
136

ISSN 1392–124X (print), ISSN 2335–884X (online) INFORMATION TECHNOLOGY AND CONTROL, 2016, T. 45, Nr. 2

A Novel Clustering Algorithm and Its Incremental Version
for Large-Scale Text Collection

Lei Chen

Harbin Institute of Technology, School of Management, Harbin, 150001, China

Beijing Normal University, Zhu Hai, International Business Faculty, 519087, China

e-mail: chenlei3656@163.com

Ming Liu*

Harbin Institute of Technology, School of Computer Science and Technology, Harbin, 150001, China

e-mail: liuming1981@hit.edu.cn

Chong Wu

Harbin Institute of Technology, School of Management, Harbin, 150001, China

e-mail: wuchong@hit.edu.cn

Ai Xu

Beijing Normal University, Zhu Hai, International Business Faculty, 519087, China

e-mail: xu_teacher@163.com

 http://dx.doi.org/10.5755/j01.itc.45.2.8666

Abstract. Nowadays, the fast advance of internet technology has brought two challenges. One is the explosion of

information. The other is that new information appears almost every day. Obviously, clustering is a good solution to

help users analyze information automatically, whereas traditional clustering algorithms are only suitable for small-

scale and stable text collection. In order to cluster large-scale and unstable texts, a novel clustering algorithm based on

vector compression is proposed in this paper. We call this algorithm VCLC, abbreviated from a clustering algorithm

based on vector compression for large-scale text collection. Experimental results demonstrate that VCLC is effective

for clustering large-scale text collection. The reason is that VCLC selects related features to compress feature sets, and

iterative training idea of self-organizing-mapping (SOM) is also adopted in it to fine-tune the weights of the features to

enhance clustering performance. Besides, an incremental version of VCLC, namely I-VCLC, is also provided in this

paper. When novel texts appear, I-VCLC chooses some samples from the original texts to alter neuron model to

perform incremental clustering. In order to prevent over training, I-VCLC adjusts the weights of the samples along

with training process. Experimental results demonstrate that I-VCLC can cluster unstable texts very well.

Keywords: vector compression; incremental clustering; self-organizing-mapping; neuron model.

1. Introduction

Along with the fast advance of internet technology,

information overload has already become a headache

problem to users. Obviously, clustering is a good

solution to this issue. It partitions data into clusters

and does not need any transcendent knowledge [1].

Due to the fact that text is a common descriptive

format to express information in website, it causes text

clustering becomes hotter and hotter.

Up to now, many text clustering algorithms have

been proposed. They can be partitioned into five

categories: a) partition based; b) density based; c)

hierarchy based; d) grid based; e) model based.

Nevertheless, most of them fail in dealing with textual

data, especially for large-scale text collection.

A Novel Clustering Algorithm and Its Incremental Version for Large-Scale Text Collection

137

In comparison with the other types of data (e.g.

figure, video, etc.), text vector is very sparse. That

means the features that are related to the topic of text

only occupy a small proportion of vector space. This

problem is also called “curse of dimensionality” [2]. It

causes similarities among most of texts are close to 0.

This situation dramatically drops the performance of

traditional clustering algorithms. The typical examples

are Spectral Clustering [3], Graph Clustering [4], and

Hybrid of K-means and KNN [5]. They all perform

well on clustering dense data, such as figure and

video, but fail in dealing with sparse data, such as text.

In order to solve “curse of dimensionality”, Principal

Component Analysis (PCA) [6] and Latent Semantic

Indexing (LSI) [7] are adopted as preprocessing step

to reduce vector dimension before clustering. But,

since PCA and LSI combine several features together

to construct a fake feature, the semantic meaning of

the feature is also lost, which, somehow, drops the

performance of clustering algorithms.

In fact, in text clustering, it only needs to choose

small features from vector space to comprehensively

represent the topic of one cluster. For example, if there

is a cluster whose topic is about “military”, only the

features, such as “gun”, “sword”, “tank”, which are

related to the topic of the cluster can be chosen as the

representation of this cluster.

Obviously, if only related features are chosen to

represent cluster, it not only can filter the interferences

brought from unrelated features, but also can reduce

memory storage. For example, after word stemming

and common word filtration, if we use Vector Space

Model to organize the testing texts in the experiments

(those texts are downloaded from Yahoo web site

during the entire year of 2014, including about 107

texts), the dimension of vector space exceeds 108.

That means it needs 200G memories to store this

model. On the contrary, if we treat the representation

of text and cluster as feature set, and only choose the

words in the texts that are related to the topic of the

cluster as features, it only needs 80M memories.

In order to cluster large-scale text collection

effectively, a novel text clustering algorithm based on

vector compression is proposed in this paper. We call

this algorithm VCLC for simplicity. In our early paper

[8], we also consider choosing features to reconstruct

cluster vector. However, this reconstruction is based

on two statistics (namely, intra-cluster agglomeration

and inter-cluster distinctness), and two processes

(reconstruction and clustering) run for two distinct

objectives. In detail, the aim of reconstruction is to

compress vector dimension and the aim of clustering

is to cluster similar texts. The discrepancy between the

two aims causes that the algorithm in [8] may not

always converge to the best result. In experiments

(Figure 11 and Figure 12), we compare the clustering

result obtained by our algorithm (VCLC) proposed in

this paper with the algorithm (VRCLC) proposed in

our early paper [8]. Experimental results demonstrate

that our algorithm (VCLC) outperforms the algorithm

(VRCLC) in [8] from both running time and clustering

precision. The reason to this result is that VCLC

adjusts the similar features to keep the semantically

similar texts aggregate together. In detail, VCLC first

chooses the features that are related to the topic of the

cluster to represent cluster, and then iterative training

idea of self-organizing-mapping (SOM) is adopted to

fine-tune the weights of the chosen features to

enhance clustering precision. Experimental results

demonstrate that since related features are chosen to

represent cluster, VCLC can remove the disturbances

brought from useless features and thereby owns high

intra-cluster agglomeration. Moreover, since only

related features are put in feature set to represent

cluster, the clusters represented by those feature sets

express distinct meanings. That means the clusters

formed by VCLC are also separated well.

Information on website is updated every moment.

Therefore, how to cluster unstable textual data is also

important [9~11]. To this end, this paper proposes an

incremental version of VCLC (namely, I-VCLC).

When novel texts appear, I-VCLC combines novel

texts and some samples chosen from the original texts

together to alter neuron model generated from the

original texts to perform incremental clustering. In

order to make the chosen samples better simulate the

distribution of the original texts and furthermore to

reduce running time, local density is used to partition

neuron model into several regions to generate

samples. Experimental results demonstrate that I-

VCLC can cluster unstable textual data with low

running time.

2. Clustering algorithm for large-scale text

collection (VCLC)

The core idea of VCLC is to choose the related and

useful features from vector space to represent each

cluster. After selection, one cluster is represented by

one feature set containing the features related to the

topic of the cluster. Iterative training idea of SOM is

adopted to conduct training process. In this training

process, one cluster is treated as one neuron, and all

the neurons are ordered as round topology. Round

topology is simple and can avoid “boundary problem”

of square topology [12]. This topology is shown in

Figure 1, and how to insert neuron in this topology is

shown in Figure 2.

N1

N2N3

N4

N5

N6

N7
N8

N9

Figure 1. Round neuron topology

L. Chen, M. Liu, C. Wu, A. Xu

138

N10

N1
N2

N3

N4

N5

N6
N7

N8

N9

New Inserted

Neuron

Figure 2. Insert new neuron in round neuron topology

2.1. Initialization of VCLC

Traditional SOM based algorithms randomly

initialize weights on features in neuron. That means

each feature will be assigned an arbitrary weight at the

beginning of training process. This way increases

training time and does not consider any transcendental

knowledge derived from input texts [13]. Thereby, this

paper uses semantic similarity among features to form

a more rational initial neuron mode. The neurons in

this model represent the clusters of distinct topics.

In order to form initial neuron model, it needs to

calculate semantic similarity among features at first.

After that, features are partitioned into feature sets,

and one feature set represents one neuron (or one

cluster) in the initial neuron model. Because one

feature set contains the features semantically similar to

each other, it indicates that this initial neuron model

can partition texts into different clusters each of which

expresses the distinct topic to the others. The linguist

indicates: “the syntax function of a feature is the

distribution of this feature” [14]. The context of one

feature is a typical distribution. Therefore, if the

contexts of two features are almost the same, the

semantic similarity between these two features is

close. The word before a feature and the word after a

feature mostly determine the semantic meaning of this

feature. Thus, we count feature’s co-occurring word

and co-occurring word probability to construct

feature’s co- occurring word vector. One

dimensionality of this vector corresponds to one co-

occurring word of one feature. The value of this

dimensionality is the co-occurring word probability

between the feature and its co-occurring word. Via

calculating Kullback-Leibler divergence between two

co-occurring word vectors of two features, semantic

similarity between these two features can be obtained

like

(,) 1- (,)p qSim F F H () ()p qFV F FV F (1)

where Fp and Fq denote two features, and FV(Fp) and

FV(Fq) denote the co-occurring word vectors of Fp

and Fq; H(FV(Fp),FV(Fq)) denotes the Kullback-

Leibler divergence between two vectors. To calculate

H(FV(Fp),FV(Fq)), we need to acquire the value of

each entry in FV(Fp) and FV(Fq) at first. This value

represents the semantic similarity between one feature,

e.g. Fp, and its one co-occurring word, e.g. CoWk [15].

It can be calculated by

,

,

()
()

() ()

p k

p k

p k

Co F CoW
P F CoW

Fre F Fre CoW
 (2)

where Fp denotes one feature; CoWk denotes one co-

occurring word of Fp; Co(Fp,CoWk) denotes the

frequency of the concurrence of Fp and CoWk in the

texts.

Via Eq.(2), we can calculate the Kullback-Leibler

divergence between two co-occurring word vectors,

e.g. FV(Fp) and FV(Fq), as

2

1

2 2

1 1

()
(,) - log ()

2

1
 + (log) (log)

2

n
i i

i i

i

n n

i i i i

i i

p q
H p q

p p q q



 


 

 
 

 



 

() ()p qFV F FV F
 (3)

where pi denotes ith entry in FV(Fp) and qi denotes ith

entry in FV(Fq). They can be calculated by Eq.(2). n

denotes the size of the co-occurring word vector. From

Eq.(3), it can be concluded that the Kullback-Leibler

divergence ranges in [0, 1]. The larger is the difference

between the contexts of two features, the bigger is the

value of the Kullback-Leibler divergence. Thus, we

can use Kullback-Leibler divergence to measure the

semantic similarity between two features.

After obtaining semantic similarity among

features, all the features in vector space can be

partitioned into feature clusters by any clustering

algorithm, and each cluster includes the features that

are semantically similar to each other. Because it is

unable to predict the amount of feature clusters,

Hierarchical Clustering [16] is adopted by us to cluster

features.

Via Hierarchical Clustering, one feature cluster is

treated as one feature set used to represent one cluster.

Since the features in one feature set are semantically

similar, the clusters represented by this kind of feature

sets are partitioned well. Besides, since only the

semantically similar features are contained by feature

set, that means compared with traditional vector

representation that uses all the features in vector space

to form cluster vector, our semantic initialization can

dramatically reduce vector dimension. Unfortunately,

the feature sets constructed by semantic initialization

are coarse, thus we use iterative training process of

SOM to fine-tune the feature sets to obtain better

cluster partition. In order to conduct training process,

we need to change the feature sets constructed by

semantic initialization to an initial neuron model. For

this purpose, we first treat one feature set as one

neuron, and then randomly insert neurons to form a

round topology as shown in Figure 1 and Figure 2.

2.2. Training process of VCLC

Iterative training process of SOM is adopted to

train initial neuron model to adjust feature sets to

make them better represent the clusters. The training

process is shown as follows:

A Novel Clustering Algorithm and Its Incremental Version for Large-Scale Text Collection

139

Input: initial neuron set N; text collection D; topology

matrix SN; max tuning threshold tmax; stopping criteria s.

Output: neuron set (or cluster set) C.

Initialization:

/* Call function square() to set the topology of neuron

model as square. */

SN=square();

Tuning process:

/* Initialize tuning index as 0. */

t=0;

while (t<tmax)

{

 t=t+1;

/* Set d as a text variable and choose one text from D to set

it. */

Doc d;

d=random(D);

/* ne is a neuron variable. */

Neuron ne;

/* Calculate the similarity between d and each neuron in

neuron topology by function callsim().*/

/* Function callsim() returns the neuron that has the max

similarity to d. */

ne=callsim(d,N);

/* Use function adjust() to adjust neuron ne via d. */

ne=adjust(ne,d);

/* Sort the features in ne in order of their weights. */

ne=sort(ne);

/* Keep the features in ne whose weights are larger than the

others in the number of limit and remove the other features.

*/

ne=featuretrim(ne);

/* Use function topology() to return the neurons that are

adjacent with ne. */

Neuron tempN[]=topology(SN,ne);

for (i=1;i<tempN[].length();i++)

{

 tempN[i]=adjust(tempN[i],d);

 /* Treat one neuron in N as one cluster in C. */

C=N;

}

/* Use function stopcal() to calculate the similarity between

any neuron pair in N*/

float p=stopcal(N);

/* If it achieves criteria, stop running. */

if(p>s)

 return C;

}

In callsim(d,N), we need to calculate the similarity

between one text and one neuron. Traditional SOM

based algorithms [17,18] apply vector to represent

neuron, and one entry in this vector corresponds to

one feature in vector space. If we adopt this way too,

many useless features will be contained in the vector

and a lot of memory will be spent. Besides, in this

situation, vector based similarity measurements, such

as Euclidean distance, will spend much running time.

In order to solve those problems, we apply feature set

to represent neuron in this paper, and the features in

one feature set are semantically similar to each other.

In order to use feature set to represent neuron, we need

to adjust the similarity measurement in traditional

SOM based algorithms as:

   

   

   

0; | | | () | /3

(,) (,)
log(| |);

(,) (,)(,)

 |

k i

k i

k i

FS

k

k i

k i

D F

k i

f S Ni_

If FS D

W i_f D W i_f N

W i_f D W i_f NS

FS D FS N

FS D FS N

F

im D N

If








 

    | | () | /3 kk iS D FS DFS N











 (4)

where Dk denotes kth text in text collection; Ni denotes

ith neuron in neuron model; FS(Dk) denotes the

feature set including the features extracted to represent

Dk; so is to FS(Ni); i_f denotes one feature in the

intersection of FS(Dk) and FS(Ni); W(i_f,Dk) denotes

the weight of i_f in Dk. Term Frequency and Inverse

Document Frequency (TF-IDF) is employed to

calculate feature’s weight based on [19]. W(i_f,Ni)

denotes the weight of i_f in Ni.

There are two sub-equations in Eq.(4). These two

sub-equations are formed based on the following two

situations, respectively:

1. If the intersection of FS(Dk) and FS(Ni) is

smaller than certain threshold, the text Dk and

the neuron Ni express unrelated information.

Via experience, when the size of the

intersection of FS(Dk) and FS(Ni) is less than

one third of the size of FS(Dk), the

information expressed by Dk and Ni is

different and the similarity between Dk and Ni

should be 0. At this moment, Dk is treated as

a new neuron, and inserted into neuron

topology at random position.

2. When the size of the intersection of FS(Dk)

and FS(Ni) is beyond this threshold, two

situations are considered to calculate

similarity between Dk and Ni. Firstly, if the

weights of the same feature in neuron and

text are both large, that means the similarity

between neuron and text is large. Secondly, if

the size of the intersection of FS(Dk) and

FS(Ni) is large, that means the neuron and the

text share more information in common and

thereby the similarity between them is large.

In adjust(ne,d), we need to use input text, e.g. d, to

adjust one neuron, e.g. ne. The adjustment equation

used by traditional SOM based algorithms aims at

reducing the distance between neuron and text.

However, in VCLC, the weight of one feature

indicates the ability of this feature to represent the

information expressed by text and neuron in common.

Thus, we propose a novel neuron adjustment equation:

   

   

,
(,)

(,)() (() (() 1);
0.5

 (,)(1)

0.1; () & &

(,)(); () & &

c k
c b b r

c
c b

c b c

c b c b

k

c

b

k b

W f D
W f N t a t Dist N N

NH

If fW f N t

If f FS N f

W

FS D FS N

F

f N t If f

S D

S

F N

F N f

S

 


 

 

    k bFS D FS N











 (5)

where Dk denotes one text in text collection; Nb

denotes the neuron that needs to be adjusted; Nr

L. Chen, M. Liu, C. Wu, A. Xu

140

denotes the winner neuron that has the maximal

similarity to Dk; Dist(Nb,Nr) denotes the distance from

Nb to Nr in neuron topology; FS(Dk) and FS(Nb) denote

the feature sets of Dk and Nb; fc denotes one feature in

FS(Dk) or FS(Nb); W(fc,Nb)(t+1) denotes the weight of

fc in Nb at t+1th iterative step; a(t) denotes the learning

rate; NH denotes the neighborhood function, which is

used to define the range where the neurons need to be

adjusted. Both a(t) and NH drop along with training

process.

There are three sub-equations in Eq.(5). Each sub-

equation is, respectively, formed based on the

following one situation:

1. If the feature fc exists in the intersection of

FS(Dk) and FS(Nb), fc obviously represents

the common information in Nb and Dk.

Therefore, the weight of fc should be

increased in order to enhance the

representing ability of fc.

2. Since feature set is compressed by our

algorithm, there may be some features that do

not appear in the feature set of the adjusted

neuron. The second sub-equation of Eq.(5) is

formed to solve this problem. When fc does

not exist in FS(Nb), it is inserted into FS(Nb)

and is assigned an initial weight as 0.1.

3. If the feature fc does not exist in the

intersection of FS(Dk) and FS(Nb), but exists

in the feature set of the neuron Nb, i.e.

FS(Nb), we just keep the weight of fc in

FS(Nb).

In the previous workflow, we use a threshold limit

to limit the number of features included by one feature

set. This threshold is derived from our previous work

in [20]. In that paper, we concluded that the number of

the features that are sufficient to represent the topic of

one cluster is at most 300. Therefore, we set limit as

300. As shown in experiments, this setting can ensure

our algorithm to acquire both good precision and low

running time. In experiments (Figure 11 and

Figure 12), we also compare our algorithm, VCLC,

with PTC proposed in [20]. Compared with VCLC,

PTC only utilizes the weight of the feature to limit the

number of the features in the feature set. Therefore,

PTC obtains lower precision than VCLC.

In VCLC, MQE is used as convergence condition.

1

(,)

k b

C
k b

bb D N

Sim D N

N
MQE

C

 


 
 (6)

where C denotes the cluster quantity; |Nb| denotes the

quantity of the texts included by the cluster that maps

to the neuron Nb.

Based on the previous workflow, it is easy to be

concluded that training process of VCLC is similar to

SOM. The differences between them are similarity

measurement equation (Eq.(4)) and neuron adjustment

equation (Eq.(5)). Since the similarity measurement

equation is integrated in MQE (Eq.(6)) and the neuron

adjustment equation is also based on the similarity

measurement equation, VCLC can converge like

SOM.

3. Incremental version of VCLC (I-VCLC)

As indicated by [21,22], the best plan to perform

incremental clustering is to combine the new added

data and few samples chosen from the original data

together to alter the clustering model that generates

from the original data. If using this plan, the key is to

detect the change of the distribution of the clusters

when new data are added. This change is shown in

Figure 3. In this figure, when new data are added,

certain sparse area that is formed from the original

data becomes dense and it will form a new cluster.

Neuron center move

Clusters from new data and original data

Clusters from original data

Original data New data New neuron center

Original neuron center

() ((

((

))

))

Figure 3. The change of the distribution of the clusters

after new data are added

3.1. Sample selection

In order to choose samples from the neuron model

that is constructed from the original textual data, each

cluster in our neuron model is separated into some

compact sub-clusters. Then, samples are chosen from

each sub-cluster to cover the information expressed by

this sub-cluster. Local Density [23] is used to separate

one cluster, since this algorithm frees of predefining

neighborhood distance and neighborhood radius.

After each cluster is separated into some sub-

clusters by Local Density, M samples are chosen to

represent one sub-cluster. In the experiments

(Figure 8), it can be found that when M reaches 3,

clustering result is just acceptable. The reason is also

shown after Figure 8.

Best Matching Neuron (BMN) and Second

Matching Neuron (SMN) are adopted to calculate the

relation between text and neuron to choose samples:

A Novel Clustering Algorithm and Its Incremental Version for Large-Scale Text Collection

141

(,) - (,)
(,)

(,) (,)

j j
j

j j

Sim D BMN Sim D SMN
R D BMN

Sim D BMN Sim D SMN



 (7)

where BMN denotes the neuron that has the largest

similarity to text Dj; it also represents the neuron that

Dj maps to; SMN denotes the neuron that has the

second similarity to Dj.

In Eq.(7), if the gap between Sim(Dj,BMN) and

Sim(Dj,SMN) is large, it means Dj is more similar to

the cluster that Dj maps to, and has less similarity to

the other clusters. It also means that Dj locates at the

center of the cluster that it belongs to. When the new

texts appear, Dj may not move to another cluster. On

the contrary, if this gap is small, it means Dj locates at

the boundary of the cluster that Dj belongs to. When

the new texts appear, Dj may easily move to another

cluster. It also needs another text, whose relation is

between the largest relation and the smallest relation,

to represent the middle part of the sub-cluster. Thus, it

can be concluded that when M reaches 3, the chosen

samples can represent each location of the sub-cluster

perfectly.

3.2. Incremental clustering

When the new texts appear, the samples chosen

from the original texts can be combined with the new

added texts together to train neuron model generated

from the original texts. At the beginning of training

process, because neuron model is only suitable for the

original texts, the new added texts should take a more

important status. This way can make neuron model

simulate the distribution of the new texts rapidly.

However, after running training process for a while,

neuron model will be over trained and deviates from

the distribution of the new texts. This is because only

a few samples are chosen to represent the original

texts. If the samples and the new texts have the same

importance in training process, neuron model will be

over trained and over simulate the new texts. For this

reason, we use a threshold to separate training process

into two parts, and different weights are evaluated on

the samples along with training process. When the

number of training steps is less than the threshold,

neuron model is more suitable for the original texts.

Then, samples are evaluated with lower weights to

make neuron model simulate the new texts rapidly.

When the number of training steps is larger than the

threshold, that means training process runs for a while.

At this moment, the weights of the samples are added

to avoid “over training”. Based on this idea, Eq.(8) is

formed to weigh the samples:

1;

(, 1) (2 ()) (,) log(());

j j j

If training steps W

W SD t a t R SD BMN SZ SD

If training steps W




  
 

(8)

where W denotes the threshold of the number of the

steps to separate training process into two parts; SDj

denotes jth sample; Weight(SDj,t+1) denotes the

weight of SDj at t+1th training step; SZ(SDj) denotes

the size of the sub-cluster that SDj belongs to;

R(SDj,BMN) is calculated by Eq.(7).

The threshold W in Eq.(8) is empirically assigned

the sum of the size of the new texts and the size of the

samples. When the number of training steps is larger

than W, the weight of the sample is adjusted. From the

lower sub-equation in Eq.(8), it can be observed that

the size of the sub-cluster and the relation between the

sample and the neuron are used together to adjust the

weight of the sample. On the one hand, if the size of

the sub-cluster is larger, it means that the sample

represents larger sub-cluster. Thus, the weight of the

sample is higher. On the other hand, if the relation

between the sample and the neuron is higher, it means

that this sample can better represent the information

expressed by the cluster that maps to this neuron.

Thus, the weight of the sample is higher.

4. Experiments and analyses

In this paper, we construct a corpus including 107

news web pages downloaded from Yahoo website

during the entire year of 2014 to test the performance

of our algorithm. This corpus includes more than one

thousand clusters, e.g. “society”, “military”, “sports”,

“entertainment”, “policy”, “education”, “medicine”,

“arts”, etc. Since this corpus is large-scale and

downloaded from internet, it is impossible for users to

manually partition it into several clusters and then

apply certain measure, e.g. F1 or Purity, to measure

clustering precision. Therefore, in this paper, ARI

(Adjusted Random Index) is adopted to measure

clustering precision [24]. It evaluates how well the

algorithm splits input data into different clusters by

looking at the relation between the clusters, and not

between the clusters and the given labels. With respect

to ARI, it combines two texts as one pair-point. If the

volume of text collection is n, this collection has n*(n-

1)/2 possible pair-points.

ARI utilizes four situations to identify clustering

result.

a) Two texts included by one pair-point are

manually labeled in the same cluster, and in clustering

result they are also in the same cluster.

b) Two texts included by one pair-point are

manually labeled in the same cluster, and in clustering

result they are in different clusters.

c) Two texts included by one pair-point are

manually labeled in different clusters, and in

clustering results they are also in different clusters.

d) Two texts included by one pair-point are

manually labeled in different clusters, and in

clustering result they are in the same cluster.

Let a, b, c, and d, respectively, denote the numbers

of the pair-points that meet the previous four

situations. They can be used to measure clustering

precision as

L. Chen, M. Liu, C. Wu, A. Xu

142

       

     
2

[]
2

[]
2

n
a c a b a d b c c d

ARI
n

a b a d b c c d

 
       

 
 

      
 

 (9)

Running time and clustering precision of VCLC

with semantic initialization and random initialization

are recorded in Figure 4 and Figure 5, respectively.

Figure 4. Running time of VCLC, respectively, with

semantic initialization and random initialization

From Figure 4, it is easy to be found that running

time of VCLC with semantic initialization is less than

the one with random initialization. This is because

semantic initialization makes the features that can

better represent the topic of the cluster agglomerate

together to form the initial neurons. This construction

can form better initial cluster partition, which is close

to the convergent partition. Thus, it only needs fewer

iterative training steps to converge.

Figure 5. Clustering precision of VCLC, respectively, with

semantic initialization and random initialization

From Figure 5, it can be found that VCLC with

semantic initialization owns better clustering precision

than the one with random initialization. The reason is

that for most of clustering algorithms, initialization

takes an important status to affect their precisions.

Good initialization not only can accelerate clustering

speed, but also can reduce the chance that texts map to

wrong clusters. Since semantic initialization partitions

texts into the clusters that are separated well, the

precision of VCLC with semantic initialization is

better than the one with random initialization.

Together with iterative training process of SOM,

our algorithm (VCLC) can further enhance its

precision. Traditional SOM based algorithm applies

vector based similarity measurement to calculate the

similarity between neuron and text. This measurement

is not fit to our algorithm, since we only choose a few

features to represent one cluster. Therefore, a novel

similarity measurement is proposed in this paper. In

Table 1, we compare the measurement proposed in our

paper (Eq.(4)) with the other popular measurements

that are applied in SOM. The baseline measurements

include Cosine, Euclidean distance, KL, SMTP [25],

ADSS [26], and HLCL [27]. Because our algorithm

(VCLC) compresses the feature set, the baseline

similarity measurements cannot be directly applied in

our algorithm for testing. To deal with this problem,

we just apply the baseline measurements in SOM to

run test.

Table 1. Clustering precision of different measurements

Measurements Cosine Euclidean KL

ARI (%) 75.46 76.03 76.18

ADSS SMTP HLCL VCLC

80.71 82.83 81.02 87.47

From Table 1, it is easy to be observed that

different similarity measurements obtain the distinct

clustering precisions. ADSS, SMTP, and HLCL obtain

better precisions, since they all consider compressing

vector. However, they never consider measuring the

semantic similarity between the information that are,

respectively, expressed by text and neuron. This fact

causes that these three measurements obtain lower

precisions than ours. For Cosine, Euclidean distance,

and KL, these three similarity measurements are based

on concurrence ratio and not only never consider

compressing feature set but also never consider

semantic similarity between text and neuron. Thereby,

these three measurements obtain the lowest precisions.

Compared with the six baseline measurements, our

proposed measurement first uses initial step to keep

the features that are semantically similar in one feature

set, and then uses two situations to measure the

similarity between neuron and text. Therefore, our

proposed measurement obtains the highest precision.

In the initial step, the features that are semantically

similar are chosen to compress feature set. After that,

these compressed feature sets are fine-tuned through

adjusting the similarity measurement and the neuron

adjustment equation. That makes the initial step and

the following training process integrate well, which

means the initial step proposed in this paper can only

be applied in our algorithm to obtain high precision.

On the contrary, most of traditional algorithms run

1 2 3 4 5 6 7 8 9 10

300

400

500

600

700

800

900

1000

1100

1200

R
u

n
n

in
g

 T
im

e
 (

s
e

c
)

Text Quantity (10
6
)

 Semantic Initialization

 Random Initialization

1 2 3 4 5 6 7 8 9 10

75

80

85

90

95

A
R

I
(%

)

Text Quantity (10
6
)

Semantic Initialization

 Random Initialization

A Novel Clustering Algorithm and Its Incremental Version for Large-Scale Text Collection

143

clustering in uncompressed feature set. Though some

of them compress feature set, they often separate

clustering and initialization as two unrelated steps.

Due to this isolation, it cannot ensure that the final

clustering result can be improved by the initial step.

Running time and clustering precision of VCLC

are also compared with some other well-known text

clustering algorithms. They are Spectral Clustering

[3], Graph Clustering [19], Hybrid of K-means and

KNN [4], SOM [17], and an improved SOM based

algorithm, GHSOM [18]. Two recently proposed

clustering algorithms are also considered in the

testing. They are Non-negative Matrix Factorization

(NMF) [28], and LDCC based on Latent Dirichlet

Allocation from Topic Model [29]. The results are

shown in Figure 6 and Figure 7.

Figure 6. Running time of different algorithms

From Figure 6, it is easy to be found that running

time of VCLC is the shortest. When text collection

enlarges, the high time performance of VCLC is easier

to be perceived. This is because VCLC has two

advantages that can greatly reduce running time. One

advantage is that VCLC chooses the features that can

better represent the topic of the cluster to compress

feature set. When the scale of text collection is small,

for example smaller than 106, this compression has

little effect. At this time, running time of different

algorithms is almost the same. Correspondingly, when

the scale of text collection augments, compression

begins to work. Running time of VCLC is obviously

less than the other algorithms. When the scale of text

collection reaches 3*106, VCLC can compress feature

set by 1/5000. It effectively reduces running time. The

other advantage is that VCLC uses semantic similarity

to construct the initial neuron model. Since this initial

model is close to the convergent partition, it obviously

decreases the number of iterative steps spent to reach

convergence. From Figure 6, it can also be found that

the rank of running time spent by the other baseline

algorithms from low to high is Hybrid of K-means and

KNN, SOM, NMF, LDCC, GHSOM, Spectral

Clustering, and Graph Clustering. Time complexities

of Hybrid of K-means and KNN, SOM, and GHSOM

are all O(kln) [5,17,18], where k is cluster quantity; l

is the number of iterative steps; n is text quantity. The

rank of the numbers of iterative steps spent by these

three algorithms from low to high is Hybrid of K-

means and KNN, SOM, and GHSOM. Therefore, the

rank of running time spent by them from low to high

is KNN, SOM, and GHSOM. The other two

algorithms, Spectral Clustering and Graph Clustering,

need to decompose matrix. Thus, they spend the

longest running time. For NMF, it applies matrix

decomposition to reduce the dimension of feature

space. In this low-dimensional feature space, NMF

runs much faster and also obtains more precise result.

However, if we consider the matrix decomposition

process as the preprocessing step of clustering

process, its running time is high and even more than

SOM. The reason is that time complexity of

decomposition is beyond linear against the size of text

collection. Therefore, NMF spends much more time

when text collection enlarges. For LDCC, space

transformation is used. LDCC transforms feature

space to topic model, and extracts topics from text

collection to separate texts into several clusters of

different topics. This way can enhance clustering

precision, whereas due to the added transformation

step, its running time is also longer. In fact, as show in

[1], among most of recent clustering algorithms

proposed to enhance clustering precision, the linear

time complexity (like SOM and K-means) can be

treated as the ideal time complexity.

Figure 7. Clustering precision of different algorithms

From Figure 7, it is easy to be found that the rank

of clustering precision from low to high is Hybrid of

K-means and KNN, SOM, GHSOM, Spectral

Clustering, Graph Clustering, NMF, LDCC, and

VCLC. There are two reasons to the situation that

VCLC has the highest precision. First of all, VCLC

uses semantic similarity to construct an initial neuron

model. This model reduces the interferences brought

from the wrongly partitioned texts. Secondly, VCLC

chooses the features that are related to the topic of the

cluster to construct the feature set of one cluster and

filters the interferences brought from the unrelated

features. This method can greatly increase the intra-

1 2 3 4 5 6 7 8 9 10

0

500

1000

1500

2000

2500

3000

3500

4000

R
u

n
n

in
g

 T
im

e
 (

s
e

c
)

Text Quantity (10
6
)

 VCLC

 Hybrid-K-means and KNN

 SOM

 GHSOM

 Spectral

 Graph

 NMF

 LDCC

1 2 3 4 5 6 7 8 9 10

65

70

75

80

85

90

95

A
R

I(
%

)

Text Quantity (10
6
)

 VCLC

 Hybrid-K-means and KNN

 SOM

 GHSOM

 Spectral

 Graph

 NMF

 LDCC

L. Chen, M. Liu, C. Wu, A. Xu

144

cluster agglomeration and the inter-cluster

distinctness. Precisions of Spectral Clustering, Graph

Clustering, SOM, and GHSOM are lower than VCLC.

These four algorithms all map a high dimensional data

space into a low dimensional transition space to

cluster texts. Thus, their precisions are similar.

However, since all of them never consider removing

the features that are unrelated to the topic of the

cluster, their precisions are lower than VCLC.

Clustering precision of Hybrid of K-means and KNN

drops rapidly, when the scale of text collection

augments. That means this algorithm is only suitable

for clustering small-scale text collection. The reason

to this situation is that Hybrid of K-means and KNN

applies Vector Space Model to organize texts and

clusters. This model cannot solve the problem of

“curse of dimensionality”. For NMF and LDCC, they

either use matrix decomposition (NMF) or topic

model (LDCC) to enhance their precisions. More

importantly, when text collection is large, these two

algorithms do not lose their precisions either. The

reason is that matrix decomposition and topic model

applied by NMF and LDCC not only can reduce the

dimension of feature space but also can extract the key

features from text to enhance clustering precision.

Therefore, NMF and LDCC obtain the similar

precision to our algorithm (VCLC). However, since

VCLC considers the similar features in the adjustment

equation, it can aggregate the semantically similar

texts into one cluster. Compared with VCLC, NMF

and LDCC cannot cluster semantically similar texts.

Therefore, VCLC obtains higher precision than NMF

and LDCC.

In the following experiments, the performance of

the incremental version of VCLC (i.e. I-VCLC) is

tested. Figure 8 shows the precision of I-VCLC, when

it combines the new added texts and the samples of

different numbers chosen from the original texts to

perform incremental clustering.

Figure 8. Clustering precision of I-VCLC when different

numbers of samples are chosen

From Figure 8, it is easy to be found that when the

numbers of the samples chosen from the original texts

are different, I-VCLC obtains the distinct precisions.

When this number is less than 3, precision drops

rapidly. This is because when this number equates to

1, only the text that can represent the center of the

sub-cluster or the boundary of the sub-cluster is

sampled. When this number equates to 2, two texts

that can represent the center of the sub-cluster and the

boundary of the sub-cluster are sampled, whereas it

neglects to sample the text that can represent the

middle part of the sub-cluster. When this number

equates to 3 or is much higher, the chosen samples can

represent one sub-cluster well. Thus, the precision

curve becomes smooth.

To simulate incremental clustering, 106 texts that

are randomly chosen from testing corpus are used as

the original texts to form an initial neuron model using

VCLC. After that, we randomly select different scales

of texts each time, e.g. 105, 5*105, and 106, to perform

incremental clustering using I-VCLC. These selected

texts are treated as the new added texts, and they are

combined with the samples chosen from the original

texts to perform incremental clustering using I-VCLC.

Each time when the sum of the quantity of the original

texts and the quantity of the new added texts equates

to the integral times of 106, clustering precision and

running time are, respectively, recorded once in

Figure 9 and Figure 10.

1 2 3 4 5 6 7 8 9 10

200

400

600

800

1000

1200

1400

1600

R
u

n
n

in
g

 T
im

e
 (

s
e

c
)

Quantity of New Added Texts and Original Texts (10
6
)

 New Added Texts(10
5
)

 New Added Texts(5*10
5
)

 New Added Texts(10
6
)

Figure 9. Running time of I-VCLC when the new texts of

different scales are added

From Figure 9, it is easy to be found that when the

sum of the quantity of the original texts and the

quantity of the new added texts is small, running time

of I-VCLC is similar though the new added texts are

of different scales. The reason is that when this sum is

small, each sub-cluster only includes few texts. At this

moment, the samples chosen from one sub-cluster are

almost all the texts in this sub-cluster. In this situation,

running time of I-VCLC is very similar no matter

whichever quantity of the new texts is added. By

contrast, when this sum enlarges, running time of I-

VCLC is different in the situation that the new added

texts are of different scales. There are two reasons to

this situation. First of all, if more texts are inserted as

the new texts at each incremental time, it only needs

fewer times to perform incremental clustering when

the sum of the quantity of the original texts and the

1 2 3 4 5 6 7 8 9 10

65

70

75

80

85

90

A
R

I
(%

)

Sample Number

A Novel Clustering Algorithm and Its Incremental Version for Large-Scale Text Collection

145

quantity of the new texts reaches certain scale. For

example, if we select texts in the scale of 105 each

time to perform incremental clustering, when this sum

reaches 2*106, it has to perform incremental clustering

ten times (the quantity of the original texts is 106); if

we select 5*105, it needs two times; if we select 106, it

only needs one time. Secondly, the new added texts

are sampled from testing corpus. Then, if more texts

are inserted at each incremental time, neuron model

will be more similar to the distribution of testing

corpus. In this situation, it only needs to choose fewer

samples to represent one sub-cluster. Thus, the

quantity of the texts that need to be incrementally

clustered is smaller, which causes less running time.

1 2 3 4 5 6 7 8 9 10

70

75

80

85

90

95

A
R

I
(%

)

Quantity of New Added Texts and Original Texts (10
6
)

 New Added Texts(10
5
)

 New Added Texts(5*10
5
)

 New Added Texts(10
6
)

Figure 10. Clustering precision of I-VCLC when the new

texts of different scales are added

From Figure 10, it is easy to be found that there

are two trends along with x-axis and y-axis. Along

with x-axis, clustering precisions all drop no matter

whichever scale of the new texts is used. Since the

new added texts are randomly selected from testing

corpus, the distribution of the new added texts is only

approximate to the distribution of testing corpus.

However, after performing incremental clustering for

several times, the distribution of neuron model (or

cluster model) may deviate from the distribution of

testing corpus. Then, when the new texts are added,

they will distort the distribution of neuron model.

Therefore, clustering precision drops along with the

augment of the quantity of the total texts. Along with

y-axis, clustering precision is much higher if more

new texts are added at each incremental time. This is

because when more new texts are added at each

incremental time, the distribution of the new added

texts is more approximate to the distribution of testing

corpus. Then, it affects the distribution of neuron

model a little. Therefore, clustering precision is

higher, if more new texts are added at each

incremental time.

In Figure 11 and Figure 12, we compare the

algorithm proposed in this paper (VCLC) with the

algorithms (VRCLC and PTC) proposed in our early

papers [8,20] on clustering precision and running

time.

Form Figure 11, it can be found that our algorithm

(VCLC) owns the highest time performance. Its

running time is less than that of VRCLC and PTC.

Besides, when the scale of text collection enlarges, its

running time shortens much compared with VRCLC

and PTC. There are two reasons to this situation. One

is that our algorithm first partitions texts into several

initial clusters via semantic similarity. This initial

cluster partition is close to the final cluster partition,

which can be seen from Figure 5. Therefore, our

algorithm (VCLC) spends less running time than

VRCLC and PTC. The other reason is that in the

neuron adjustment step, VCLC considers the features

that are similar to the adjusted feature. This type of

adjustment expands the range of the adjustment on

features. Therefore, it decreases running time. When

the scale of text collection enlarges, more similar

features exist in the feature space. Therefore, running

time decreases much when the size of text collection

enlarges. Compared with VCLC, VRCLC proposed in

[8] does not utilize any method to accelerate running

speed. PTC in [20] tries to set a limitation on the size

of feature set to accelerate running speed. Therefore,

running time spent by PTC is less than that spent by

VRCLC. However, since PTC does not try to apply

initialization to save running time and also does not

consider expanding the range of the adjustment on

features, its running time is longer than VCLC.

Figure 11. Running time of VCLC, VRCLC, and PTC

Form Figure 12, it can be found that our algorithm

(VCLC) performs a little better than VRCLC and PTC

when the size of text collection is small, and when this

size enlarges to a certain level (e.g. more than 3*106),

the superiority of the precision of VCLC is easy to be

perceived. The reason to this phenomenon is that our

algorithm (VCLC) considers the similar features in its

adjustment step, this type of adjustment can make the

texts owning the similar features but not the same

features (e.g. one text uses “computer” as its feature

and one text uses “calculating machine” as its feature;

these two texts are semantically similar) aggregate

into one cluster. When the size of text collection

1 2 3 4 5 6 7 8 9 10

400

600

800

1000

1200

R
u

n
n

in
g

 T
im

e
 (

s
e

c
)

Text Quantity (10
6
)

 VCLC

 VRCLC

 PTC

L. Chen, M. Liu, C. Wu, A. Xu

146

enlarges, more texts are semantically similar. In this

situation, our algorithm (VCLC) can find more

semantically similar texts to enhance its precision. On

the contrary, for VRCLC, it has two steps. One step

runs iterative tuning process of SOM to adjust the

features in the cluster vector. The second step

reconstructs cluster vector by choosing the features

related to the topic of the cluster to enhance precision.

Unfortunately, these two steps run for two distinct

objectives. The adjustment step aims at partitioning

texts into separated clusters and the feature selecting

step tries to find more similar features to represent

cluster. The discrepancy in the purposes of these two

steps often makes the clustering result obtained by

VRCLC deviate from the precise result. Therefore, the

precision obtained by VCLC is higher than that

obtained by VRCLC. For PTC, it sets a threshold to

limit the size of feature set and employs feature’s

weight as criteria to choose features. Due to the fact

that some important features may have little weights

and thereby are removed from feature set, PTC owns

the lowest precision among the three algorithms.

Figure 12. Clustering precision of VCLC, VRCLC,

and PTC

5. Conclusion

A novel clustering algorithm for large-scale text

collection (abbreviated as VCLC) is proposed in this

paper. This algorithm selects the features that are

related to the topic of the cluster to construct feature

set as the representation of this cluster. This method

not only can increase intra-cluster agglomeration and

inter-cluster distinctness, but also can compress

feature set by 1/5000 to extremely reduce running

time. Besides, iterative training process of self-

organizing-mapping (SOM) is imported to fine-tune

the weights of the selected features. Based on this

idea, one feature set is treated as one neuron, and a

novel similarity measurement and a novel neuron

adjustment equation are also proposed. To further

reduce running time and finally to obtain the precise

clustering result, semantic similarity is used to

initialize a neuron model. Furthermore, since new

texts appear in website every day, this paper also

proposes an incremental version of VCLC

(abbreviated as I-VCLC) to cluster unstable texts.

Experimental results demonstrate that VCLC can

cluster large-scale text collection at high precision,

and I-VCLC can cluster texts at any time when new

texts appear.

Acknowledgments

The research in this paper is supported by National

Natural Science Foundation of China (No.61300114),

Specialized Research Fund for the Doctoral Program

of Higher Education (No.20132302120047), the

Special Financial Grant from the China Postdoctoral

Science Foundation (No.2014T70340), China

Postdoctoral Science Foundation (No.2013M530156),

the Fundamental Research Funds for the Central

Universities (No.HIT.NSRIF.2013066), CCF-Tencent

Open Fund (No.CCF-TencentIAGR 20140109), 2015

Guangdong Provincial Key Platform Project-the Youth

Innovative Talent Funding.

References

[1] R. Xu, D. Wunsch. Survey of clustering algorithms.

IEEE Transactions on Neural Networks, 2005, Vol. 16,

No. 3, 645-678.

[2] R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan.

Automatic subspace clustering of high dimensional

data for data mining applications. In: Proceedings of

the 1998 ACM SIGMOD International Conference on

Management of Data, 1998, pp. 94-105.

[3] L. Jing, M. K. Ng, T. Zeng. Dictionary learning-based

subspace structure identification in spectral clustering.

IEEE Transactions on Neural Networks and Learning

Systems, 2013, Vol. 24, No. 8, 1188-1199.

[4] C. Dhanjal, R. Gaudel, S. Clémençon. Efficient

eigen-updating for spectral graph clustering.

Neurocomputing, 2014, Vol. 131, 440-452.

[5] H. Ramin, K. Kamal. A new hybrid k-means and k-

nearest-neighbor algorithms for text document

clustering. International Journal of Academic

Research, 2014, Vol. 6, No. 3, 79-84.

[6] Z. Liu, K.-C. Chiu, L. Xu. Improved system for

object detection and star/galaxy classification via local

subspace analysis. Neural Networks, 2003, Vol. 16,

No. 3, 437-451.

[7] W. Song, S. C. Park. Genetic algorithm for text

clustering based on latent semantic indexing.

Computers & Mathematics with Applications, 2009,

Vol. 57, No. 11, 1901-1907.

[8] M. Liu, C. Wu, L. Chen. A vector reconstruction

based clustering algorithm particularly for large-scale

text collection. Neural Networks, 2015, Vol. 63,

141-155.

[9] C. C. Aggarwal. On change diagnosis in evolving data

stream. IEEE Transactions on Knowledge and Data

Engineering, 2005, Vol. 17, No. 5, 587-600.

[10] M. Spiliopoulou, I. Ntoutsi, Y. Theodoridis, R.

Schult. MONIC-modeling and monitoring cluster

transitions. In: Proceedings of the 12th ACM SIGKDD

1 2 3 4 5 6 7 8 9 10

82

83

84

85

86

87

88

89

90

91

92

93

94

95

A
R

I(
%

)

Text Quantity (10
6
)

 VCLC

 VRCLC

 PTC

A Novel Clustering Algorithm and Its Incremental Version for Large-Scale Text Collection

147

International Conference on Knowledge Discovery and

Data Mining, 2006, pp. 706-711.

[11] R. G. Pensa, D. Ienco, R. Meo. Hierarchical co-

clustering: off-line and incremental approaches. Data

Mining and Knowledge Discovery, 2014, Vol. 28,

31-64.

[12] R. Lang, K. Warwick. The plastic self organising

map. In: Proceedings of the 2002 International Joint

Conference on Neural Networks, 2002, pp. 727-732.

[13] T. Kohonen. Self-organizing maps. Springer, Berlin,

1997.

[14] M. Galley, K. Mckeown. Improving word sense

disambiguation in lexical chaining. In: Proceedings of

the Eighteenth International Joint Conference on

Artificial Intelligence, 2003, pp. 1486-1488.

[15] H. Peng, F. Long, C. Ding. Feature selection based on

mutual information: Criteria of max-dependency, max-

relevance, and min-redundancy. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 2005,

Vol. 27, No. 8, 1226-1238.

[16] K. Tasdemir, P. Milenov, B. Tapsall. Topology-

based hierarchical clustering of self-organizing maps.

IEEE Transactions on Neural Networks, 2011, Vol. 22,

No. 3, 474-485.

[17] D. Alahakoon, S. K. Halgamuge, B. Srinivasan.

Dynamic self-organizing maps with controlled growth

for knowledge discovery. IEEE Transactions on

Neural Networks, 2000, Vol. 11, No. 3, 601-614.

[18] A. Rauber, D. Merkl, M. Dittenbach. The growing

hierarchical self-organizing map: Exploratory analysis

of high-dimensional data. IEEE Transactions on

Neural Networks, 2002, Vol. 13, No. 6, 1331-1341.

[19] A. Aizawa. An information-theoretic perspective of tf-

idf measures. Information Processing and Manage-

ment, 2003, Vol. 39, No. 1, 45-65.

[20] M. Liu, Y. Liu, B. Liu, L. Lin. Probability-based text

clustering algorithm by alternately repeating two

operations. Journal of Information Science, 2013,

Vol. 39, No. 3, 372-383.

[21] E. Lughofer. Extensions of vector quantization for

incremental clustering. Pattern Recognition, 2008,

Vol. 41, No. 3, 995-1011.

[22] H. Liu, X. Ban. Clustering by growing incremental

self-organizing neural network. Expert Systems with

Applications, 2015, Vol. 42, Issue 11, 4965-4981.

[23] L. Duan, L. Xu, F. Guo, J. Lee, B. Yan. A local-

density based spatial clustering algorithm with noise.

Information Systems, 2007, Vol. 32, No. 7, 978-986.

[24] Y. Zhao, G. Karypis. Criterion functions for

document clustering: Experiments and analysis.

Technical Report, #01-40, University of Minnesota,

2002.

[25] G. Pirró. A semantic similarity metric combining

features and intrinsic information content. Data and

Knowledge Engineering, 2009, Vol. 68, Issue 11,

1289-1308.

[26] L. Han, L. Sun, G. Chen, L. Xie. ADSS: An

approach to determining semantic similarity. Advances

in Engineering Software, 2006, Vol. 37, No. 2,

129-132.

[27] M. Yazdani, A. Popescu-Belis. Computing text

semantic relatedness using the contents and links of a

hypertext encyclopedia. Artificial Intelligence, 2013,

Vol. 194, 176-202.

[28] N. Del Buono, G. Pio. Non-negative Matrix Tri-

Factorization for co-clustering: An analysis of the

block matrix. Information Sciences, 2015, Vol. 301,

Issue C, 13-26.

[29] A. Gross, D. Murthy. Modeling virtual organizations

with Latent Dirichlet Allocation: A case for natural

language processing. Neural Networks, 2014, Vol. 58,

38-49.

Received November 2014.

