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Abstract. This paper pr esents an energ y-optimal trajectory planning method fo r spacecraft fo rmation 
reconfiguration in deep space environment using continuous lo w-thrust propulsion system. First, we emplo y the 
Legendre pseudospectral method (LPM) to transform the optimal reconfiguration problem to a parameter optimization 
nonlinear programming (NLP) problem. Then, to avoid the computational complexity for calculating the gradient 
information caused by traditional optimization methods, we use particle swarm optimization (PSO) algorithm to solve 
the NLP prob lem. Meanwhile, in order to avoid the collision between any pair of Legendre-Gauss-Lobatto (LGL) 
points, we insert some test points in the r egion where collision may happen most likely. What’s more, the collision 
avoidance constraints are also checked at these test points. Finally, numerical simulation shows that the energy-optimal 
trajectories for spacecraft reconfiguration could be generated by the method we proposed in a relative short time, so 
that it could be adopted on-board for practical spacecraft formation problems. 

Keywords: formation reconfiguration; path planning; collision avoidance; Legendre pseudo spectral method; 
particle swarm optimization. 

 

1. Introduction 

The problem of s pacecraft formation has been 
extensively addressed recently because of the potential 
benefits of formation flying missions. One of these 
benefits lies in that the formation could be re-assigned 
to establish new science configurations that we need. 
The purpose of formation reconfiguration is to plan a 
set of optimal translational trajectories, along which 
each spacecraft of the formation is a ble to transfer 
from its current states to  the desired final states, 
respectively, with a performance index (such as fuel, 
energy, time, etc.) in a given time interval [1]. 
Additionally, the problem of collision avoidance and 
control input limits should also be considered during 
the optimization. 

The literature on formation reconfiguration can be 
categorized as deep space missions (the gravity free 
environment) and planetary orbital environment 
(POE) missions [2]. In deep space m issions, the 
spacecraft dynamics can be re duced to double 
integrator form, and varieties of fo rmation 
reconfiguration algorithms have been proposed in the 
literature. Richards et al. [3] proposed a Mixed Integer 
Linear Programming (MILP) method, which could 
find a g lobal optimized solution. However, the 
computation time wo uld increase dramatically with 
the increase of the number of spa cecraft or 

computation steps. Additionally, it also needs to 
simplify the constraints formulation to a linear form, 
which makes the collision avoidance constraint 
conservative. Singh and Hadaegh [4] used 
polynomials of a variable order in time to 
parameterize the tra jectories, but the algorithm is too 
complex. Cetin et al. [5] combined these two methods. 
The trajectories were first d iscretized in time u sing a 
cubic spline and then a feasib le MILP method was 
used to calc ulate the va riables at discretized points. 
These methods also take a lo ng time to solve the 
problem when t he number of computation steps 
increases and could not get a high accuracy neither. 
Many other approaches have also been used in 
formation reconfiguration, such as the RRT-based 
method [6] and the multiple-shooting method [7]. 

The pseudospectral method is a newly developed 
class of methods for solving optimal control problems. 
In the pseudospectral method, the state a nd control 
vectors are discretized at specified time points using a 
structure of global orthogonal polynomials. This 
makes the optimal control problem easy to solve with 
high accuracy. This method has been used in some 
nonlinear spacecraft trajectory optimization problems. 
Huntington [8] used Gauss pseudospectral method for 
tetrahedral formation reconfiguration, but collision 
avoidance was not considered. Wu et al. [9] used LPM 
to design fuel-optim al trajectories for spacecraft 
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reconfiguration in near-earth orbit with an  exact 
nonlinear relative spacecraft dynamic model. 

Autonomous formation flying is important for 
deep space missions, so the reconfiguration algorithm 
for deep space missions should be simple enough to 
run on-board and plan the trajectories fast even real -
time. However, the collision avoidance constraints 
usually result in a non-convex feasible solution space. 
The reconfiguration problem with collision avoidance 
constraints is NP-complete [1] which makes the 
problem hard to solve. These problems make the 
aforementioned methods suffer from an accelerated 
increase in computational complexity when the 
number of s pacecraft or the collocation points 
increases. 

In this paper we presen t a novel method for 
trajectory planning of reconfiguration maneuvers of 
multi-spacecraft formation in deep space environment 
with continuous low-thrust control input. The basic 
problem discussed here is to find energy-optimal 
trajectories for the formation spacecraft in a relative 
short time. The s pacecraft is modeled as points of 
constant mass. Normally, the maneuver time is short 
and the propulsion systems used for maneuver are 
quite efficient, so the mass of each spacecraft is 
assumed to be c onstant during the whole 
reconfiguration. 

2. Problem formulation 

2.1. Statement of the problem 

Consider the formation spacecraft in deep space 
earth-trailing formation flying, i.e. t hey are on an 
earth-trailing heliocentric orbit. When using linearized 
Hill equations to describe the motion of the formation 
spacecraft, it c an be shown that t he differential orbit 
force between two spacecraft is of the order of 2310

N. Because the reconfiguration usually oc curs in a  
relatively short time scale, ignoring the orbital forces 
between spacecraft in this work is well justified [10]. 
We assume that a to tal number of M spacecraft take 
synchronous maneuvers in th e same time in terval 
[0, ]T . The system dynamics in deep space can be 
stated as follows [11]: 
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( )l tX  and ( )l tU  are the state and c ontrol vectors of 
the lth spacecraft at time t, respectively, lm is the mass 
of the lth spacecraft. 

The control inputs are assumed to be c ontinuous 
low-thrust forces confined to lie within specified 
limits 

max max( ) ,   1,2, ,l t l M   U U U  . (2) 

The states at  initial point and fi nal point are 
constrained with the following conditions 

0(0)
( )

l l

l lTT





X X

X X
 (3) 

where 0lX and lTX are the initial and final state 
vectors of the lth spacecraft. 

Since the maneuvers time for all spacecra ft is the 
same, the objective function for the reconfiguration 
problem is to find ( )l tU , [0, ]t T , 1,2, ,l M  , so 
that the energy consumption 

1 0

1 ( )d
2

TM
T

l l
l

J t t


 U U  (4) 

is minimized. 

2.2. Collision avoidance 

It is obvious that, in order to avoid collisions, each 
spacecraft should be at least a specified distance away 
from others at  any time step. Here each spacecraft is 
assumed to be a sph ere with a po int mass. Collision 
avoidance constraints can be stated as forbidden 
spheres associated with the spacecraft as follows [2] 

2 2
safe( ) ( ) ,   

, 1,2, , ,  
l mt t d

l m M l m

 

 

r r


 (5) 

where ( )l tr  is the radius vector of the lth spacecraft at 
time t, and safed  is the minimum safety distance 
between the centers of any two s pacecraft. These 
constraints change the problem into a no n-convex 
problem, which makes the formation reconfiguration 
problem difficult to solve. 

3. Problem discretization using pseudospectral 
method 

3.1. Legendre pseudospectral method 

Let ( )NL t denote the Legendre polynomial of order 
N, and ( )NL t be the first-order derivative of it. Let ht , 

0,1,2,h N   be the zeros of 2( 1) ( )Nt L t  , with 

0 1t   , 1Nt  . These points are called LGL  points, 
which serve as collocation points of the system. Then 
we select the Nth order Lagrange interpolating 
polynomials [12] 
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where ( )h t  satisfies the relationship ( )h j hjt  . 
For a gi ven continuous function ( )F t defined on 

[ 1,1] , the Nth degree interpolation polynomial is 

0
( ) : ( ) ( )

N
N

h h
h

F t F t t


  . (7) 

The integration of ( )NF t  is 
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The derivative of ( )NF t  at the hth LGL point is 
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where : ( )hjDD is an ( 1) ( 1)N N    matrix, given 
by 

( ) 1     
( )

( 1)       0( ) : 4
( 1)          

4
         0              otherwise .

N h

N j h j

hj

L t
h j

L t t t

N N
h jD

N N
h j N

   
      
   



D  (11) 

3.2. Discretization for Reconfiguration Problem 

As LGL points lie in [ 1,1] , the optimal problem 
should be first restated by the linear transformation of 
the independent variable   [13]: 
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Then we extend LPM to multi-spacecraft case. The 
state and c ontrol vectors can be approximated using 
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and 
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The integration term in J defined in the maneuvers 
time interval [0, ]T  can also be approximated as 
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Thus, the trajectory planning problem can be 
translated into a nonlinear programming problem with 
undetermined parameters ,l hX  and ,l hU , and 
minimizeing the objective function 
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max max ,    - 1, 2, ,l l l l M U U U   (21) 

where ,l hR is the radius vector of the lth spacecraft at 
the hth LGL point. The number of t he constraints 
described by Equation (18) is 6 N M  , and the 
number of the constraints described by Equation (19) 
is 2

MN C . 

4. Optimization using Particle Swarm 
Optimization 

4.1. Particle Swarm Optimization 

Particle swarm optimization (PSO) is a stochastic 
optimization method which was invented by Kennedy 
and Eberhart in 1995 [14]. It is an ev olutionary 
algorithm that inspired by the social behavior of bird 
flocking or people grouping. In PSO, each possible 
solution is called a particle that is analogous to a bird 
in the bird flocking. The objective of the particles 
population (called swarm) is to find the global 
minimum of the fitness function (cost function). In 
each iteration, every particle updates by its own 
improving velocity which is derived from the personal 
best solution (known as ‘pbest’) and the global best 
position (known as ‘gbest’) discovered so far by the 
whole swarm. The basic PSO algorithm can be 
described as 

1
, , 1 1 , , 2 2 , ,( ) ( )k k k k k k k k

i h i h i h i h g h i hv v c r p x c r p x      ,(22) 
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where ,
k
i hv  and ,

k
i hx are the hth dimension velocity and 

position of particle i in the kth iteration; ,
k
i hp  and ,

k
g hp

are the hth dimension pbest and gbest of particle i in 
the kth iteration;   is a weighting factor known as 
inertia; 1c  is the cognitive weight and 2c  is the social 

weight; 1
kr  and 2

kr  are two random numbers in the 
range of [0,1] . The new position of a particle is then 
calculated using 

1 1k k k
i i i
  X X V . (23) 

Here, k
iX  and k

iV  are the position and velocity 
vector of the ith particle during the kth iteration. We 
use “ ” to dist inguish the position vector of PSO 
from the state vector of the reconfiguration problem. 

When updating, a high velocity will dri ve the 
particles out of bounds or d ivergence, so the velocity 
of particle needs to be constrained. Set max,hV as the 
maximum velocity of the hth dimension, then th e 
formulation of velocity updating can be 
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4.2. Optimization of Nonlinear Problem 

In this se ction, we use PSO to solve the NLP 
discretized by LPM. When dealing with constraints, 
especially equality constraints, the PSO method needs 
to be modified. Several methods have been mentioned 
for this problem, such as eliminate the infeasi ble 
solutions method, penalty method, repair method, and 
so on. But for high dimensions constrained nonlinear 
optimization problems, it is alm ost impossible to find 
a feasible solution using these methods. Here, we 
make 1

kr  and 2
kr  the same for every dimension. Note 

that the number of dimensions for one particle is 
( 1) 9M N   , the ‘hth dimension’ mentioned below 

contains 9M   dimensions in fact, because it contains 
M spacecraft and eac h of them has 3 position 
variables, 3 velocity variables and 3 control input 
variables. We denote the hth dimension just for 
convenience, i.e.: 
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Then using the method of linear particle swarm 
optimization (LPSO) [15], the following theorem is 
derived 

Theorem 1: For each spacecraft, if all the position 
0
iX  satisfy 

0 0 0
, , , , , ,
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and all the initial velocities 0
iV  satisfy 

0
i  0V  (27) 

then for any i teration k, Equation (18) is satisfied. 
Here, both 0

, ,i h lX  and 0
, ,i h lU  are the variables to be 

determined, they all belong to 0
,i hX . We separate them 

for convenience. Accordingly, 0
, ,i h lV  and 0

, ,ui h lV  are the 

initial velocities of 0
, ,i h lX  and 0

, ,i h lU , and both of them 

are the components of 0
,i hV . 

Proof: Since 0
iP  is the local best of particle i and 

0
gP  is the global best of all the particles, the following 

equations can be derived 
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Using Equation (22) and Equation (27), we can derive 
1 0 0 0 0 0 0
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Then, from Equations (28)-(31) we can derive 
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From Equation (23), we can get 
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Then we can derive 
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That is 

1 1 1
, , , , , ,

0

0 ( , , ) 0,   
2

0,1, , ,   1,2, , ,   0.

N
k k k
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T
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The above equations show that all the particles 
will fly through the hyperplane defined by the set of 
feasible solutions. 

5. Solution approach 

5.1. Initialization 

We employ pn  particles to solve this problem, the 
initial positions of these pn  particles should satisfy 
Equation (26), and should guarantee that the formation 
spacecraft would not collide with eac h other. The 
operation steps are outlined as follows: 

1. Optimize the reconfiguration problem 
without considering the collision avoidance, 
i.e., optimize the problem with the  objective 
function (17) subject to Eq uation (18), (20) 
and (21). The solution of this optimization is 
defined as sP . It will be use d when updating 
the velocity. Since the optimization of this 
problem is a simple convex optimization, this 
process could be worked out quickly. 

2. For any two spacecraft l and m, find out the 
point where the distance between them is 
nearest, noted as ,l mk , , [0,1, , ]l mk N  . 

3. Initialize the pn particles using the objective 
function 

 1J    (36) 
subject to Equation (19), (21) and (22) with 
random initial solution guesses. So we could 
get a se rial of feasible solutions  

0
iX  ( 1, 2, , pi n  ). 

5.2. Iteration 

Update the positions of al l the particles with 

Equation (23). The formulation to update the velocity 

is modified using 
1

, , 1 1 , ,

2 2 , , 3 3 , ,

( )

( ) ( )

k k k k k
i h i h i h i h

k k k k k k
g h i h s h i h

v v c r p x

c r p x c r p x

    

  
 (37) 

where 3
kr  is a ra ndom number in [0,1] , 3c  is an 

acceleration coefficient. According to the experiments 
we can find that the best feasible trajectories of the  
reconfiguration problem always be found near the 
optimal trajectory obtain ed without collision 
avoidance constraints. So 3 3 , ,( )k k k

s d i dc r p x  will drive 
the particles towards the optimal trajectory, which 

makes convergence faster than only using Equation 
(22). It can be proven as with Theorem 1 that Equation 
(18) is als o satisfied in any  iteration with  Equation 
(37). However, since sP  is not feasible, Equation (37) 
will drive the particles to infeasible region after some 
iterations. So we  would eliminate 3 3 , ,( )k k k

s d i dc r p x  
and use Equation (22) instead after 50 iterations. 

When using pseudospectral method or other 
collocation method, the cons traints are only satisfied 
at collocation points. So the sol ution may not be  
feasible between collocation points. More LGL points 
may solve this problem, but the computation time will 
also increase dramatically with the increas ing points. 
To ensure that  the spacec raft would not collide with 
each other between the LGL points, we insert some 
time points, c alled test p oints between ,( 1)l mk   and 

,l mk , and between ,l mk  and ,( 1)l mk  . The time at 
these test points should be calculated using Equation 
(13) before iteration. And then, in eac h iteration, 
abandon the solutions which could not avoid the 
collision at these test po ints and t he LGL points. In 
this way, the final solution might be fea sible for the 
entire reconfiguration. Here, we choose the 
quadrisection points as the test points. Note that we 
can choose more or less tes t points according to the 
actual situation. It have little influence on the 
computation time. 

If the values of the fitness functions of all the 
swarms do not improve in the last stalln  generations or 
the generation maximum gn  is reached, stop the 
optimization. The optimal state and c ontrol input 
vectors of every spacecraft will be the last global best 
position of the swarm. 

6. Result 

In this paper, we used the NLP solver, known as 
KNITRO, to generate every particle’s initial 
trajectories described by LPM. The software 
interfaced with Matlab, where the problem 
descriptions were performed. The problem was solved 
on a 2.1GHz personal computer with 2GB of RAM. 

This example involves three  spacecraft in three-
dimensional space. It is assum ed that they take  
synchronous maneuvers in 10 time units. The initial  
and final positions are 

1 1

2 2

3 3

(0) [0 0 0]    , ( ) [15 15 15] ,

(0) [10 0 0]  , ( ) [0 15 15]  ,    

(0) [10 0 10] , ( ) [0 15 0]

T T

T T

T T

T

T

T

 

 

 

r r

r r

r  r

 (38) 

The initial and final velocities are a ll zero. The 
mass of each spacecraft was assumed as 1 mass unit; 
the thrust limit was 1 unit; the safety  distance was set 
to be 2 units; the number of LGL points was 10. For 
the PSO m ethod, we took 1 0 particles for every 
spacecraft, and max 2V  , stall 50n  , 200gn  . The 
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optimal trajectories of the  three spacecraft are shown 
in Figure 1, where ‘SC’ means spacecraft. The 
distances between a ny two spacecra ft in the  given 
time units are shown in Figure 2, where the mark ‘  ’ 
means the l ocations of the LGL points. The control 
inputs of t he three spacecraft are shown in Figure 3, 
and the mark ‘  ’ also m eans the value of control 
inputs on each LGL point. The total energy 
consumption was 1 1.1958 units optimized by 145 
generations. The history of the global best during 
iteration is shown in Figure 4. 

 

Figure 1. Optimal trajectories of spacecraft 

 

Figure 2. Distances between each pair of spacecraft 

 

Figure 3. Control inputs of all spacecraft 

 

Figure 4. Changes of the global best of all spacecraft 

From Figure 4 we ca n find that the pr ocess 
converges fast at begi nning, and then evolves in a  
relative small region. After 50 iterations, all the 
particles converge to the global best value, which 
illustrates the good performance of our algorithm’s 
convergence. Figure 5 shows the energy consumption 
result from 200 Monte Carlo simulations with random 
initial values. 

 

Figure 5. Evaluation through Monte Carlo simulations 

From the results we can find that for a c ertain 
problem, this m ethod could only find a near optimal 
solution, but not a certain optimal solution. However, 
this method could obtain a  solution with collision 
avoidance in a short time which is shown in Table 1. 
Note that major time consumption is c aused by 
initialization, about 18 se conds, and t he iteration 
process only takes a very short time. The results also 
show that t here are no great changes i n the ene rgy 
index, which indicates that our algorithm is robust. 

Figure 6 plots the re sults solved only by LPM 
using 10 LGL points with 9.9000 units of energy 
consumption. The NLP solver is also KNITRO. From 
this figure we can find that the dista nces between the 
spacecraft are almost zero between the 4th and 5th  
LGL points, though they would not collide with each 
other at t he LGL points. We also took 200 Monte 
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Carlo simulations with random initial values f or the 
LPM. The comparison with PSO method is shown in 
Table 1. The nearest distance refers to the nearest 
distance between any two spacecraft. Note that the 
nearest distance and t he computation time are the  
average values for 200 Monte Carlo simulations. 
Maximum and minimum time are the maximum and 
minimum computation time of 200 Monte Carlo 
simulations. From the results we can find that, the  
PSO method could avoid most collisions during the 
whole maneuvers. Even if some collisions might occur 
between LGL points, the minimum distance bet ween 
any two space craft was only a little sm aller than the 
safety distance. This situation could be  acceptable 
because the safety distance  is always conservative, 
moreover it al so happens occasionally. We can also 
see that the LPM could not avoid the collision with 10 
LGL points, and the computation time vary a lot with  
different initial values. Even using 30 LGL points, the 
nearest distance between two spacecraft was still 1.5 
units. The computation time increased to about 17 
minutes. 

 

Figure 6. Evaluation through Monte Carlo simulations with 
only LPM 

Table 1. Contrast between the PSO method and the LPM 

Method Nearest 
Distance 

Computat
ion 

Time/s 

Maximu
m Time/s 

Minimu
m Time/s 

PSO 1.9138 19.9936 24.2913 16.7734 

LPM 0.0862 17.8736 44.2292 5.5370 

7. Conclusions 

An efficient method for optimal reconfiguration of 
deep space spacecraft formation with collision 
avoidance is proposed in t his paper. Competitive 
computational efficiency is obtained by combining 
Legendre pseudospectral method and particle swarm 
optimization algorithm. Compared to typical 
collocation methods, more potential collisions 
occurring between spacecraft can be avoided by using 
this algorithm, which considers the collision 

constraints between any pair of Legendre-Gauss-
Lobatto points. Simulation results illustrate that t his 
method could solve the reconfiguration problem 
quickly so that it could be used on-board as a general 
approach for spacecraft form ation reconfiguration 
problems. 
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