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Abstract. In this paper, an adaptive fuzzy backstepping control using dynamic sliding mode control 

(AFBCDSMC) is presented for a micro-electromechanical system (MEMS) vibratory z-axis gyroscope. Based on an 

adaptive fuzzy backstepping control method, a dynamic sliding mode control is proposed to compensate and adjust the 

external disturbances and model uncertainties. The fuzzy control method with adaptive backstepping controller can 

approximate the system nonlinearities well without accurate system model and. It can make the controller have the 

ability to learn and adjust the fuzzy parameters in real time. In addition, dynamic sliding mode control can transfer 

discontinuous terms to the first-order derivative of the control input in order to effectively reduce the chattering. 

Simulation studies are investigated to demonstrate the satisfactory performance of the proposed method. 
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1. Introduction 

Because of its advantages in the structure, volume 

and cost, MEMS gyroscope is widely used to measure 

the sensor angular velocity of inertial navigation and 

guidance system in aerospace, marine, aviation and 

positioning fields and land vehicle navigation. 

However, the presence of unavoidable errors in the 

design and manufacturing process, and the influence 

of the ambient temperature could decrease the 

accuracy and sensitivity of the gyroscope system. 

Therefore, how to compensate for manufacturing 

tolerances and accurate measurement of the angular 

velocity are the key issues of MEMS gyroscope. 

During the past years, a lot of control approaches have 

been applied to compensate and adjust the dynamic 

performance of the MEMS gyroscope.  

Raman et al. [1] developed a closed-loop digitally 

controlled MEMS gyroscope with unconstrained 

sigma-delta force-feedback. Batur et al. [2] proposed a 

sliding mode controller of a simulated MEMS 

gyroscope. Dynamic sliding mode control has an 

excellent performance in reducing chattering since it 

can transfer the chattering in the control signal to its 

first derivative. Chen et al. [3] initiated an LTR-

observer-based dynamic sliding mode control for 

chattering reduction. Koshkouei et al. [4] designed a 

novel dynamic sliding mode control for a dynamic 

system. Lin et al. [5] utilized a robust dynamic sliding 

mode control using adaptive RENN for magnetic 

levitation system. Shieh and Huang [6] proposed a 

trajectory tracking of piezoelectric positioning stages 

using a dynamic sliding-mode controller.  

Adaptive fuzzy control is a powerful design tool 

for the dynamic system with parameters uncertainty 

and external disturbance. Hojati and Gazor [7] studied 

the hybrid adaptive fuzzy identification and control of 

nonlinear systems. Adaptive control algorithms for 

MEMS gyroscope [8-9] have been investigated 

because of their abilities to identify the parameters. 

Fei and Zhou [10] proposed a robust adaptive 

controller of MEMS triaxial gyroscope using fuzzy 

compensator. Hwang et al. [11] studied an adaptive 

fuzzy hierarchical sliding-mode control for the 

trajectory tracking of uncertain under actuated 

nonlinear dynamic systems. Lee [12] mainly studied a 

robust adaptive fuzzy control by backstepping for a 

class of MIMO nonlinear system. Adaptive 

backstepping sliding mode control approaches have 

been proposed for dynamic system such as leader-

follower multi-agent systems and linear induction 

motor drive [13-14]. Lin and Li [15] designed a 

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=995121&refinements%3D4291944246%26matchBoolean%3Dtrue%26queryText%3DAdaptive+control
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cascade adaptive fuzzy sliding mode controller for 

nonlinear two-axis inverted pendulum 

servomechanism. Adaptive fuzzy sliding controllers 

[16-18] received great interest in recent years because 

they do not depend on the system model and have 

great ability to learn and adjust the fuzzy parameters.  

It is reasonable to combine the dynamic sliding 

mode control with adaptive fuzzy control and 

backstepping control for the control of MEMS 

gyroscope. In this paper, a dynamic sliding mode 

approach via adaptive fuzzy backstepping design is 

applied to realize the position tracking for the MEMS 

gyroscope. So far, to the best of authors’ knowledge, it 

is the first time in the literature to use AFBCDSMC in 

MEMS gyroscope. The MEMS gyroscope model are 

transformed into cascade system which can be utilized 

in the backstepping design. The motivation of the 

proposed controller can be summarized as follows:  

1) Backstepping design for a class of systems 

satisfying the strict feedback form can relax the 

matching condition appeared in the design of 

controller. The fuzzy control method combined with 

the adaptive backstepping control for MEMS 

gyroscope not only removes the requirements of 

accurate system model, but also obtains the self-

learning ability and adjusts the fuzzy parameters. 

Therefore AFBCDSMC approach could attenuate the 

model uncertainties and external disturbances.  

2) Adaptive control, fuzzy control, backstepping 

control and dynamic sliding mode control are 

combined and applied to MEMS gyroscope for the 

first time. Dynamic sliding mode control has high 

efficiency in solving the chattering problem. Hence, 

AFBCDSMC can not only provide improved tracking 

accuracy under sliding mode but also remove some of 

the fundamental limitations of the traditional 

approach.  

3) The proposed backstepping dynamic sliding 

mode controller adds extra compensators for 

achieving and improving the system stability, hence 

obtaining desired system behavior and performance. 

Thus the entire closed-loop system can meet the 

expectations indicators of dynamic and static 

performance and achieve accurate position tracking 

performance. 

This paper is structured as follows. In Section 2, 

the dynamic equation of MEMS vibratory gyroscope 

is established. In Section 3, a dynamic sliding mode 

controller via adaptive fuzzy backstepping method is 

derived to guarantee the asymptotic stability of the 

system. Simulation examples are shown in Section 4 

to illustrate the excellent performance of the proposed 

AFBCDSMC. The conclusions are given in Section 5. 

2. Dynamics of MEMS Gyroscope 

Fig. 1 shows a typical 𝑧  axis MEMS vibratory 

gyroscope which includes a proof mass suspended by 

springs, an electrostatic actuation, and sensing 

mechanisms for forcing an oscillatory motion and 

sensing the position and velocity of the proof mass. 

Assuming that the proof mass is mounted with a 

constant velocity, MEMS gyroscope is rotating at a 

constant angular velocity 
z over a sufficiently long 

time interval. The centrifugal forces 2

zm x , 2

zm y  are 

assumed to be negligible, MEMS gyroscope 

undergoes rotation about the 𝑧 axis only, and thereby 

Coriolis force is generated in a direction perpendicular 

to the drive and rotational axes. 

Referring to [8] and using these assumptions, the 

dynamics of gyroscope can be derived as  

x 2

2

x xy xx xy x z

xy yy xy yy y z

mx d x d y k x k y u m y

my d x d y k x k y u m x

      

      
 (1) 

Fabrication imperfections contribute mainly to the 

asymmetric spring and damping terms, 
xyk and

xyd . 

The spring and damping terms of 𝑥 and 𝑦 axes, 
xxk , 

yyk , 
xxd , and 

yyd  are mostly known, but have small
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Figure 1. Schematic diagram of a MEMS gyroscope 
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unknown variations from their nominal values. The 

proof mass can be determined very accurately, and
xu ,

yu are the control forces in the 𝑥  and 𝑦  directions, 

respectively. 

Dividing by the mass 𝑚, reference length 
0q  and 

the square of the resonance frequency 2

0w  on both 

sides of Eq. (1), we can get 

0 0 0

0

2

yy2 2 2 2

0

2

Z2 2 2

0 0

, , , ,

, ,

xy yyxx xx
xx xy x

xy yy z
xy y

d dd k
D D D w

mw mw mw mw

k k
w w

mw mw w

   


  

 

Rewriting non-dimensional model (1) in vector 

form yields 

2 ,q   q D Kq u Ωq  (2) 

where the dimensionless quantities of the expression 

are expressed as 

2

2

Z

Z

D
, , ,

0
,

0

xx xy x xy

xy yy xy y

x

y

D w wx

D D w wy

u

u

   
      

      

   
    

  

q D K

u Ω

. 

By defining
1 2, x q x q , MEMS gyroscope 

model (2) can be rewritten as  

2 2 12 .b




    

1 2x x

x (D Ω)x K x u
 (3) 

Considering the model uncertainties and external 

disturbances, Eq. (3) can be expressed as 

2 1 2

2 1

2 1

[ ( 2 ) ]

( ) ( )

( 2 ) ( )

( , ) ( ),

b

b

I

x t

x y t

    

       

     

  

x D Ω A x

K A x B u η

D Ω K x u H

f u H

 (4) 

where 
1 2A A B  , , are the uncertainties parts of 

dynamic model for MEMS gyroscope. η  is the 

external disturbances of MEMS gyroscope.  

2 1( , ) ( 2 ) ,bx y x   f D Ω K x . 

1 2 2 1( )t A A B    H x x u η   

including the model uncertainties and external 

disturbances in the MEMS gyroscope. 

3. Dynamic Sliding Mode Control Using 

Adaptive Fuzzy Backstepping Controller 

In this section, AFBCDSMC approach is designed 

to compensate and adjust the external disturbances and 

model uncertainties. The control target is to achieve 

the trajectory tracking of MEMS gyroscope. Fig. 2 

shows the block diagram of AFBCDSMC for a 

MEMS gyroscope where the dynamic sliding 

controller and the adaptive fuzzy backstepping 

controller are derived. Suppose that the control 

objective is to make the trajectory of the MEMS 

gyroscopes follow the reference model and a reference 

trajectory is generated by an ideal oscillator. 

The tracking error is defined as follows 

1 1

2 2

 


 

e x r

e x α
 (5) 

where 𝑟  is a he reference input, 𝜶  is a virtual 

controller defined as 

1 1c  α e r  (6) 
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Figure 2. Block diagram of AFBCDSMC for a MEMS gyroscope
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where the parameter 
1c  of virtual controller satisfies 

the relationship 
1 0c  . 

For the error equation (5), we define the first 

Lyapunov function  candidate as : 

1 1 1

1

2

TV  e e  (7) 

The time derivative of 
1V  is 

1 1 1 1 2

1 2 1 1

1 1 1 1 2

( )

( )

T T

T

T T

V

c

c

  

 

  

e e e x r

e e e

e e e e

 (8) 

Assuming 
2 e 0 , it is easy to see that the 

1 1 1 1 0TV c  e e , then the system is globally 

asymptotic stable and the error
1e  asymptotically 

converges to zero. 

The second Lyapunov function is selected as  

2 1 2 2

1 1

2 2

T TV V  e e s s  (9) 

where s is the function of sliding surface defined as  

2 2

2 ( , ) ( )

c

c x y t

 

    

s e e

e f u H α
 (10) 

where the parameter c of sliding surface function is a 

positive constant.  

From Eq.(4) and Eq.(10), we can get  

2 2

2

( , ) ( , )

( ) ( )

.

x y c x y

t t

c

   

  

  

x f s e f

H α H

s e α

 (11) 

The time derivative of s is 

2

2 1 2 1

1 2 1

( , ) ( )

( ) ( , ) ( )

( ) ( , ) ( ).

c x y t

c x y c c t

c c c x y c t

    

       

       

s e f u H α

x α f u x r r H

x α f u r r H

 (12) 

Substituting Eq. (11) into Eq. (12) yields 

1 2 1

1

( )( )

( , ) ( ).

c c c c

x y c t

   

    

s s e α

f u r r H
 (13) 

The time derivative of 2V  is: 

2 1 2 2

1 1 1 1 2 2 2 1 2

1 1

1 1 1 1 2 2 2 1 2

1 1

1 1 1 1 2 2 2

( ) [( )( )

( , ) ( )]

( ) [( )( )

( , ) ( )]

[

T T

T T T T

T T T T

T T T T

V V

c c c c

c x y c t

c c c c c

c x y c t

c c

  

       

     

       

     

    

e e s s

e e e e e x α s s e

α f u r r H

e e e e e s e s s e

α f u r r H

e e e e e e s 2 1 2

1 1

( )( )

( , ) ( )].

c c c

c x y c t

  

     

e s e

α f u r r H

(14) 

In the design of dynamic sliding mode controller, 

we choose exponential reaching law as 

1 2sgn( )k k  s s s  (15) 

where the parameters 
1k ,

2k of reaching law are 

positive constants.  

In order to eliminate the related terms in Eq.(14), 

considering Eq.(15), we can design a dynamic sliding 

mode controller as  

2 1 2 1 1

1 2 3 1 22

[ ( )( ) ( , ) ]

( ) sgn( )T

c c c c x y c

k k k

         

   

u e s e α f r r φ

s
e e s s

s

(16) 

where the parameter 
3k is a positive constant. 

Substituting Eq. (16) into Eq. (14) yields 

2 1 1 1 2 2 1

2 3

sgn( )

( ( ) ) ,

T T T

T T

V c c k

k t k

   

   

e e e e s s

s s s H φ
 (17) 

It can be observed from the expression of ( )tH that 

it contains model uncertainties and external disturban-

ces of MEMS gyroscope. Actually, ( )tH  is unknown 

in practical system, a fuzzy system is necessary to 

approximate ( )tH . Through the reasoning algorithm 

of single value fuzzy, multiplied reasoning machine 

and center of gravity average defuzzification, a fuzzy 

system φ  is used to approximate ( )tH which is a 

nonlinear function. 

The ith fuzzy rule can be expressed as :R i
If 

ix  is 

iA1
 and …

nx  is i

nA , then y  is iy ,where iA1
,…, i

nA

are fuzzy variables and i

nA , iy are fuzzy sets.  

So the output of the fuzzy system is 

1 1

1 1

( )

( )

i
j

i
j

nN

i jA
i j T

nN

jA
i j

x

y

x

 

 

 

 


ξ θ

 



 (18) 

where  
jA

xi
j

  is membership function value of the 

fuzzy variable jx , 1

1 1

( )

( )

( )

i
j

i
j

n

jA
j

i nN

jA
i j

x

x

x



 













,  

 1 2( ) ( ) ... ( )
T

Nx x x  ξ  is fuzzy basis 

function vector,  1 2 ...
T

N  θ , N  is the 

number of fuzzy rules. 

For the fuzzy approximation of ( )tH , 
1( )x ,

2 ( )x

are used to approximate (1)H and (2)H  respectively 

in order to distinguish the model uncertainties and the 

external disturbances in x axis from that in y axis. 

The corresponding fuzzy system is designed as 
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1

1 1

1 1 1

1 1

2

1 1

2 2 2

1 1

( )

( ) ( )

( )

( )

( ) ( ) .

( )

nN
i

i j j

i j T

nN
i

j j

i j

nN
i

i j j

i j T

nN
i

j j

i j

x

x x

x

x

x x

x

 





 





 

 

 

 



  
  
  
  




 
 
 
 

 

 

 

 

ξ θ

ξ θ

 (19) 

The fuzzy function is defined as  

  11

1 2

22

0
( )

0

T
T T

T
x


 



   
     

  

θ
φ ξ θ

θ
 (20)  

where 1

2

0
( )

0

T

T

T
x





 
  
 

ξ , and 1

2

 
  
 

θ
θ

θ
is the 

adaptive fuzzy parameter.  

We denote the optimal approximation constants by 
*
θ  and estimation error of the fuzzy parameters by 

 *θ θ θ . For a given small arbitrarily constant 

( 0)   , *( ) Tt  H ξ θ  holds.  

For the whole system, the third Lyapunov function 

is chosen as 

1

3 2

1

2

TV V    θ θ  (21) 

where  ( 0  ) is an adaptive adjustable parameter. 

The time derivative of 
3V is 

1

3 2

1 1 1 2 2 1 2

1

3

1 1 1 2 2 1 2

1

3

1 1 1 2 2 1 2

*

sgn( )

( ( ) )

sgn( )

( ( ) ( ) )

sgn( )

( ( ) ( ) ) ( ( )

T

T T T T

T T

T T T T

T T T

T T T T

T T T T

T

V V

c c k k

t k

c c k k

t x k

c c k k

t x t













 

    

   

    

   

    

  



*

θ θ

e e e e s s s s

s H φ θ θ

e e e e s s s s

s H ξ θ θ θ

e e e e s s s s

s H ξ θ s ξ θ

ξ
1

3

1 1 1 2 2 1 2

* 1

3

1 1 1 2 2 1 2

22 *

1

3

1 1 1 2 2 1

( ) )

sgn( )

( ( ) ( ) ) ( ( ) )

sgn( )

1 1
( ) ( )

2 2

[( ( )) ]

sgn( )

T

T T T T

T T T T T

T T T T

T

T T T T

T T T

t k

c c k k

t x x k

c c k k

t x

k x

c c k













 

    

    

    

  

  

    

θ θ θ

e e e e s s s s

s H ξ θ s ξ θ θ θ

e e e e s s s s

s H ξ θ

θ s ξ θ

e e e e s s 2

2 1

3

1
( )

2

1
[( ( )) ]

2

T

T T T T

k

k x  



   

s s

θ s ξ θ

 (22) 

To make
3 0V  , the adaptive law is chosen as 

( ( ))T T Txθ s ξ  (23) 

Substituting Eq. (23) into Eq. (22) yields 

3 1 1 1 2 2 1

2

2 3

sgn( )

1 1
( ) (2 )

2 2

T T T

T

V c c k

k k

   

   

e e e e s s

s s 
 (24) 

When parameters satisfy the condition of  

2 1 2k  , 2

32k  , the time derivatives meets  

3 0V  , so the third Lyapunov function 
3V  is negative 

semi-definite. It ensures that 1e , 2e , s , θ are all 

bounded. According to Barbalat lemma, it can be 

proved that  ts  will asymptotically converge to zero,

 lim 0
t

t


s , from Eq. (10),  te  also converges to 

zero asymptotically. Therefore asymptotic stability of 

the designed system using AFBCDSMC approach 

with can be guaranteed. 

4. Simualtion Study  

In this section, we will evaluate the proposed 

AFBCDSMC on the MEMS gyroscope model. The 

purpose of this controller is to reduce chattering and 

make the gyroscope system track the desired reference 

trajectory. The parameters of the MEMS gyroscope 

sensor are chosen as:  

7m 1.8 10 , 63.955 / ,

95.92 / , 12.779 /

xx

yy xy

kg k N m

k N m k N m

  

 
 

6 6

7

1.8 10 / , 1.8 10 / ,

3.6 10 /

xx yy

xy

d N s m d N s m

d N s m

 



     

  
 

The reference trajectory is selected as 

1 sin(4.17 ),r t  2 1.2sin(5.11 )r t , close to its natural 

frequencies in the x and y directions. The reference 

length 
0q is chosen as

0 1q m and the reference 

frequency
0 is chosen as

0 1w kHz . Suppose that the 

input angular velocity is
z 100 /rad s  . Random 

variable signal with zero mean and unity variance are 

chosen as model uncertainties and external 

disturbance ( )tH . 

Simulation study using AFBCDSMC is conducted. 

Initial conditions are  (0) 0.2 0.2
T

q , other 

parameters are chosen as 𝑐 = 50 , 𝑐1 = 50 , 𝜏 = 40 , 

𝑘1 = 20, 𝑘2 = 100, 𝑘3 = 200. Gaussian membership 

function is chosen. Based on experience, combined 

with analysis and reasoning, the membership 

functions are selected as  

1

2exp[ 0.5(( 2) / ( / 4)) ],
i

i i iF
x A A   

2

2exp[ 0.5( / ( / 4)) ],
i

i iF
x A  

3

2exp[ 0.5(( 2) / ( / 4)) ].
i

i i iF
x A A      



Adaptive Fuzzy Backstepping Control of MEMS Gyroscope Using Dynamic Sliding Mode Approach 

385 

where j
iF

 is the membership function of  

j
iF

x ( 1, 2,3, 4,5i  ; 1,2,3j  ), 
iA  is the amplitude of 

the reference trajectory, chosen as  1 1.2 4.17 6.132 . 

j

iF  are chosen as NB,NS,ZO, PS, PB, N  stands for 

negative, P positive, B big, M medium, S small and 

ZO zero. The membership functions of the control 

system are shown in Fig. 3. 

The simulation results are shown in Figures 4-9. 

Fig. 4 shows the actual output of MEMS gyroscope in 

,x y  axes. Fig. 5 depicts the tracking error between 

the actual output and the reference trajectory. It is 

shown that the trajectory of the control system can 

track the reference trajectory quickly. The control 

input using AFBCDSMC approach is displayed in 

Fig. 6. It is demonstrated that control input is smooth 

and stable in the region of -600 and 600.  

Fig. 7 shows the derivative of control input. It can 

be observed from Figures 6-7 that the dynamic sliding 

mode controller is effective in obtaining a smooth 

control input by transferring chattering to its first 

order derivative. Figures 8 and 9 depicts the fuzzy 

adaptive parameters 
1  and 

2 , illustrating that the 

fuzzy controller combined with adaptive control 

method can learn and adjust the fuzzy parameters 

adaptively. Therefore, the proposed AFBCDSMC 

approach for MEMS gyroscope can reduce the 

chattering and adapt to the changes of external 

disturbance and model parameters.  

  

Figure 3. The membership functions Figure 4. Trajectory tracking using AFBCDSMC approach 

  

Figure 5. Tracking error using AFBCDSMC approach Figure 6. Control input using AFBCDSMC approach  

  

Figure 7. The derivative of control input using 

AFBCDSMC approach 
Figure 8. The fuzzy adaptive parameter 1 using 

AFBCDSMC approach
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Figure 9. The fuzzy adaptive parameter 2  using 

AFBCDSMC approach 

5. Conclusions 

In this paper, AFBCDSMC approach has been 

successfully applied to MEMS gyroscope through 

theoretical analysis and numerical simulation. The 

method AFBCDSMC can online adjust the fuzzy 

system parameters to approximate the dynamic 

model of MEMS gyroscope. The derivative switching 

function is employed to differentiate classical sliding 

surface and transfer discontinuous terms to the first-

order derivative of the control input, thereby 

effectively reducing the chattering. Simulation 

studies are conducted to demonstrate the good 

performance of the proposed AFBCDSMC method in 

the presence of model uncertainties and external 

disturbances, showing the proposed method not only 

eliminates some of the fundamental limitations of the 

traditional sliding mode approach but also improves 

the tracking accuracy. In addition, the proposed 

approach can be extended to a general control system 

which can further demonstrate its potential in 

industry applications. 

Acknowledgments 

We would like to present our thanks to 

anonymous reviewers for their helpful suggestions. 

This work is partially supported by National Science 

Foundation of China under Grant No. 61374100; 

Natural Science Foundation of Jiangsu Province under 

Grant No. BK20131136. The Fundamental Research 

Funds for the Central Universities under Grant 

No. 2014B04014. 

References 

[1] J. Raman, E. Cretu, P. Rombouts, L. Weyten. A 

closed-loop digitally controlled MEMS gyroscope 

with unconstrained sigma-delta force-feedback. IEEE 

Sensors Journal, 2009, Vol. 9, No.3, 297-305. 

[2] C. Batur, T. Sreeramreddy, Q. Khasawneh. Sliding 

mode control of a simulated MEMS gyroscope, ISA 

Transactions, 2006, Vol. 45, No. 1, 99-108.  

[3] M. Chen, C. Chen, F. Yang. An LTR-observer- 

based dynamic sliding mode control for chattering 

reduction, Automatica, 2007, Vol. 43, No. 6,  

1111-1116. 

[4] A. Koshkouei, K. Burnham, A. Zinober. Dynamic 

sliding mode control design. IEE Proceedings-

Control Theory and Applications, 2005, Vol. 152, 

No. 4, 392396. 

[5] F. Lin, S. Chen, K. Shyu. Robust dynamic sliding-

mode control using adaptive RENN for magnetic 

levitation system. IEEE Trans. on Neural Networks, 

2009, Vol. 20, No. 6, 938-951. 

[6] H. Shieh, P. Huang. Trajectory tracking of 

piezoelectric positioning stages using a dynamic 

sliding-mode control. IEEE Trans. on Ultrasonics, 

Ferroelectrics and Frequency Control, 2006, Vol. 53, 

No. 10, 18721882. 

[7] M. Hojati, S. Gazor. Hybrid adaptive fuzzy 

identification and control of nonlinear systems. IEEE 

Trans. on Fuzzy Systems, 2002, Vol. 10, No. 2,  

198-210. 

[8] J. Fei, C. Batur. A novel adaptive sliding mode 

control with application to MEMS gyroscope. ISA 

Tranactions, 2009, Vol. 48, No. 1, 73-78. 

[9] R. Leland. Adaptive control of a MEMS gyroscope 

using Lyapunov methods. IEEE Trans. on Control 

Systems Technology, 2006, Vol. 14, No. 2, 278-283. 

[10] J. Fei, J. Zhou. Robust adaptive control of MEMS 

triaxial gyroscope using fuzzy compensator, IEEE 

Trans. on Systems, Man, and Cybernetics, Part B: 

Cybernetics, 2012, Vol. 42, No. 6, pp. 1599-1607. 

[11] C. Hwang, C. Chiang, Y. Yeh. Adaptive fuzzy 

hierarchical sliding-mode control for the trajectory 

tracking of uncertain underactuated nonlinear 

dynamic systems. IEEE Trans. on Fuzzy Systems, 

2014, Vol. 22, No. 2, 286-299. 

[12] H. Lee. Robust adaptive fuzzy control by 

backstepping for a class of MIMO nonlinear systems. 

IEEE Trans. on Fuzzy Systems, 2011, Vol. 19, No. 2, 

265-275. 

[13] D. Zhao, T. Zou, S. Li, Q. Zhu. Adaptive back-

stepping sliding mode control for leader-follower 

multi-agent systems. IET Control Theory & 

Applications, 2012, Vol. 6, No. 8, 1109-1117. 

[14] F. Lin, P. Shen, P. Hsu. Adaptive backstepping 

sliding mode control for linear induction motor drive. 

IEE Proceedings-Electric Power Application, 2002, 

Vol. 149, No. 3, 184-194. 

[15] C. Lin, H. Li. TSK fuzzy CMAC-based robust 

adaptive backstepping control for uncertain nonlinear 

systems. IEEE Trans. on Fuzzy Systems, 2012, 

Vol. 20, No. 6, 1147-1154. 

[16] R. Wai, M. Kuo, J. Lee. Design of cascade adaptive 

fuzzy sliding-mode control for nonlinear two-axis 

inverted-pendulum servomechanism. IEEE Trans. on 

Fuzzy Systems, 2008, Vol. 16, No. 5, 1232-1244. 

[17] C. Lin, C. Hsu. Adaptive fuzzy sliding-mode control 

for induction servomotor systems. IEEE Trans. on 

Energy Conversion, 2004, Vol. 19, No. 2, 362-368. 

[18] T. Ho, K. Ahn. Speed control of a hydraulic pressure 

coupling drive using an adaptive fuzzy sliding-mode 

control. IEEE/ASME Trans. on Mechatronics, 2012, 

Vol. 17, No. 5, 976-986. 

Received January 2015. 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-100

-50

0

50

time

th
ta

2
(1

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-150

-100

-50

0

50

time

th
ta

2
(2

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-150

-100

-50

0

50

time

th
ta

2
(3

)

http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean%3Dtrue%26queryText%3DAdaptive+control&refinements=4291944246&pageNumber=1&resultAction=REFINE
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=995121&refinements%3D4291944246%26matchBoolean%3Dtrue%26queryText%3DAdaptive+control
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=995121&refinements%3D4291944246%26matchBoolean%3Dtrue%26queryText%3DAdaptive+control

