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Abstract. Energy consumption of sensor networks are largely affected by task assignments to the nodes in the network.

In this paper, a task assignment method to improve the performance of wireless sensor networks, which exploits task de-

composition and transformation, is presented. The task assignment is formulated as an optimization problem by providing a

cost function incorporating the task decomposition and transformation at the same time. To show feasibility of our proposed

method, simulated annealing approach is adopted. We also provided a distributed task migration method to support run-time

of the given task on the network. While executing tasks in a node, if the remaining energy is less than pre-defined thresh-

old level, the tasks in the node will be migrated into a healthier neighbor node. The simulation results show that elaborate

assignments and task decomposition can significantly improve performance of sensor networks.
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1. Introduction

Many of the monitoring applications of Wireless

Sensor Networks (WSN) such as fire detection, traffic

monitoring and wildlife habitat monitoring often re-

quire aggregation (or fusion) tasks like average, sum-

mation, minimum and maximum. These aggregation

functions can be performed at the base station node

(or user node) after collecting data from all sensors or

at the network nodes. The latter is preferred because

it can save energy with less communications of which

cost is higher than that of computation in wireless net-

works [1].

Tasks of monitoring applications can be de-

scribed as DAGs (Directed Acyclic Graphs), or task

graphs which consist of a set of nodes (i.e. tasks)

and arcs representing data transmission paths. Energy

consumption of WSN is determined by the amount

of communications and computations which are de-

cided by the structures of task graphs and each task’s

assignment to nodes in the network. So far, many re-

searches have been done to optimize the tasks’ assign-

ment for improving WSN’s performance. However, to

our best knowledge, none of the previous works did

try to change or modify the structure of task graphs

even though it largely affects the performances of

WSN.

The assignment problem itself of the task graphs

to heterogeneous multi-processors system has been

investigated in the area of distributed systems [2].

However, in despite of the expensive communication

costs, the communication between nodes was not ac-

counted seriously. In Bonfils and Bonnet [3] and Ku-

mar et al. [4], they provided methods of task place-

ment; however, their methods do not modify the struc-

ture of the given task graphs for performance im-

provement. There have been intensive researches on

task assignments and scheduling for wireless sensor

networks [5–8]. In Yu and Prasanna [5], energy bal-

ancing through clustering of task graphs was pro-

posed; but, the authors focused on single hop net-

works and they also did not change the task graphs for

optimization. Instead of assignments of tasks, Sen-

soy et al. [8] proposed resource allocation with dis-

tributed agent-based approach, and network topology

was considered for task assignment and scheduling

in [6]. However, neither of the two approaches does

not modify task graphs for better performance. In [7],

Zhigang et. al mentioned that sensing, computing,

and communication tasks are decomposed into sub-

tasks; however, they did not present the methods used

for task decomposition and optimization. There is an

other area in which decomposition and transforma-

tion of graph have been used; for example, techniques

for high-level synthesis of VLSI (Very Large Scale

Integrated Circuits) and digital signal processor used
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the techniques [9] that we applied to task assignment

to WSN.

In many cases of WSN applications, there are

opportunities to improve performances by modifying

the structures of the given task graphs while maintain-

ing their functionalities. Therefore, we propose a way

to decompose given tasks into sub-tasks and trans-

form them for better performances in energy con-

sumption. For instance, a four-input ADD operator

can be decomposed into two smaller ADD operators

and transformed into a tree as shown in Fig. 1 (c).

Since the four-input ADD task was broken into two

sub-tasks, there are more flexibility in assigning the

task and the data transmissions could be done with

shorter communications. The decomposed and trans-

formed task graph must have the same functionality

with that of the original one. How to deal with the

task transformation and assignment at the same time

is not a straightforward problem. For this, we formu-

late the task assignment as an optimization problem

of which cost function includes energy consumption

and latency while taking into account the task de-

composition and transformations in the optimization

framework.

In addition to the task assignment via task de-

composition and transformation, we further investi-

gated the following. One of important characteristics

of WSN is that if some of nodes dies by depletion

of battery, then the entire network would no longer be

functional. Therefore, each node itself needs to decide

if tasks inside the node are better to be transferred

to other nodes to make the entire network survive

longer. Since this task migration procedure is hard to

be managed in central servers, there should be some

distributed mechanism to support run-time of sensor

networks. Even after depleting energy of some nodes

which conducted computation and/or communication

intensive jobs, there would be still healthy neighbor

nodes nearby that have enough energy to continue do-

ing the jobs. Then, if nodes of low energy could trans-

fer their tasks to other healthier nodes, the lifetime of

the network would be extended further. In Fig. 1 (d),

it shows the case that when one of nodes of ADD task

depletes its battery, the ADD task migrates to neigh-

bor (right one) node and continues the task.

The remainder of this paper is organized as fol-

lows. In section 2, we present the problem formula-

tion and Section 3 presents an implementation of pro-

posed task assignment and migration. Experimental

results using an illustrative example are shown in Sec-

tion 4. Then, we conclude in Section 5.

2. Problem Formulation

A task for sensor networks is represented as a

DAG (Directed Acyclic Graph) where nodes repre-

sent functions to be performed in the sensor nodes and

arcs represent data transmissions between the nodes.

One of the nodes serves as a user node which will

store the final results. A task graph G = (V,E) and a

deployment of sensor nodes S = {si|i = 1, 2, ..., n}
are given, where n is the number of deployed sen-

sor nodes. Let V = {vi|i = 1, 2, ...,m} be a set

of tasks where m is the number of tasks in the task

graph. There are arcs (u, v) ∈ E iff data are trans-

mitted from node u to node v. Then the task assign-

ment problem for wireless sensor networks can be

defined as following. The problem is to find a task

transformation (including decomposition) T : G →
G′ = (V ′, E′) and a mapping (or assignment) of

tasks A : V ′ → S to the sensor nodes such that the

total cost is minimized. The transformation T is a kind

of synthesis from decomposable tasks to transformed

task graphs. If the function of a task is commutative

and associative, such as the summation, maximum,

minimum and average, then the task can be decom-

posed into tree structures. This can be done by split-

ting an operator with large number of inputs into op-

erators with smaller number of inputs. This decom-

position process can be continued until the operator

becomes atomic. The task which cannot be decom-

posed nor transformed is called an atomic task in

this paper. Once the tasks are decomposed and trans-

formed into tree structures, there are more opportuni-

ties to minimize the total energy consumption thanks

to increased flexibility and shorter communications.

When the tasks of large number of inputs are decom-

posed into several sub tasks with less number of in-

puts, the distance of communication links between

tasks tend to be shorter than before. Then, there would

be more chances to optimize the total energy con-

sumption of the network by exploiting the fact that

energy consumption of communication is much ex-

pensive than that of computation. Multi-hops with

short-range transmissions are more energy efficient

than single hops with long-range transmissions.

3. Implementations

We implemented the task assignment problem

formulated in Section 2 with an optimization ap-

proach. For the simplicity of implementation, simu-

lated annealing framework is adopted. Simulated an-

nealing is a well-known iterative optimization method

for combinatorial optimization problems [10]. The

reason of choosing simulated annealing method is

that it is easy to implement and it can accommodate
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Figure 1. An Example of Task Decomposition, Transformation, and Migration: ADD Operator

various forms of combinations (e.g. modifications) in

the solution space. For implementing simulated an-

nealing, four things are required to be prepared: ini-

tial solution, cost function, neighborhood solutions,

and temperature scheduling [10]. As a conventional

way of temperature scheduling is used, cost function

and neighborhood solutions are mainly explained in

this section.

3.1. Cost Function

We propose a cost function that can accommo-

date decomposition, transformation, and assignment

of the task graphs at the same time. The cost function

should indicate which result is better when hopping

different combinations of task assignments from the

search space. We defined the cost function of trans-

formed task graph G′ and its assignment A as follows

in order to accommodate various trade-offs:

Cost(G′, A) =
∑

vi∈V ′

Ecomp(vi)

+
∑

(u,v)∈E′

Ecomm(u, v)

+ wE × max
vi∈V ′

{E(vi)}

+ wL × L(G′, A).

(1)

In Equation (1), Ecomp(vi) is the energy consumed

for computation inside the sensor node vi, Ecomm(u, v)
energy consumed at u for transmitting data to v,

E(vi) the energy consumption at sensor node vi, and

wE and wL are parameters to provide weights to max-

imum energy consumption and latency, respectively.

The L(G′, A) is the maximum time delay between

the user node to sensor nodes and L(G′, A) is de-

fined to be the time of the longest path from all sen-

sor nodes to the user node. It includes time for pro-

cessing at each node and transmission of data be-

tween nodes. The total cost is the summation of en-

ergy consumption for communication and computa-

tion for all tasks, and weighted summation of latency

and maximum energy consumption from all nodes.

The meanings of wE and wL are weights to adjust

the priorities of maximum energy consumption for

each node and maximum latency of the assignment,

respectively. Therefore, users just need to increase the

weight that they want to set higher priority. In gen-

eral, the life time of a network is the duration of the

alive time of the node that dies first. Therefore, the en-

ergy consumption of the node that consumes the most

is necessary to be minimized. Assigning large val-

ues to wE can force to minimize maxvi∈V ′{E(vi)}.

When maxvi∈V ′{E(vi)} is supposed to be mini-

mized, there would be many nodes which consume

just less energy than maxvi∈V ′(E(vi)). Therefore,

the total energy consumption also has been included

in the cost function. By adjusting wE and wL, users

can adjust the cost function to meet the requirements

of their applications.

All nodes are assumed to be time synchronized

and have control knobs for shutdown and transmis-

sion power control. This means that each node will

sleep when it is idle. Also, if the distance between

nodes is short, the transmission power can be adjusted

so as to reduce energy for communication. Another

assumption is that program code of task is portable

like Java and thus it can be ported to all the types of

node in the network. Energy consumption for com-

putation of task vi, Ecomp(vi), can be calculated as

follows.

Ecomp(i) = din(vi)×
N(vi)

f(A(vi))
× I(A(vi)) (2)

where din(vi) is the number of arcs coming to task vi
(in-degree), A(vi) the sensor node at which task vi is

currently assigned, N(vi) the number of CPU cycles

required to execute task vi, f(n) CPU frequency of

node n, and I(n) active CPU current per second in

node n. The term
N(vi)

f(A(vi))
means execution time of

the task vi. Thus, term
N(vi)

f(A(vi))
×I(A(vi)) represents

the energy consumption for computation of task vi at

the sensor node A(vi). Because each node receives
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Figure 2. Neighborhood Solutions for Simulated Annealing

data only once from each sender node at a time in

wireless networks, the task should be performed mul-

tiple times in order to receive multiple data from mul-

tiple senders; to accommodate this, din(vi) is multi-

plied. Likewise, energy consumption for communica-

tion is,

Ecomm(u, v) = Dw(u)× Etrans(A(u), A(v)) (3)

where (u, v) ∈ E′, Dw(u) is the word size of output

data from task u, Etrans(a, b) consumed energy to

transmit 1-bit from sensor node a to sensor node b.

Energy consumption to transmit data between

two nodes is dependent on the underlying routing

protocol implemented in the network layer. If a spe-

cific routing protocol is adopted, it is enough to mod-

ify Etrans(a, b) function according to the value of

expected energy consumption to transmit data over

routes between node a to b using that specific pro-

tocol. Although our method does not rely on any spe-

cific routing protocol, we assume that the routes of the

minimal energy consumption are used when assign-

ing tasks. The routes of minimal energy consumption

for all pair of nodes are obtained by Dijkstra short-

est path algorithm [11] in the beginning of the as-

signment program. For the nodes within radio ranges,

the following general formula is used to calculate en-

ergy consumption for data transmission between sen-

sor nodes a and b.

Etrans(a, b) = α+ β × d(a, b)γ (4)

Here, d(a, b) is the Euclidean distance between nodes

a and b. The terms α and β are dependent on the radio

hardware used in sensor nodes. The term γ represents

path loss coefficient which is normally from 2 to 4.

Since the cost function we propose can be modified

for various types of node, our task assignment frame-

work can be applied to various kinds of platforms.

3.2. Neighborhood Solutions

Simulated annealing is an iterative improve-

ment method which selectively adopts neighbor-

hoods of current solutions based on the probabili-

ties [10]. We devised four kinds of neighborhood so-

lutions that can cover task assignments, decompo-

sition, and transformations at the same time, which

are MOVE_TASK, SPLIT_TASK, MOVE_ARC and

MERGE_TASK. SPLIT_TASK, MOVE_ARC and

MERGE_TASK are used for task decomposition and

transformations. The four neighborhood solutions

and their brief explanations are shown in Fig. 2.

3.3. Distributed Task Migration

For run-time support of the sensor networks, a

distributed task migration algorithm is developed. Ba-

sically, nodes that have low energy level have respon-

sibilities to migrate their tasks to healthier neighbor

nodes before they die. To guarantee for the nodes

to have time before they die, the nodes start search-

ing neighbors for transferring task when they reach

a certain level of energy (e.g. 5% remaining energy).

Pseudo code of the algorithm is shown in Fig. 3. As

shown in Fig. 3 (a), the node that reached low energy

level initiates task migration process by sending RE-

QUEST_COST packets to its neighbors. Neighbors

will respond with the cost when the tasks would be

migrated to that node. After collecting all the costs

from neighbors, the node can determine which neigh-

bor node is the best for the tasks to be transferred.

If the neighbors receive REQUEST_COST packet,

they calculate cost when tasks are transferred to those

nodes by requesting cost to incoming and outgoing

tasks of the originator task. Thus, determining the

node for task migration is done in two phases.

4. Experimental Results

4.1. Experimental Setup

For performance evaluation of our proposed ap-

proach, we have implemented the task assignment

Task Assignment and Migration in Wireless Sensor Networks via Task Decomposition
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if energy level < Threshold begin

for each neighbor n begin

Send REQUEST_COST packet to node n

with the information of in/out tasks

end

Collect REPLY_COST packets

Decide the best neighbor based on costs

Transfer tasks to the chosen neighbor

end

(a) For the node of low energy level

if received REQUEST_COST packet begin

if the packet does not come from

the node of low energy level begin

reply REPLY_COST packet

exit

end

for each in/out task u begin

Send REQUEST_COST packet to node u

end

Collect REPLY_COST packets

Sum all the collected cost

Reply REPLY_COST packet

end

(b) For the node that received REQUEST_COST

packet

Figure 3. Task Migration Algorithm

Figure 4. Deployment of 100 Sensors and Its

Network Topology

with C language in Linux environment. Then we eval-

uated the distributed task migration method using

Sensorsim [12]. The Sensorsim is an enhanced ver-

sion of the ns-2 network simulator [13]. The aggre-

gation functions and distributed task migration algo-

rithm are implemented inside the sensor application

layer.

To generate a field of sensor network, 100 sen-

sor nodes are randomly deployed on 500m × 500m
area as shown in Fig. 4. Sensor node’s maximum ra-

dio range is 100m. The links between nodes represent

that two nodes are within radio range each other. This

means the communication is assumed to be symmet-

ric.

Sensor1   

MAX   

User   

Sensor2   Sensor3   Sensor20   

256 - bit   

256 - bit   

Figure 5. Task Graph of Maximum of 20 Nodes

Table 1. Parameters for Estimating Energy

Consumption

Item Value

α 100 nJ/bit

β 0.07 nJ/bit/m2

γ (path loss coefficient) 2

Batter depletion model linear

Active CPU current in a node 42.23 mA

Current for radio transmission 79.14 mA

Current for radio reception 41.41mA

The sensor node used in the experiment is WINS

node used in [14]. It equips 133MHz StrongARM

S1100 processor and 100m range radio. Fig. 1 shows

the parameters used in calculating energy consump-

tion during task assignment. The term α includes the

energy consumption in electronics part in radio, and

also includes the energy consumption of CPU when

forwarding packets.

4.2. Evaluation of Proposed Task Assignment

The example we used for evaluation of proposed

task assignment is to get a maximum value from 20

sensors out of 100 deployed sensors. The task graph is

shown in Fig. 5. Since MAX operator is commutative

and also associative, it can be decomposed and trans-

formed whenever needed. For experimental purpose,

20 sensors are randomly chosen and their locations

are fixed. The node at the left lower corner serves as a

user node. We compared the estimated energy con-

sumption for four cases: initial assignment, assign-

ment along minimal energy routes, optimized assign-

ment for minimal energy consumption (wE = 0 and

wL = 0), and optimized assignment for minimizing

maximum energy consumption nodes (wE = 10 and

wL = 0). Assignment results on the network topol-

ogy and the estimated energy consumption of each

option are shown in Fig. 6 and Table 2, respectively.
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(a) Initial Task Assignment without Task

Decomposition and Transformations

(b) Task Decomposition and Transformation

along Minimal Energy Routes

(c) Optimized Task Assignment for Minimal

Energy Consumption (wE = 0 and wL = 0)

(d) Optimized Task Assignment for Minimizing

Maximum Energy Node (wE = 10 and wL = 0)

Figure 6. Results of Task Assignments

Table 2. Estimated Energy Consumption [uJ] for Each Assignment Options

Part of Energy Consumption Initial Assignment
Assignment along Optimized Assignments

Minimal Energy Routes wE = 0 and wL = 0 wE = 10 and wL = 0

Computation 6.4 10.5 10.2 10.2

Communication 14224.6 6807.7 4883.0 5205.6

Maximum 1184.4 205.4 178.3 147.8

Total 14231.0 6818.2 4893.1 6693.2

At the initial assignment, the task graph was not de-

composed nor transformed. So, the MAX operations

are assigned to the user node as shown in Fig. 6 (a).

In this case of initial assignment, the user node col-

lects data from each sensors and the MAX opera-

tion is performed at the user node. As mentioned in

Section 3.1, communications between two nodes are

assumed to be done through minimal energy routes.
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Obviously, even though data transmissions were done

through minimal energy routes, this naive task assign-

ment would spend much more communication cost

because every sensor node needs to send data to the

user node through long routes, and there would be

heavy traffic near the user node.

It is easy to notice that if we decompose the

MAX operator and place them at every intermedi-

ate nodes which have more than one input arcs along

minimal energy routes, the traffic would be reduced.

This is a straightforward way of task decomposition

and transformation as shown in Fig. 6 (b). We adopted

this assignment as an initial task assignment (solu-

tion). However, this is still not the optimal task as-

signment for minimal energy consumption.

In Fig. 6 (c), the optimized task assignment for

minimal energy consumption by our framework is

shown. This result is obtained by setting wE and wL

to zero. So, the objective of cost function is to mini-

mize the total energy consumption of the entire net-

work. When any of the network nodes die, the entire

network may not work properly, therefore it is desir-

able for every node to have similar battery levels to

extend the network lifetime. This can be achieved by

minimizing the maximum of each node’s energy con-

sumption. If wE is increased, we can achieve this pur-

pose of minimizing the maximum energy consump-

tion among nodes. In Fig. 6 (d), we get an optimized

assignment to maximize the network lifetime by set-

ting wE = 10 and wL = 0.

As shown in Table 2, the total energy consump-

tion and nodes’ maximum energy consumption could

be significantly reduced by elaborate task assign-

ments. The amount of consumed energy is for one

sampling period, and it is assumed that dynamic shut-

down control for CPU and radio, and power control

for radio are available. The fourth column, “wE = 0
and wL = 0”, shows that the total energy consump-

tion was reduced by more than 65% and 28% from

that of the initial assignment and the straightforward

assignment, respectively. Moreover, as shown in the

last column of the table, “wE = 10 and wL = 0”, al-

though the total energy consumption increased a little

bit, but still the nodes’ maximum energy consumption

were reduced by more than 87% and 28% from those

of the initial assignment and straightforward assign-

ment, respectively.

4.3. Run-time Support: Distributed Task Migra-

tion

To demonstrate task migration feature, we made an

artificial example that has atomic tasks and the output

sizes are different according to the operations. The

task is “beamforming” to calculate line of bearing

U ser   

32 - bit   

Compress   Compress   Compress   Compress   Compress   Compress   

256 - bit   

1024 - bit   

BEAM   

1024 - bit   

FFT   FFT   FFT   FFT   FFT   FFT   

Sensor1   Sensor3   Sensor4   Sensor6   Sensor5   Sensor2   

Figure 7. Task Graph of Beamforming

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

sensor1

sensor2

sensor3

sensor4

sensor5

sensor6

fft1

fft2

fft3

fft4

fft5

fft6

beam

user

Figure 8. Optimized Assignments of Beamforming

(LOB) estimation from six sources. The task graph

is shown in Fig. 7. We put compress task to reduce

the output data size after FFT operations. Since beam-

forming operation (BEAM) and compress (COMP)

task are computation intensive, the nodes at which

BEAM and COMP are assigned would consume en-

ergy rapidly. The size of output data of sensors and

output of FFT operation are 1024-bit, and 256-bit and

32-bit after COMP and BEAM tasks, respectively. In

this case, all the tasks are atomic, and the sensors and

user node have fixed locations. Because of the big size

of the tasks, no more than two tasks can fit into a node.

With our energy-efficient task assignment method, we

get an optimized task assignment as shown in Fig. 8.

The distributed task migration algorithm in Fig. 3

is implemented in sensor application layer of Sensor-

sim. A node will start task migration process if the

energy of battery remains less than 5%. For the ini-

tial energy, we set 360 Joule for each node. The one

sample period of the application is 10 second. When

determining nodes for task migration, transmission

range is not adjusted because each node should be

able to communicate to any neighbors for cost calcu-

lations. In Fig. 9, the migration paths of BEAM task

and COMP task are depicted. The BEAM task is as-

346

H. Park, J. W. Lee



48   

71   

18   

7   
65   

47   

58   

49   

25   
36   

42   

8   

76   

4   

13   
54   

80   

10   

Figure 9. Migration Paths of BEAM and COMP

Task

signed to node 48 at first and the battery of node 48

is depleted at 97.5 mins. At 91 mis, node 48 reached

below of 5% of energy level and migration of tasks to

other node is required before its battery is entirely de-

pleted. BEAM task migrates from node 48 through

71, 7, 18, 65 47 as battery reaches threshold level

(5%). Since COMP task is also computation-intensive

task COMP tasks also migrate to their neighbor.

Thanks to task migration feature, user task can get in-

formation until 136.5 mins which is 40% longer time

than that without task migration feature. In Fig. 10,

remaining energy of the nodes that BEAM task goes

through are shown. As shown in Fig. 10, the battery

in node 48 is consumed the first, then the battery in

node 71 and node 7 and so on.

5. Conclusions

In this paper, task assignment for wireless sen-

sor networks for minimal energy consumption has

been presented. Task assignment should address not

only communication and computation trade-offs, but

it should also address task decomposition to enable

flexible task assignments to network deployments.

We propose a systematic approach to do task decom-

position and transformation in conjunction with min-

imization of the total energy consumption. The pro-

posed method formulates the problem in an optimiza-

tion framework and shows improvements in estima-

tion by more than 28% for total energy consump-

tion and maximum energy consumption in all nodes.

For run-time support, a distributed task migration has

been suggested. A network simulation with an illus-

trative example showed that distributed migration of

tasks at run-time can extended 40% longer the life-

time of network.

Figure 10. Remaining Energy in Nodes for Task

Migration of BEAM
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