
287 

ISSN 1392–124X (print), ISSN 2335–884X (online) INFORMATION TECHNOLOGY AND CONTROL, 2015, T. 44, Nr. 3 

Partial Reconfiguration of Control Systems using Petri Nets Structural 

Redundancy 

Mildreth Alcaraz-Mejia, Raul Campos-Rodriguez 

Department of Electronic, Systems and Informatics, ITESO University,  

45604 Jalisco, Mexico 

e-mail: {mildreth}@iteso.mx 

Ernesto Lopez-Mellado, Antonio Ramirez-Trevino 

CINVESTAV Guadalajara Unit, Av. Cientifica No. 1145,  

Col. El Bajio, 45015, Zapopan, Jalisco, Mexico 

  http://dx.doi.org/10.5755/j01.itc.44.3.8783 

Abstract. This paper deals with the partial reconfiguration of the discrete control systems due to resource failures 

using the structural redundancy of the global system model. The approach herein proposed introduces a new subclass 

of Interpreted Petri Nets (𝐼𝑃𝑁), named Interpreted Machines with Resources (𝐼𝑀𝑅), allowing representing both the 

behaviour of a system and the resource allocation. Based on this model, an efficient reconfiguration algorithm is 

proposed; it is based on finding the set of all redundant sequences using alternative resources. The advantages of this 

structural reconfiguration method are: (1) it provides minimal reconfiguration to the system control assuring the 

properties of the original control system, (2) since the model includes resource allocation, it can be applied to a variety 

of systems such as Business Processes, and FPGAs, among others, (3) it takes advantage of the implied features of 

Petri net models, such as structural analysis and graphical visualization of the system and control. The method is 

illustrated through a case study that deals with a manufacturing system controller, which includes both alternative 

resources and operation sequences. 
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1. Introduction 

During the design of controllers for complex 

discrete event processes, one must take into account 

that some resources may not be available temporarily 

due possible failures or scheduled maintenance 

operations. Thus the controller must assure the process 

operation by using alternative resources. This feature 

can be achieved by executing a controller reconfigu-

ration procedure. A variety of discrete event processes 

may require such a capability, namely manufacturing 

systems, business processes, FPGAs, and embedded 

systems. In such systems, alternative resources and 

operation sequences can be found when there exists 

some redundancy in the controller model; then a 

reconfiguration of the controller can be done to keep 

the system in operation. Although this work focuses 

on reconfigurable discrete manufacturing systems, the 

analysed techniques can be applied to other discrete 

event processes. 

Reconfigurable Manufacturing Systems (RMS) 

have been introduced by Koren et al. in [1, 2]; they are 

defined as adaptable systems allowing adding, 

removing or modifying processes, controllers, 

structure of machines, to rapidly respond to evolving 

technology besides the market demand. RMS includes 

reconfigurable machines which provide flexibility in 

material routing. The technique here introduced 

provides support to analyse the redundancies given by 

these reconfigurable machines and for sequencing and 

coordination control for large RMS. 

Reconfiguration techniques focusing mainly on 

RMS have been introduced through varied perspec-

tives. Huang and Hsiung in [3] presented a framework 

for verification and estimation of dynamically 

partially reconfigurable systems that translate UML 

models into timed automata suitable for model 

checking. Leitão et al. in [4] presented a bio-inspired 

multi-agent system for RMS; the authors review the 

state of the art related to bio-inspired applications on 
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manufacturing engineering problems; furthermore, 

they justify the use of bio-inspired agents in RMS, and 

enhance the need of more information about the 

technique in order to use it. Wang and Koren in [5] 

presented a scalable planning methodology for RMS 

using an optimization algorithm based on genetic 

algorithms such that the goal is minimizing the 

economical part of the system reconfiguration. 

Petri nets (PN) have been widely used first of all 

for modelling and analysis of manufacturing systems 

[6, 7, 8]. Therefore, a natural use for PN was for the 

designing and implementation of the control for the 

automation of manufacturing systems [9, 10, 11, 12, 

13, 14, 15]. There are many advantages on the use of 

PN for RMS, some of them are due to the inherent 

properties of PN such as graphical visualization and 

the mathematical model, i.e. an intuitive model 

besides the strong mathematical basis. 

The approach herein proposed uses a PN subclass 

named Interpreted Machines with Resources (IMR) to 

represent both, production sequences and how 

resources are assigned to tasks along the production 

sequences. Based on the structure of a PN model, this 

work studies functional redundancies, e.g. different 

ways to obtain the same product, or different tasks 

sequences to meet the same goal. The need to change 

the current executing sequence can be due mainly to 

the unavailability of a resource 
ir . In such a case, the 

redundancies are used to choose a new sequence 

(named recovery or alternative sequence) from those 

included in the production sequences to produce the 

same products which avoid the use of resource 
ir . 

This work presents the controller reconfigurability 

property and characterizes it using the information 

given by the redundancies and the production 

sequences. When the system is reconfigurable, the 

recovery sequence can be computed to partially 

modify the controller, avoiding the use of the damage 

resource, whilst the production goals are reached. The 

advantages of this structural reconfiguration technique 

for the control systems based on Petri nets are: (1) the 

reconfiguration is minimal and preserves the 

properties of the initial structural control system, (2) 

since the model comprises resources allocation, it can 

be applied to other systems such as Business 

Processing, FPGAs, Embedded Systems, among 

others, (3) takes advantage of the implied features of 

Petri net models, such as structural analysis and 

graphical visualization of the system and control. 

The paper is organized as follows. Section 2 

presents the Interpreted 𝑃𝑁  ( 𝐼𝑃𝑁 ) basic concepts. 

Section 3 reviews the Output Regulation Control  

( 𝑂𝑅𝐶 ) basic notions. Section 4 introduces the 

proposed definition and characterization of redun-

dancies in a 𝑃𝑁  structure. Section 5 presents the 

proposed definition and characterization of the 

reconfigurability property and the proposed 

reconfiguration controller algorithm. Section 6 

presents an illustrative example showing the use and 

advantages of this proposed technique. Finally, the 

conclusions and future work are presented. 

2. Background on Interpreted Petri nets 

This section overviews the Interpreted Petri Net 

(𝐼𝑃𝑁) basic concepts and notation used through this 

paper. First, the basic Petri nets notions are 

introduced. 

2.1. Petri nets 

Definition 1. An ordinary Petri Net structure 𝐺 is a 

bipartite digraph represented by the 4-

tuple ),,,(= OITPG  where: 

},...,,{= 21 npppP  is a finite set of 

vertices named places, 

},...,,{= 21 mtttT  is a finite set of 

vertices named transitions, 

{0}:  ZTPI  is a function 

representing the arcs going from 

places to transitions, 

{0}:  ZTPO  is a function 

representing the arcs going from 

transitions to places.  

Pictorially, places are represented by circles, 

transitions are represented by rectangles, and arcs are 

depicted as arrows. The symbol ,x  ,TPx   

denotes the set of all nodes y  such that 0),( yxI  

and x  ,, TPx   denotes the set of all nodes y  

such that 0),( yxO . Let ,TPX   then X  

denotes the set of all nodes y  such that 0),( yxI  

for every Xx  and X  denotes the set of all nodes 𝑦 

such that 0),( yxO  for every .Xx  

The pre-incidence matrix of 𝐺  is 

);,(=][= jiij tpIcC   the post-incidence matrix of 𝐺 

is );,(=][= jiij tpOcC   the incidence matrix of 𝐺 is 

 CCC = . The marking function ZPM :  

represents the number of tokens (depicted as dots) 

residing inside each place, where 
Z  represents the 

set of non-negative integers. 

Definition 2. A Petri Net system or Petri Net (𝑃𝑁) is 

the pair ),( 0MG , where 𝐺  is a PN  

structure and 
0M  is the initial token 

distribution over places.  

Example 1. Fig. 2 )(a  shows a Petri net structure 

where:   

• },...,,{= 821 pppP ,  

• },...,,{= 621 tttT ,  
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Figure 1. (a) Petri net example; (b) Interpreted Petri net example 
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• The initial marking  TM 00001001=0
.  

2.2. Petri net structures 

Definition 3. A P-invariant 𝑌  (T-invariant 𝑋 ) of a 

𝑃𝑁  is a rational-valued solution of 

equation 0=CY T   .0=CX  A P-

semiflow 𝑌 (T-semiflow𝑋) of a 𝑃𝑁 is a 

non-negative integer solution of the 

equation 0=CY T  0)=(CX . A basis 

of minimal T-semiflows (P-semiflows) 

of a 𝑃𝑁  structure 𝐺  is denoted )(G  

 )(G . 

Definition 4. The support of the vector 𝑍 

representing transitions or places, 

denoted as ‖𝑍‖, is defined as the set 

0})(|{||=|| iZzZ i
.  

Definition 5. The support of a sequence 𝜎, denoted 

as 〈𝜎〉 , is defined as the set 

}.=|,,,{= ljilji tttttt     

Definition 6. Let 𝐺  be a 𝑃𝑁  structure. The induced 

subnet given by 𝑋, ,PX   denoted as 

 X  is a 𝑃𝑁  structure described by 

  ),,,(= ''' OITXX  where II '   and 

OO'   such that ITXI '' : , 

OTXO '' :  and ='T  . XX  

Similarly, the induced subnet given by 

,Y  ,TY   denoted as  Y  is a 𝑃𝑁 

structure described by 

  ),,,(= ''' OIYPY  where II '   and 

OO'   such that ,: IYPI ''   

OYPO '' :  and ='P  . YY   

Definition 7. Let ),,,(= 11111 OITPG  and =2G

),,,( 2222 OITP  be two 𝑃𝑁  structures. 

The union of 
1G  and 

2G , denoted as 

,21 GG   is performed as: =21 GG 

).,,,( 21212121 OOIITTPP   

Definition 8. A 𝑃𝑁  system  0,MG  is a state 

machine )(SM  if  tt =1=  for 

every transition .t  Let 𝐺  be a 𝑃𝑁 

structure. A selection place Ppk   

holds that 1>

kp . An attribution 

place Ppl   holds that 1.>p   

2.3. Interpreted Petri nets 

An Interpreted Petri Net )(IPN  [16] is a 𝑃𝑁 

system including input and output information. 

Definition 9. An Interpreted Petri Net 𝐼𝑃𝑁  is the 

pair  0,MQ  such that ),,,(= GQ  

where:  

• 𝐺 is a 𝑃𝑁 structure. 

• },...,,{= 21 r  is the input alphabet of the net, 

where i  is an input symbol. 

• }{:  T  is a labelling function of 

transitions with the following constraint: 

- ,, Ttt kj   kj   if 
ip  

0),(=),( kiji tpItpI  and both ),( jt  

,)(  kt  then )()( kj tt   . In this case   

represents an internal system event.  
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•   is a nq  matrix, such that 
kk My =  is 

mapping the marking 𝑀𝑘 into the ldimensionaq  

observation vector. A column ),( i  is the 

elementary vector 𝑒ℎ if place 𝑝𝑖  has associated the 

sensor place ℎ , or the null vector if 𝑝𝑖  has no 

associated sensor. In this case, an elementary 

vector 𝑒ℎ is the vector ldimensionaq  with all its 

entries equal to zero, except entry ℎ, that it is equal 

to 1 . A null vector has all its entries equal to zero.  

A transition Tt j   of an 𝐼𝑃𝑁  is enabled at 

marking 𝑀𝑘  if ).,()(, ji
i

ki tpIpMPp   An 

enabled transition 
jt , labeled with a symbol other than 

  (empty or silent) symbol, must be fired when )( jt  

is activated. An enabled transition ,jt  labeled with a 

  symbol can be fired. When an enabled transition 
jt  

is fired in a marking 𝑀𝑘, then a new marking 𝑀𝑘+1 is 

reached. This fact is represented as 
1 k

j
t

k MM ; 𝑀𝑘+1 

can be computed using the dynamic part of the state 

equation: 

kk

kkk

My

vCMM

=

=1   (1) 

where 1=)( jvk
 (since 𝑡𝑗  was fired) and 0,=)(ivk

 

ji  ; and 𝑦𝑘  is the 𝑘 − 𝑡ℎ observation vector of the 

𝐼𝑃𝑁 The reachability set ),( 0MQR  of an 𝐼𝑃𝑁  is the 

set of all possible reachable markings from 𝑀0 firing 

only enabled transitions. An 𝐼𝑃𝑁  is safe if the 

maximum number of tokens residing inside each place 

in any reachable marking is equal to one. 

According to definition of functions 𝜆  and ,  

transitions and places of an 𝐼𝑃𝑁 can be classified as 

follows. 

A transition Tt  is said to be manipulated, if 

,)(  jt  and nonmanipulated, otherwise. A place 

Ppi   is said to be measurable if the 𝑖 − 𝑡ℎ column 

vector of  is not null, i.e., 0),(


 i ; otherwise, 
ip  

is nonmeasurable.  

Example 2. Fig. 2 (b) shows an 𝐼𝑃𝑁 with:  

• 𝑃𝑁 structure 𝐺  and initial marking 𝑀0  as in 

Example 1;  

• },,,{= 4321 uuuu  assigned to 
5421 ,,, tttt  by 𝜆 

function, respectively, otherwise   is assigned;  

• 
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





00100001
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00000010

00000001

=
 represented by 

symbols DCBA ,,, .  

• By 𝜆  function, 
5421 ,,, tttt  are manipulable 

transitions; and 
6421 ,,, pppp  are measurable 

places, by  .  

• In the net, 
1t  and 

2t  are both enabled at 
0M . When 

the input symbol 
1u  is given or activated in the 

system, then 
1t  must be fired. When 

3u  is given, 

then 
4t  must be fired.  

2.4. PN and IPN properties 

Definition 11. Given a ),(= 0MGN , and its 

reachability set ),( 0MGR , a place 

Pp  is boundedB  if 

BpMMGRM  )(),,( 0
, where 𝐵 

is a positive integer. A 𝑃𝑁  is 

boundedB  if each place in 𝑃  is 

boundedB . If 𝐵 = 1, the 𝑃𝑁 is said 

to be safe. 𝐺is structurally bounded if 

𝐺  is bounded given any finite initial 

marking 𝑀0 [17].  

Definition 12. A transition t  is live if at any marking 

),( 0MGRM  , there is a sequence of 

transitions whose firing reaches a 

marking that enables t . A 𝑃𝑁 is live if 

every transition in it is live. A 𝑃𝑁  is 

structurally live if there is a finite 

initial marking that makes the net live 

[17].  

Definition 13. A firing transition sequence of an 𝐼𝑃𝑁 

),( 0MQ  is a transition sequence 

......= kji ttt  such that 

......10

k
t

w

j
t

i
t

MMM  . The set 

),( 0MQL  of all firing transition 

sequences is called the firing language 

of ),( 0MQ  defined as 

......=|{=),( 0 kji tttMQ L    

...}...10

k
t

w

j
t

i
t

MMM  .  

Definition 14. Let  0,MQL  be the language 

generated by  0,MQ . Then 

  zvMQmid ,|{=, 0 L  such that 

 0,MQzv L , zv,  may be empty 

strings}.   

Definition 15. Let  0,MQ  be an 𝐼𝑃𝑁  and 

),( 0MQK L  the language of the spe-

cification. The language 𝐾  is con-

trollable with respect to a ),( 0MQL  if 
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,NMk Tt   (i.e.,  =)( kt ) holds that 

KMQtK k  ),( 0L .  

Definition 16. Let ...= kji ttt  be a firing transition 

sequence. The Parikh vector 

 mT  Z:
  of maps every Tt  to the 

number of occurrences of t  in 𝜎. 

3. Output Regulation Control Background 

3.1. Output regulation control 

The controller reconfiguration herein used for fault 

recovery is based on the output regulation control 

(𝑂𝑅𝐶 ) approach for fully observable system states 

presented in [18, 19]. The 𝑂𝑅𝐶  scheme is shown in 

Fig. 2. In this approach, the system is modelled by an 

𝐼𝑃𝑁  whose output is forced to track the output 

language (the sequence of 
kM  output symbols) of 

other 𝐼𝑃𝑁  modelling the specification, named 

reference. The input control 
ku  given to the system is 

computed by the controller 𝐻 taking into account the 

marking of both, the reference and the system model. 

The objective of the 𝑂𝑅𝐶 is to keep the output error 

(the difference between the system and reference 

outputs) 
ke  equal to zero. 

Definition 17. A system model  0,MQ  is an 𝐼𝑃𝑁 

represented by the state equation (1). A 

specification or reference model 

 0, MQ


 is a live and bounded 𝐼𝑃𝑁 , 

whose structure is a 𝑆𝑀  in which all 

transitions are manipulable and all 

places are measurable. The state 

equation of a reference model is:  



 

)(=

=
= 1

ii

iii

My

zCMM
Q 





 (2) 

where C


 is the incidence matrix of ;Q


 


 is the 

output function of Q


.  

Definition 18. Let ),( 0MQ  be the 𝐼𝑃𝑁  model of the 

system to be controlled. Let ),( 0MQ


 

be the 𝐼𝑃𝑁 model of the specification . 

The 𝑂𝑅𝐶 problem for fully observable 

system states consists in finding out a 

partial function (controller) 

),(),(),(: 000 MQTMQRMQRH midL


 where 
kkii tMMH =),),(( 1


  such 

that 
k  is controllable in )),(,( iMQ


  

0,=)()(= iik MMe


   

),()( 1 i

k

i MM


 



 and 
i

k
t

i MM




1
.  

 

Figure 2. The ORC Architecture 

The following theorem presented in [18] 

characterizes when the 𝑂𝑅𝐶  problem has a solution 

considering the previous definitions. 

Theorem 1. Let  0,MQ  and  0, MQ


 be two 𝐼𝑃𝑁𝑠 

represented by Equations (1), (2), 

respectively. Suppose that there exists a 

linear function 

),,(),(: 00 MQRMQR 


 such that: 

1. ;= 00 MM


  

2. ,Ttm


   )(, jmidm MQ


 L  where 

mm CtC


 =


 and }{ m  is controllable 

with respect to  )(, jMQ


 , with 

 )(,}{ jm MQ


 L ; 

3. .= RR 


  

Then, the 𝑂𝑅𝐶 problem has one solution.  

Notice that the 𝑂𝑅𝐶  is a supervisory like 

controller, where the specification and the system are 

described at different abstraction levels. Function   

translates the specification states into system states 

(making both models comparable with each other). 

The second condition of Theorem 3.1 states the 

controllability of system sequences. Finally, the third 

condition establishes that the outputs generated by 

both, the system and the reference, must be equal. 

3.2. Solving the ORC problem 

The 𝑂𝑅𝐶  problem can be solved using the 

following linear programming problem (LPP) derived 

from Theorem 1. The problem is reduced to find out 

the function   and the Parikh vectors 
m


 in order to 

obtain the controller𝐻. 

Algorithm 1: Compute   and 𝜔. 

Input:  0,MQ ,  0, MQ


.  

Output:   and 𝜔 matrices.   
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Notice that every 𝑘 − 𝑡ℎ  column in   matrix 

represents the marking 
kM  in  0,MQ , which is 

related with the marking 
kM


 in  0, MQ


 by   

function. In the same way, every thi   column in 𝜔 

matrix represents the Parikh vector 
i


 for the 

sequence 
i  in  0,MQ , which is associated to the 

execution of 
it


 in  0, MQ


 by 𝜔. 

3.3. Compute the controller 𝑯 

In order to obtain the controller 𝐻 based on   and 

 , which are the outputs of the LPP in Algorithm 1, 

Section 3.2, use the following algorithm. 

Algorithm 2: Compute the Controller 𝐻. 

Input:  0,MQ ,  0, MQ


.  

Output:   and 𝜔 matrices.     

1. For every 
it


 in T


, there exist one sequence 
i  

given by Parikh vector 
i


, where 
xbai ttt ,...,,= . 

Moreover, there exists markings 
kM , 1kM , 

kM


, 

1kM


, such that 
1 k

i
t

k MM




 and 
1 k

i

k MM


, i.e. 

1

...

  k

x
t

k

b
t

k

a
t

k MMMM .  

2. Then, compute 𝐻 for every 
it


 in T


 as follows: 

(a) Let 
1 k

i

k MM


, where 
xbai ttt ,...,,= . 

Then,  

    aikk ttMMH  =,, 1




 

    bikk ttMMH  =,, 1




 

    xikk ttMMH  =,, 1




 

    =,, 11 ikk tMMH



. 

4. Redundancies in System Models 

4.1  The system modelling 

An 𝐼𝑃𝑁  model which considers the resources in 

the system is presented in the following example. 

Example 3. Consider 5 types of machines. The 

first type of machine, denoted as𝑍1, is able to perform 

sawing, drilling and routing of the raw material only 

in one site. Therefore, there is no need to move the 

material between different stations. The second type of 

machine, named 𝑍2 , is a saw-drill double-function 

machine, which is able to cut and drill the raw 

material in the same site. The third type, denoted as 

𝑍3, is an auto-feed flat-panel cutting machine, which 

is able to cut out raw material in different sizes. Other 

type of machine, named 𝑍4, is a one-ranged drilling 

machine. Finally, the last type, denoted as Z5 , is a 

pneumatic spindle rise router. 

Fig. 3 depicts a layout of the system. The overall 

production line is arranged as two symmetric sections, 

which are Section 1 and Section 2. Section 1 is 

composed by three lines named Line 1, Line 2 and 

Line 3. Line 1 is composed by one multi-function 

machine of type 𝑍1 called 𝑀1. Line 2 is composed by 

two machines, one of type 𝑍2 called 𝑀2, and one of 

type 𝑍5  called 𝑀3 . Some conveyors are placed 

between machines in order to move the material from 

one machine to another. Finally, Line 3 is formed by 

three machines, one of type 𝑍3 called 𝑀4, one of type 

𝑍4  called 𝑀5, and one of type 𝑍5  called 𝑀6. As in 

Line 2, these machines are connected by means of two 

conveyors. 

Moreover, the three lines are interconnected by 

directional conveyors that are represented as black 

arrows with the selection symbol  . This set of 

conveyors allows to selectively change the flow of the 

raw material among the lines, besides, it is the 

mechanism used by the controller to perform control 

actions on the plant. 

As can be seen from description of the capabilities 

of the different machines, the three lines are able to 

perform the same job over the incoming raw material. 

For example, Line 3, which is composed by machines 

𝑀10 , 𝑀11 , and 𝑀12  of type 𝑍3 , 𝑍4 , and 𝑍5 , 

respectively, is able to perform the cutting, the drilling 

and the routing of raw material. These operations can 

also be performed by the multiple-function machine 

𝑀1 in Line 1, which is of type 𝑍1. Additionally, Line 2 

is able to perform the same three operations with the 

combination of 𝑀1 and  𝑀2. 

The system includes a set of three vertical 

conveyors interconnecting equivalent lines in the 

different sections. This allows the movement of 

material from Section 1 to Section 2 and the opposite. 

The overall system layout gives a great flexibility in 

the functionality of the whole system, e.g., in case of a 

failure of one machine, this one can be replaced by at 

least one different machine, in order to continue with 

the same production plan. 

The layout is complemented by two final 

conveyors that collect the finished parts from the lines 

and put them into the inventory of final product. As 

mentioned before, Section 2 is a mirror of Section 1.  

One simple methodology to model systems with 

resources is to divide the modelling in two stages: 1) 

The process sequences and 2) The available resources.  
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Stage 1. Each task 
k , as part of the production 

sequence rs , is represented by a 𝑃𝑁 that is formed by 

two transitions k

j

k

i tt , , and one place r
s

kp ; transition 

)( k

j

k

i tt  represents the start (ending) of task 
k . Two 

arcs, ( r
s

k

k

i pt , ) and ( k

j
r

s

k tp , ), must be added to the 𝑃𝑁. 

In order to obtain the model of the production 

sequence rs , the final transition k

jt  of task 
k  must be 

merged with the initial transition 
1k

it  of task ;1k  

where 
1k  immediately follows the task 

k  in 

production sequence rs . The global model of the 

production sequence 
gmS  is obtained by merging all 

places r
s

kp  that represent the same task 
k , from all 

the different production sequences. Stage 2. All the 

resources 
tr  (machines, robots, conveyors, etc.) 

represented by places 
tp  and arcs ( k

it tp , ),(
t

k

j pt , ) 

should be joined to the 
gmS , if task 

k  is performed by 

resource 
tr . The result is the global process plan 

model 
pmP . 

Fig. 4 depicts a Petri Net model that represents the 

production system. The place 𝑝43  represents the 

availability of raw material in the inventory, and is 

also the start point of the production process. Notice 

that 𝑝43 does not represent the amount of raw material 

but only that there exists raw material to be processed. 

The place 𝑝44  represents the final product inventory, 

and is the end of the production process. Again, 

𝑝44does not represent the amount of final products but 

only that a final product has been finished. The 

transition 𝑡45 that connects places 𝑝44 and 𝑝43  has no 

physical meaning. Nevertheless, it is fired when the 

system has produced a final product, in order to restart 

the production process. 

 

Figure 3. System Layout 

In Section 1, Line 1 is formed by places 

16321 ,,, pppp  and transitions .,, 3521 ttt  The place 𝑝16 

represents the availability of machine 𝑀1, and place 

𝑝2 represents that 𝑀1 is performing the tasks over the 

raw material. Line 2 is formed by places 

87654 ,,,, ppppp  and transitions 
6543 ,,, tttt . The 

machines 𝑀2  and 𝑀3 , available in this line, are 

represented by places 𝑝17  and𝑝18 , respectively. The 

Line 3 is formed by places 
1514131211109 ,,,,,, ppppppp  

and transitions .,,,,, 121110987 tttttt  The machines 𝑀4,

𝑀5 and 𝑀6, available in the line, are represented by 

places 𝑝19, 𝑝20  and 𝑝21 , respectively. The transitions 

1716151413 ,,,, ttttt  represent the interconnection of the 

lines in Section 1 by directional conveyors. Finally, 

transitions 
444342414039 ,,,,, tttttt , represent the 

conveyors that interconnect the lines in Section 1 with 

their equivalent lines in Section 2. The subnet that 

represents Section 2, is symmetrically arranged to 

Section 1, as shown in the figure. 

In the net, there exist non-manipulated transitions 

which are guided by the internal dynamic of the 

system. For example, all the transitions that represent 

the end of the tasks performed by the machines are 

non-manipulated. This makes sense since the end of 

these tasks depend on the dynamics of each machine, 



M. Alcaraz-Mejia, R. Campos-Rodriguez, E. Lopez-Mellado, A. Ramirez-Trevino 

294 

which may vary over the time. On the other hand, all 

the places are considered measurable, which in this 

case, means that each stage of the production system 

includes a sensor. 

The incidence matrix, initial marking and output 

function that represent the system model are depicted 

in Fig. 4.1. 

The requirement for the plant is simple, and is 

represented by the net of Fig. 7. This net is interpreted 

as follows: when a token is moved from place 𝑝1 

to𝑝2, by the firing of transition𝑡1, then it means that a 

final product must be produced by the system. The 

firing of 𝑡2 represents that the system is ready for the 

next operation. 

4.2. Petri nets with resource places 

The model presented above is a special class 

of𝑃𝑁, where the 𝑆𝑔𝑚  is a state machine and the 𝑃𝑝𝑚 

introduces some extra places. The resulting 𝑃𝑁 class 

is named State Machines with Resource places (𝑆𝑀𝑅). 

Next definition formalizes the 𝑆𝑀𝑅 class of nets. 

 

Figure 4. Petri Net Model of the Manufacturing System 

Definition 19. A State Machine with Resource Places 

)(SMR  is a 𝑃𝑁  system  0,MG  

where:  

1. NRR PPP = , and  =NRR PP , where 
RP  is the set of places representing 

resources. 

2.  NRP  is a family of 𝑃 −components which 

are live and safe (𝑆𝑀). 

3. Every R

r Pp   holds that: 

[leftmargin=1.2cm] 

a) ,)(=)(   PpPp rr
 i.e., every input 

place to the input transitions of 𝑝𝑟 is also an 

output place to the output transitions from 𝑝𝑟 

b) 
rr pp   ,=  i.e., input transitions for 

rp  

are not output transitions of .rp  

c) 0.>)(0 rpM   

4. 
jp  where 1,>

jp  if jt  

jp , then 

 )( jt , i.e., all transitions that are outputs 

of selection places must be manipulables.  
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Figure 5. System Model: Incidence Matrix, Initial Marking and Output Symbols 

Notice that the 𝑆𝑀𝑅   0,MG  has the same T-

invariants as its underlying 𝑆𝑀 . An 𝑃𝑁  ),( 0MQ , 

whose structure 𝐺  is a  𝑆𝑀𝑅 , is named Interpreted 

State Machine with Resource places (𝐼𝑀𝑅). 

4.3. Redundancies 

The flexibility given by resource redundancy, can 

be exploited to cope with failures in its components, 

downtime for maintenance, or just to change the 

process sequence. Informally, two sequences are 

redundant with each other, in terms of a Petri net, if 

they evolve from the same initial marking to the same 

final marking, and during their evolution they do not 

mark the same places. A formal definition is given 

below. 

Definition 20. Let  0,MG  be a live and safe 𝑆𝑀. Let 

x , ),( 0MQmidy L  be two fireable 

sequences in the PN. Let 

),,,(=][ xxx OIXPX  and 

  ),,,(= yyy OIYPY  be the induced 

subnets given by 
xX =  and 

yY = , i.e. induced by the Parikh 

vectors of sequences 
x  and 

y . Let 

),(, 0MGRMM ji   be two reachable 

markings in the net. The transition 

sequence 
x  is redundant to 

y  and 

y  is redundant to 
x  from 

iM  to 

jM , if 
j

x

i MM


  and 
j

y

i MM



  and 

 =YX  and .= yx PP   

When a transition sequence 
x  is redundant to 

y  

from a marking 
iM  to a marking 

jM  the difference 

of their Parikh vectors 
yx 


  is a T-invariant 

resulting from linear combination of semipositive T-

invariants. This fact is stated below. 

Proposition 1. Let  0,MN  be a live 𝑃𝑁 . If 
x  is 

redundant to 
y  from 

iM  to 
jM , then 

yx 


  is a 

T-invariant.  

Proof. Since 
x  is redundant to 

y  from 
iM  to ,jM  

it holds that 
j

x

i MM


  and 
j

y

i MM



  then 

.= yixi CMCM 


  Thus ,= yx CC 


  this 
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is,   0=yxC 


 . Therefore  yx 


  is a T-

invariant.  

However, not all T-invariants are formed from 

redundant sequences. Then, in general, they cannot be 

computed from the 𝑃𝑁  structure. Fortunately, if the 

𝑃𝑁 is an 𝑆𝑀𝑅 (or 𝐼𝑀𝑅 model), then redundancies can 

be computed from the 𝑃𝑁  structure, leading to 

polynomial algorithms to compute such redundancies. 

Below this observation is formalized. 

Definition 21. Let  0,MG  be a live and safe 𝑆𝑀. Let 

)(G  be a basis of T-semiflows of the 

SM . Let ).(, Gji    Let 

),,,(=][ iiiii OIP   and 

  ),,,(= jjjjj OIP   be the induced 

subnets from T-semiflows ,i  
j , resp-

ectively. The set of redundancy vectors 

is 
jikk RdsRdsGRds  =|{=)( , for 

all ij > , such that 
ji PP   includes 

just one selection place 
kp  and one 

attribution place 
lp  in  }.][ ji     

The algebraic T-semiflow basis in a 𝑆𝑀  can be 

determined using 𝑑 different T-covertures, where 𝑑 is 

the dimension of the T-invariant basis. Now, the 

following algorithm provides one way to find out the 

set of redundancy vectors.  

Algorithm 3: Computation of set 𝑅𝑑𝑠(𝐺)  

Inputs: 𝜏(𝐺), a basis of minimal T-semiflows.  

Outputs: 𝑅𝑑𝑠(𝐺), set of redundancy vectors. 

1. Let  𝑅𝑑𝑠(𝐺) = %. 

2. Compute the 𝑡 − components for every pair 

2, i
 as follows (see Definition 2.2): 

,= iiT   =iP ,
  ii TT  ,= ITPI iii   

OTPO iii =  and ,= jjT   =jP  

,
  jj TT  ,= ITPI jjj   .= OTPO jjj   

3. Compute 
jiij PPP  =  and .= jiij PPP 

 

4. If  kij pXP =
 and  ,= lij pYP 

 then 

}{)()( jiGRdsGRds    where: 

a) 
hh ppX |{=    1>ji TT   and }ijh Pp   

b) |{= hpY    1>jih TTp   and }ijh Pp    

Notice that previous algorithm has polynomial 

computational complexity. Now, from 𝑅𝑑𝑠(𝐺) all the 

redundancies in the 𝐼𝑅𝑀  model are obtained. Let us 

first introduce the following notation. 𝑋+ and 𝑋− 

denote the positive and negative entries of the vector 

𝑋, respectively, as follows:  

 
 





otherwise0,

1=if1,
=

iX
iX  

 
 



 



otherwise0,

1=if1,
=

iX
iX  

The next proposition exploits the information from 

the vectors 𝑋+  and 𝑋−  of 𝑋 ∈ 𝑅𝑑𝑠(𝐺) for obtaining 

the redundancies of the 𝐼𝑀𝑅. 

Proposition 2. Let  0,MG  be a live and safe 𝑆𝑀. Let 

𝑋 ∈ 𝑅𝑑𝑠(𝐺)  such that ;= Xx


 Xy =


. Then 

there exist fireable redundant sequences 
x , 

y .  

Proof. Since )(GRdsyx 


 and 𝑅𝑑𝑠(𝐺)  is 

generated by some linear combinations (positive and 

negative) of T-semiflows, then 
yx 


  is a T-

invariant; i.e.  

  0.=yxC 


  (3) 

Moreover 
ix  �


 and ,� jy 


 where 

ji  ,  are T-

semiflows. Since the 𝑆𝑀 is live and bounded, the T-

semiflows 
ji  ,  are obtained from fireable sequences 

i  and 
j , respectively. Thus, the projections of 

i  

and 
j  over the transitions included in 

x


 and 
y


 

lead to the fireable sequences 
x  and .y  

Thus, from equation (3) it is obtained 

  0,=yxii CMM 


  or  ixi MCM =


.= jy MC


 Then 
j

x

i MM


  and .j

y

i MM



  

Since the vectors in 𝑅𝑑𝑠(𝐺)  obtained from the 

difference of two T-semiflows where the common 

transitions to both T-semiflows are eliminated, and in 

𝑆𝑀the transitions have only one output or input place, 

then  x


and  y


 do not have common transitions 

nor places. Thus, they meet the redundancy definition.  

Proposition 2 leads to the following algorithm to 

compute the fireable sequences 
x  and 

y  from 𝑋+ 

and 𝑋− of a redundancy vector 𝑋 ∈ 𝑅𝑑𝑠(𝐺) 

Algorithm 4: Compute the fireable sequences 𝜎𝑥 and 

𝜎𝑦 from 𝑋 ∈ 𝑅𝑑𝑠(𝐺)   

Inputs: ),( 0MG  with ),,,(= OITPG ; .,  XX  

Outputs: 
yx  ,   

1. Build the induced subnets for 𝑋+ and 𝑋−  as 

follows (see Definition 2.2 ): ,= XTx
 

=xP
  xx TT , ITPI xxx = , =xO

OTP xx   and ,= XTy
 =yP

  yy TT , 

,= ITPI yyy   .= OTPO yyy   

2. Construct the sequences 
yx  ,  using the 

structures given by  xxxx OITP ,,,  and 

 yyyy OIPT ,,,   
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Notice that the complexity of previous algorithm is 

polynomial. Thus, the computation of the redun-

dancies can be performed in polynomial time. 

5. Reconfigurable Controllers 

This section presents an extension to the 𝑂𝑅𝐶 

scheme to include fault recovery capabilities. It 

introduces the concept of controller reconfiguration 

and its characterization. In addition, it presents a 

procedure to perform the controller reconfiguration in 

a faulty scenario, based on the original controller𝐻. 

5.1. Reconfigurable 𝑶𝑹𝑪 Scheme 

In order to properly cope with the fault recovery 

problem, two modules are added to the 𝑂𝑅𝐶 scheme 

shown in Fig. 2. The 𝑂𝑅𝐶  with Reconfiguration 

scheme is showed in Fig. 6. When a fault occurs in the 

system, the Diagnoser 𝐷  detects the error. Then, 

𝐷sends the error information included in the faulty 

vector 𝐾  (defined below) to the Reconfigurer 𝐸 , 

which indicates the places representing faulty 

resources. 

Definition 22. The faulty resource vector 𝐾  of a 

system model  0,MQ  is a vector of 

size P  such that:  

 

 Pi 1, , where a faulty place represents a resource 

diagnosed in fault by 𝐷. 

Definition 23. The faulty transitions vector 𝐹  of a 

system model  0,MQ  is a vector of 

size T  such that:  

 

 ,1, Ti  where a transition 𝑡𝑖  such that 𝐹[𝑖] = 1 is 

called a faulty transition. 

 

Figure 6. The 𝑂𝑅𝐶 scheme with reconfiguration 

5.2. Reconfiguration of the Controller 

This section describes the controller reconfigu-

ration technique, which is based on system redundan-

cies. The reconfigurability property is defined and 

characterized, and then a procedure for partial 

reconfiguration is derived. 

Definition 24. Let  0,MQ  be a live 𝐼𝑀𝑅  system 

model of fault-free behaviour. Let 

),( 0MQ


 be a reference model. Let 𝐻 

be the controller solution for the 𝑂𝑅𝐶 

defined by Q  and .Q


 Let 𝐹  be the 
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faulty transitions vector and F  its 

support. The controller 𝐻 is said to be 

reconfigurable with respect to F  if 

Ft f   and for all sequence 𝜎 

including ,ft  where ),(HIm  

there exist a controllable sequence 

 0,MQ' midL  redundant to 𝜎  such 

that .=  F'   

In the following, the characterization of the fault 

recovery problem for an 𝑂𝑅𝐶  scheme with 

reconfiguration of the controller is presented. 

Theorem 2. Let  0,MQ  be a live IMR  system 

model. Let ),( 0MQ


 be a reference 

model. Let H  be the controller given for 

the function   and the Parikh vectors 

,m


 solution of the 𝑂𝑅𝐶  problem for Q  

and .Q


 Let F  be the faulty transitions 

vector and F  its support. 

If the controller 𝐻  is Reconfigurable with 

respect to 𝐹  then the fault recovery problem has a 

solution.  

Proof. Let 
kkij tMMH =),,(


  such that 

, Fk  then there exists  ''k =  such 

that  =k
 and ,=  F'k  where '  is 

redundant to .  Therefore, 0=)( 'C 


  by 

Proposition 4.3. Thus 0,=)( 'C kk 


  and then 

'CC kk 

 =  because   ).(= ''kk 


  Since 

i

k
t

j MM




  and ,i

k

j MM





 then kji tCMM





=  

and 
kji CMM 


 = . By Theorem 3.1, 

kji tCMM





=  is equivalent under the function   to 

.= kji tCMM





 As .= 'CC kk 

  then 

kji CMM 


 =  is equivalent to 

.= 'CMM kji 


  Therefore, 'CtC kk 





= . Fur-

thermore, 'k


 is controllable since 
k


 was controlla-

ble and '  is controllable. Thus, Condition 2 of the 

Theorem 3.1 is satisfied. Since Conditions 1 and 3 

hold as well, then the controller 
'H  defined as:  



 

 
.,

;=If,
=),,( 1

otherwise'

F
tMMH

k

kk

kii

'




 

solves the 𝑂𝑅𝐶.  

The proof of the previous theorem states that the 

specified behaviour by the reference ),( 0MQ


 still 

holds. At the same time, the use of faulty resources 

(faulty transitions) is avoided. 

5.3. Reconfiguration procedure 

Based on the proof of the previous theorem the 

following reconfiguration algorithm for the controller 

can be derived. 

 

Table 1. Function   

thk   vector of   

1   T11100000001111100000000000000111110000000000  

2   T11010000001111100000000000000111110000000000  

 

Table 2. Parikh vectors   

thi   vector of   

1   T000000000101000000000000000000000001100000000  

2   T000010000000000000000000000000000000000000000  

 

Table 3. Controller𝐻 
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Algorithm 5:Reconfiguration Procedure; 

Inputs: 

𝐹: Faulty transitions vector, 

𝐻:: The controller (the partial function), 

𝑅𝑑𝑠(𝐺): The set of redundancy vectors, 

:),( 0MQ  System model ).,( 0MQ   

Outputs: 

y : The redundancy sequence, 

y : The redundancy Parikh vector of ,y  

H  : The reconfigured controller 

1. )(GRdsR  such that 0RFT  do 

a) If 0 RFT  then using Algorithm 4: 

i. Compute the sequence 
x  with 

R . 

ii. Compute the sequence ,y  with 
R .  

else 

i. Compute the sequence ,y  with 
R . 

ii. Compute the sequence 
x  with 

R . 

2. srw xm =  such that ),,(= ikkm tMMHw


, 

redefine ),,(= ikk

'

m tMMHw


 , where 

.= srw y

'

m   

3. RGRdsGRds )(=)( .  

6. Illustrative Example 

Assume that the system presented in Example 3, 

Section 4.1, must follow the reference depicted in 

Fig. 1. The reference is simple, and is interpreted as 

follows: when a token is moved from place 𝑝1 to 𝑝2, 

by the firing of transition𝑡1, then it means that a final 

product must be produced by the system. The firing of 

𝑡2  represents that the system is ready for the next 

operation. The incidence matrix, the initial marking 

and the output function of the reference model are 

depicted in Fig. 1, along with the model. 

Applying Algorithm 1 to the given system model 

and reference model shown in Fig. 4 and 7, 

respectively, the LPP provides   and 𝜔  for the 

solution to the ORC problem as stated in Theorem 1. 

  and   are shown in Table 1 and 2. The controller 

can now be computed using the Algorithm 2. The 

resulting controller 𝐻 is shown in Table 3. 

The matrices   and 𝜔 found by the LPP are not 

the unique solution to the ORC. The set of redundancy 

vectors, computed with Algorithm 3, can be used to 

construct any other solution to the problem. Since the 

redundancy vectors are closely related with the null-

space of the incidence matrix, there exist an infinite 

number of them. Fortunately, there is no need to 

compute all these vectors at once, since a basis of 

minimal T-semiflows of 𝐺 includes all the information 

about the redundancies in the system. In fact, under 

the case of a fault in the system, a linear combination 

of the vectors in that basis can be used to compute a 

required redundancy vector. 

 

Figure 7. The Reference Model 

Table 4. A basis of minimal T-semiflows )(G  

 

 

A basis of minimal T-semiflows is shown in 

Table 4, where every vector 𝜏𝑖, 141  i , represents a 

redundancy as stated in Proposition 1. Notice that the 

t-semiflow represented by column 14, say 𝜏14 

describes the flow from marking 𝑀0 through the firing 
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of transitions 
45372135 ,,,, ttttt  until the same marking 

𝑀0. Also, the t-semiflow represented by column 2, say 

𝜏2, describes a flow from 𝑀0 to 𝑀0 but now through 

the firing of transitions 
45371665431335 ,,,,,,,, ttttttttt  

which represents a different task path in the system. 

Observe that the induced subnets given by the vectors 

from column 2 and column 14, share one selection 

place 𝑝1  and one attribution place 𝑝3 . Then, as 

dictated by Algorithm 3, 𝜏14 − 𝜏2  represents a 

redundancy vector:  











.otherwise

6,13,16.3=for

1,2.=for

0,

1,

1,

==)( 2141 i

i

GRds 
 

Now, assume that the faulty vector (see 

Definition 5.1 in Section 5) is:  

 




.otherwise

1,2.=for

0,

1,
==

i
lF  

In other words, the faulty transitions are 
1t  and 

2t . 

Thus, the support of vector 𝐹 is }.,{= 21 ttF  

Then, applying the Algorithm 4 in Section 4 for 

the faulty vector 𝐹  with the information given by 

1Rds , the faulty sequence 
32= ttx  and the recovering 

sequence 
654= ttty  are obtained. Therefore, the new 

reconfigured controller H   is presented in Table 5, 

which avoids the use of faulty transitions using an 

alternative sequence (route) '

1 . 

7. Conclusions 

The paper proposed a PN approach for dealing 

with automated fault recovery of reconfigurable 

manufacturing systems. The output regulation control 

scheme has been extended by including controller 

reconfiguration capabilities. The proposed technique 

for reconfiguration profits of structural redundancies 

in the system model for determining, when there exist, 

alternative production sequences after a resource 

failure is diagnosed. Based on the redundancies, the 

controller is partially recomputed; then the 

reconfigured controller avoids the use of the faulty 

resource. The reconfiguration process is accomplished 

by polynomial algorithms, allowing on-line fault 

recovery; consequently such a technique is scalable to 

large systems in which several faults may be handled. 
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