ISSN 1392 — 124X INFORMATION TECHNOLOGY AND CONTROL, 2012, Vol.41, No.4

Learning a Transferable World Model by Reinforcement Agent
in Deterministic Observable Grid-World Environments

Jurgita Kapociuté-Dzikiené, Gailius Raskinis

Wytautas Magnus University
Vileikos 8, LT-44404 Kaunas, Lithuania
e-mail: j.kapociute-dzikiene@if.vdu.lt, g.raskinis@if-vdu.lt

crossref http://dx.doi.org/10.5755/j01.itc.41.4.915

Abstract. Reinforcement-based agents have difficulties in transferring their acquired knowledge into new different
environments due to the common identities-based percept representation and the lack of appropriate generalization
capabilities. In this paper, the problem of knowledge transferability is addressed by proposing an agent dotted with
decision tree induction and constructive induction capabilities and relying on decomposable properties-based percept
representation. The agent starts without any prior knowledge of its environment and of the effects of its actions. It
learns a world model (the set of decision trees) that corresponds to the set of explicit action definitions predicting
action effects in terms of agent’s percepts. Agent’s planning component uses predictions of the world model to chain
actions via a breadth-first search. The proposed agent was compared to the Q-learning and Adaptive Dynamic
Programming based agents and demonstrated better ability to achieve goals in static observable deterministic grid-
world environments different from those in which it has learnt its world model.

Keywords: Adaptive agent; reinforcement learning; percept generalization; world model.

1. Introduction

Imagine a rat running in search for a food in lots of
different mazes. An experimenter in animal cognition
would be surprised to observe the rat perfectly
navigating in one of the mazes but hitting walls and
obstacles in the others. Otherwise stated, it seems that
rats like other animals learn the effects of their basic
actions in a way that is independent of their environ-
ment.

Imagine a comparable situation of an adaptive
agent placed in an artificial grid-world environment.
Every cell of a grid is labeled with some symbol. The
agent can perform a few basic actions. If it goes left,
the contents of all cells shift right (imitating the
movement of its “view of sight”). If it goes up, cell
contents shift down and so on'. The agent starts
without any knowledge of its environment and of the
effects of its own actions. Having operated in one
environment for some time the agent is transferred to
some another. This new environment has a completely
different rearrangement of cell labels (assuming that
labels retain their meanings). Do the regularities
learned by the agent in the first environment have any

! This environment is not subject to the perceptual reference frame
assumption which requires that agent actions change only a small
part of the agent’s perceptual input, the remaining steady input
providing a background or frame.

318

sense in this second one? Should the agent continue
learning or should it “reboot” and start learning from
zero again?

Though adaptive agents are often thought as
computational models of biological intelligence, these
questions would be hard to many of them. In many
agent designs, the knowledge learnt by an adaptive
agent must be invalidated when the agent is
confronted to a different environment (or even a
different goal in the same environment) than that in
which it has been learning. The transferability of
learned knowledge to different environments is an
important aspect of adaptive behavior. This aspect
seemed to be underemphasized in the reinforcement
learning research until very recently.

To address this challenge we have developed an
adaptive agent called LEAD1? that is able to operate in
a static observable deterministic grid-world
environment roughly described above. The agent
learns explicit action definitions in terms of its
percepts and can predict the effects of its actions. This
type of knowledge can be transferred and augmented
in new environments that are different from those in
which it has learnt its first experience.

% Acronym for Learning Explicit Action Definitions.

Learning a Transferable World Model by Reinforcement Agent in Deterministic Observable Grid-World Environments

2. Related work

An adaptive agent is the system that perceives and
acts upon its environment and improves its
performance by adjusting its internal configurations
and actions in response to feedback from its
environment. Figure 1 illustrates the agent-
environment interaction. The agent starts without any
knowledge of its environment and of the effects of its
own actions. At every discrete time step ¢ it receives
percept information o’ through its sensors, processes
this information, e.g. updates its internal world
model, and selects some action ¢ to be performed
through its effectors. The action typically alters the
state of the environment s resulting in new percepts
0" and a new percept-action cycle begins (Figure 1).

Environment

Environmep

Reinforcement 7/

Figure 1. [llustration of an agent embedded into its
environment

If agent’s percepts are representing the complete
environment state (e. g. o' =s'), the environment is
called observable. If the environment state is changed
solely by the agent’s actions, the environment is called
static. If the same action performed in the same
environment state but at two distinct time instants
always results in the identical successor states, the
environment is called deterministic. Otherwise the
environment is called partially observable, dynamic
and stochastic, respectively.

There are different agent architectures capable of
associating agent’s percepts to its actions. Detailed
descriptions of many complete agent architectures can
be found in A Survey of Cognitive and Agent
Architectures [1]. We are mostly interested by the
agents that learn some knowledge body from their
experience and by the aspect of transferability of that
knowledge.

First, agents are provided their goals in different
ways. The most widespread approach is that of
reinforcement [11] [12] [14]. It assumes that there
exists a dedicated reinforcement channel into an agent
(Figure 1). Reinforcement values coming through this
channel tell the agent which environmental states are
preferred to the others, thus indirectly describing its
goal. Another approach is to assume the existence of a
dedicated “goal channel” through which agent’s goals
are directly “injected” into the system [10]. There are
other more biologically inspired approaches where an
agent is supposed to have motivations, innate
behaviors or to be able to extract reinforcement values
from the ordinary sensory input [3] [16].

? In humans, this would correspond to having mystical experiences
such as unexplained visions and desires.

319

Second, agents make different architectural
assumptions about their percepts. The most common
assumption is to take percepts o’ as an atomic state
identity label [15]. An alternative approach is to
assume that perceptual information is decomposable
and/or structured. In this latter case, percepts may be
represented by a set of properties [S] [13] [16],
described in propositional or the first-order logic [10].
The generalization capabilities of an agent have sense
only if decomposable percept representation is used.

One of the most important dividing lines among
agent architectures is the presence or absence of a
world model. A world model is defined as a body of
knowledge that tells the agent what are the expected
outcomes of its actions in terms of its future percepts.
The presence of a world model has clear architectural
implications as only the world model makes an agent
capable of planning, i.e. chaining sequences of its
actions. We would distinguish three types of agent
architectures: agents that learn utility values associa-
ted to percepts or the percept-action pairs (model-free
agents), agents that learn both utility values and a
world model (model-based agents) and agents that
learn only a world model (model-rich agents).

An example of a model-free method is Q-learning
[15]. The Q-learning based agent selects its actions on
the basis of the percept-action utility values (Q-
values). It improves its performance in terms of
cumulative positive reinforcement. However the table
of Q-values is a type of knowledge that bounds the
agent to pursue a single goal in the same environment.
Some extensions to Q-learning such as function
approximation [2] and relational reinforcement
learning [6] [7] aim to abstract from specific goals
pursued and to exploit the results of previous learning
phases in new situations. Function approximation
approach uses properties-based percept represen-
tation [2] [7]. It generalizes over properties in order to
approximate the Q-function. Relational reinforcement
represents percepts as a set of ground facts stated in
the first order logics [6]. It combines Q-learning and
supervised learning by learning Q-function with
relational regression tree algorithm [4]. These
extensions to Q-learning make computationally intrac-
table learning problems tractable, and increase the
transferability of learned knowledge. However they do
not compensate for the fact that an agent still lacks a
world model and explicit definitions of its actions.

Examples of model-based architectures are Dyna
[11], TD(A) [12], and ADP [9]. Model-based agents
also rely on the identity-based percept representation.
Besides percept utility values they learn a world
model consisting of a set of conditional transition
probabilities of percept identities p(o”™' | o', a). Model-
based agents, like model-free agents, select their
actions on the basis of percept utility values. Thus, the
probabilistic world model is seen not as a means for
constructing explicit action plans but as a body of
knowledge useful to the convergence of percept utility
values to the optimal policy. Though model-based

agents would be able to adapt to changing goals in the
same environment, they would not be capable to
predict the effects of their actions in new environ-
ments.

Among examples of model-rich agents are LIVE
[10], the architecture proposed by Drescher [5],
SRS/E [16], and CALM [13]. Model-rich agents learn
their world model for the purpose of planning action
sequences. Except for LIVE, model-rich agents rarely
learn explicit action definitions. The world model of a
model-rich agent often consists of the set of
accumulated elementary experiences of the type <o/,
a', 0"'>. Model-rich agents use properties-based
percept representation. Thus, part of the world-model
experiences can be generalized by omitting (e. g.
replacing by a wildcard) some properties within o', d,
or o' components. This capability of generalization is
enough for pursuing different goals in the same
environment, but not enough to solve the grid-world
task outlined in the introductory section. On the other
hand, SRS/E and CALM are advanced agent
architectures in other respects. SRS/E can operate in
stochastic environments, while CALM is designed to
operate in deterministic but partially observable
environments.

LIVE is model-rich agent that learns explicit
action descriptions. It represents its percepts as a set of
ground facts stated in the language of the first order
logics®. States are generalized into a set of the action-
defining STRIPS-like first-order logic rules. However,
the LIVE approach relies on the perceptual frame
hypothesis, which is not satisfied in the grid-world
challenge outlined in the introductory section.

3. LEAD1 architecture

The underlying hypothesis of our approach is that
the transferability of knowledge is intrinsically related
to the generalization capabilities of an agent. An agent
must learn to predict outcomes of its actions (a world
model) on the basis of its percepts in such a way that
regularities/laws establishing prediction hold for
different unseen environments. This can be achieved
only if decomposable percept representation is used
and the agent is capable of extracting relevant
properties and abstracting from irrelevant properties at
the same time.

This kind of reasoning has driven us to design the
LEAD] agent. The life of the agent is organized in
epochs each epoch consisting of a number of discrete
time steps until it reaches the goal state. Agent
recognizes that a goal state is reached at time ¢ if it
receives positive reinforcement = 1. Otherwise it
receives the reinforcement #'=0. The LEADI agent
operates in a grid-world environment. Agent’s

* This means that LIVE, if making part of a real-world robotic
application, would delegate a significant processing burden to its
sensors. LIVE is not a reinforcement-based agent as it expects goals
to be directly injected into the system.

320

J. Kapociatée-Dzikiené, G. Raskinis

percepts o' = {0;} correspond to the vector’ of the
grid-world cell labels called observations, where o;
denotes the observation of the i cell at time 7.

LEADI architecture is outlined in Figure 2. Though
the idea of integrating learning and planning in this
way is not original but it is quite novel in the context
of reinforcement learning (see subsection 3.2.). Each
component of this architecture is explained in more
detail in the following subsections.

Percepts o'
Reinforcement ¥/
(or goal state)

r_\ction d

Behavior control module

l l A A
calls calls

| Learning Planning |

stores

updates action

effect

Action
queue

predicted percents

Training
instances

Memory

Figure 2. The architecture of the LEAD1 agent

3.1. Learning world model

LEADI is based on Markov assumption. It assumes
that any observation o'"'; is a function of the previous
vector of observations o' and of the action a'. This
functional relationship is expected to exist for every
cell 7 and to hold for every time instant ¢.

Vi3 such that vz o', = f(o', d) (1)

If discovered, the functions {f;,} would predict
future observations on the basis of past observations
and agents actions. The entire set of functions {f;,}
would make up the world model (one function per
observation cell). The learner’s task is to discover
these functions through supervised learning. A
supervised training set is continuously extended at
every discrete time step 7 out of the triplets of agent’s
elementary experience <o', a', 0'"'>. Parts o', a' of this
experience are taken as attribute values and o';
(individual components of o) are taken as class-
values (Figure 3).

* Though grid-world cells are organized in a two-dimensional
matrix the observation vector o' obfuscates spatial relationships
among individual observations during the supervised learning of the
world model.

Learning a Transferable World Model by Reinforcement Agent in Deterministic Observable Grid-World Environments

0 0 a 0 a 0 a 0 time

o'y | o' | 0 -lal- al-|- b|-|c b|-|c

04| 0's| 0 al-|-|right |-|-|a| u |a|-|-| up - -

07| 0 | 0% c|b|- b|-|c -|-1a -l-]a

Attribute values Class values
(time = 7) (time = #+1)

Ot] Olz 0[3 0t4 Ots 0t6 017 018 019 at Ol+| | t+12 I+13 t+1 0[*15 Ol+|6 0t+17 t+18 t+19
=0 | - - - | -] c| b | - |right| a - - - - a | b -
=l|a|-|-|-]-]la|b|-]clu]|Db - ® a - - - - a
=2|b|-|cla|]-|-|-|-1]a|u]|6Db - c - - - -

Figure 3. The transformation of the agent’s experience in a 3x3 grid world (top) into the set of training instances for supervised
learning of a world model (bottom). Symbols {a, b, c, -} denote grid-world cell labels. The bottom training set is used for

learning predictive functions fi, ..

.,fo (9 learning tasks in total). The area in gray shows one particular training set used to learn

the function £, such that o'y = £(¢', a')

Many supervised learning techniques can be used
to learn the set of functions {f;} satisfying (1). LEAD1
assumes it is operating in a deterministic and
observable environment. This means that data
noisiness problem can be neglected and suggests
decision tree learner as a good candidate for solving

BuildTree (Node, Inst, Depth)
// Node - DT Node being processed;
// Inst - set of training instances,
// Depth - depth of Node.

IF
Label Node with Class
return (success)

FOR EACH attribute Attr,

this learning task. Pruning will not be required and
decision trees built by the learner will always be
consistent with all training instances stored in LEAD1’s
memory. The outline of LEAD1’s decision tree learner
algorithm is presented below:

associated to Node;

all members of Inst belong to the same Class THEN

IF Attr, values match class values for every member of Inst THEN

Label Node with Attr,
return (success)

IF CurrentDepth

FOR EACH attribute Attr,

Group the most scattered values of Attr,,

MaxDepth6 THEN return (failure)

into the “other” value

Estimate the utility of splitting Inst by Attr,

Sort attributes in the order of decreasing utility

FOR EACH attribute Attr,
FOR EACH Attr, value vy

result = BuildTree (Successor (Node),
IF result = failure THEN break
IF result = success return(success)

END

The procedure outlined above and resulting
decision trees have some differences with respect to

© MaxDepth was set to 3 in our experiments.

321

(including the value “other”)
Select instances Inst’eInst for which Attr, =
Inst’,

Vi
Depth+1)

decision trees built by other decision tree builders
(e. g. C4.5).

I. Terminal nodes. Besides terminal nodes
associated to the pure (in the sense of class labels)
subsets of training instances, terminal nodes are
created for mixed subsets of training instances if
there is an attribute called predictive attribute such
that its values match class values of every training
instance in the mixed subset. In this case a terminal
node is labeled with an attribute name. Labeling
nodes with predictive attributes can be thought of
as generalizing the structure of a decision tree at the
terminal level (Figure 4).

a)

Figure 4. Decision tree predicting o™'¢ = fi(0', a') (see
Figure 3) by (a) the conventional decision tree builder and
(b) by LEAD1. The second tree contains a single node that is
labeled with the name of predictive attribute o’

2. Aggregating attribute values. Sometimes the split
over different values of an attribute results in a few
identically labeled terminal nodes. In this case, the
attribute values leading to the identically labeled
terminal nodes are aggregated together under the
“other” branch. If more than one group is present,
the larger one is selected for aggregating. This
procedure helps to deal with unseen attribute values
during percept prediction step (Figure 5).

Figure 5. Decision tree predicting o"!| = (o', d')
(see Figure 3) by (a) the decision tree builder and (b) by
LEAD]

3. Search space and search strategy. Decision tree
builders usually follow a “divide and conquer”
approach thus performing a hill-climbing, non-
backtracking search in the space of possible
decision trees. The learner component of LEADI1
performs a depth-first exhaustive search in the
space of possible decision trees. The space of
decision trees is constrained by the limit that is
imposed on the depth of a tree. Failure to create a
terminal node within a given depth limit under
some branch of a tree causes backtracking. Then a
different attribute is selected and sub-trees tied to
neighboring branches are invalidated. This search
strategy is more costly in computation time but
helps in finding more compact decision trees.

4. Node splitting criterion. Node splitting criterion is
used to measure the utility of an attribute for

322

J. Kapociatée-Dzikiené, G. Raskinis

splitting a particular node. Decreasing order of
utility is the order in which attributes are tested
during the search. The utility U(A) of the attribute 4
for splitting a particular node is given by (Figure
6):

Uud= >,

keClasses

K, +P
K,+P +N,

, where

2)

K;, P;, and N, are the quantities of nodes resulting
from the node split over A4 values such that:

K is the number of terminal nodes that would be
labeled by the class £.

Py is the number of terminal nodes that would be
labeled with a predictive attribute and would cover at
least one instance of class .

N, is the number of non-terminal nodes that would
cover at least one instance of class £.

The node splitting criterion given by (2) avoids
counting training instances in the sub-nodes of the
node under investigation. The criterion is in favor of
attributes that obtain as many “purely” separated
and/or predicted classes as possible (Figure 6).

3.2. Learning goal test

LEADI can be provided with the goal either
directly or indirectly. In the first case, the percepts
corresponding to the goal state are directly “injected”
into the agent. In the second case, the goal is specified
indirectly by the signal coming through the reinforce-
ment channel. The indirect case is more complicated
as the planner requires goal percepts or the goal test to
be known prior to planning. To address this problem
LEADI is dotted with the capability of constructive
induction’ [8]. Having acted in its environment for
some time, the agent accumulates a set of percept-
reinforcement associations {<o’, ¥>}.Then it learns to
discriminate positively and negatively reinforced
percept subsets thus inducing a goal test. This goal test
is not discarded but kept and refined across different
environments thus implicitly assuming that there are
universal laws explaining agent’s reinforcement as a
function of agent observations. Goal test induction
may result in false generalizations especially if there
are too few positive training instances. As a result,
LEAD] may pursue wrong goals during the initial
epochs of its life.

3.3. Planning

Planning component of the LEADI agent is
responsible for finding the shortest action sequence
that is expected to achieve agent’s goal. It is based on
the breadth-first depth-limited® search in the space of
agent’s percepts. The initial state is assumed to

" This capability is embedded into LEADI’s learner component but
its details are not covered by this paper. Spatial relationships among
individual observations of o are exploited in this type of learning.

¥ The depth limit was set to 15 in our experiments.

Learning a Transferable World Model by Reinforcement Agent in Deterministic Observable Grid-World Environments

a) Sample training set b) Candidate splits

Attributes

0 0> 03

» o |c|oc|o |c

o|T|Toy & | ®
oo |C|o|®

Class
0y 05
b c terminal terminal terminal non-terminal terminal
b c (predictive attr.)
a c
b b
a c
a a non-terminal terminal non-terminal non-terminal

K, +P 1 1 1+1
Uloy) = Z th 0+ . 0+ . +1
retaney K +B+N, 0+1+0 0+1+0 1+1+0
U(o,)=2; U(o;)=0.5 U(o,)=0;

Figure 6. Illustration of the node splitting utility function U(4). a) Sample training set b) Four candidate splits based on attributes
{01, 02, 03, 04}. The best split is based on the attribute o, as it has the maximum estimated utility U(o,) =3

correspond to the current percepts. Successor-states it is responsible for the interaction of the learner and

are generated on the basis of the world model to date. planner components, action selection, and exploitation
vs. exploration trade-off. The outline of LEADI’s

3.4. Behavior control module behavior control module for one time step is presented
below:

Behavior control module is responsible for
organizing LEAD1’s behavior at the highest level, i. e.

Behavior control module (current percepts, reinforcement)

static

static InstWM
static InstGT

static

static action

static

action <« None

world model

// training instances for learning world model
// training instances for learning goal test

action queue // action set expected to achieve the goal

// last action taken

anticipated percepts

InstWM <« Update (<previous percepts, action, current percepts>)

InstGT « Update (<current percepts, reinforcement>)

IF anticipated percepts # current percepts THEN

IF

IF

world model « Learner (world model, InstWM)

action queue <« {}
IF Satisfy(current percepts, goal test) THEN
IF reinforcement = off THEN

goal test

< Learner (InstGT)

action queue <« {}
ELSE return (action)

action queue

action queue
action queue

= {} THEN

< Planner (world model, current percepts, goal test)
= {} THEN

action <« random action
ELSE // exploitation vs. exploration

p <« random number, pe[0,1]
If p < Pyng THEN

action <« random action

action queue <« {}

ELSE

action <« RemoveTopAction (action queue)

anticipated percepts ¢« Predict (world model, current percepts, action)
return (action)

END

323

LEAD] invokes the learner component if
anticipated percepts mismatch the current percepts,
1. e. the real-world experience. The learner updates the
world model and makes it consistent with the latest
experience. Planning component is invoked if current
percepts do not satisfy the goal test and there is no any
action plan. Upon success, the planner returns the
action sequence leading to the goal. Upon failure, it
returns an empty sequence.

If the planner is unable to find an action plan
LEADI selects a random action. Even if there is an
action plan, a random action may be selected for the
purposes of environment exploration. Probability p,,q
that LEADI will select a random action instead of an
action suggested by the plan is given by:

5 3)
prnd = s

I+e
 ine, +0.01

all .,

where all rnd is the number of random actions within
the sliding window of the most recent actions’, and
inc_rnd is the number of random actions among
all rnd actions that had their effects incorrectly
predicted by the world model. The probability p,,,
decreases as the estimated reliability of the world
model increases. If a random action is performed, any
current action plan must be reset.

4. Experimental investigation

The objective of our experimental investigation
was to demonstrate that an agent capable of learning
its world model as well as its goal concept description
is capable of solving an extended set of tasks, i. e. is
capable of operating in a wider set of environments.
For this reason, the LEAD] agent was compared to
other adaptive agents based on Q-learning and ADP
reinforcement learning techniques. Though our
experimental investigation included different
experimental setups, comparisons were based on the
experimental setup that is described below.

All agents were placed within an environment of
the size of 9x9 cells. Every cell was assigned a label
describing its content. There were 6 different cell
content labels: an agent, a box, an empty cell, a stump,
a tree, and a wall. Agents had an action set consisting
of 8 elementary actions: four go actions and four jump
actions, one action per possible direction . If
successful, actions go and jump displaced agents
within their environment in the specified direction by
1 and 2 cells respectively. Any go action was
successful if the destination cell was empty. Any jump

% The width of the window was set to 20 in our experiments.
' In other experimental setups, the agent was given 2 actions: go
forward and turn right.

324

J. Kapodiaté-Dzikiené, G. Raskinis

action was successful if the destination cell was empty
and the intermediate cell wasn’t a tree or a wall.
Agents remained in the same cell, if any action failed.
The environment was considered to be spherical,
meaning that having no obstacles it was possible for
agents to reach the same cell after repeating the same
go action 9 times.

The environment was completely observable to all
agents through their percepts. However, sensors of the
agents mapped the environment state into their
subjective coordinates. As a result, for instance, the
action go left caused the whole perceptual “view of
sight” to shift right. Agents saw themselves in the
center cell of their view at any time. Thus, this
experimental setup could not benefit from the
perceptual frame hypothesis'' (Figure 7).

a) b)

] £

»

B
»

2 2

Figure 7. Grid-world environment of the reduced size 5x5.
a) Initial percepts. b) Agent percepts after the action go left
has been performed.

The life of all three agents was organized in
epochs each epoch consisting of a number of discrete
time steps. An epoch started by situating an agent in
its environment. An epoch was terminated if an agent
reached the goal or if maximum allowed number of
time steps per epoch was exhausted '>. Positive
reinforcement was given only upon agent reaching the
goal. Agents started the first epoch with blank
memory, i.e.without any prior knowledge. The
knowledge (world model, tables of stat utility values,
Q-values) was accumulated from epoch to epoch.

Adaptive agents based on ADP and Q-learning
techniques were implemented according to the
schemes given by Russell and Norvig [14]. Both
agents treated their percepts o' as an atomic label
defining state identity. Parameters of the exploitation
vs. exploration trade-off function were optimized to
yield the best performance.

All three adaptive agents were confronted to 10
tasks of gradually increasing complexity as
summarized by Table 1.

" In other experimental setups, the agent was given an access to the
environment state in its objective coordinates. As a result the agent
saw himself moving around the environment (as if viewed from the
top). Such an experimental setup could benefit from the perceptual
frame hypothesis.

"2 The maximum duration of an epoch was set to 50 steps in our
experiments.

Learning a Transferable World Model by Reinforcement Agent in Deterministic Observable Grid-World Environments

Table 1. Experiment summary

Task |Environment| Initial Goal | Goal provision"
No. type state state

1,2,3 fixed fixed fixed direct injection

4 fixed random | fixed direct injection

5 fixed random | random | direct injection
6,7 fixed random | fixed |reinforcing “agent
is next to the tree”

8 variable | random | random | direct injection
9,10 | wvariable |random | random |reinforcing “agent
is next to the tree”

The environment type was denoted as fixed if
contents of its cells were initialized in the same way at
the beginning of every epoch. The environment was
denoted as variable if its cells were initialized
randomly using the same six possible cell content
labels. The tasks 6-7 and 9-10 were characterized by
the environments with more than one goal state. In
these environments, all three adaptive agents where
reinforced at any state where they found themselves
next to some tree.

Agent performance was measured through their
performance curves (Figure 8).

On the simplest tasks 1-4 all three agents

converged to their optimum performance. Q-learning
based agent exhibited a slower convergence with the
increasing environment size (task 3). Q-learning based
agent failed to solve tasks 5, 8-10, which correspond
to the changing goal state. This confirms that model-
free agents can learn to pursue a single goal. ADP
based agent successfully solved the task 5 but failed to
solve tasks 8-10. This means that ADP algorithm has
mechanisms (world model) to adjust to new goals (the
state utility values were cleared and recomputed on
the basis of a world model at the beginning of each
epoch). Variable type environment presented a
challenge that went beyond the generalizing capa-
bilities of both Q-learning and ADP. This challenge
was solved by the LEAD1 agent that has learnt explicit
action definitions in terms of its percepts.
LEADI solves even those tasks that Q-learning and
ADP cannot cope, but it requires exponential time
complexity compared with polynomial complexity of
Q-learning and ADP.

5. Discussion and conclusions

The research presented in this paper has shown
that it is possible to carry and re-use knowledge
acquired in one environment to different environments
thus extending the range of tasks solvable by the
agent. It has also shown that the planning of action
sequences may be a viable action selection policy of
the reinforcement driven agents. This paper suggested
that one of the ways to address the problem of

> Only the LEADI1 agent described in this paper was provided its
goal via direct injection. ADP and Q-learning based agents were
always provided their goals via reinforcement.

325

knowledge transferability may be related to the
appropriate selection of generalization capabilities of
an agent.

The above conclusions are subject to certain
limitations and assumptions. First of all, they apply to
the class of static, observable and deterministic grid
world environments. Second, they assume that
meanings of cell labels and agent actions have a
universal scope, i.e.that identical cell labels have
identical meanings in both seen and unseen grid-world
environments. Third, they were demonstrated only for
the subset of environments that satisfy the first-order
Markov property.

The concerns that LEAD] that is developed for
static, observable and deterministic environments
could not be extended to stochastic, partially
observable and dynamic ones are reasonable.
However, we believe that there is a way of extending
LEAD1’S behavior to partially observable environ-
ments. The hidden variable approach similar to that
used by CALM [13] may be one of the ways to follow.
Stochastic perception of the environment (also known
as perceptual aliasing) can be thought as a
phenomenon arising in consequence to the partial
observability of the world and approached by the same
method as well.

The assumption of the universality of cell labels

and agent actions doesn’t seem to be very annoying.
In real-world robotic systems, grid-world cell labels
should normally by extracted by the frontend process-
ing of sensory data. Though labels may become noisy,
the labeling itself should remain consistent.
The agent architecture described in this paper was
tested in the environments satisfying the first-order
Markov property. It would be straightforward to
extend the learning task defined by (1) to include more
past percepts: o', = f(0"", ..., 0", o', a'). This would
theoretically enable the agent to construct world
model in the higher order Markov environments.
However, the time complexity of learning is an
exponential function of the number of parameters.
Planning that is based on the breadth-first search is
exponentially prohibitive as well. Giving-up the
perceptual frame assumption does not allow the agent
to use efficient search orienting heuristics like those
derived from the means-ends analysis [10]. The limits
imposed by the computational costs on the agents’
architecture are still to be investigated.

Another interesting development of LEAD] would
be to carry it to the Block’s World task [6] [7]. This
environment is characterized by composite
(parameterized) actions like PutOn(CubeA, CubeB) or
PutOnTable(CubeA). It would be interesting to see
how such an extension would impact the structure of
LEAD1’s world model.

J. Kapociatée-Dzikiené, G. Raskinis

Task No. 1 Task No.2
101 151 101 151
Task No.3 Task No. 4
0
1 51 101 151 151 201 251 301 351 401 451
Task No. 5 Task No. 6
201 251 301 351 401 451
Task No.7 Task No. 8
25 50
20
30
25
20
15
10
5
0 0
1 51 101 151 201 251 301 351 401 451 1 51 101 151 201 251 301 351 401 451
Task No.9 Task No.10
40 30

Figure 8. The performance curves of the LEAD1 (black solid), ADP (black dashed) and Q-learning (grey) based agents on the
tasks 1-10. X axis shows the number of epochs and the Y axis shows the average number of actions to achieve the goal
(performance). Y axis values have been averaged over epochs, using sliding window of size 20. In experiments presented results

are averaged in 5 trials

326

Learning a Transferable World Model by Reinforcement Agent in Deterministic Observable Grid-World Environments

References

(1]

Artificial Intelligence Library. A Survey of Cognitive
and Agent Architectures. University of Michigan,
2010. Web. 3 May, 2010. Available at:
http://ai.eecs.umich.edu/cogarchO.

L. Baird. (1995). Residual algorithms: reinforcement
learning with function approximation. In: Proceedings
of the 12th International Conference on Machine
Learning. Morgan Kaufmann, pp. 30-37.

M. M. Bongard, I. S. Losiev, M. C. Smirnov. Project
modeli organizaciji povedenija — Zivotnoje.
Modelirovanije. Obuchenija i povedenija. Nauka,
1975, pp. 153-209. (in Russian).

L. De Raedt, H. Blockeel. Using logical decision trees
for clustering. In: Proceedings 7th International
Workshop on Inductive Logic Programming, 2nd ed.
Springer, Berlin, 1997, pp. 133-141.

G. L. Drescher. Made-up Minds: A Constructivist
approach to Artificial Intelligence, 2nd ed. The MIT
Press, Cambridge, Massachusetts, 2002.

S. Dzeroski, L. De Raedt, K. Driessens. Relational
reinforcement learning. Machine Learning, 43, pp.7-52
(2001). http://dx.doi.org/10.1023/A:1007694015589.
M. Irodova, R. H. Sloan. Reinforcement learning and
function approximation. In: FLAIRS (2005),
pp- 455-460.

J. Kapociaté-Dzikiené, G. Raskinis. Constructive In-
duction of Goal Concepts from Agent’s Percepts and
Reinforcement Feedback. Information Technology and
Control, Vol. 39, No. 3 (2010), pp. 211-219.

327

(]

J. J. Murray, C.J.Cox, G.G. Lendaris, R. Saeks.
Adaptive dynamic programming. In: [EEE Transaction
on Systems, Man, Cybernetics, Part C: Applications &
Reviews, 2002, Vol.32, No. 2, pp.140-153,
http://dx.doi.org/10.1109/TSMCC.2002.801727.

W. Shen, H. A. Simon. Rule Creation and Rule
Learning Through Environmental Exploration. In:
Proceedings of 11th International Joint Conference on
Artificial Intelligence, Palo Alto, California. Morgan
Kaufmann, 1989, pp. 675-680.

R. S. Sutton. First results with Dyna, an integrated
architecture for learning, planning, and reacting. In:
Series In Neural — Network Modeling — And
Connectionism. MIT Press, 1990, pp. 179-1809.

R. S. Sutton, B. Tanner. Temporal-Difference
Networks. In: Advances in Neural Information
Processing Systems 17,2005, pp. 1377-1384.

F. Perotto, J.Buisson, L. Alvares. Constructivist
anticipatory learning mechanism (CALM): Dealing
with partially deterministic and partially observable
environments. In: Proceedings of the 7th International
Conference on Epigenetic Robotics: Modeling
Cognitive Development in Robotic ~ Systems,
Piscataway, NJ, USA. Lund University, Cognitive
Studies, 2007, pp. 117-127.

S.J. Russell, P.Norvig. Artificial Intelligence. A
Modern Approach, 2nd ed. Pearson Education, Inc.,
Upper Saddle River, New Jersey 07458, 2003,
pp. 830-859.

C. Watkins, P. Dayan. Q-learning. Machine learning,
vol. 8 mo. 3, 1992, pp. 279 - 292,
http://dx.doi.org/10.1007/BF00992698.

C. M. Witkowski. Schemes for Learning and
Behaviour: a New Expectancy Model. Ph. D. Thesis,
University of London, 1997.

Received April 2011.

