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Abstract. Nowadays, the fast advance of internet technology has brought two challenges. One is the explosion of 

information. The other is that new information appears almost every day. Obviously, clustering is a good solution to 

help users analyze information automatically, whereas traditional clustering algorithms are only suitable for small- 

scale and stable text collection. In order to cluster large-scale and unstable texts, a novel clustering algorithm based on 

vector compression is proposed in this paper. We call this algorithm VCLC, abbreviated from a clustering algorithm 

based on vector compression for large-scale text collection. Experimental results demonstrate that VCLC is effective 

for clustering large-scale text collection. The reason is that VCLC selects related features to compress feature sets, and 

iterative training idea of self-organizing-mapping (SOM) is also adopted in it to fine-tune the weights of the features to 

enhance clustering performance. Besides, an incremental version of VCLC, namely I-VCLC, is also provided in this 

paper. When novel texts appear, I-VCLC chooses some samples from the original texts to alter neuron model to 

perform incremental clustering. In order to prevent over training, I-VCLC adjusts the weights of the samples along 

with training process. Experimental results demonstrate that I-VCLC can cluster unstable texts very well. 

Keywords: vector compression; incremental clustering; self-organizing-mapping; neuron model. 

 

1. Introduction 

Along with the fast advance of internet technology, 

information overload has already become a headache 

problem to users. Obviously, clustering is a good 

solution to this issue. It partitions data into clusters 

and does not need any transcendent knowledge [1]. 

Due to the fact that text is a common descriptive 

format to express information in website, it causes text 

clustering becomes hotter and hotter. 

Up to now, many text clustering algorithms have 

been proposed. They can be partitioned into five 

categories: a) partition based; b) density based; c) 

hierarchy based; d) grid based; e) model based. 

Nevertheless, most of them fail in dealing with textual 

data, especially for large-scale text collection. 
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In comparison with the other types of data (e.g. 

figure, video, etc.), text vector is very sparse. That 

means the features that are related to the topic of text 

only occupy a small proportion of vector space. This 

problem is also called “curse of dimensionality” [2]. It 

causes similarities among most of texts are close to 0. 

This situation dramatically drops the performance of 

traditional clustering algorithms. The typical examples 

are Spectral Clustering [3], Graph Clustering [4], and 

Hybrid of K-means and KNN [5]. They all perform 

well on clustering dense data, such as figure and 

video, but fail in dealing with sparse data, such as text. 

In order to solve “curse of dimensionality”, Principal 

Component Analysis (PCA) [6] and Latent Semantic 

Indexing (LSI) [7] are adopted as preprocessing step 

to reduce vector dimension before clustering. But, 

since PCA and LSI combine several features together 

to construct a fake feature, the semantic meaning of 

the feature is also lost, which, somehow, drops the 

performance of clustering algorithms. 

In fact, in text clustering, it only needs to choose 

small features from vector space to comprehensively 

represent the topic of one cluster. For example, if there 

is a cluster whose topic is about “military”, only the 

features, such as “gun”, “sword”, “tank”, which are 

related to the topic of the cluster can be chosen as the 

representation of this cluster. 

Obviously, if only related features are chosen to 

represent cluster, it not only can filter the interferences 

brought from unrelated features, but also can reduce 

memory storage. For example, after word stemming 

and common word filtration, if we use Vector Space 

Model to organize the testing texts in the experiments 

(those texts are downloaded from Yahoo web site 

during the entire year of 2014, including about 107 

texts), the dimension of vector space exceeds 108. 

That means it needs 200G memories to store this 

model. On the contrary, if we treat the representation 

of text and cluster as feature set, and only choose the 

words in the texts that are related to the topic of the 

cluster as features, it only needs 80M memories. 

In order to cluster large-scale text collection 

effectively, a novel text clustering algorithm based on 

vector compression is proposed in this paper. We call 

this algorithm VCLC for simplicity. In our early paper 

[8], we also consider choosing features to reconstruct 

cluster vector. However, this reconstruction is based 

on two statistics (namely, intra-cluster agglomeration 

and inter-cluster distinctness), and two processes 

(reconstruction and clustering) run for two distinct 

objectives. In detail, the aim of reconstruction is to 

compress vector dimension and the aim of clustering 

is to cluster similar texts. The discrepancy between the 

two aims causes that the algorithm in [8] may not 

always converge to the best result. In experiments 

(Figure 11 and Figure 12), we compare the clustering 

result obtained by our algorithm (VCLC) proposed in 

this paper with the algorithm (VRCLC) proposed in 

our early paper [8]. Experimental results demonstrate 

that our algorithm (VCLC) outperforms the algorithm 

(VRCLC) in [8] from both running time and clustering 

precision. The reason to this result is that VCLC 

adjusts the similar features to keep the semantically 

similar texts aggregate together. In detail, VCLC first 

chooses the features that are related to the topic of the 

cluster to represent cluster, and then iterative training 

idea of self-organizing-mapping (SOM) is adopted to 

fine-tune the weights of the chosen features to 

enhance clustering precision. Experimental results 

demonstrate that since related features are chosen to 

represent cluster, VCLC can remove the disturbances 

brought from useless features and thereby owns high 

intra-cluster agglomeration. Moreover, since only 

related features are put in feature set to represent 

cluster, the clusters represented by those feature sets 

express distinct meanings. That means the clusters 

formed by VCLC are also separated well. 

Information on website is updated every moment. 

Therefore, how to cluster unstable textual data is also 

important [9~11]. To this end, this paper proposes an 

incremental version of VCLC (namely, I-VCLC). 

When novel texts appear, I-VCLC combines novel 

texts and some samples chosen from the original texts 

together to alter neuron model generated from the 

original texts to perform incremental clustering. In 

order to make the chosen samples better simulate the 

distribution of the original texts and furthermore to 

reduce running time, local density is used to partition 

neuron model into several regions to generate 

samples. Experimental results demonstrate that I-

VCLC can cluster unstable textual data with low 

running time. 

2. Clustering algorithm for large-scale text 

collection (VCLC) 

The core idea of VCLC is to choose the related and 

useful features from vector space to represent each 

cluster. After selection, one cluster is represented by 

one feature set containing the features related to the 

topic of the cluster. Iterative training idea of SOM is 

adopted to conduct training process. In this training 

process, one cluster is treated as one neuron, and all 

the neurons are ordered as round topology. Round 

topology is simple and can avoid “boundary problem” 

of square topology [12]. This topology is shown in 

Figure 1, and how to insert neuron in this topology is 

shown in Figure 2. 
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Figure 1. Round neuron topology 
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Figure 2. Insert new neuron in round neuron topology 

2.1. Initialization of VCLC 

Traditional SOM based algorithms randomly 

initialize weights on features in neuron. That means 

each feature will be assigned an arbitrary weight at the 

beginning of training process. This way increases 

training time and does not consider any transcendental 

knowledge derived from input texts [13]. Thereby, this 

paper uses semantic similarity among features to form 

a more rational initial neuron mode. The neurons in 

this model represent the clusters of distinct topics. 

In order to form initial neuron model, it needs to 

calculate semantic similarity among features at first. 

After that, features are partitioned into feature sets, 

and one feature set represents one neuron (or one 

cluster) in the initial neuron model. Because one 

feature set contains the features semantically similar to 

each other, it indicates that this initial neuron model 

can partition texts into different clusters each of which 

expresses the distinct topic to the others. The linguist 

indicates: “the syntax function of a feature is the 

distribution of this feature” [14]. The context of one 

feature is a typical distribution. Therefore, if the 

contexts of two features are almost the same, the 

semantic similarity between these two features is 

close. The word before a feature and the word after a 

feature mostly determine the semantic meaning of this 

feature. Thus, we count feature’s co-occurring word 

and co-occurring word probability to construct 

feature’s co- occurring word vector. One 

dimensionality of this vector corresponds to one co-

occurring word of one feature. The value of this 

dimensionality is the co-occurring word probability 

between the feature and its co-occurring word. Via 

calculating Kullback-Leibler divergence between two 

co-occurring word vectors of two features, semantic 

similarity between these two features can be obtained 

like 

( , ) 1- ( , )p qSim F F H ( ) ( )p qFV F FV F  (1) 

where Fp and Fq denote two features, and FV(Fp) and 

FV(Fq) denote the co-occurring word vectors of Fp 

and Fq; H(FV(Fp),FV(Fq)) denotes the Kullback-

Leibler divergence between two vectors. To calculate 

H(FV(Fp),FV(Fq)), we need to acquire the value of 

each entry in FV(Fp) and FV(Fq) at first. This value 

represents the semantic similarity between one feature, 

e.g. Fp, and its one co-occurring word, e.g. CoWk [15]. 

It can be calculated by 

,

,

( )
( )

( ) ( )

p k

p k

p k

Co F CoW
P F CoW

Fre F Fre CoW
  (2) 

where Fp denotes one feature; CoWk denotes one co-

occurring word of Fp; Co(Fp,CoWk) denotes the 

frequency of the concurrence of Fp and CoWk in the 

texts. 

Via Eq.(2), we can calculate the Kullback-Leibler 

divergence between two co-occurring word vectors, 

e.g. FV(Fp) and FV(Fq), as 
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where pi denotes ith entry in FV(Fp) and qi denotes ith 

entry in FV(Fq). They can be calculated by Eq.(2). n 

denotes the size of the co-occurring word vector. From 

Eq.(3), it can be concluded that the Kullback-Leibler 

divergence ranges in [0, 1]. The larger is the difference 

between the contexts of two features, the bigger is the 

value of the Kullback-Leibler divergence. Thus, we 

can use Kullback-Leibler divergence to measure the 

semantic similarity between two features. 

After obtaining semantic similarity among 

features, all the features in vector space can be 

partitioned into feature clusters by any clustering 

algorithm, and each cluster includes the features that 

are semantically similar to each other. Because it is 

unable to predict the amount of feature clusters, 

Hierarchical Clustering [16] is adopted by us to cluster 

features. 

Via Hierarchical Clustering, one feature cluster is 

treated as one feature set used to represent one cluster. 

Since the features in one feature set are semantically 

similar, the clusters represented by this kind of feature 

sets are partitioned well. Besides, since only the 

semantically similar features are contained by feature 

set, that means compared with traditional vector 

representation that uses all the features in vector space 

to form cluster vector, our semantic initialization can 

dramatically reduce vector dimension. Unfortunately, 

the feature sets constructed by semantic initialization 

are coarse, thus we use iterative training process of 

SOM to fine-tune the feature sets to obtain better 

cluster partition. In order to conduct training process, 

we need to change the feature sets constructed by 

semantic initialization to an initial neuron model. For 

this purpose, we first treat one feature set as one 

neuron, and then randomly insert neurons to form a 

round topology as shown in Figure 1 and Figure 2. 

2.2. Training process of VCLC 

Iterative training process of SOM is adopted to 

train initial neuron model to adjust feature sets to 

make them better represent the clusters. The training 

process is shown as follows: 
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Input: initial neuron set N; text collection D; topology 

matrix SN; max tuning threshold tmax; stopping criteria s. 

Output: neuron set (or cluster set) C. 

Initialization: 

/* Call function square( ) to set the topology of neuron 

model as square. */ 

SN=square( ); 

Tuning process: 

/* Initialize tuning index as 0. */ 

t=0; 

while (t<tmax) 

{ 

      t=t+1; 

/* Set d as a text variable and choose one text from D to set 

it. */ 

Doc d; 

d=random(D); 

/* ne is a neuron variable. */ 

Neuron ne; 

/* Calculate the similarity between d and each neuron in 

neuron topology by function callsim( ).*/ 

/* Function callsim( ) returns the neuron that has the max 

similarity to d. */ 

ne=callsim(d,N); 

/* Use function adjust( ) to adjust neuron ne via d. */ 

ne=adjust(ne,d); 

/* Sort the features in ne in order of their weights. */ 

ne=sort(ne); 

/* Keep the features in ne whose weights are larger than the 

others in the number of limit and remove the other features. 

*/ 

ne=featuretrim(ne); 

/* Use function topology( ) to return the neurons that are 

adjacent with ne. */ 

Neuron tempN[ ]=topology(SN,ne); 

for (i=1;i<tempN[ ].length( );i++) 

{ 

    tempN[i]=adjust(tempN[i],d); 

        /* Treat one neuron in N as one cluster in C. */ 

C=N; 

} 

/* Use function stopcal( ) to calculate the similarity between 

any neuron pair in N*/ 

float p=stopcal(N); 

/* If it achieves criteria, stop running. */ 

if(p>s) 

     return C; 

} 

 

In callsim(d,N), we need to calculate the similarity 

between one text and one neuron. Traditional SOM 

based algorithms [17,18] apply vector to represent 

neuron, and one entry in this vector corresponds to 

one feature in vector space. If we adopt this way too, 

many useless features will be contained in the vector 

and a lot of memory will be spent. Besides, in this 

situation, vector based similarity measurements, such 

as Euclidean distance, will spend much running time. 

In order to solve those problems, we apply feature set 

to represent neuron in this paper, and the features in 

one feature set are semantically similar to each other. 

In order to use feature set to represent neuron, we need 

to adjust the similarity measurement in traditional 

SOM based algorithms as: 
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 (4) 

where Dk denotes kth text in text collection; Ni denotes 

ith neuron in neuron model; FS(Dk) denotes the 

feature set including the features extracted to represent 

Dk; so is to FS(Ni); i_f denotes one feature in the 

intersection of FS(Dk) and FS(Ni); W(i_f,Dk) denotes 

the weight of i_f in Dk. Term Frequency and Inverse 

Document Frequency (TF-IDF) is employed to 

calculate feature’s weight based on [19]. W(i_f,Ni) 

denotes the weight of i_f in Ni. 

There are two sub-equations in Eq.(4). These two 

sub-equations are formed based on the following two 

situations, respectively: 

1. If the intersection of FS(Dk) and FS(Ni) is 

smaller than certain threshold, the text Dk and 

the neuron Ni express unrelated information. 

Via experience, when the size of the 

intersection of FS(Dk) and FS(Ni) is less than 

one third of the size of FS(Dk), the 

information expressed by Dk and Ni is 

different and the similarity between Dk and Ni 

should be 0. At this moment, Dk is treated as 

a new neuron, and inserted into neuron 

topology at random position. 

2. When the size of the intersection of FS(Dk) 

and FS(Ni) is beyond this threshold, two 

situations are considered to calculate 

similarity between Dk and Ni. Firstly, if the 

weights of the same feature in neuron and 

text are both large, that means the similarity 

between neuron and text is large. Secondly, if 

the size of the intersection of FS(Dk) and 

FS(Ni) is large, that means the neuron and the 

text share more information in common and 

thereby the similarity between them is large. 

In adjust(ne,d), we need to use input text, e.g. d, to 

adjust one neuron, e.g. ne. The adjustment equation 

used by traditional SOM based algorithms aims at 

reducing the distance between neuron and text. 

However, in VCLC, the weight of one feature 

indicates the ability of this feature to represent the 

information expressed by text and neuron in common. 

Thus, we propose a novel neuron adjustment equation: 

   
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 (5) 

where Dk denotes one text in text collection; Nb 

denotes the neuron that needs to be adjusted; Nr 



L. Chen, M. Liu, C. Wu, A. Xu 

140 

denotes the winner neuron that has the maximal 

similarity to Dk; Dist(Nb,Nr) denotes the distance from 

Nb to Nr in neuron topology; FS(Dk) and FS(Nb) denote 

the feature sets of Dk and Nb; fc denotes one feature in 

FS(Dk) or FS(Nb); W(fc,Nb)(t+1) denotes the weight of 

fc in Nb at t+1th iterative step; a(t) denotes the learning 

rate; NH denotes the neighborhood function, which is 

used to define the range where the neurons need to be 

adjusted. Both a(t) and NH drop along with training 

process. 

There are three sub-equations in Eq.(5). Each sub-

equation is, respectively, formed based on the 

following one situation: 

1. If the feature fc exists in the intersection of 

FS(Dk) and FS(Nb), fc obviously represents 

the common information in Nb and Dk. 

Therefore, the weight of fc should be 

increased in order to enhance the 

representing ability of fc. 

2. Since feature set is compressed by our 

algorithm, there may be some features that do 

not appear in the feature set of the adjusted 

neuron. The second sub-equation of Eq.(5) is 

formed to solve this problem. When fc does 

not exist in FS(Nb), it is inserted into FS(Nb) 

and is assigned an initial weight as 0.1. 

3. If the feature fc does not exist in the 

intersection of FS(Dk) and FS(Nb), but exists 

in the feature set of the neuron Nb, i.e. 

FS(Nb), we just keep the weight of fc in 

FS(Nb). 

In the previous workflow, we use a threshold limit 

to limit the number of features included by one feature 

set. This threshold is derived from our previous work 

in [20]. In that paper, we concluded that the number of 

the features that are sufficient to represent the topic of 

one cluster is at most 300. Therefore, we set limit as 

300. As shown in experiments, this setting can ensure 

our algorithm to acquire both good precision and low 

running time. In experiments (Figure 11 and 

Figure 12), we also compare our algorithm, VCLC, 

with PTC proposed in [20]. Compared with VCLC, 

PTC only utilizes the weight of the feature to limit the 

number of the features in the feature set. Therefore, 

PTC obtains lower precision than VCLC. 

In VCLC, MQE is used as convergence condition. 

1

( , )

k b

C
k b

bb D N

Sim D N

N
MQE

C

 


 
 (6) 

where C denotes the cluster quantity; |Nb| denotes the 

quantity of the texts included by the cluster that maps 

to the neuron Nb. 

Based on the previous workflow, it is easy to be 

concluded that training process of VCLC is similar to 

SOM. The differences between them are similarity 

measurement equation (Eq.(4)) and neuron adjustment 

equation (Eq.(5)). Since the similarity measurement 

equation is integrated in MQE (Eq.(6)) and the neuron 

adjustment equation is also based on the similarity 

measurement equation, VCLC can converge like 

SOM. 

3. Incremental version of VCLC (I-VCLC) 

As indicated by [21,22], the best plan to perform 

incremental clustering is to combine the new added 

data and few samples chosen from the original data 

together to alter the clustering model that generates 

from the original data. If using this plan, the key is to 

detect the change of the distribution of the clusters 

when new data are added. This change is shown in 

Figure 3. In this figure, when new data are added, 

certain sparse area that is formed from the original 

data becomes dense and it will form a new cluster. 

Neuron center move

Clusters from new data and original data

Clusters from original data

Original data New data New neuron center

Original neuron center

( ) ( (

( (

) )

) )

 

Figure 3. The change of the distribution of the clusters  

after new data are added 

3.1. Sample selection 

In order to choose samples from the neuron model 

that is constructed from the original textual data, each 

cluster in our neuron model is separated into some 

compact sub-clusters. Then, samples are chosen from 

each sub-cluster to cover the information expressed by 

this sub-cluster. Local Density [23] is used to separate 

one cluster, since this algorithm frees of predefining 

neighborhood distance and neighborhood radius. 

After each cluster is separated into some sub-

clusters by Local Density, M samples are chosen to 

represent one sub-cluster. In the experiments 

(Figure 8), it can be found that when M reaches 3, 

clustering result is just acceptable. The reason is also 

shown after Figure 8. 

Best Matching Neuron (BMN) and Second 

Matching Neuron (SMN) are adopted to calculate the 

relation between text and neuron to choose samples: 
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Sim D BMN Sim D SMN



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where BMN denotes the neuron that has the largest 

similarity to text Dj; it also represents the neuron that 

Dj maps to; SMN denotes the neuron that has the 

second similarity to Dj. 

In Eq.(7), if the gap between Sim(Dj,BMN) and 

Sim(Dj,SMN) is large, it means Dj is more similar to 

the cluster that Dj maps to, and has less similarity to 

the other clusters. It also means that Dj locates at the 

center of the cluster that it belongs to. When the new 

texts appear, Dj may not move to another cluster. On 

the contrary, if this gap is small, it means Dj locates at 

the boundary of the cluster that Dj belongs to. When 

the new texts appear, Dj may easily move to another 

cluster. It also needs another text, whose relation is 

between the largest relation and the smallest relation, 

to represent the middle part of the sub-cluster. Thus, it 

can be concluded that when M reaches 3, the chosen 

samples can represent each location of the sub-cluster 

perfectly. 

3.2. Incremental clustering 

When the new texts appear, the samples chosen 

from the original texts can be combined with the new 

added texts together to train neuron model generated 

from the original texts. At the beginning of training 

process, because neuron model is only suitable for the 

original texts, the new added texts should take a more 

important status. This way can make neuron model 

simulate the distribution of the new texts rapidly. 

However, after running training process for a while, 

neuron model will be over trained and deviates from 

the distribution of the new texts. This is because only 

a few samples are chosen to represent the original 

texts. If the samples and the new texts have the same 

importance in training process, neuron model will be 

over trained and over simulate the new texts. For this 

reason, we use a threshold to separate training process 

into two parts, and different weights are evaluated on 

the samples along with training process. When the 

number of training steps is less than the threshold, 

neuron model is more suitable for the original texts. 

Then, samples are evaluated with lower weights to 

make neuron model simulate the new texts rapidly. 

When the number of training steps is larger than the 

threshold, that means training process runs for a while. 

At this moment, the weights of the samples are added 

to avoid “over training”. Based on this idea, Eq.(8) is 

formed to weigh the samples: 

1;                         

( , 1) (2 ( )) ( , ) log( ( ));

                           

j j j

If training steps W

W SD t a t R SD BMN SZ SD

If training steps W



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 

(8) 

where W denotes the threshold of the number of the 

steps to separate training process into two parts; SDj 

denotes jth sample; Weight(SDj,t+1) denotes the 

weight of SDj at t+1th training step; SZ(SDj) denotes 

the size of the sub-cluster that SDj belongs to; 

R(SDj,BMN) is calculated by Eq.(7). 

The threshold W in Eq.(8) is empirically assigned 

the sum of the size of the new texts and the size of the 

samples. When the number of training steps is larger 

than W, the weight of the sample is adjusted. From the 

lower sub-equation in Eq.(8), it can be observed that 

the size of the sub-cluster and the relation between the 

sample and the neuron are used together to adjust the 

weight of the sample. On the one hand, if the size of 

the sub-cluster is larger, it means that the sample 

represents larger sub-cluster. Thus, the weight of the 

sample is higher. On the other hand, if the relation 

between the sample and the neuron is higher, it means 

that this sample can better represent the information 

expressed by the cluster that maps to this neuron. 

Thus, the weight of the sample is higher. 

4. Experiments and analyses 

In this paper, we construct a corpus including 107 

news web pages downloaded from Yahoo website 

during the entire year of 2014 to test the performance 

of our algorithm. This corpus includes more than one 

thousand clusters, e.g. “society”, “military”, “sports”, 

“entertainment”, “policy”, “education”, “medicine”, 

“arts”, etc. Since this corpus is large-scale and 

downloaded from internet, it is impossible for users to 

manually partition it into several clusters and then 

apply certain measure, e.g. F1 or Purity, to measure 

clustering precision. Therefore, in this paper, ARI 

(Adjusted Random Index) is adopted to measure 

clustering precision [24]. It evaluates how well the 

algorithm splits input data into different clusters by 

looking at the relation between the clusters, and not 

between the clusters and the given labels. With respect 

to ARI, it combines two texts as one pair-point. If the 

volume of text collection is n, this collection has n*(n-

1)/2 possible pair-points. 

ARI utilizes four situations to identify clustering 

result. 

a) Two texts included by one pair-point are 

manually labeled in the same cluster, and in clustering 

result they are also in the same cluster. 

b) Two texts included by one pair-point are 

manually labeled in the same cluster, and in clustering 

result they are in different clusters. 

c) Two texts included by one pair-point are 

manually labeled in different clusters, and in 

clustering results they are also in different clusters. 

d) Two texts included by one pair-point are 

manually labeled in different clusters, and in 

clustering result they are in the same cluster. 

Let a, b, c, and d, respectively, denote the numbers 

of the pair-points that meet the previous four 

situations. They can be used to measure clustering 

precision as 
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 (9) 

Running time and clustering precision of VCLC 

with semantic initialization and random initialization 

are recorded in Figure 4 and Figure 5, respectively. 

 

Figure 4. Running time of VCLC, respectively, with 

semantic initialization and random initialization 

From Figure 4, it is easy to be found that running 

time of VCLC with semantic initialization is less than 

the one with random initialization. This is because 

semantic initialization makes the features that can 

better represent the topic of the cluster agglomerate 

together to form the initial neurons. This construction 

can form better initial cluster partition, which is close 

to the convergent partition. Thus, it only needs fewer 

iterative training steps to converge. 

 

Figure 5. Clustering precision of VCLC, respectively, with 

semantic initialization and random initialization 

From Figure 5, it can be found that VCLC with 

semantic initialization owns better clustering precision 

than the one with random initialization. The reason is 

that for most of clustering algorithms, initialization 

takes an important status to affect their precisions. 

Good initialization not only can accelerate clustering 

speed, but also can reduce the chance that texts map to 

wrong clusters. Since semantic initialization partitions 

texts into the clusters that are separated well, the 

precision of VCLC with semantic initialization is 

better than the one with random initialization. 

Together with iterative training process of SOM, 

our algorithm (VCLC) can further enhance its 

precision. Traditional SOM based algorithm applies 

vector based similarity measurement to calculate the 

similarity between neuron and text. This measurement 

is not fit to our algorithm, since we only choose a few 

features to represent one cluster. Therefore, a novel 

similarity measurement is proposed in this paper. In 

Table 1, we compare the measurement proposed in our 

paper (Eq.(4)) with the other popular measurements 

that are applied in SOM. The baseline measurements 

include Cosine, Euclidean distance, KL, SMTP [25], 

ADSS [26], and HLCL [27]. Because our algorithm 

(VCLC) compresses the feature set, the baseline 

similarity measurements cannot be directly applied in 

our algorithm for testing. To deal with this problem, 

we just apply the baseline measurements in SOM to 

run test. 

Table 1. Clustering precision of different measurements 

Measurements Cosine Euclidean KL 

ARI (%) 75.46 76.03 76.18 

ADSS SMTP HLCL VCLC 

80.71 82.83 81.02 87.47 

 

From Table 1, it is easy to be observed that 

different similarity measurements obtain the distinct 

clustering precisions. ADSS, SMTP, and HLCL obtain 

better precisions, since they all consider compressing 

vector. However, they never consider measuring the 

semantic similarity between the information that are, 

respectively, expressed by text and neuron. This fact 

causes that these three measurements obtain lower 

precisions than ours. For Cosine, Euclidean distance, 

and KL, these three similarity measurements are based 

on concurrence ratio and not only never consider 

compressing feature set but also never consider 

semantic similarity between text and neuron. Thereby, 

these three measurements obtain the lowest precisions. 

Compared with the six baseline measurements, our 

proposed measurement first uses initial step to keep 

the features that are semantically similar in one feature 

set, and then uses two situations to measure the 

similarity between neuron and text. Therefore, our 

proposed measurement obtains the highest precision. 

In the initial step, the features that are semantically 

similar are chosen to compress feature set. After that, 

these compressed feature sets are fine-tuned through 

adjusting the similarity measurement and the neuron 

adjustment equation. That makes the initial step and 

the following training process integrate well, which 

means the initial step proposed in this paper can only 

be applied in our algorithm to obtain high precision. 

On the contrary, most of traditional algorithms run 
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clustering in uncompressed feature set. Though some 

of them compress feature set, they often separate 

clustering and initialization as two unrelated steps. 

Due to this isolation, it cannot ensure that the final 

clustering result can be improved by the initial step. 

Running time and clustering precision of VCLC 

are also compared with some other well-known text 

clustering algorithms. They are Spectral Clustering 

[3], Graph Clustering [19], Hybrid of K-means and 

KNN [4], SOM [17], and an improved SOM based 

algorithm, GHSOM [18]. Two recently proposed 

clustering algorithms are also considered in the 

testing. They are Non-negative Matrix Factorization 

(NMF) [28], and LDCC based on Latent Dirichlet 

Allocation from Topic Model [29]. The results are 

shown in Figure 6 and Figure 7. 

 

Figure 6. Running time of different algorithms 

From Figure 6, it is easy to be found that running 

time of VCLC is the shortest. When text collection 

enlarges, the high time performance of VCLC is easier 

to be perceived. This is because VCLC has two 

advantages that can greatly reduce running time. One 

advantage is that VCLC chooses the features that can 

better represent the topic of the cluster to compress 

feature set. When the scale of text collection is small, 

for example smaller than 106, this compression has 

little effect. At this time, running time of different 

algorithms is almost the same. Correspondingly, when 

the scale of text collection augments, compression 

begins to work. Running time of VCLC is obviously 

less than the other algorithms. When the scale of text 

collection reaches 3*106, VCLC can compress feature 

set by 1/5000. It effectively reduces running time. The 

other advantage is that VCLC uses semantic similarity 

to construct the initial neuron model. Since this initial 

model is close to the convergent partition, it obviously 

decreases the number of iterative steps spent to reach 

convergence. From Figure 6, it can also be found that 

the rank of running time spent by the other baseline 

algorithms from low to high is Hybrid of K-means and 

KNN, SOM, NMF, LDCC, GHSOM, Spectral 

Clustering, and Graph Clustering. Time complexities 

of Hybrid of K-means and KNN, SOM, and GHSOM 

are all O(kln) [5,17,18], where k is cluster quantity; l 

is the number of iterative steps; n is text quantity. The 

rank of the numbers of iterative steps spent by these 

three algorithms from low to high is Hybrid of K-

means and KNN, SOM, and GHSOM. Therefore, the 

rank of running time spent by them from low to high 

is KNN, SOM, and GHSOM. The other two 

algorithms, Spectral Clustering and Graph Clustering, 

need to decompose matrix. Thus, they spend the 

longest running time. For NMF, it applies matrix 

decomposition to reduce the dimension of feature 

space. In this low-dimensional feature space, NMF 

runs much faster and also obtains more precise result. 

However, if we consider the matrix decomposition 

process as the preprocessing step of clustering 

process, its running time is high and even more than 

SOM. The reason is that time complexity of 

decomposition is beyond linear against the size of text 

collection. Therefore, NMF spends much more time 

when text collection enlarges. For LDCC, space 

transformation is used. LDCC transforms feature 

space to topic model, and extracts topics from text 

collection to separate texts into several clusters of 

different topics. This way can enhance clustering 

precision, whereas due to the added transformation 

step, its running time is also longer. In fact, as show in 

[1], among most of recent clustering algorithms 

proposed to enhance clustering precision, the linear 

time complexity (like SOM and K-means) can be 

treated as the ideal time complexity. 

 

Figure 7. Clustering precision of different algorithms 

From Figure 7, it is easy to be found that the rank 

of clustering precision from low to high is Hybrid of 

K-means and KNN, SOM, GHSOM, Spectral 

Clustering, Graph Clustering, NMF, LDCC, and 

VCLC. There are two reasons to the situation that 

VCLC has the highest precision. First of all, VCLC 

uses semantic similarity to construct an initial neuron 

model. This model reduces the interferences brought 

from the wrongly partitioned texts. Secondly, VCLC 

chooses the features that are related to the topic of the 

cluster to construct the feature set of one cluster and 

filters the interferences brought from the unrelated 

features. This method can greatly increase the intra-
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cluster agglomeration and the inter-cluster 

distinctness. Precisions of Spectral Clustering, Graph 

Clustering, SOM, and GHSOM are lower than VCLC. 

These four algorithms all map a high dimensional data 

space into a low dimensional transition space to 

cluster texts. Thus, their precisions are similar. 

However, since all of them never consider removing 

the features that are unrelated to the topic of the 

cluster, their precisions are lower than VCLC. 

Clustering precision of Hybrid of K-means and KNN 

drops rapidly, when the scale of text collection 

augments. That means this algorithm is only suitable 

for clustering small-scale text collection. The reason 

to this situation is that Hybrid of K-means and KNN 

applies Vector Space Model to organize texts and 

clusters. This model cannot solve the problem of 

“curse of dimensionality”. For NMF and LDCC, they 

either use matrix decomposition (NMF) or topic 

model (LDCC) to enhance their precisions. More 

importantly, when text collection is large, these two 

algorithms do not lose their precisions either. The 

reason is that matrix decomposition and topic model 

applied by NMF and LDCC not only can reduce the 

dimension of feature space but also can extract the key 

features from text to enhance clustering precision. 

Therefore, NMF and LDCC obtain the similar 

precision to our algorithm (VCLC). However, since 

VCLC considers the similar features in the adjustment 

equation, it can aggregate the semantically similar 

texts into one cluster. Compared with VCLC, NMF 

and LDCC cannot cluster semantically similar texts. 

Therefore, VCLC obtains higher precision than NMF 

and LDCC. 

In the following experiments, the performance of 

the incremental version of VCLC (i.e. I-VCLC) is 

tested. Figure 8 shows the precision of I-VCLC, when 

it combines the new added texts and the samples of 

different numbers chosen from the original texts to 

perform incremental clustering. 

 

Figure 8. Clustering precision of I-VCLC when different 

numbers of samples are chosen 

From Figure 8, it is easy to be found that when the 

numbers of the samples chosen from the original texts 

are different, I-VCLC obtains the distinct precisions. 

When this number is less than 3, precision drops 

rapidly. This is because when this number equates to 

1, only the text that can represent the center of the 

sub-cluster or the boundary of the sub-cluster is 

sampled. When this number equates to 2, two texts 

that can represent the center of the sub-cluster and the 

boundary of the sub-cluster are sampled, whereas it 

neglects to sample the text that can represent the 

middle part of the sub-cluster. When this number 

equates to 3 or is much higher, the chosen samples can 

represent one sub-cluster well. Thus, the precision 

curve becomes smooth. 

To simulate incremental clustering, 106 texts that 

are randomly chosen from testing corpus are used as 

the original texts to form an initial neuron model using 

VCLC. After that, we randomly select different scales 

of texts each time, e.g. 105, 5*105, and 106, to perform 

incremental clustering using I-VCLC. These selected 

texts are treated as the new added texts, and they are 

combined with the samples chosen from the original 

texts to perform incremental clustering using I-VCLC. 

Each time when the sum of the quantity of the original 

texts and the quantity of the new added texts equates 

to the integral times of 106, clustering precision and 

running time are, respectively, recorded once in 

Figure 9 and Figure 10. 
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Figure 9. Running time of I-VCLC when the new texts of 

different scales are added 

From Figure 9, it is easy to be found that when the 

sum of the quantity of the original texts and the 

quantity of the new added texts is small, running time 

of I-VCLC is similar though the new added texts are 

of different scales. The reason is that when this sum is 

small, each sub-cluster only includes few texts. At this 

moment, the samples chosen from one sub-cluster are 

almost all the texts in this sub-cluster. In this situation, 

running time of I-VCLC is very similar no matter 

whichever quantity of the new texts is added. By 

contrast, when this sum enlarges, running time of I-

VCLC is different in the situation that the new added 

texts are of different scales. There are two reasons to 

this situation. First of all, if more texts are inserted as 

the new texts at each incremental time, it only needs 

fewer times to perform incremental clustering when 

the sum of the quantity of the original texts and the 
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quantity of the new texts reaches certain scale. For 

example, if we select texts in the scale of 105 each 

time to perform incremental clustering, when this sum 

reaches 2*106, it has to perform incremental clustering 

ten times (the quantity of the original texts is 106); if 

we select 5*105, it needs two times; if we select 106, it 

only needs one time. Secondly, the new added texts 

are sampled from testing corpus. Then, if more texts 

are inserted at each incremental time, neuron model 

will be more similar to the distribution of testing 

corpus. In this situation, it only needs to choose fewer 

samples to represent one sub-cluster. Thus, the 

quantity of the texts that need to be incrementally 

clustered is smaller, which causes less running time. 
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Figure 10. Clustering precision of I-VCLC when the new 

texts of different scales are added 

From Figure 10, it is easy to be found that there 

are two trends along with x-axis and y-axis. Along 

with x-axis, clustering precisions all drop no matter 

whichever scale of the new texts is used. Since the 

new added texts are randomly selected from testing 

corpus, the distribution of the new added texts is only 

approximate to the distribution of testing corpus. 

However, after performing incremental clustering for 

several times, the distribution of neuron model (or 

cluster model) may deviate from the distribution of 

testing corpus. Then, when the new texts are added, 

they will distort the distribution of neuron model. 

Therefore, clustering precision drops along with the 

augment of the quantity of the total texts. Along with 

y-axis, clustering precision is much higher if more 

new texts are added at each incremental time. This is 

because when more new texts are added at each 

incremental time, the distribution of the new added 

texts is more approximate to the distribution of testing 

corpus. Then, it affects the distribution of neuron 

model a little. Therefore, clustering precision is 

higher, if more new texts are added at each 

incremental time. 

In Figure 11 and Figure 12, we compare the 

algorithm proposed in this paper (VCLC) with the 

algorithms (VRCLC and PTC) proposed in our early 

papers [8,20] on clustering precision and running 

time. 

Form Figure 11, it can be found that our algorithm 

(VCLC) owns the highest time performance. Its 

running time is less than that of VRCLC and PTC. 

Besides, when the scale of text collection enlarges, its 

running time shortens much compared with VRCLC 

and PTC. There are two reasons to this situation. One 

is that our algorithm first partitions texts into several 

initial clusters via semantic similarity. This initial 

cluster partition is close to the final cluster partition, 

which can be seen from Figure 5. Therefore, our 

algorithm (VCLC) spends less running time than 

VRCLC and PTC. The other reason is that in the 

neuron adjustment step, VCLC considers the features 

that are similar to the adjusted feature. This type of 

adjustment expands the range of the adjustment on 

features. Therefore, it decreases running time. When 

the scale of text collection enlarges, more similar 

features exist in the feature space. Therefore, running 

time decreases much when the size of text collection 

enlarges. Compared with VCLC, VRCLC proposed in 

[8] does not utilize any method to accelerate running 

speed. PTC in [20] tries to set a limitation on the size 

of feature set to accelerate running speed. Therefore, 

running time spent by PTC is less than that spent by 

VRCLC. However, since PTC does not try to apply 

initialization to save running time and also does not 

consider expanding the range of the adjustment on 

features, its running time is longer than VCLC. 

 

Figure 11. Running time of VCLC, VRCLC, and PTC 

Form Figure 12, it can be found that our algorithm 

(VCLC) performs a little better than VRCLC and PTC 

when the size of text collection is small, and when this 

size enlarges to a certain level (e.g. more than 3*106), 

the superiority of the precision of VCLC is easy to be 

perceived. The reason to this phenomenon is that our 

algorithm (VCLC) considers the similar features in its 

adjustment step, this type of adjustment can make the 

texts owning the similar features but not the same 

features (e.g. one text uses “computer” as its feature 

and one text uses “calculating machine” as its feature; 

these two texts are semantically similar) aggregate 

into one cluster. When the size of text collection 
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enlarges, more texts are semantically similar. In this 

situation, our algorithm (VCLC) can find more 

semantically similar texts to enhance its precision. On 

the contrary, for VRCLC, it has two steps. One step 

runs iterative tuning process of SOM to adjust the 

features in the cluster vector. The second step 

reconstructs cluster vector by choosing the features 

related to the topic of the cluster to enhance precision. 

Unfortunately, these two steps run for two distinct 

objectives. The adjustment step aims at partitioning 

texts into separated clusters and the feature selecting 

step tries to find more similar features to represent 

cluster. The discrepancy in the purposes of these two 

steps often makes the clustering result obtained by 

VRCLC deviate from the precise result. Therefore, the 

precision obtained by VCLC is higher than that 

obtained by VRCLC. For PTC, it sets a threshold to 

limit the size of feature set and employs feature’s 

weight as criteria to choose features. Due to the fact 

that some important features may have little weights 

and thereby are removed from feature set, PTC owns 

the lowest precision among the three algorithms. 

 

Figure 12. Clustering precision of VCLC, VRCLC,  

and PTC 

5. Conclusion 

A novel clustering algorithm for large-scale text 

collection (abbreviated as VCLC) is proposed in this 

paper. This algorithm selects the features that are 

related to the topic of the cluster to construct feature 

set as the representation of this cluster. This method 

not only can increase intra-cluster agglomeration and 

inter-cluster distinctness, but also can compress 

feature set by 1/5000 to extremely reduce running 

time. Besides, iterative training process of self-

organizing-mapping (SOM) is imported to fine-tune 

the weights of the selected features. Based on this 

idea, one feature set is treated as one neuron, and a 

novel similarity measurement and a novel neuron 

adjustment equation are also proposed. To further 

reduce running time and finally to obtain the precise 

clustering result, semantic similarity is used to 

initialize a neuron model. Furthermore, since new 

texts appear in website every day, this paper also 

proposes an incremental version of VCLC 

(abbreviated as I-VCLC) to cluster unstable texts. 

Experimental results demonstrate that VCLC can 

cluster large-scale text collection at high precision, 

and I-VCLC can cluster texts at any time when new 

texts appear. 
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