability of constructive 
induction7  [8]. Having acted in its environment for 
some time, the agent accumulates a set of percept-
reinforcement associations {<ot, rt>}.Then it learns to 
discriminate positively and negatively reinforced 
percept subsets thus inducing a goal test. This goal test 
is not discarded but kept and refined across different 
environments thus implicitly assuming that there are 
universal laws explaining agent’s reinforcement as a 
function of agent observations. Goal test induction 
may result in false generalizations especially if there 
are too few positive training instances. As a result, 
LEAD1 may pursue wrong goals during the initial 
epochs of its life. 

3.3. Planning 

 Planning component of the LEAD1 agent is 
responsible for finding the shortest action sequence 
that is expected to achieve agent’s goal. It is based on 
the breadth-first depth-limited8 search in the space of 
agent’s percepts. The initial state is assumed to 

                                                           
7 This capability is embedded into LEAD1’s learner component but 
its details are not covered by this paper. Spatial relationships among 
individual observations of ot are exploited in this type of learning. 
8 The depth limit was set to 15 in our experiments. 
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Figure 6. Illustration of the node splitting utility function U(A). a) Sample training set b) Four candidate splits based on attributes 
{o1, o2, o3, o4}. The best split is based on the attribute o1 as it has the maximum estimated utility U(o1) = 3. 

correspond to the current percepts. Successor-states 
are generated on the basis of the world model to date.  

3.4. Behavior control module 

 Behavior control module is responsible for 
organizing LEAD1’s behavior at the highest level, i. e. 

it is responsible for the interaction of the learner and 
planner components, action selection, and exploitation 
vs. exploration trade-off. The outline of LEAD1’s 
behavior control module for one time step is presented 
below: 

Behavior control module (current percepts, reinforcement)
   static world model 
   static InstWM       // training instances for learning world model 
   static InstGT       // training instances for learning goal test 
   static action queue // action set expected to achieve the goal 
   static action       // last action taken 
   static anticipated percepts 

   action � None 
   InstWM � Update(<previous percepts, action, current percepts>) 
   InstGT � Update(<current percepts, reinforcement>) 
   IF anticipated percepts � current percepts THEN  

world model � Learner(world model, InstWM) 
action queue � {} 

   IF Satisfy(current percepts, goal test) THEN
      IF reinforcement = off THEN 
         goal test � Learner(InstGT) 
         action queue � {} 
      ELSE return(action) 
   IF action queue = {} THEN
      action queue � Planner(world model, current percepts, goal test) 
   IF action queue = {} THEN
      action � random action 
   ELSE // exploitation vs. exploration 
      p � random number, p�[0,1]
      If p < prnd THEN 
         action � random action 
         action queue � {}
      ELSE 
         action � RemoveTopAction(action queue) 
   anticipated percepts � Predict(world model, current percepts, action) 
   return(action) 
END

b) Candidate splits a) Sample training set

class= class=
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Table 1. Experiment summary  

Task
No. 

Environment
type 

Initial 
state 

Goal
state 

Goal provision13

1, 2, 3 fixed fixed fixed direct injection 
4 fixed random fixed direct injection 
5 fixed random random direct injection 

6, 7 fixed random fixed reinforcing “agent 
is next to the tree”

8 variable random random direct injection 
9, 10 variable random random reinforcing “agent 

is next to the tree”

The environment type was denoted as fixed if 
contents of its cells were initialized in the same way at 
the beginning of every epoch. The environment was 
denoted as variable if its cells were initialized 
randomly using the same six possible cell content 
labels. The tasks 6-7 and 9-10 were characterized by 
the environments with more than one goal state. In 
these environments, all three adaptive agents where 
reinforced at any state where they found themselves 
next to some tree. 

Agent performance was measured through their 
performance curves (Figure 8).  

On the simplest tasks 1-4 all three agents 
converged to their optimum performance. Q-learning 
based agent exhibited a slower convergence with the 
increasing environment size (task 3). Q-learning based 
agent failed to solve tasks 5, 8-10, which correspond 
to the changing goal state. This confirms that model-
free agents can learn to pursue a single goal. ADP 
based agent successfully solved the task 5 but failed to 
solve tasks 8-10. This means that ADP algorithm has 
mechanisms (world model) to adjust to new goals (the 
state utility values were cleared and recomputed on 
the basis of a world model at the beginning of each 
epoch). Variable type environment presented a 
challenge that went beyond the generalizing capa-
bilities of both Q-learning and ADP. This challenge 
was solved by the LEAD1 agent that has learnt explicit 
action definitions in terms of its percepts.  
LEAD1 solves even those tasks that Q-learning and 
ADP cannot cope, but it requires exponential time 
complexity compared with polynomial complexity of 
Q-learning and ADP. 

5. Discussion and conclusions 
The research presented in this paper has shown 

that it is possible to carry and re-use knowledge 
acquired in one environment to different environments 
thus extending the range of tasks solvable by the 
agent. It has also shown that the planning of action 
sequences may be a viable action selection policy of 
the reinforcement driven agents. This paper suggested 
that one of the ways to address the problem of 
                                                           
13 Only the LEAD1 agent described in this paper was provided its 
goal via direct injection. ADP and Q-learning based agents were 
always provided their goals via reinforcement.

knowledge transferability may be related to the 
appropriate selection of generalization capabilities of 
an agent. 

The above conclusions are subject to certain 
limitations and assumptions. First of all, they apply to 
the class of static, observable and deterministic grid 
world environments. Second, they assume that 
meanings of cell labels and agent actions have a 
universal scope, i. e. that identical cell labels have 
identical meanings in both seen and unseen grid-world 
environments. Third, they were demonstrated only for 
the subset of environments that satisfy the first-order 
Markov property. 

The concerns that LEAD1 that is developed for 
static, observable and deterministic environments 
could not be extended to stochastic, partially 
observable and dynamic ones are reasonable. 
However, we believe that there is a way of extending 
LEAD1’S behavior to partially observable environ-
ments. The hidden variable approach similar to that 
used by CALM [13] may be one of the ways to follow. 
Stochastic perception of the environment (also known 
as perceptual aliasing) can be thought as a 
phenomenon arising in consequence to the partial 
observability of the world and approached by the same 
method as well. 

The assumption of the universality of cell labels 
and agent actions doesn’t seem to be very annoying. 
In real-world robotic systems, grid-world cell labels 
should normally by extracted by the frontend process-
ing of sensory data. Though labels may become noisy, 
the labeling itself should remain consistent. 
The agent architecture described in this paper was 
tested in the environments satisfying the first-order 
Markov property. It would be straightforward to 
extend the learning task defined by (1) to include more 
past percepts: ot+1

i = fi(ot-n, …, ot-1, ot, at). This would 
theoretically enable the agent to construct world 
model in the higher order Markov environments. 
However, the time complexity of learning is an 
exponential function of the number of parameters. 
Planning that is based on the breadth-first search is 
exponentially prohibitive as well. Giving-up the 
perceptual frame assumption does not allow the agent 
to use efficient search orienting heuristics like those 
derived from the means-ends analysis [10]. The limits 
imposed by the computational costs on the agents’ 
architecture are still to be investigated. 

Another interesting development of LEAD1 would 
be to carry it to the Block’s World task [6] [7]. This 
environment is characterized by composite 
(parameterized) actions like PutOn(CubeA, CubeB) or 
PutOnTable(CubeA). It would be interesting to see 
how such an extension would impact the structure of 
LEAD1’s world model. 
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Figure 8. The performance curves of the LEAD1 (black solid), ADP (black dashed) and Q-learning (grey) based agents on the 

tasks 1-10. X axis shows the number of epochs and the Y axis shows the average number of actions to achieve the goal 
(performance). Y axis values have been averaged over epochs, using sliding window of size 20. In experiments presented results 

are averaged in 5 trials 
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