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Abstract. Two key components contribute to task completion time: execution cost and communication cost. The 
communication cost is induced by data transfers between tasks residing on separate nodes. The communication is 
always expensive and unreliable in mobile ad hoc Grids and therefore plays a critical role in application performance. 
To reduce communication cost, interdependent tasks are allocated to nodes located close to one another. However, 
once the tasks have been allocated, nodes can move within a Grid. The movement of nodes within a Grid may result in 
multi-hop communication between nodes executing dependent tasks.  In order to deal with node mobility within a 
Grid, an effective resource allocation scheme is required, but the design of such a scheme for mobile ad hoc 
computational Grids is challenging due to the constrained communication environment, node mobility, and 
infrastructure-less network environment. In this paper, we have developed an adaptive and distance-based resource 
allocation scheme which takes into account the characteristics of an application and nodes and applies migration 
heuristics to address the local node mobility problem. The scheme is validated in a simulated environment using 
various workloads and parameters. 
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1. Introduction 
Due to recent advances in mobile computing and 

communication technologies, mobile ad hoc 
computational Grids are emerging as a new computing 
paradigm, enabling innovative applications through 
the sharing of computing resources among mobile 
devices without any pre-existing network infrastruc-
ture. Mobile ad hoc computational Grids are integra-
tion of computational Grids and mobile ad hoc 
networks. A computational Grid is a software infras-
tructure that allows distributed computing devices to 
share computing resources to solve computationally 
intensive problems [3], while a mobile ad hoc network 
is a wireless network of mobile devices that commu-

nicate with one another without any pre-existing 
network infrastructure [1].  

The idea of the mobile ad hoc computational Grid 
is motivated by recent advances in mobile computing 
and communication technologies which now make it 
feasible to design and develop the next generation of 
applications through the sharing of computing resour-
ces in mobile ad hoc environments. For example, 
members of a group of miniature autonomous mobile 
robots deployed in an urban environment can colla-
borate with each other to perform an automated video 
surveillance task, or soldiers in a group can use their 
wearable computing devices and range of sensor 
nodes to form a Grid in order to construct a 3D map 
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and to identify and monitor stationary and moving 
objects within a map. 

This paper addresses the problem of resource 
allocation to interdependent tasks in mobile ad hoc 
computational Grids. The task dependencies can be 
classified into two categories: control dependencies 
and data dependencies. With data dependencies, tasks 
exchange data with one another in order to achieve 
desired results. The data dependencies between tasks 
imply that heavy communication can be induced by 
data transfers between tasks residing on separate 
nodes. Communication is always expensive and unre-
liable in mobile ad hoc Grids and therefore plays a 
critical role in application performance. To reduce the 
communication cost, interdependent tasks are alloca-
ted to nodes that are closer to one another. However, 
once the tasks have been allocated, the nodes can 
move within the Grid, and this movement of nodes 
within the Grid may result in multi-hop commu-
nication between nodes executing dependent tasks. In 
order to deal with node mobility within a Grid, an 
effective resource allocation scheme is required, but 
the design of such a scheme for mobile ad hoc compu-
tational Grids is challenging due to node mobility, the 
constrained communication environment, limited 
battery power, and the infrastructure-less network 
environment. 

Problems due to node mobility: Unpredictable 
node mobility across the coverage area may result in 
task failure, and within the coverage area it may 
increase communication cost. Node mobility across 
the coverage area affects not only tasks executed on 
nodes but also dependent tasks executed on other 
nodes. Moreover, in a multi-hop mobile ad hoc Grid, a 
node can also be used as an intermediate node to 
forward data on behalf of tasks executed on neigh-
boring nodes. Therefore, the mobility of a single node 
can have an enormous effect on application perfor-
mance.

Problems due to the constrained communi-
cation environment: A mobile ad hoc network 
provides networking and communication services to 
nodes within a Grid. It presents a very constrained 
communication environment due to the limited power, 
shared medium, available spectrum, and node 
mobility, and hence suffers from limited bandwidth, 
high latency, and unstable connectivity problems, 
which may result in severe network congestion due to 
frequent failure and activation of links [1].  In such an 
environment, data transfer between dependent tasks is 
very critical for task completion time.  

Problems due to battery power: Nodes within a 
Grid are battery-driven and their power is limited and 
should be utilized effectively to prolong the lifetime of 
the nodes and thus of the application. Ineffective 
allocation of tasks to mobile nodes can significantly 
increase the communication and energy consumption 
cost, which limits the lifetime of nodes and may result 
in power failure. The power failure will affect not only 

the task executed on a node but also dependent tasks 
executed on neighboring nodes. 

In the literature, various schemes have been 
proposed to address the resource allocation problem, 
but most of them are either targeted towards pre-
existing network infrastructure-based systems [11], 
[27] or they do not consider dependencies between 
tasks [4], [8], [36], [26].  

In our previous studies, we have proposed two 
resource allocation schemes: (1) a centralized and 
distance-based resource allocation scheme [29] which 
exploits the characteristics of an application and 
allocates interdependent tasks to nodes located close 
to one another to reduce the cost of communication 
between interdependent tasks; and (2) an energy 
efficient resource allocation scheme [30] which 
exploits a transmission power control mechanism to 
reduce energy consumption in the transmission of 
data.  However, neither of these schemes are adaptive 
to node mobility within a Grid coverage area. 

In this study, we have developed an adaptive and 
distance-based resource allocation scheme which takes 
into account the characteristics of an application and 
nodes and applies migration heuristics to reduce the 
communication cost and energy consumption in the 
transmission of data. The scheme is based on a group 
mobility model in which all nodes work as a group 
and is adaptive to node mobility within a Grid. The 
scheme is validated in a simulated environment using 
various workloads and parameters.  

2. Related work 
Most of the work on resource allocation in 

computational Grids is focused towards infrastructure-
based powerful computing systems connected through 
high performance communication networks [2], [5], 
[6], [7], [10], [19], [22], [28], [35], [32]. However, due 
to recent advances in mobile computing and 
communication technologies, there is a significant 
shift towards mobile Grids research. The research on 
mobile Grids is divided into two categories. In the first 
category, mobile devices are allowed to access Grid 
resources [12], [15], [17], [23], [25], while in the 
second category they can be used as a computing 
resource within a Grid [13], [14], [31]. The second 
category is further divided into two subcategories: in 
the first, mobile devices are integrated with 
infrastructure-based computing systems [9], [16], and 
in the second they can collaborate with each other 
without any pre-existing network infrastructure [18], 
[32], [33]. The latter is referred to in this paper as a 
mobile ad hoc computational Grid.  

The research on resource allocation in mobile ad 
hoc computational Grids is still in a preliminary phase 
and a very few schemes based on a decentralized 
architecture have been proposed to address issues such 
as node mobility, energy management, and task 
failure. For example, Hummel and Jelleschitz [18] 
proposed a distributed resource allocation scheme 
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based on a first-come-first-served strategy that allows 
each mobile node to perform mapping based on the 
job’s requirements. It employs a proactive and reactive 
fault tolerance mechanism and supports redundant 
execution of tasks to deal with task failure. The 
scheme proposed by Chu and Humphrey [9] utilizes a 
manager–worker model to distribute tasks and supports 
application-controlled migration to deal with failure 
due to low battery power. The problem of energy-
constrained scheduling for Grid environments has 
been addressed by Li and Li [20], who have 
investigated energy minimization and Grid utility 
optimization problems. To maximize the Grid system 
utility without exceeding the deadline and total energy 
budget, they employ a pricing-based decomposition 
method.  The scheme proposed by Liu et al. [21] also 
focuses on a power-aware allocation to support the 
adaptation needs of ad hoc applications such as 
changes in network topology and application behavior. 
To reduce the mean path length of data packets, tasks 
are migrated to topologically closer nodes; however, 
the migration occurs after analyzing data communi-
cation patterns during the execution of tasks. To select 
the most suitable node for task execution, Gomes et al. 
[14] proposed a scheme which utilizes a delayed reply 
mechanism in which a more resourceful node replies 
earlier than less resourceful nodes. It also provides 
load balancing and scalability. The scheme proposed 
by Selvi et al. [33] addresses node mobility by 
profiling the regular movements of a user over the 
time. The profiling consists of the user’s visited 
locations and associated time spent at those locations. 
A node which previously stayed longer at a location is 
selected for task execution. 

The schemes mentioned above are based on a 
decentralized architecture that results in poor 
allocation decisions due to the lack of a network-wide 
view. They also do not consider the dependencies 
between tasks and are targeted towards load 
balancing, scalability, and fault tolerance rather than 
application performance. Moreover, these schemes 
also do not address the node mobility problem within 
a Grid coverage area. To deal with precedence 
dependencies, Shilve at al. [32] have proposed a 
scheme based on static allocation of resources in ad 
hoc computational Grids; however, due to static 
allocation, this scheme is not adaptive to network 
changes and application behavior. 

3. System models 
This section is further divided into two 

subsections: the first subsection describes the network 
model and the second the application model.  

3.1. Network Model 

A mobile ad hoc network is modeled as an 
undirected graph NG = (N, L, p, m, b), where N is the 
set of vertices representing mobile nodes and L is the 

set of edges representing communication links among 
them. The parameters pi, mi, and bi represent the 
processing power, memory, and remaining battery 
power of node ni, respectively, while Dij represents the 
communication distance between nodes ni and nj
connected by a link l or set of links, where l L� . The 
nodes can move within and across the network 
coverage area and are heterogeneous in terms of 
processing power, memory, and battery power. 

3.2. Application model 

A parallel application is modeled as a graph 
GA=(T, C), where T is the set of vertices representing 
tasks and C is the set of edges representing 
dependencies between tasks. The tasks within an 
application are preemptive and indivisible work units. 
The dependencies are divided into two categories: 
precedence dependencies and parallel execution 
dependencies. The tasks with precedence 
dependencies are executed independently but require 
inputs generated by predecessor tasks, while tasks 
with parallel execution dependencies periodically 
exchange data with one another and communication 
between tasks may take place at any time during 
execution. The precedence dependency of task tj on 
task ti implies that task ti must be completed before 
task tj, while the parallel execution dependency of task 
ti on task tj implies that the execution of both tasks 
should start at the same time.  

 In addition to dependencies, tasks are also divided 
into three categories: computation-bound tasks, local 
communication-bound tasks, and remote 
communication-bound tasks, represented by , 

 and , respectively. The computation-
bound tasks exchange a small quantity of data and 
have high processor utilization, while communication-
bound tasks exchange a large quantity of data and 
have low processor utilization. Among 
communication-bound tasks, local communication-
bound tasks spend most of the time performing local 
I/O operations while remote communication-bound 
tasks spend most of the time performing remote I/O 
operations. 

The purpose of classifying dependencies and tasks 
is to exploit them in order to improve the utilization of 
computing resources and application performance. For 
example, in the case of computation-bound tasks, high 
processing nodes are critical for their performance, 
while in the case of communication-bound tasks, 
communication performance is more critical than 
processor performance. Moreover, among 
communication-bound tasks, remote communication-
bound tasks are more critical to performance than 
local communication-bound tasks. Like tasks, 
knowledge of dependencies also plays a key role in 
improving application performance and resource 
utilization. For example, communication between 
tasks with parallel execution dependencies may take 
place anytime during execution; therefore, such tasks 

cpu bound
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lc bound
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� rc bound
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should be allocated simultaneously or with the 
minimum possible delay. Otherwise, it is possible for 
one task to be allocated and waiting for data from 
another task which is still awaiting allocation. In this 
situation, the allocated task would not be able to 
proceed and would be wasting valuable resources. 

4. An adaptive and distance-based resource 
allocation (ADRA) scheme 

ADRA aims to reduce the communication cost 
between interdependent tasks. It takes into account the 
task and dependency types and allocates 
interdependent tasks to nodes which are close to one 
another with respect to physical distance. The use of 
physical distance as a metric can result in a better 
performance when nodes use multiple transmission 
power levels to communicate with each other [30]. 
This is because tasks executed on two nearby nodes 
accessible at minimum transmission power do not 
require maximum transmission power to communi-
cate, which can significantly reduce energy consump-
tion and communication cost. However, for nodes 
with fixed transmission power, the distance is 
measured in numbers of hops.

4.1. Resource Allocation 

This section is divided into two parts: The first part 
focuses on the node selection mechanism and the 
second part describes the resource allocation method. 
Node selection mechanism 

In order to select nodes for allocation of tasks we 
adopt an approach proposed in [34] which is used to 
predict the amount of time during which two nodes 
will remain connected to each other. It is assumed that 
each mobile node is equipped with WA-DGPS, which 
provides position, speed, and direction information. 
Nodes share this information with each other in order 
to predict the future connectivity. For details, readers 
are referred to [34]. The nodes that will remain 
connected for a longer period of time are selected for 
allocation of tasks. The node selection mechanism is 
used in scenarios where the movement of one node is 
independent from that of the others. 
Task allocation 

Before allocation, all tasks are sorted and are 
assigned to different levels depending on precedence 
and parallel execution dependencies. The lowest level 
consists of tasks with no predecessors and the highest 
level consists of tasks with no successors. Tasks with 
parallel execution dependencies are assigned to the 
same level. At each level, tasks are assigned a priority 
according to task type. The remote communication-
bound tasks have the highest priority, followed by 
local communication-bound and computation-bound 
tasks. Allocation starts from the lowest level, and at 
each level, tasks are considered by priority. Only tasks 
with no predecessors or whose predecessors have 

completed their execution are considered for 
allocation. In order to make allocation decisions, there 
are three possible cases:  

Allocation of an independent task: Since an 
independent task does not have dependency, the 
resource allocation service makes an allocation 
decision according to the task type. For local and 
remote communication-bound tasks, a low processing 
node is selected, while for computation-bound tasks, a 
high processing node is selected for task execution. 

Allocation of interdependent tasks set : A set 
of interdependent tasks consists of multiple tasks with 
parallel execution dependencies. For allocation, one 
remote communication-bound task is selec-
ted from the interdependent tasks set and is alloca-
ted to a low processing node. The remaining tasks are 
allocated close to this task.  

Allocation of dependent tasks that have 
dependency on an already allocated task tr: One 
task is already allocated while other dependent tasks 
are waiting for allocation. The allocated task is called 
a reference task tr while the node that is executing a 
reference task is called a reference node nr. Dependent 
tasks are allocated close to task tr.

4.2. Adaptation Mechanism 

Once the tasks have been allocated, the nodes can 
move within a Grid. Node mobility within a Grid can 
increase the communication distance and may result in 
multi-hop communication between nodes executing 
dependent tasks. Multi-hop communication increases 
queuing and packet processing delays, the number of 
forwarded, dropped, and lost packets, and the amount 
of control traffic. It may also generate a new set of 
control packets due to route rediscovery and medium 
access control. In order to avoid multi-hop commu-
nication between dependent tasks due to local node 
mobility, we have developed an adaptation algorithm 
which migrates dependent tasks to nearby nodes.  

In this study we have assumed that the amount of 
data transmitted or processed by tasks is unknown. 
Without this assumption, it would be easy to make an 
effective migration decision by estimating the task 
completion time before and after migration of the task. 
Since the amount of data transmitted or processed by 
tasks is not known in advance, we have to exploit the 
application’s characteristics, such as task and 
dependency type. 

This section first describes key factors that should 
be considered when making a migration decision and 
then lists the migration heuristics. 
Factors critical to the migration decision 

Type of task: It is very important to consider the 
type of task executed on a mobile node. As defined in 
the application model, remote communication-bound 
tasks exchange a large quantity of data and therefore 
are more critical to task performance than local 
communication-bound or computation-bound tasks. 
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Computation-bound tasks, however, exchange small 
amounts of data, so there is a high probability that 
migration of computation-bound tasks would not 
result in better performance.  

In addition, a task can process data stored on a 
node where the task is executed or collected from an 
external environment. In the former case, it is impor-
tant to consider the amount of data that need to be 
migrated with the task. In the latter case, data are 
collected from the environment, so migration of the 
task close to its dependent tasks would result in better 
performance.  

Type of dependency: In the case of precedence 
dependency, a successor task communicates only once 
to collect results, while in the case of parallel 
execution dependency it is likely that dependent tasks 
will continue to exchange data throughout their 
execution. The quality of the connection between 
nodes may vary significantly with respect to time. For 
instance, the quality of the connection between nodes 
executing dependent tasks may be the best at the start, 
while later it may deteriorate. In the case of 
precedence dependency this issue is not serious 
because the predecessor task communicates only once 
to collect results. In the case of parallel execution 
dependency, the connection quality between nodes 
should be monitored carefully so that migration 
decisions can be made.  

Number of mobile nodes: All the nodes executing 
the interdependent task set may move together or 
some of them may move while others may remain 
stationary. In such a situation the task type and 
numbers of mobile and stationary nodes are critical for 
an effective decision. When the majority of nodes 
executing interdependent tasks are moving while a 
few of them are stationary, it is better to migrate tasks 
executed on stationary nodes near to mobile nodes. 
Otherwise, migration of tasks from mobile nodes close 
to stationary nodes may result in a better performance.  

Node direction: Nodes executing dependent tasks 
can move in the same direction or opposite directions. 
The former is not a problem, but in the case of the 
latter, the distance between nodes executing dependent 
tasks would increase and eventually result in multi-
hop communication.  

Communication distance: The movement of 
nodes may increase or decrease the communication 
distance between nodes executing dependent tasks. A 
decreased communication distance is better for 
communication performance. However in the case of 
increased communication distance, the difference in 
distances, that is, the new distance minus the old 
distance, could be small, with a minor effect on 
communication cost, or large, with a significant effect.  
Migration heuristics  
� Tasks are migrated when the increased 

communication distance is greater than a threshold 
value. A small increase in communication distance 
usually does not increase the communication cost.  

In addition, the distance threshold would avoid 
unnecessary migration. 

� We only consider migration of remote 
communication-bound tasks. As mentioned earlier, 
remote communication-bound tasks exchange 
large quantities of data and are therefore more 
critical to communication performance.  

� Computation-bound and local communication-
bound tasks are not considered for migration. 
These tasks exchange small amounts of data and 
thus do not have a significant effect on 
communication performance [27]. We assume that 
the time required to move a local communication-
bound or computation-bound task from a distant 
node to a node located nearby is greater than the 
time required for data transmission from a distant 
node. 

� We also take into account the number of mobile 
nodes executing remote communication-bound 
tasks during a pre-defined time interval. This 
ensures that if more than one node executing 
dependent tasks moves within a short interval then 
all nodes will be treated at the same time.  

� Tasks which collect data from the environment are 
always migrated. 

For details refer to the adaptation algorithm. 

5. Simulations and analysis 
The performance of the proposed scheme (ADRA) 

is compared with a distance-based resource allocation 
(DRA) scheme [31] and DICHOTOMY [14]. DRA 
allocates interdependent tasks to nodes located nearby, 
while DICHOTOMY utilizes a delayed reply 
mechanism to select nodes in which more resourceful 
nodes reply earlier than less resourceful nodes. Both 
schemes are not adaptive to node mobility within a 
Grid. 

5.1. Performance Metrics 

Since an average end-to-end communication delay 
is a key component that determines communication 
performance, it is used as a basic performance metric 
for evaluation of the proposed scheme. In addition, the 
accumulative application completion time and energy 
consumption are also used as performance metrics.  

Average end-to-end communication delay: This
refers to the time taken for a packet to be transmitted 
across the network from source to destination. This 
includes all possible delays such as transmission 
delay, propagation delay, packet processing delay, 
queuing delays, and so on. 

Accumulative application completion time: 
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