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Abstract. This paper intends to precisiate the well-known and widespread definitions of both smart and intelligent 

agent (SA; IA), as well as the smart and intelligent multi-agent system (SS/II_MAS). The use of a unified and 

standardized agent and multi-agent system description based on definitions of the general systems theory is delivered 

and proposed as well. The intellectics of multi-agent systems is considered as a kind of an extension of the agent 

intelligence. Three typical features of human intellectual activities are proposed to be implemented and simulated in an 

agent/multi-agent system as the basic paradigms for agent and multi-agent system intellectics. As underlined in the paper, 

operation according to those paradigms (recognition and classification, behavior according to a set of fuzzy rules, and 

operation according to some prescribed tendency) is solidly mathematically based (correspondingly: mathematical 

programing, fuzzy logic and stochastic approximation). Finally, results of computerized modeling and simulation are 

delivered demonstrating the practical vitality and efficiency of the theoretical approach to the realization of the intelligent 

environment of the Internet of Things and Services (IoT&S) for user‘s comfort in two projects: “Research and 

Development of Internet Infrastructure for IoT& S in the Smart Environment (IDAPI)” and “Research on Smart Home 

Environment and Development of Intelligent Technologies (BIATech)”. 

Keywords: Multi-agent systems; smart agents; intelligent agents; intelligent environment; fuzzy systems. 

 

1. Introduction, Related Work and Motivation 

An agent-based approach to various engineering 

applications, especially to those which involve IT-

enabled technologies, is very popular nowadays for two 

reasons. The first one – the term “agent” itself is very 

attractive because it appears mysterious and for this 

reason is suitable for the purpose of advertising new 

products, and it sounds scientific enough for the 

researcher circles. The second reason is the fuzziness of 

agent definitions.  

Starting with encyclopaedical fundamentals of the 

multi-agent systems approach delivered in [1] and [7], 

researchers can find neither a precise definition on 

agent nor even a scientific concept to be used for the 

construction of agent definitions.  

So, according to these popular definitions, an agent 

is an entity, a piece of software or a computer system 

that functions in an environment in order to meet its 

design objectives. And if this behavior is autonomous, 

the agent is called intelligent. 

According to the literature [2-6], as well as [8] and 

[9], an agent is: 

 “an entity that senses its environment and acts upon 

it”; 

 “an entity that functions continuously and 

autonomously in an environment in which other 

processes take place and other agents exist”; 

 “a computer system that is situated in some 

environment, and that is capable of autonomous 

action in this environment in order to meet its 

design objectives”. 

 “Intelligent agent is a computer system capable of 

flexible autonomous actions in order to meet its 

design objectives”. 

 “Intelligent agents are software entities that carry 

out some set of operations on behalf of a user or 

another program, with some degree of indepen-

dence and autonomy, and in doing so, employ some 

knowledge or representation of the user’s goals or 

desires”.  

Such uncertainty in this field of knowledge served 

as a strong motivation for our research. 

We are fully aware that even a mere attempt to 

precisiate any term is dangerous, but we will take the 
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risk of disclosing the meaning of agent intellectics, or 

at least put it in a clearly understandable content and 

attempt to demonstrate its practicability. 

Thus, the goal of this paper is threefold: 1) to 

present our point of view concerning the definition 

under  discussion; 2) to deliver our ideas covering the 

problem of agent intelligence and 3) to show the 

intellectics of multi-agent systems as a kind of an 

extension of the agent intelligence. 

Naturally, in a case of several interacting agents 

present we have a multi-agent system. And it must be 

emphasized that the intellectics of agent or multi-agent 

system is hidden in those two mysterious terms: 

“autonomous” and “design objectives”. We intend to 

cover those terms by putting some contemporary 

mathematics and soft computing modeling of three 

most simple features of human beings widely 

considered as his/her intellectual activity: 1) 

recognition and classification (of patterns, processes, 

situations); 2) behavior according to a set of fuzzy rules 

and 3) operation according to some prescribed 

tendency. We emphasize the novelty of such an 

approach. Roughly speaking, the models of those three 

activities mentioned above, from a mathematical point 

of view, are covered by mathematical programming, 

fuzzy logic and soft computing, and stochastic 

approximation respectively.  

The last part of this paper contains results of 

simulations demonstrating the features of agent 

intellectics. 

2. Definitions 

It is important to note that, for example, the 

http://scholar.google.lt presents more than 208000 

entries according to the item “computerized intelligent 

agent definition pdf” (2015.01.15). An existence of 

numerous different agent definitions found in literature 

suggests the necessity to unify and propose a more 

precise and systemic one. Here, we deliver our own 

system of agent definitions based on the properties of 

its functional organization. 

So, an agent (A) is a software/hardware entity 

which interacts with the environment in a prescribed 

way and as such - inherits a functional organization 

based on a deterministic or stochastic (fuzzy) 

description of its external activity and internal 

operations. If an agent can act without any 

programming activity coming from a user, we have a 

smart or an intelligent agent. 

When agent’s external interaction with the 

environment and its internal operations are based on a 

crisp algorithmic logic, we have a smart agent (SA). 

When agent’s external interaction with the 

environment and its internal operations are based on 

fuzzy algorithmic logic, we have an intelligent agent 

(IA). 

A set of interacting agents is usually considered as 

a multi-agent system (MAS). 

The level of MAS intellectics depends on these 

types: 1) the type of agents in the MAS and 2) the type 

of interactions between agents in the MAS. There are 

four types of MAS formed from possible combinations. 

These types are presented in Table 1. 

Table 1. MAS types 

Type of  

interaction 

Type of agent 
SMART INTELLIGENT 

SA SS_MAS SI_MAS 

IA IS_MAS II_MAS 

 

Both smart and intelligent agent interaction in the 

MAS may be performed either in a relatively static or a 

dynamic way. In the case of a relatively static inter-

action, the graph of information flow is defined and 

prescribed in advance; only the timing and the content 

of the information flow is subjected to smart or in-

telligent changes. Examples of a relatively static MAS 

are presented in Fig. 1 and Fig. 2, where interconnected 

agents A1-A6 act upon environmental entities E1-E4, and 

agents A1-A10 act upon entities E1-E10. 

 

Figure 1. Specialized MAS 

Here, the circles correspond to certain zones of 

agents’ interacting activity. The size of each zone 

depends on the distance between all possible pairs of 

agents. Here, the term “distance” is used not in a 

geometrical or geographical but rather in a physical 

way, determining the distance between situations in 

which the agent AA and the agent AB function. So, if the 

situation of agent AA is described by a set of measurable 

characteristics ai, i=1, …, N and the situation of agent  

AB – by a set of bi, i=1, …, N, then the Minkovski 

distance is 

𝐷𝐴𝐵 = (∑ |𝑎𝑖 − 𝑏𝑖|
𝑝𝑁

𝑖=1 )
1

𝑝 (1) 

for pR (R is a set of real numbers).  

Usually, the value of p is determined by practical 

considerations.  

If DAB > D0, where D0 is a prescribed minimum 

accepted distance, then AA or AB communicates and 

interacts. It must be emphasized that D0 changes 

http://scholar.google.lt/
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intelligently according to the MAS and the 

environmental context.  

Such an approach permits us to consider MAS as a 

smartly or intelligently augmented agent and to use the 

same general description for both entities. 

 

Figure 2. Hierarchical MAS 

 

 

Figure 3. MAS Based On Distance and/or Context 

Description  

3. General Description 

The general description of an agent (and/or MAS) 

must be based on a formalized description of the 

general system theory. Moreover, when this 

formalization is performed, the fact that the 

contemporary agent is a space-time entity must be 

taken into account. 

The best attempt to formalize the description of 

space – time dependent systems was proposed by prof. 

Gerhard Wunch from Dresden University in 1975 [10]. 

Using a similar approach, the agent A is presented by a 

row consisting of five sets of variables X, K, Y, R, T and 

of two functional transformations , : 

A= {X, K, Y, R, T, , }; (2) 

Here, X is a set of inputs I, K is a set of agent internal 

states S, Y is a set of agent outputs O, R is an 

independent space variable, and T is an independent 

time variable; 

: XKRTK (3) 

and  

: KRTY  (4) 

is a transformation of the internal states of the agent and 

a transformation of agent outputs respectively (see 

Fig. 4). Here we mean that all dependent variables are 

functions of the space and time coordinates X(, t) and 

Y(, t). 

 

 

Figure 4. Transformations of Agent’s (Or MAS’s) Inputs 

and Internal States into Its Internal States and Outputs 

The dimensionality of space usually depends on the 

problem under investigation. For example, in world 

financial activity we use two – dimensional space, 

while problems of environmental and/or marine 

modeling and simulation are tackled in three – 

dimensional space. 

It must be emphasized that such an agent (or MAS) 

is able to represent and monitor global, real-life 

situations adequately only if both transformations 

(,) are performed not only crisply but fuzzily, softly 

and/or using verbal computing mechanisms as well, 

along with a mixture of real-life variables comprising 

numerical, crisp, quantitative, deterministic, as well as 

fuzzy, verbal, qualitative, soft, stochastic, and uncertain 

(or even erroneous) information. 

So, the intellectics of an agent (A) or a multi-agent 

system (MAS) is determined by the operations of 

variables and a logic type implemented in the transfor-

mations  and . 

4.  and  Intellectics  

As it was mentioned in the introduction, we intend 

to construct the  and  transformations (3) and (4) 

according to the three most simple features of human 

beings that are widely considered as his/her intellectual 

activity: 1) recognition and classification, 2) behavior 

according to a set of fuzzy rules, and 3) operation 

according to some prescribed tendency. 

4.1. MAS Intellectics Based On Situation 

Recognition  

The approach to the problem mentioned in the title 

is based on the theoretical considerations and practical 

experience delivered in [11]. 

Let us imagine that our environment, in order to be 

intellectualized, must perform a certain action p that is 

adequate to the situation that has arisen in the 

environment. Moreover, similar situations must trigger 

the same action. And this is the reason why we call a 

group of similar situations that require the p-th action 

as a class of situations (let’s say, p-class) generated 
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when they correspond to the p-th pattern. In the case of 

multiple actions (and multiple environmental situation 

patterns), we have p= 1, 2, …, r, …, S.  

Usually, each concrete situation is described by N 

features numbered as n =1, 2, …, i, …, N. In the case 

of certain feature extraction, measurement and 

normalization procedures are performed [14], the i-th 

feature of a situation that belongs to the p-th class 

(corresponds to the p-th pattern) can be represented by 

a real number αpi that expresses a degree of intensity of 

this particular feature. It is convenient to use a vector-

row notation to describe the whole situation �⃗�𝑝 =

(𝛼𝑝1, 𝛼𝑝2, … , 𝛼𝑝𝑖, … , 𝛼𝑝𝑁). If we have several 

situations (indexed by l =1, 2, …, k, …, L) and know in 

advance that they are similar according to a certain on  

and belong to class p (they are originated by the p-th 

pattern), then we can say that the situations of class p 

are represented by a set of vectors �⃗�0
𝑝
𝑙
  (l =1, 2, …, k, 

…, L). 

As a rule, better reasoning results are achieved 

when features of situations are not only normalized but 

centered as well [12, 13]. It means that the whole 

situation is represented as a vector 

�⃗�0
𝑝
𝑙

= (�⃗�0
𝑝1
𝑙

, �⃗�0
𝑝2
𝑙

, … , �⃗�0
𝑝𝑖
𝑙

, … , �⃗�0
𝑝𝑁
𝑙

) (5) 

with components calculated according to the following 

formula: 

𝛼0
𝑝𝑖
𝑙

= 𝛼𝑝𝑖
𝑙 −

1

𝑁
∑ 𝛼𝑝𝑗

𝑙
𝑁

𝑗=1
   (6) 

So, all available information about the patterns of 

situations is hidden in the set of  �⃗�0
𝑝
𝑙
 , for ∀𝑝, where  

p = 1, 2, …, r , … , S  and  l = 1, 2, … , k, …, L. Now, 

the main task is to determine or extract the significance 

of the pattern’s features of each situation group (let’s 

say, group p) and to present them in a vector form 

known as the generalized situation’s pattern (GSP) 

�⃗⃗⃗�𝑝 = (𝐾𝑝1, 𝐾𝑝2, … , 𝐾𝑝𝑖 , … , 𝐾𝑝𝑁). (7) 

The problem can be easily solved if the 

corresponding linear programming problem (LPP) is 

formulated in the following way. 

Let us select randomly one representative of the 

situation class p, for example �⃗�0
𝑝
𝑘
  (we will call it 

“central” in order to make it easier to understand). Let’s 

say we need to find such Kpi for ∀𝑖   so that the measure 

of degree of certainty Φ𝑝 (�⃗�0
𝑝
𝑘

)  of belonging of the 

selected situation k to the pattern p would be maximum: 

Φ𝑝 (�⃗�0
𝑝
𝑘

) = ∑ 𝛼0
𝑝𝑖
𝑘

𝑁

𝑖=1
𝐾𝑝𝑖 → 𝑚𝑎𝑥 (8) 

and it must be reached under the following constraints: 

∑ 𝛼0
𝑝𝑖
𝑙

𝑁

𝑖=1
𝐾𝑝𝑖 ≥ 𝛾 ∑ 𝛼0

𝑝𝑖
𝑘

𝑁

𝑖=1
𝐾𝑝𝑖 , for ∀𝑙 (9) 

and  

∑ 𝛼0
𝑟𝑖
𝑙

𝑁

𝑖=1
𝐾𝑝𝑖 ≤ 𝜅 ∑ 𝛼0

𝑝𝑖
𝑘

𝑁

𝑖=1
𝐾𝑝𝑖 , for ∀𝑟,≠𝑝  

and ∀𝑙 . (10)
 

It is recommended to choose optimal values of real 

numbers γ and κ from interval [0-1], and γ > κ [12]. 

Specific values of those coefficients depend on the 

experts’ knowledge or guess concerning the structure 

(internal connections and dispersion of patterns’ 

features) of the pattern (or class). Physical meaning of 

(9) is tightly connected with the understanding of 

“positive similarities” inside the class p. The physical 

meaning of (10) corresponds to the concept of 

dissimilarities between certain patterns of situations (in 

our case – the pattern of class p) and all other classes r 

(or “negative similarities”) for ∀𝑟,≠𝑝  . Even a quick 

overview of the problem described above shows that 

the problem really belongs to the class of linear 

programing problems (LPP) where inequalities (9) and 

(10) need additional constraints: 

0 ≤ �⃗⃗⃗�𝑝 ≤ 𝐴  (11) 

where A is any practically convenient real number, 

serving as maximum degree of importance and 

informativeness of features that describe the pattern of 

the p-th class of situations. 

Naturally, the solution of the LPP (8)-(11) for the 

pattern of situations (class) p consists of the obtained 

value for  

𝑚𝑎𝑥𝛷𝑝(�⃗�𝑝
𝑘) = 𝛷𝑝𝑚𝑎𝑥 (12) 

and the generalized pattern of situations for class p: 

�⃗⃗⃗�𝑝 = (𝐾𝑝1, 𝐾𝑝2, … , 𝐾𝑝𝑖 , … , 𝐾𝑝𝑁). (13) 

The procedure must be repeated for all classes of 

situation patterns (∀𝑝). In this way, a set of S solutions 

will be generated. The recognition procedure for the 

situation must be performed taking into account the 

need of fulfilling proportionality condition that 

guarantees the same numerical degree of certainty to 

the same qualitative evaluation of the situation using 

verbal definitions of the similarity between situations: 

c1Φ1max = ⋯ = cpΦpmax =  

… = cSΦSmax = B  (14) 

where B and cp are real numbers. 

When the unknown situation �⃗�0  is under 

consideration, its degree of belonging to the pattern p 

can be evaluated by 

Φp(x⃗⃗0) = ∑ xi
0N

i=1
Kpi  for  ∀p .  (15) 

The maximum value can be considered as an 

argument for the environment’s action.  

A complex of such procedures enables us to 

construct a situation recognition instrument capable of 

assigning any unknown but properly described 

situation �⃗� to one of the possible patterns (or classes) 

and perform the corresponding environmental action 1, 

2, …, r, …, S.  

Descriptions of real situations, as well as 

descriptions collected from different environmental 

models, standards or user’s requirements are usually 
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collected in a certain data base (DB in Fig. 5(a)) and 

used to evaluate �⃗⃗⃗�𝑝 = (𝐾𝑝1, 𝐾𝑝2, … , 𝐾𝑝𝑖 , … , 𝐾𝑝𝑁) – the 

significance of each parameter in the description of a 

situation.  

Evaluation is performed according to the LPP 

procedure described above. Obtained results are used in 

the structure of a generalized description of the MAS 

(see Fig. 4) to perform the transformation of inputs 

(situation’s description) into agent (or MAS) internal 

states, as well as the transformation of its internal states 

into outputs that determine environment’s actions 

(Fig. 5(b)). 

4.2. MAS Intellectics Based On the Fuzzy Rules 

Approach  

The approach to the problem mentioned in the title 

is based on the theoretical considerations and practical 

experience delivered in [13-15]. As it was stated in the 

previous subsection, the environment to be intellectu-

alized will have to perform a certain action p which is 

adequate to the situation that has arisen in the environ-

ment. And as before, similar situations must trigger the 

same action. This similarity must be described fuzzily 

and the action must be performed by the MAS behaving 

as a certain fuzzy system. 

The inference of ordinary fuzzy systems is usually 

based on: 1) derivation of verbal (linguistic) or parame-

tric consequents by preprocessing lists of fuzzy rules 

that contain verbal or parametric antecedents connected 

by certain fuzzy logic operations and 2) a defuzzifi-

cation process based on some compositional rule or 

formula.  

Types of rules can be presented as follows: 

 

 

Figure 5. Functional Organization of the MAS 

Corresponding to the Type 1 Agents 

IF x is A AND y is B THEN z is C (for Mamdani 

fuzzy models), 

IF x is A AND y is B THEN z=F(x,y) (for Takagi-

Sugeno fuzzy models).  

Defuzzification procedures for the two cases 

mentioned above can be described as reasoning based 

on a set of consequents C using the CoG (center of 

gravity) or MoM (mean of maximum) methods for 

Mamdani type systems [14, 15], and MF (fuzzy mean) 

method as reasoning by evaluation of all results z 

included and processed according to the formula F(x,y) 

for Takagi-Sugeno systems. 

A block-diagram of an ordinary fuzzy system 

corresponding to both cases is presented in Fig. 6. 
 

 

Figure 6. Ordinary Fuzzy System 

As a matter of fact, the task of recognizing action’s 

pattern, as it is noted in the introduction, belongs to the 

class of fuzzily described problems and requires a 

defuzzified answer. 

Functional organization of an agent (or MAS) based 

on the fuzzy rules approach is delivered in Fig. 7(a) and 

7(b). 

 

Figure 7. Functional Organization of the MAS 

Corresponding to the Type 2 Agents 

Here, data from a DB are used to construct a list of 

fuzzy rules that serve as an inference engine for the 

transformation of inputs (situation’s description) into 

internal states, as well as the transformation of its 
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internal states into outputs that determine environ-

ment’s actions according to the generalized description 

of the agent or MAS (see Fig. 4). 

4.3. MAS Intellectics Based On Prescribed 

Behavioral Tendencies  

According to our approach, MAS is able to organize 

a successful intellectual behavior of the environment 

while possessing information only on a general 

tendency prescribed by experts or possible users. In 

such case, a decentralized adaptive control process 

aimed at intellectualizing our environment is involved 

[16, 17]. The backbone of this approach is seen in a 

space-time extension of the well-known stochastic 

approximation procedure combined with computerized 

fuzzy verbal and perceptual reasoning [18]. The idea of 

extending and using the stochastic approximation 

procedure is evoked by the fact that each system acts 

according to its inherent internal potential function 

V(K,X). Sometimes, this function itself cannot be 

determined explicitly in terms of classic mathematics. 

Instead, we are able to measure or evaluate some 

decisively important characteristics of behavior 

𝑄(𝐾, 𝑋) depending on the situation that occurs in the 

environment. Usually, the situation requires to 

minimize or maximize the averages of those charac-

teristics ℳ{𝑄(𝐾, 𝑋)}  (here ℳ  stands for mathe-

matical expectation). When substituting unknown 

potential V-function for the available set of charac-

teristics 𝑄, it is convenient to use a certain additive or 

multiplicative function ℜ{∗} that permits to form only 

one function ℜ{𝑄(𝐾, 𝑋)}  , for example- to be mini-

mized stochastically around a local minimum: 

ℜ{ℳ{Q(K, X)} → min. (16) 

The convergence of K towards a desirable state KC 

that can determine the environment’s action as its 

reaction to the current situation during the process of 

stochastic approximation can be performed according 

to the gradient procedure: 

dK(ρ,t)

dρ
= Γρ(ρ, t)grad ℜ{Q(K, X)} (17) 

dK(ρ,t)

dt
= Γt(ρ, t)grad ℜ{Q(K, X)}. (18) 

This procedure can be performed by the algorithm 

shown in Figure 8. 
 

 

Figure 8. The Stochastic Approximation Performed 

According to the Space-Time Gradient Procedure 

Actual implementation of all the operations of this 

algorithm is based on space-time integration proce-

dures discussed and elaborated in [10, 12, 19]. 

It is well known [14, 18] that such a procedure 

converges only probabilistically: 

𝑃 { lim
𝜌,𝑡→∞

[𝐾(𝜌, 𝑡) − 𝐾𝐶] = 0} = 1 (19) 

This convergence is shown in Fig. 9. 
 

 

Figure 9. Probabilistic Convergence Process 

The probabilistic convergence of the procedure is 

guaranteed under sufficient (but not necessary) require-

ments imposed on the functions of characteristics 

 𝑄(𝐾, 𝑋)  and sequences of coefficients of 

proportionality Γ(ρ,t) [16, 17]: 𝑄 must vary slower than 

quadratic parabola, and coefficients Γ must decrease 

approximately according to the law Γ/n, where n is a 

number of iteration. 

So, using these assumptions and procedures, MAS 

is able to adapt itself to the prescribed tendency of 

environment’s behavior, and do so in an online fashion. 

Corresponding functional organization of the agent 

(or MAS) based on the behavioral tendency pres-

cription is shown in Fig. 10(a) and 10(b). 

It is important to emphasize that the whole 

procedure of agent (or MAS) behavior converging 

towards a proper environmental action is realized in the 

online regime. 

 

 

Figure 10. Functional Organization of MAS Corresponding 

to the Type 3 Agents 
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5. On Preliminary Application  

This research was performed under the methodolo-

gical philosophy developed according to the results of 

COST Action IC0702 “Combining Soft Computing 

Techniques and Statistical Methods to Improve  

Data Analysis Solutions (SOFTSTAT)”. 

Different aspects of a concrete implementation and 

application of intellectics of the multi-agent systems 

(MAS) were used in two projects under support of the 

EU Structural Funds: 1) “Research and Development of 

Internet Infrastructure for IoT& S in the Smart 

Environment (IDAPI)“ (project VP1-3.1-ŠMM-08-K-

01-018) and 2) “Research on Smart Home Environment 

and Development of Intelligent Technologies 

(BIATech)” (project VP1-3.1-ŠMM-10-V-02-020). 

Both projects are supervised by the Ministry of 

Education and Science (MES) of the Republic of 

Lithuania. 

The main research task specified in the framework 

of those projects is to develop an infrastructure, its 

functional organization, technologies and design 

methodology suitable for the implementation of the 

Internet of Things and Services (IoT&S) environment 

based on MAS intellectics for the comfort of users.  

In both projects, the models of functional 

organization of MAS were developed according to the 

three approaches delivered and investigated in 

Sections 2-4 of this paper. 

Computer simulation of the modeled environment 

actions was performed following the approach based on 

MAS intellectics. Said approach is delivered in 

Subsections 4.1-4.3. Simplified illustrative examples to 

help better understand the movement actions activated 

by intelligent agents in the smart home environment are 

delivered in this Section. A virtual environment was 

created to test the agent decision-making. It consists of 

a plane made of blocks. Dimensions of the plane are 

30 × 30 blocks (Fig. 11).  

 

Figure 11. Generated Initial Plane 

Each block has a property that we called a repulsion 

value. It ranges from 0 to 9. Block repulsion pattern was 

generated from the initial set of 20 block groups sized 

3 x 3 (Fig. 12).  

The initial plane can be altered with noise. The 

noise has a uniform distribution in the interval [0-9]. At 

each given moment, the agent could sense the repulsion 

of N = 9 blocks (square) with the agent in the center 

(circle) (Fig. 13). The higher the repulsion of the block, 

the more the agent “does not like” that block. 
 

 

Figure 13. Environment of the Agent 

There are S = 4 actions the agent can make to affect 

the environment: it can walk by one block to the chosen 

direction (left, up, right, down). Agent decision-making 

process was performed in three phases:
 

 

Figure 12. Initial Set of Twenty  3×3 Blocks 

Table 2. LPP solutions 

𝒑 𝑲𝒑𝟏 𝑲𝒑𝟐 𝑲𝒑𝟑 𝑲𝒑𝟒 𝑲𝒑𝟓 𝑲𝒑𝟔 𝑲𝒑𝟕 𝑲𝒑𝟖 𝑲𝒑𝟗 𝚽𝒑𝒎𝒂𝒙 

1 9.00 6.80 2.20 0 5.30 9.00 0 4.50 7.10 50.62 

2 0 0 1.00 4.00 2.00 7.00 9.00 9.00 4.00 90.00 

3 9.00 5.50 0 9.00 1.20 0 7.40 3.10 0 123.26 

4 6.90 7.30 7.60 9.00 3.10 9.00 0 0 3.8 109.04 
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1. Agent forms an opinion about the situation ( 

transformation according to (3) is performed). 

The result of this phase is an opinion about 

each direction he could go to. 

2. Agent forms intentions based on its opinion. 

In this phase, the agent considers if it has 

reached the border in order to eliminate the 

possibility of stepping over it. The result of 

this phase is a list of actions the agent wants to 

perform. 

3. Agent makes a decision based on his 

intentions by following these rules: 

 If agent wants to perform one action – it 

decides to perform it; 

 If agent wants to perform two or three actions 

(if these are to move left and right or up and 

down at the same time), it performs a 

summarized action (even a diagonal 

movement) and so on. The second and the 

third phases together form a  transformation 

according to (4). 
Finally, after deciding what to do, the agent 

performs an action or actions and then arrives at a new 

situation. Then, the process is repeated. 

Three types of agents were implemented for each 

approach proposed in Section 4. First of all, the LPP 

approach was used to form the intellect. There were 

S = 4  situation classes, one for each action. 12 

situations from the initial movement plane were 

selected randomly as representatives for these  

classes: 3 for each of the classes, one being picked as 

“central” (k) as it is stated in subsection 4.1. LPPs  

were constructed ((8) – (11) for each p) with 𝛾 = 0.8 

and 𝜅 = 0.2. 

Obtained solutions are shown in Table 2. The values 

of generalized patterns �⃗⃗⃗�𝑝  and Φ𝑝𝑚𝑎𝑥   were used for 

the type 1 agent. 

Fuzzy rules according to Subsection 4.2 were  

used to form the intellectics of the type 2 agent. 

jFuzzyLogic library was used [20, 21]. First of all, 

linguistic variables were defined for input and  

output variables. There were 9 input variables for each 

block the agent sensed, and 4 output variables for each 

action.  

Fuzzy rules were created to evaluate the situation. 

Because jFuzzyLogic library was used, the rules were 

defined by FCL [22]. The list of those 11 rules is 

presented below:

 
RULEBLOCK blockUp 

     AND : MIN; 

ACT : MIN; 

ACCU : MAX; 

RULE 0 : IF x0 IS low AND x3 IS low AND x6 IS low THEN LEFT IS high; 

RULE 1 : IF (x0 IS low AND x3 IS low AND x6 IS high) OR (x0 IS low AND x3 IS high AND x6 

IS low) OR (x0 IS high AND x3 IS low AND x6 IS low) THEN LEFT IS mid; 

RULE 2 : IF (x0 IS low AND x3 IS high AND x6 IS high) OR (x0 IS high AND x3 IS low AND x6 

IS high) OR (x0 IS high AND x3 IS high AND x6 IS low) THEN LEFT IS low; 

RULE 3 : IF x0 IS low AND x1 IS low AND x2 IS low THEN UP IS high; 

RULE 4 : IF (x0 IS low AND x1 IS low AND x2 IS high) OR (x0 IS low AND x1 IS high AND x2 

IS low) OR (x0 IS high AND x1 IS low AND x2 IS low) THEN UP IS mid; 

RULE 5 : IF (x0 IS low AND x1 IS high AND x2 IS high) OR (x0 IS high AND x1 IS low AND x2 

IS high) OR (x0 IS high AND x1 IS high AND x2 IS low) THEN UP IS low; 

RULE 6 : IF x2 IS low AND x5 IS low AND x8 IS low THEN RIGHT IS high; 

RULE 7 : IF (x2 IS low AND x5 IS low AND x8 IS high) OR (x2 IS low AND x5 IS high AND x8 

IS low) OR (x2 IS high AND x5 IS low AND x8 IS low) THEN RIGHT IS mid; 

RULE 8 : IF (x2 IS low AND x5 IS high AND x8 IS high) OR (x2 IS high AND x5 IS low AND x8 

IS high) OR (x2 IS high AND x5 IS high AND x8 IS low) THEN RIGHT IS low; 

RULE 9 : IF x6 IS low AND x7 IS low AND x8 IS low THEN DOWN IS high; 

RULE 10 : IF (x6 IS low AND x7 IS low AND x8 IS high) OR (x6 IS low AND x7 IS high AND x8 

IS low) OR (x6 IS high AND x7 IS low AND x8 IS low) THEN DOWN IS mid; 

RULE 11 : IF (x6 IS low AND x7 IS high AND x8 IS high) OR (x6 IS high AND x7 IS low AND x8 

IS high) OR (x6 IS high AND x7 IS high AND x8 IS low) THEN DOWN IS low; 

        END_RULEBLOCK 

 

A method capable of achieving a prescribed 

behavioral tendency proposed in Subsection 4.3 and 

based on the stochastic approximation approach was 

used to form the intellectics of the type 3 agent.  The 

behavioral tendency was constructed in the following 

form: 

ℜ{−ℳ1{Q1(K, X)} + ℳ2{Q2(K, X)} −

ℳ3{Q3(K, X)} − ℳ4{Q4(K, X)}} → min.  (20) 

It means that four partial behavior types were 

constructed for each action. Important characteristics 

for each partial behavior were selected from the area 

that the agent sensed (Table 3):  

Since agent learning (or self-training) is performed 

online, two implementations of opinion phase logic 

were made for the agent of this type. One was for 

learning, and the other was for an already known 

internal state K  that has been formed when learning 

online. 

All implemented agents (agents of three types) were 

put to different tests. Agents of the first and second type 

were tested by going through the following steps: 
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Table 3. Description of Partial Actions 

Behavior 
Mathematical 

representation 

Visual 

presentation 

Left 
𝑄1(�⃗⃗⃗�, �⃗�) = 𝑥0𝑘0 + 𝑥3𝑘3

+ 𝑥6𝑘6 

 

Up 
𝑄2(�⃗⃗⃗�, �⃗�) = 𝑥0𝑘0 + 𝑥1𝑘1

+ 𝑥2𝑘2 

 

Right 
𝑄3(�⃗⃗⃗�, �⃗�) = 𝑥2𝑘2 + 𝑥5𝑘5

+ 𝑥8𝑘8 

 

Down 
𝑄4(�⃗⃗⃗�, �⃗�) = 𝑥6𝑘6 + 𝑥7𝑘7

+ 𝑥8𝑘8 

 

 

1. Agent was forced to perform an action sequence 

containing 100 actions in the initial environment. 

These action sequences were recorded. 

2. Noise was applied and the agent performed another 

action sequence of the same length. This was 

repeated for every noise level. Each sequence was 

recorded. 

2. Performance was evaluated by comparing the 

action sequence with the initial one in a noisy 

environment. The comparison of these actions has 

shown the reliability of agent training; it means that 

to some degree the agent is noise -proof.  

4. First three steps were performed 10,000 times, with 

a random starting position of the agent each time. 

Performance results were summed up and divided 

by the run count.  In this way, the average agent 

performance was calculated. 

An example of one run of the type 1 agent is shown 

in Fig. 14(a). 

Performance results show that even though the 

choices an agent makes degrade with higher noise level, 

it still makes similar choices in 30% of cases: 
 

Noise 1 2 3 4 5 6 7 8 9 

Result 38.7 35.6 32.0 31.0 30.4 30.0 29.6 29.2 27.8 

 

Examples of the movement paths for one run taken 

by the type 2 agent, show that it constantly gets stuck 

in a movement loop between a few tiles of the 

environment (Fig. 14 (b)). This, however, does not 

mean that the agent is acting wrong. Its actions are 

merely consequences of a situation he got himself into, 

and for him they are always the right thing to do. 

The performance of the type 2 agent is more or less 

the same as of the first one: 
 

Noise  1 2 3 4 5 6 7 8 9 

Result 35.3 34.2 34.9 32.5 30.6 29.8 26.3 28.0 28.2 

    

(a) 

    

(b) 

    

(c) 

    

(d) 

Figure 14. Examples of testing runs performed by agents of 

the type 1, 2 and 3 subjected to different noise level 

A comparison of the performance of agents in a 

graphical form is presented in Fig. 15. 

 

 

Figure 15. Performance comparison of the Agents 
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For the type 3 agent, the tendency to “move up” was 

formulated. The movement paths of the third agent 

(Fig. 14 (c)) show that it develops a tendency to move 

up successfully, but, after reaching the top, often gets 

stuck in two blocks. 

5. After the online self-training was performed, the 

type 3 agent, now possessing a newly-gained know-

ledge, was put in random places on the initial field. 

The examples of its behavior after the self-training 

process (Fig. 14 (d)) show relatively good (or even 

excellent) performance results. 

6. Final Remarks 

After summarizing the theoretical and experimental 

research results, we can state that: 

 the well-known and widely spread definitions of the 

smart and intelligent agent (SA; IA), as well as the 

smart and intelligent multi-agent system (SS/II_ 

MAS) were precisiated; 

 the use of a unified and standardized agent/multi-

agent system description based on the definitions of 

the general systems theory was delivered;  

 three typical features of human intellectual acti-

vities were proposed to be implemented and simula-

ted in the agent/multi-agent system as basic para-

digms for the intellectics of agent and multi-agent 

systems; it must be underlined that operation accor-

ding to those paradigms (recognition and classifica-

tion, behavior according to a set of fuzzy rules, and 

operation according to some prescribed tendency) is 

solidly mathematically based (correspondingly: 

mathematical programing, fuzzy logic and stochas-

tic approximation); 

 results of computerized modeling and simulation 

have demonstrated the practical vitality and effi-

ciency of the theoretical approach for the realization 

of an intelligent environment of IoT&S for user‘s 

comfort; 

 a lot of technical and social problems still remain 

and need to be solved in order to successfully 

implement a user-friendly environment based on the 

intellectics of multi-agent systems; some of them 

are still being researched and will serve as authors‘ 

investments in further publications 
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