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Abstract. This paper deals with the partial reconfiguration of the discrete control systems due to resource failures
using the structural redundancy of the global system model. The approach herein proposed introduces a new subclass
of Interpreted Petri Nets (IPN), named Interpreted Machines with Resources (IMR), allowing representing both the
behaviour of a system and the resource allocation. Based on this model, an efficient reconfiguration algorithm is
proposed; it is based on finding the set of all redundant sequences using alternative resources. The advantages of this
structural reconfiguration method are: (1) it provides minimal reconfiguration to the system control assuring the
properties of the original control system, (2) since the model includes resource allocation, it can be applied to a variety
of systems such as Business Processes, and FPGAs, among others, (3) it takes advantage of the implied features of
Petri net models, such as structural analysis and graphical visualization of the system and control. The method is
illustrated through a case study that deals with a manufacturing system controller, which includes both alternative

resources and operation sequences.

Keywords: Discrete Events, Control Systems, Reconfiguration, Redundancy, Petri nets.

1. Introduction

During the design of controllers for complex
discrete event processes, one must take into account
that some resources may not be available temporarily
due possible failures or scheduled maintenance
operations. Thus the controller must assure the process
operation by using alternative resources. This feature
can be achieved by executing a controller reconfigu-
ration procedure. A variety of discrete event processes
may require such a capability, namely manufacturing
systems, business processes, FPGAs, and embedded
systems. In such systems, alternative resources and
operation sequences can be found when there exists
some redundancy in the controller model; then a
reconfiguration of the controller can be done to keep
the system in operation. Although this work focuses
on reconfigurable discrete manufacturing systems, the
analysed techniques can be applied to other discrete
event processes.
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Reconfigurable Manufacturing Systems (RMS)
have been introduced by Koren et al. in [1, 2]; they are
defined as adaptable systems allowing adding,
removing or modifying processes, controllers,
structure of machines, to rapidly respond to evolving
technology besides the market demand. RMS includes
reconfigurable machines which provide flexibility in
material routing. The technique here introduced
provides support to analyse the redundancies given by
these reconfigurable machines and for sequencing and
coordination control for large RMS.

Reconfiguration techniques focusing mainly on
RMS have been introduced through varied perspec-
tives. Huang and Hsiung in [3] presented a framework
for wverification and estimation of dynamically
partially reconfigurable systems that translate UML
models into timed automata suitable for model
checking. Leitdo et al. in [4] presented a bio-inspired
multi-agent system for RMS; the authors review the
state of the art related to bio-inspired applications on
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manufacturing engineering problems; furthermore,
they justify the use of bio-inspired agents in RMS, and
enhance the need of more information about the
technique in order to use it. Wang and Koren in [5]
presented a scalable planning methodology for RMS
using an optimization algorithm based on genetic
algorithms such that the goal is minimizing the
economical part of the system reconfiguration.

Petri nets (PN) have been widely used first of all
for modelling and analysis of manufacturing systems
[6, 7, 8]. Therefore, a natural use for PN was for the
designing and implementation of the control for the
automation of manufacturing systems [9, 10, 11, 12,
13, 14, 15]. There are many advantages on the use of
PN for RMS, some of them are due to the inherent
properties of PN such as graphical visualization and
the mathematical model, i.e. an intuitive model
besides the strong mathematical basis.

The approach herein proposed uses a PN subclass
named Interpreted Machines with Resources (IMR) to
represent both, production sequences and how
resources are assigned to tasks along the production
sequences. Based on the structure of a PN model, this
work studies functional redundancies, e.g. different
ways to obtain the same product, or different tasks
sequences to meet the same goal. The need to change
the current executing sequence can be due mainly to
the unavailability of a resource r,. In such a case, the

redundancies are used to choose a new sequence
(named recovery or alternative sequence) from those
included in the production sequences to produce the
same products which avoid the use of resource ;.

This work presents the controller reconfigurability
property and characterizes it using the information
given by the redundancies and the production
sequences. When the system is reconfigurable, the
recovery sequence can be computed to partially
modify the controller, avoiding the use of the damage
resource, whilst the production goals are reached. The
advantages of this structural reconfiguration technique
for the control systems based on Petri nets are: (1) the
reconfiguration is minimal and preserves the
properties of the initial structural control system, (2)
since the model comprises resources allocation, it can
be applied to other systems such as Business
Processing, FPGAs, Embedded Systems, among
others, (3) takes advantage of the implied features of
Petri net models, such as structural analysis and
graphical visualization of the system and control.

The paper is organized as follows. Section 2
presents the Interpreted PN (IPN ) basic concepts.
Section 3 reviews the Output Regulation Control
( ORC ) basic notions. Section4 introduces the
proposed definition and characterization of redun-
dancies in a PN structure. Section 5 presents the
proposed definition and characterization of the
reconfigurability — property and the proposed
reconfiguration  controller algorithm.  Section 6
presents an illustrative example showing the use and
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advantages of this proposed technique. Finally, the
conclusions and future work are presented.

2. Background on Interpreted Petri nets

This section overviews the Interpreted Petri Net
(IPN) basic concepts and notation used through this
paper. First, the basic Petri nets notions are
introduced.

2.1. Petri nets

Definition 1. An ordinary Petri Net structure G is a

bipartite digraph represented by the 4-

tuple G=(P,T,1,0) where:
P={p, P, P} s a finite set of
vertices named places,
T={,t,,..t,} is a finite set of
vertices named transitions,
1:PxT —>Z" {0} is a function
representing the arcs going from
places to transitions,
O:PxT —»Z"U{0} is a function
representing the arcs going from

transitions to places.

Pictorially, places are represented by circles,
transitions are represented by rectangles, and arcs are
depicted as arrows. The symbol °*x, xePuUT,
denotes the set of all nodes Y such that |(x,y)=0
and x* ,xePuUT, denotes the set of all nodes Y

such that O(x,y)=0 . Let X cPUT, then °X
denotes the set of all nodes Y such that |(x,y)=0

for every xe X and X ° denotes the set of all nodes y
such that O(x, y) =0 for every x e X.

The pre-incidence of G
C™ =[c;1=1(p;.t;); the post-incidence matrix of G

matrix is
is C* = [ci’Jf] = O(pi,tj); the incidence matrix of G is

C=C*-C~ . The marking function M:P—Z*
represents the number of tokens (depicted as dots)
residing inside each place, where Z* represents the
set of non-negative integers.

Definition 2. A Petri Net system or Petri Net (PN) is

the pair (G,M,), where G is a PN
structure and M o IS the initial token

distribution over places.

Example 1. Fig. 2 (@) shows a Petri net structure

where:
* P ={p1’ p2""' p8}’
*T={t.t,....t.}
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Figure 1. (a) Petri net example; (b) Interpreted Petri net example

* The initial marking M =1 0 0 1 0 0 0 Of.

2.2. Petri net structures

Definition 3.

Definition 4.

Definition 5.

Definition 6.

A P-invariant Y (T-invariantX ) of a
PN is a rational-valued solution of
equation Y'C=0 (CX =0) A4 P-
semiflow Y (T-semiflowX) of a PN is a
non-negative integer solution of the
equation Y'C=0 (CX =0). 4 basis
of minimal T-semiflows (P-semiflows)
of a PN structure G is denoted t(G)
(p(G))-

The support of the vector Z
representing transitions or places,
denoted as ||Z||, is defined as the set

Il Z = {z [ z(i) = O}

The support of a sequence g, denoted
as (o) , is defined as the set
(o) ={t,t;,...t o =tt; ..t}

Let G be a PN structure. The induced
subnet given by X, X — P, denoted as
[X] is a PN structure described by
[X]=(X,T',1',0) where I' | and
0 cO that 1 :XxT Nl
O :XxT' N0 and T = “XnX"
Similarly, the induced subnet given by

such

Definition 7.

Definition 8.

Y, YT, denoted as [Y] is a PN

structure described by
[Y]:(P',Y,I',O') where | | and
O cO such that 1 :P xYnl,

O :P'xYNO and P = *YY".
Let G =(R,T,1,0) and G,=
(R,,T,,1,,0,) be two PN structures.
The union of G, and G,, denoted as
G, UG,, is performed as: G, UG, =
(PUPR,T,UT,,1,uUl,,0 UO0,).

A PN system (G,M,) is a state
if ‘tl=1=1" fOl"

every transition 1. Let G be a PN
structure. A selection place p, e P

machine (SM)

holds that ‘pk‘ >1. An attribution

place p, e P holds that

‘p‘>1.

2.3. Interpreted Petri nets

An Interpreted Petri Net (IPN) [16] is a PN
system including input and output information.

Definition 9.

An Interpreted Petri Net IPN is the
pair (Q,Mo) such that Q=(G,%,A,p)
where:

* G isa PN structure.
* X={a,a,,.,a,} is the input alphabet of the net,

where ¢; is an input symbol.

* A:T—>Xu{s} is a labelling function of
transitions with the following constraint:
VLt eT, jzk if vp,

I(pi!tj): I1(pi,t) =0

and both A(tj )

Alt) # &, then /1(tj) # A(t,). In this case &

represents an internal system event.
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* @ is a XN matrix, such that y =g¢M, is
mapping the marking M, into the q—dimensiond
observation vector. A column g(e,i) is the

elementary vector ey, if place p; has associated the
sensor place h, or the null vector if p; has no
associated sensor. In this case, an elementary
vector ey, is the vector q—dimensiond with all its

entries equal to zero, except entry h, that it is equal
to 1. A null vector has all its entries equal to zero.

A transition t; eT of an IPN is enabled at
marking M, if vp; € P, Mk(pi)gl(pi,tj), An
enabled transition t;, labeled with a symbol other than
& (empty or silent) symbol, must be fired when At))
is activated. An enabled transition t;, labeled with a
& symbol can be fired. When an enabled transition t;

is fired in a marking M, then a new marking M, ; is
t.

. . L
reached. This fact is represented as M, > M, ,;

Miet4

can be computed using the dynamic part of the state
equation:

M =M +Coy,
Yi = oM,

where v (j)=1 (since t; was fired) and v, (i) =0,

)

i # J; and y is the k — th observation vector of the
IPN The reachability set R(Q, M,) of an IPN is the

set of all possible reachable markings from M, firing
only enabled transitions. An [PN is safe if the
maximum number of tokens residing inside each place
in any reachable marking is equal to one.

According to definition of functions A and ¢,
transitions and places of an IPN can be classified as
follows.

A transition teT is said to be manipulated, if
A(tj);e‘g, and nonmanipulated, otherwise. A place

p, € P is said to be measurable if the i — th column
vector of @ is not null, i.e., ¢(.,i) # 0; otherwise, p;

1s nonmeasurable.

Example 2. Fig. 2 (b) shows an IPN with:
* PN structure G and initial marking M, as in
Example 1;

* ¥={u,u,,u,u,} assigned to t,t,t,t by 4
function, respectively, otherwise &£ is assigned;
1 00000O0O0TO

represented by

o O -
o O o

0
1
0

o O O

0
0
1

S

1]
» o o
o o o
o o

symbols A B,C,D.
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* By A1 function, t,t,,t,,t; are manipulable
transitions; and p p, p, p, are measurable
places, by @ .

¢ Inthenet, t; and t, are both enabled at M. When
the input symbol u, is given or activated in the
system, then t, must be fired. When u, is given,

then t, must be fired.

2.4. PN and IPN properties

Definition 11. Given a N=(G,M,) . and its

reachability set R(G, M,) ., a place
peP B —bounded if
VM eR(G,M,),M(p)<B, where B
is a positive integer. A PN is
B—bounded if each place in P is
B—bounded. If B = 1, the PN is said
to be safe. Gis structurally bounded if

G is bounded given any finite initial
marking My [17].

is

Definition 12. A transition t is live if at any marking

M e R(G,M,)., there is a sequence of

transitions whose firing reaches a
marking that enables t. A PN is live if
every transition in it is live. A PN is
structurally live if there is a finite
initial marking that makes the net live

[17].

Definition 13. A firing transition sequence of an IPN

(Q,M,) is a transition sequence

o=ttt such that
i Y t

M;—>M,—>. M, —> The  set

L(Q,M,) of all firing transition

sequences is called the firing language

of (Q,M,) defined as
LQ,My) ={o|o =tt;..t,... A
& 4 ty
MyoM,—>.M,—>..}
Definition 14. Let 1 (Q,M,) be the language
generated by  (Q,M,) Then
L.(@QM,)={w|3v,z  such  that

vaz eL(Q,M,), V,Z may be empty
strings}.

Let (Q, MO) be IPN
K cL(Q,M,) the language of the spe-

cification. The language K is con-
trollable with respect to a L(Q,M o) if

Definition 15. an and
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Vt, €Ty, (e, At)=¢) holds that
Kt, NL(Q,M,) =K.

Definition 16. Let 5= tit ... be a firing transition
sequence. The  Parikh  vector
G'T _>( +)”‘ of maps every teT to the
number of occurrences of 1 in o.

3. Output Regulation Control Background

3.1. Output regulation control

The controller reconfiguration herein used for fault
recovery is based on the output regulation control
(ORC) approach for fully observable system states
presented in [18, 19]. The ORC scheme is shown in
Fig. 2. In this approach, the system is modelled by an
IPN whose output is forced to track the output
language (the sequence of @M, output symbols) of

other IPN modelling the specification, named
reference. The input control U, given to the system is

computed by the controller H taking into account the
marking of both, the reference and the system model.
The objective of the ORC is to keep the output error
(the difference between the system and reference

outputs) €, equal to zero.

Definition 17. A system model (Q,MO) is an IPN

represented by the state equation (1). A
specification or reference model

(Q,Mo) is a live and boundedIPN ,

whose structure is a SM in which all
transitions are manipulable and all
places are measurable. The state
equation of a reference model is:

< {Mi+i:|\fitc'zi @)
yi = o(M;)
where C is the incidence matrix of Q; ¢ is the

output function of Q.

Definition 18. Let (Q,M,) be the IPN model of the

system to be controlled. Let ((':),MO)

be the IPN model of the specification .
The ORC problem for fully observable
system states consists in finding out a
partial function (controller)

H:R(Q,My)xR(Q,M)xT =L, (Q,M,)

where H(TT(M, ) M,£) = o) such
that @, is controllable in (Q,TI(M,)),
e, =p(M,)-p(M,) =0,

- % - ook
(M, ,)>II(M,), and M, ; > M,.

Reference Inputs i

A(v ) | Reference Model Vi
D . =
My = My + Coy, L
/ i

b PR S -
System Inputs | =& =0
[ ™ \_,__/
System Model @
| . J
Micer = My + City, b
Controller #
le
H(My, My 5

Figure 2. The ORC Architecture

The following theorem presented in [18]
characterizes when the ORC problem has a solution
considering the previous definitions.

Theorem 1. Let (Q,MO) and (Q,MO) be two IPNs

represented by Equations (1), (2),
respectively. Suppose that there exists a
linear function

I1:R(Q,M,) = R(Q,M,), such that:
1. TIM, =M,;

2. Vi eT,

m

dw, el ;4 (Q,H(M j)) where
M.C-fn=C-0n and {w,} is controllable
with respect to (Q,H(Mj)) , with
{o,}cLQII(M)));

3. gr=gp 1L

Then, the ORC problem has one solution.

Notice that the ORC is a supervisory like
controller, where the specification and the system are
described at different abstraction levels. Function I1
translates the specification states into system states
(making both models comparable with each other).
The second condition of Theorem 3.1 states the
controllability of system sequences. Finally, the third
condition establishes that the outputs generated by
both, the system and the reference, must be equal.

3.2. Solving the ORC problem

The ORC problem can be solved using the
following linear programming problem (LPP) derived
from Theorem 1. The problem is reduced to find out
the function IT and the Parikh vectors @, in order to

obtain the controllerH.

Algorithm 1: Compute T1 and w.

Input: (Q.M,). (@M,

Output: T1 and w matrices.
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min ZH +‘i§:‘" (n)
S.a. m
(C1) M, = M,
(C2) Vi, eT.M-Ctn=Ca,
(C3) @r 11 = ¢

Notice that every k —th column in IT matrix
represents the marking M, in (Q,M,), which is

related with the marking Mk in (Q,MO) by II

function. In the same way, every i—th column in w
matrix represents the Parikh vector @ for the

sequence @; in (Q,M,), which is associated to the
execution of 'fl in (Q, MO) by w.

3.3. Compute the controller H

In order to obtain the controller H based on IT and
@, which are the outputs of the LPP in Algorithm 1,
Section 3.2, use the following algorithm.

Algorithm 2: Compute the Controller H.
Input: (Q, MO), (Q, MO)

Output: T1 and w matrices.

1. For every f. in f , there exist one sequence o,

t .

given by Parikh vector @, where @ =ttt

Moreover, there exists markings M, , M, +1, M,
o6 &

M,,,, such that M, >M,; and M, >M,;, ie.

ta e ty

M —>M,—>M,. M Kol -
2. Then, compute H for every fl in T as follows:

(a) Let Mk—I>Mk+1 , where @ =t_.t,,..,t,

Then,
H(Mk'MkJrl'/l tv.)): Alt.)
H(Mk” M1 4 t‘.)): Alt,)
H(M, M, 5, 2(5 )= A(2,)
H(M, 0 M, 2(6))=

4. Redundancies in System Models

4.1 The system modelling

An IPN model which considers the resources in
the system is presented in the following example.

Example 3. Consider 5 types of machines. The
first type of machine, denoted asZ, is able to perform
sawing, drilling and routing of the raw material only

292

in one site. Therefore, there is no need to move the
material between different stations. The second type of
machine, named Z,, is a saw-drill double-function
machine, which is able to cut and drill the raw
material in the same site. The third type, denoted as
Z3, is an auto-feed flat-panel cutting machine, which
is able to cut out raw material in different sizes. Other
type of machine, named Z,, is a one-ranged drilling
machine. Finally, the last type, denoted as Zs, is a
pneumatic spindle rise router.

Fig. 3 depicts a layout of the system. The overall
production line is arranged as two symmetric sections,
which are Section 1 and Section 2. Section 1 is
composed by three lines named Line 1, Line 2 and
Line 3. Line 1 is composed by one multi-function
machine of type Z; called M1. Line 2 is composed by
two machines, one of type Z, called M2, and one of
type Zs called M3 . Some conveyors are placed
between machines in order to move the material from
one machine to another. Finally, Line 3 is formed by
three machines, one of type Z5 called M4, one of type
Z, called M5, and one of type Zs called M6. As in
Line 2, these machines are connected by means of two
Conveyors.

Moreover, the three lines are interconnected by
directional conveyors that are represented as black

arrows with the selection symbol & . This set of
conveyors allows to selectively change the flow of the
raw material among the lines, besides, it is the
mechanism used by the controller to perform control
actions on the plant.

As can be seen from description of the capabilities
of the different machines, the three lines are able to
perform the same job over the incoming raw material.
For example, Line 3, which is composed by machines
M10, M11, and M12 of type Z3, Z,, and Zs ,
respectively, is able to perform the cutting, the drilling
and the routing of raw material. These operations can
also be performed by the multiple-function machine
M1 in Line 1, which is of type Z;. Additionally, Line 2
is able to perform the same three operations with the
combination of M1 and M2.

The system includes a set of three vertical
conveyors interconnecting equivalent lines in the
different sections. This allows the movement of
material from Section 1 to Section 2 and the opposite.
The overall system layout gives a great flexibility in
the functionality of the whole system, e.g., in case of a
failure of one machine, this one can be replaced by at
least one different machine, in order to continue with
the same production plan.

The layout is complemented by two final
conveyors that collect the finished parts from the lines
and put them into the inventory of final product. As
mentioned before, Section 2 is a mirror of Section 1.

One simple methodology to model systems with
resources is to divide the modelling in two stages: 1)
The process sequences and 2) The available resources.
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Stage 1. Each task 7, , as part of the production

sequence S, is represented by a PN that is formed by

two transitions t ,t;‘, and one place p," ; transition
t; (t'.‘) represents the start (ending) of task 7, . Two

arcs, (tI , pk ) and ( plff ,t;f ), must be added to the PN.
In order to obtain the model of the production
sequence S, the final transition t:f of task 7, must be

k+1
"

merged with the initial transition of task 7, .;

where T immediately follows the task T, in

The global model of the
is obtained by merging all

production sequence S, .

production sequence Sqm
places pir that represent the same task 7, , from all

the different production sequences. Stage 2. All the
resources I, (machines, robots, conveyors, etc.)

represented by places p, and arcs ( p,,t¢).( t;‘, p,)

should be joined to the Sqm> if task 7, is performed by

resource 1, . The result is the global process plan

model Ppm

Fig. 4 depicts a Petri Net model that represents the
production system. The place p,3; represents the
availability of raw material in the inventory, and is
also the start point of the production process. Notice
that p,5 does not represent the amount of raw material
but only that there exists raw material to be processed.
The place p,, represents the final product inventory,
and is the end of the production process. Again,
pasdoes not represent the amount of final products but
only that a final product has been finished. The
transition t,5 that connects places p,, and p,3 has no
physical meaning. Nevertheless, it is fired when the
system has produced a final product, in order to restart
the production process.

Figure 3. System Layout

In Section 1, Line 1 is formed by places
P, Pys Py Pyg @nd transitions t,t,,t,.. The place p;q
represents the availability of machine M1, and place
p, represents that M1 is performing the tasks over the
raw material. Line 2 is formed by places
Pss Ps, Pss P;, Py @nd  transitions  t,,t,,t,,t, The
machines M2 and M3, available in this line, are
represented by places p;; andp;g, respectively. The
Line 3 is formed by places py, py, Ppy» Pios Piss Puss Pis
and transitions t,,t;,t,,t,,t;,,t,. The machines M4,

M5 and M6, available in the line, are represented by
places pi9, P20 and p,q, respectively. The transitions
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t5,t,, b, b, 1, Tepresent the interconnection of the

lines in Section 1 by directional conveyors. Finally,
transitions tagitio tastyn s tigstyy > TEPTESENE the

conveyors that interconnect the lines in Section 1 with
their equivalent lines in Section 2. The subnet that
represents Section 2, is symmetrically arranged to
Section 1, as shown in the figure.

In the net, there exist non-manipulated transitions
which are guided by the internal dynamic of the
system. For example, all the transitions that represent
the end of the tasks performed by the machines are
non-manipulated. This makes sense since the end of
these tasks depend on the dynamics of each machine,
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which may vary over the time. On the other hand, all
the places are considered measurable, which in this
case, means that each stage of the production system
includes a sensor.

The incidence matrix, initial marking and output
function that represent the system model are depicted
in Fig. 4.1.

The requirement for the plant is simple, and is
represented by the net of Fig. 7. This net is interpreted
as follows: when a token is moved from place pl
top2, by the firing of transitiont1, then it means that a

final product must be produced by the system. The
firing of t2 represents that the system is ready for the
next operation.

4.2. Petri nets with resource places

The model presented above is a special class
ofPN, where the S, is a state machine and the B,
introduces some extra places. The resulting PN class
is named State Machines with Resource places (SMR).
Next definition formalizes the SMR class of nets.

Secnan 1 iy
By
o= - ,f_ _3,\_ ...........
(P
R A Sy

Figure 4. Petri Net Model of the Manufacturing System

Definition 19. A State Machine with Resource Places
(SMR) is a PN system (G, MO)

where:
1. P=PRUP™  and PRAP“™W =g , where
PR is the set of places representing
resources.

2. [PNR] is a family of P —components which
are live and safe (SM).

3. Every p, e P% holds that:

[leftmargin=1.2cm]
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a) "("p,)NP=(p;) NP =, ie., every input
place to the input transitions of p,. is also an
output place to the output transitions from p,

b) *p, np, "=, ie., input transitions for * p,
are not output transitions of p-.
C) M O( pr) > 0

4. ij where ‘pj then

if tJ S pJ >
,1(tj) # ¢, 1.e., all transitions that are outputs

of selection places must be manipulables.
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Mi,M; e R(G,M,) be two reachable
markings in the net. The transition
sequence o, s redundant to o, and
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Figure 5. System Model: Incidence Matrix, Initial Marking and Output Symbols

¢=

Notice that the SMR (G,MO) has the same T-
invariants as its underlying SM. An PN (Q,M,) ,
whose structure G is a SMR, is named Interpreted

State Machine with Resource places (IMR).

o, is redundant to o, from M, to

%y

M;. if M; >M; and M; >M and

Tx

4.3. Redundancies

& and P,NP, =2

XnY

The flexibility given by resource redundancy, can
be exploited to cope with failures in its components,

downtime for maintenance, or just to change the

y

When a transition sequence o, is redundant to o
from a marking M, to a marking M; the difference

Informally, two sequences are

redundant with each other, in terms of a Petri net, if

process sequence.

is a T-invariant

c,—0,

of their Parikh vectors

they evolve from the same initial marking to the same
final marking, and during their evolution they do not

resulting from linear combination of semipositive T-

invariants. This fact is stated below.

mark the same places. A formal definition is given

below.

Proposition 1. Let (N,MO) be a live PN. If o is

Definition 20. Let (G, MO) be a live and safe SM. Let

from M, to Mj, then

redundant to o

o, —

y

o, 0, €Ly(Q,M,) be two fireable

T-invariant.

the PN. Let

in

(P X, 1,,0,)

sequences

[X]
[¥]

Proof. Since o, is redundant to o, from M, to Mj,

and

%y

and Mi—>Mj

X

O

Mi—>Mj

(P,Y,Iy,Oy) be the induced

then

holds that

it

subnets given by X :<O-x> and

M;+C-G,=M;+C-G,. Thus C.G,=C-G,,

<o-y>, i.e. induced by the Parikh

Y =

. Let

y

vectors of sequences o, and ¢
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is, C-(&X —&y)z 0 . Therefore (&X
invariant.

However, not all T-invariants are formed from
redundant sequences. Then, in general, they cannot be
computed from the PN structure. Fortunately, if the
PN is an SMR (or IMR model), then redundancies can
be computed from the PN structure, leading to
polynomial algorithms to compute such redundancies.
Below this observation is formalized.

Definition 21. Let (G, MO) be a live and safe SM. Let
7(G) be a basis of T-semiflows of the

—&y) is a T-

SM . Let T € 7(G). Let
[HTiH]:(Pi' zif, 1;,0) and
[HTJ'H]: (P, |[z5[1,.0,) be the induced

subnets from T-semiflows r,, T;, resp-
ectively. The set of redundancy vectors
is Rds(G) ={Rds, |Rds, =7, —7,. for
all j>1i, such that P NP, includes

Just one selection place p, and one

attribution place p, in [HTIH]\JIHTJHJ}

The algebraic T-semiflow basis in a SM can be
determined using d different T-covertures, where d is
the dimension of the T-invariant basis. Now, the
following algorithm provides one way to find out the
set of redundancy vectors.

Algorithm 3: Computation of set Rds(G)

Inputs: t(G), a basis of minimal T-semiflows.
Outputs: Rds(G), set of redundancy vectors.

1. Let Rds(G) = %.

2. Compute the t — components for every pair
as follows (see Definition 2.2):

Tix T
T =), P= "TAT, 1,=PxTAl,
0 =PRxT,nO and T =[] P =
T, AT, 1 =P xT;nl, 0, =P, xT;nO.
Compute P, =P NP, and P, =R UP,.
4 I BynX= {pk} and P;NY = {pl }r then
Rds(G) < Rds(G) w{z, —7;} where:
a) X ={p, | p, °ﬁ(Ti UT1)>1 and p, € Puij}
b)Y ={p,| "p, m(Ti UTJ)>1 and p, e Puij}
Notice that previous algorithm has polynomial
computational complexity. Now, from Rds(G) all the
redundancies in the /RM model are obtained. Let us
first introduce the following notation. X* and X~

denote the positive and negative entries of the vector
X, respectively, as follows:

X*[i]:{l' ifX[i]=1

0, otherwise
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X[i]:{l’ ifX[i]= -1

0, otherwise

The next proposition exploits the information from
the vectors X and X~ of X € Rds(G) for obtaining
the redundancies of the IMR.

Proposition 2. Let (G, MO) be a live and safe SM. Let
X € Rds(G) such that 5 = X*; Then

there exist fireable redundant sequences o e

G, =X .
-
Proof. Since G,—G, eRds(G) and Rds(G) is

generated by some linear combinations (positive and
negative) of T-semiflows, then G, _5y is a T-
invariant; i.e.
cle,-4,)=0. 3)
Moreover ot and &yﬂ T where 7;,7; are T-

semiflows. Since the SM is live and bounded, the T-
semiflows 7;,7; are obtained from fireable sequences

a, and a;, respectively. Thus, the projections of ¢,
and a; over the transitions included in &, and 5—y
lead to the fireable sequences o, and o,

Thus, from equation (3) it is obtained
M,~M, +C(6,~5,)=0, or M,+Cs, =M, +
Ix %y
Cé, =M,. Then M; > M, and M; > M.

Since the vectors in Rds(G) obtained from the
difference of two T-semiflows where the common
transitions to both T-semiflows are eliminated, and in
SMthe transitions have only one output or input place,

then M&XH] and M&yHJ do not have common transitions

nor places. Thus, they meet the redundancy definition.
Proposition 2 leads to the following algorithm to
compute the fireable sequences o, and o, from X*

and X~ of a redundancy vector X € Rds(G)

Algorithm 4:  Compute the fireable sequences a, and
gy from X € Rds(G)
Inputs: (G,M,) with G=(P,T,1,0); X", X".
Outputs: 0,,0,

1. Build the induced subnets for X* and X~ as
follows (see Definition 2.2 ): T = Hx +

P="T,nT ., I.=PxT,nl , O, =
P xT,MO and T, :HX’ , P, ="T,NnT,",
I, =P,xT,Nl, O, =P,xT,NO.

2. Construct the sequences 0,,0y using the

structures given by (PX,TX, IX,OX) and
(Ty’Py'Iy’Oy)
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Notice that the complexity of previous algorithm is
polynomial. Thus, the computation of the redun-
dancies can be performed in polynomial time.

5. Reconfigurable Controllers

This section presents an extension to the ORC
scheme to include fault recovery capabilities. It
introduces the concept of controller reconfiguration
and its characterization. In addition, it presents a
procedure to perform the controller reconfiguration in
a faulty scenario, based on the original controllerH.

5.1. Reconfigurable ORC Scheme

In order to properly cope with the fault recovery
problem, two modules are added to the ORC scheme
shown in Fig. 2. The ORC with Reconfiguration
scheme is showed in Fig. 6. When a fault occurs in the
system, the Diagnoser D detects the error. Then,
Dsends the error information included in the faulty
vector K (defined below) to the Reconfigurer E ,

which indicates
resources.

the places representing faulty

Definition 22. The faulty resource vector K of a
system model (Q,M,) is a vector of

size ‘P‘ such that:

- | |bs if ps is a faulty place
Klil = { 0, otherwise

Vie [1, P
diagnosed in fault by D.

], where a faulty place represents a resource

Definition 23. The faulty transitions vector F of a
system model (Q,M,) is a vector of

size ‘T‘ such that:

L, ift; € *p; Up; ® where p; is a faulty place
Flil= .

s 0, otherwise
Viell,T

called a faulty transition.

], where a transition t; such that F[i] = 1 is

Reference Inputs .

Awy)

Reference Madel 6
L ﬁk-n . ﬂ_'frr""f'tf:k

Y
Reference Outputs

l?x

. P -
Syatem Inputs | e, =0
T ™ -
Svstem Model ) . ¥,
My = My + Cil, System Outputs
s
-
Controller H |
SRR
H(My, My, %)
) T [
Reconfigurer £
e !

Faulty Resources K

-

Diagnoser [ }‘7

4

Figure 6. The ORC scheme with reconfiguration

5.2. Reconfiguration of the Controller

This section describes the controller reconfigu-
ration technique, which is based on system redundan-
cies. The reconfigurability property is defined and
characterized, and then a procedure for partial
reconfiguration is derived.
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Definition 24. Let (Q,M,) be a live IMR system

model of fault-free behaviour. Let
(Q,M,) be a reference model. Let H
be the controller solution for the ORC
defined by Q and Q. Let F be the
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Jaulty transitions vector and ||F| its

support. The controller H is said to be
reconfigurable with respect to F if
Vt, €||F| and for all sequence o
including t,, where aoy e Im(H),

there exist a controllable sequence
o el iy (Q, Mo) redundant to o such

that <o-'>m ‘FH = .

In the following, the characterization of the fault
recovery problem for an ORC scheme with
reconfiguration of the controller is presented.

Theorem 2. Let (Q,MO) be a live IMR system

model. Let (Q,MO) be a reference

model. Let H be the controller given for
the function 11 and the Parikh vectors
@, solution of the ORC problem for Q

and Q. Let F be the faulty transitions

vector and HFH its support.

If the controller H is Reconfigurable with
respect to F then the fault recovery problem has a
solution.

Proof. Let H (IIM p M W)=, such  that
<a)k>ﬁHFH;t®, then there exists @ '=aff y such
that @ =apy and <a)k'>mHFH=®, where ' is
redundant to 3. Therefore, C(f-£)=0 by

Table 1. Function [T

Proposition 4.3.  Thus C(a,-@')=0, and then
C-® =C-@, because (&, -@')=(B-F). Since

f) ) _ >
M, M, and TV, >TIM,, then M =M +C-f,
and HMi:HMﬁC'@k . By Theorem 3.1,

M. = Mi +C .tjk is equivalent under the function IT to

M, =TIM +TIC-t«. As C.4 =C-@'. then
M, =TIM, +C - &, is equivalent to

Hmi :Hl\ﬁj +C-&,'. Therefore, Hé.tjk =C-&,' - Fur-

thermore, ¢,' is controllable since E[)k was controlla-
ble and S is controllable. Thus, Condition 2 of the
Theorem 3.1 is satisfied. Since Conditions 1 and 3
hold as well, then the controller H " defined as:

0. o) n|F|=2:

H.(Hmillmi'fk):{ .
@', otherwise

solves the ORC.
The proof of the previous theorem states that the
specified behaviour by the reference (Q.MO) still

holds. At the same time, the use of faulty resources
(faulty transitions) is avoided.

5.3. Reconfiguration procedure

Based on the proof of the previous theorem the
following reconfiguration algorithm for the controller
can be derived.

k —th vector of I1
I, [000000000([)00001111]100000000(]!)0000011l]lllO]T
I1, [000000000([)000011111100000000(]0)0000011111101]T

Table 2. Parikh vectors @

i —th vector of @

o, [1l0000000(]DOOO00000(]DOOOOOOOOGDOOO10lOOGDOOOO]T
@, [00000000000000000®00000000®00000000M0001]

Table 3. ControllerH

M, M, £, Controller Sequence  Fired System Sequence
(D0D00000000000011111100000000000000011111110]7  [10]7 & ug tas
[10000000000000011111100000000000000011111 1OO:T [l{J:r'r t1 us t1
[D1000000000000001111100000000000000011111100]7  [10]7 £ ta
[00100000000000011111100000000000000011111100] T [10] T s tar
[(DDDO0O0000N000001 1111100000000000000011111101]T  [10]T & £ £
[00000000000000011111100000000000000011111 IOL:T [OI:T ta u23 tas
[(DDDO0O0DN0B0000M 1111100000000000000011111110]7 017 &2 £ 5
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Algorithm 5:Reconfiguration Procedure;

Inputs:

F: Faulty transitions vector,

H:: The controller (the partial function),
Rds(G): The set of redundancy vectors,
(Q,M,): System model (Q,M,).

Outputs:

oy The redundancy sequence,

;y : The redundancy Parikh vector of o,

H': The reconfigured controller

1. VReRds(G) suchthat FT e R0 do
a)If FT @R* 0 then using Algorithm 4:

i. Compute the sequence o, with R™.

ii. Compute the sequence o, with R™.
else

i. Compute the sequence o, with R .

ii. Compute the sequence o, with R™.

2. VYw, =ro,s such that w, =H(M,,M,,t),

redefine  w, =H'(M,,M,,t;) , where

W, =ro,s.

3. Rds(G)=Rds(G)-R.

6. Illustrative Example

Assume that the system presented in Example 3,
Section 4.1, must follow the reference depicted in
Fig. 1. The reference is simple, and is interpreted as
follows: when a token is moved from place p; to p,,
by the firing of transitiont,, then it means that a final
product must be produced by the system. The firing of
t, represents that the system is ready for the next
operation. The incidence matrix, the initial marking
and the output function of the reference model are
depicted in Fig. 1, along with the model.

Applying Algorithm 1 to the given system model
and reference model shown in Fig.4 and 7,
respectively, the LPP provides I1 and w for the
solution to the ORC problem as stated in Theorem 1.
IT and T" are shown in Table 1 and 2. The controller
can now be computed using the Algorithm 2. The
resulting controller H is shown in Table 3.

The matrices IT and w found by the LPP are not
the unique solution to the ORC. The set of redundancy
vectors, computed with Algorithm 3, can be used to
construct any other solution to the problem. Since the
redundancy vectors are closely related with the null-
space of the incidence matrix, there exist an infinite
number of them. Fortunately, there is no need to
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compute all these vectors at once, since a basis of
minimal T-semiflows of G includes all the information
about the redundancies in the system. In fact, under
the case of a fault in the system, a linear combination
of the vectors in that basis can be used to compute a
required redundancy vector.

x}’i:x q‘.|' Hﬁ?}

= |-1
C=
¥

Table 4. A basis of minimal T-semiflows 7(G)

N L S
B sl o]

Figure 7. The Reference Model

-
b
&
|
w
]

T4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

T8
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

TO T10 T1i1 T12 Ti3 Tid4
a 0o o 0 I
o 0o o 0 I
o 0o o o 0
o 0o o o 0

1 o 0o 0 0

1 o o 0 0

1 o o 0 0
1

1

[
|
=t

o 0o 0 0
o o 0 0
1 o o 0 0
o o o o 0
o 0o o o 0
a o o 0o 0
o 0o o o 0
1 o o 0 0
1 o o0 0 0
g 0o o 0o 0
a 0 o0 1 0
o 0o 0 1 0
g 0o o 0o 0
o 0o o o 0
g 0o o 0o 0
o 0o 0 0
a o o 0o 0
g 0o o 0o 0
g 0o o 0o 0
o o o 0o 0
g 0o o 0o 0
g 0o o 0o 0
1 o 0o 0 0
1 o 0o 0 0
o o o 0o 0
g 0o o 0o 0
g 0o o 0o 0
o 0o 0 1 I

- D OO O O= o= O O= 0= 000000 ==, -0 00000000 oo ooE D
-0 DO = O= 000 000 000 000000 o=mo0oo oo oo oo oo o]
i —-R-N-E-E-E R N NN - - - - - NN N NN NN R RN — ]

PR R-E- - RN - RN NN NN NN RN NN NN N NN B I
- 1
= b

- D OO =0 =00 000 DD OO0 OO 00D D - —m————_-T DO D

A Dbasis of minimal T-semiflows is shown in
Table 4, where every vector 7;, 1<i<14, represents a
redundancy as stated in Proposition 1. Notice that the
t-semiflow represented by column 14, say T4,
describes the flow from marking M, through the firing
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of transitions t until the same marking

35’t1’t2’t37’t45
M,. Also, the t-semiflow represented by column 2, say
T,, describes a flow from M, to M, but now through
the firing of transitions s ba bt s, Bt e U
which represents a different task path in the system.
Observe that the induced subnets given by the vectors
from column 2 and column 14, share one selection
place p; and one attribution place p3 . Then, as
dictated by Algorithm 3, represents a
redundancy vector:

T14 — T2

1, fori =1,2.
Rds, (G) =7, —7, =<—1,fori =3-6,13,16.

0, otherwise.
Now, assume that the faulty vector (see
Definition 5.1 in Section 5) is:
1, fori =1,2.
Fll]== :
0, otherwise.

In other words, the faulty transitions are t, and t, .
Thus, the support of vector F is |F[={t, t,}.

Then, applying the Algorithm 4 in Section 4 for
the faulty vector F with the information given by
Rds, , the faulty sequence o, =t,t, and the recovering

sequence o, =t,t;t; are obtained. Therefore, the new

reconfigured controller H' is presented in Table 5,

Table 5. Reconfigured Controller H'

which avoids the use of faulty transitions using an
alternative sequence (route) @ .

7. Conclusions

The paper proposed a PN approach for dealing
with automated fault recovery of reconfigurable
manufacturing systems. The output regulation control
scheme has been extended by including controller
reconfiguration capabilities. The proposed technique
for reconfiguration profits of structural redundancies
in the system model for determining, when there exist,
alternative production sequences after a resource
failure is diagnosed. Based on the redundancies, the
controller is partially recomputed; then the
reconfigured controller avoids the use of the faulty
resource. The reconfiguration process is accomplished
by polynomial algorithms, allowing on-line fault
recovery; consequently such a technique is scalable to
large systems in which several faults may be handled.
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M. My, i Controller Sequence  Fired System Sequence
[00000000000000011111100000000000000011111110] T [10] T u uq tas
[10000000000000011111100000000000000011111100] T [10] T u ug t13
[00001000000000010111100000000000000011111100] T [10] T 4 g ta
[00000100000000011111100000000000000011111100] T [10] T 4 z ts
[00000010000000011011100000000000000011111100] T [10] T n £ te
(00000001000000011111100000000000000011111100] T [10] T u £ tia
[(00100000000000011111100000000000000011111100]7 107 £ tar
[00000000000000011111100000000000000011111101] T [10] T 4 £ £
[00000000000000011111100000000000000011111101] T [01] T i o3 tas
[00000000000000011111100000000000000011111110] T [01] T 1 £ £
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