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Abstract. This work presents an adaptive approach for fault tolerant control of singularly perturbed systems, where 

both actuator and sensor faults are examined in presence of external disturbances. For sensor faults, an adaptive 

controller is designed based on an output-feedback control scheme. The feedback controller gain is determined in order 

to stabilize the closed-loop system in the fault free case and vanishing disturbance, while the additive gain is updated 

using an adaptive law to compensate for the sensor faults and the external disturbances. To correct the actuator faults, a 

state-feedback control method based on adaptive mechanism is considered. The both proposed controllers depend on 

the singular perturbation parameter ε leading to ill-conditioned problems. A well-posed problem is obtained by 

simplifying the Lyapunov equations and subsequently the controllers using the singular perturbation method and the 

reduced subsystems yielding to an ε-independent controller. The control scheme, designed based on the Lyapunov 

stability theory, guarantees asymptotic stability in presence of additive faults and external disturbances provided the 

singular perturbation parameter is sufficiently small. Finally, a numerical example is presented to demonstrate the 

effectiveness of the obtained results. 

Keywords: Reconfigurable control; Singularly perturbed systems; Time scale decomposition; Adaptive control; 

Sensor fault; Actuator fault; Lyapunov equations. 

 

1. Introduction 

Systems, where slow and fast dynamic phenomena 

arise, are called singularly perturbed systems. They 

model many control systems like robotic systems, mo-

tor control systems, chemical processes, convection-

diffusion systems and electric circuits. Those systems 

are distinguished by the existence of a small positive 

parameter called singular perturbation parameter. It 

indicates the degree of separation between “slow” and 

“fast” modes of the system. Such small parameters 

can be used for modeling machine reactance in power 

systems, capacitance in electronic and wire inductance 

control systems. Singular perturbation parameter leads 

frequently to ill-conditioned results in the system 

analysis and synthesis methods. In order to handle 

such problems, a reduction technique, called singular 

perturbation method, is proposed in the literature. 

Thus, the full-order system is decoupled into slow and 

fast subsystems, which makes possible to deal with 

lower-order systems and consequently to simplify the 

analysis and synthesis problems [1-3]. The complexity 

of the singularly perturbed systems makes them 

vulnerable to faults being able to corrupt the 

controller, the sensors, the process itself or the 

actuators. In this case, an adequate control scheme, 

known as reconfigurable control or fault-tolerant 

control, is needed to provide system stability even in 

presence of defects. Otherwise, the occurrence of such 

faults may cause production to stop and threats human 

and material safety. The main purpose of the fault-

tolerant control is to maintain stability and 

performance in the event of malfunctions in sensors, 

actuators or other system components and to inhibit 

the restrictions of conventional feedback control [4-7]. 

Fault-tolerant design methods can be classified into 

active and passive approaches. The active control 

technique requires a fault diagnosis block to detect 

and identify the faults in real time, and then a 

mechanism to adapt the controller to the new faulty 

situation according to the information recovered about 
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malfunctions [8-11]. In contrast, the passive approach, 

also called reliable control, offers a fixed-parameter 

controller in order to maintain (at least) stability in 

occurrence of presumed faults without the need for 

controller reconfiguration and fault diagnosis scheme 

[6,9,11,12]. Diverse methods are proposed to design 

reconfigurable controllers in order to ensure closed-

loop stability, even in faulty case. A reliable fault-

tolerant control method designed for linear systems 

using simultaneous stabilization is carried out by 

Stoustrup and Blondel in [12]. Tellili et al. in [13] 

developed a reliable H∞ controller for linear time-

invariant multi-parameter singularly perturbed system 

to tolerate sensor faults and to ensure H∞ performance. 

The full-order system controller is then simplified to 

three reduced reliable H∞ sub-controllers based on the 

fast and slow problems through the manipulation of 

the algebraic Riccati equations. Liu et al. in [14] 

proposed a H∞ fault tolerant controllers to overcome 

actuator faults. The authors handle three cases of such 

faults: normal, loss of efficiency, and outage. The 

designed H∞ controllers can reduce the degree of 

conservatism compared with existing methods. 

Richter and Lunze in [15] developed the fault-hiding 

approach for linear and Hammerstein systems and 

used virtual actuators and sensors respectively, for 

actuator and sensor faults. The results are extended to 

piecewise affine systems in [8]. Another widely 

studied method consists in the design of fault tolerant 

control scheme based on adaptive control principles. 

Such approaches can be applied without using control 

restructuring and fault diagnosis procedures [16,17]. 

Many authors were interested in this subject. In 

particular, Chen and Saif in [17] designed an adaptive 

scheme to diagnose and to accommodate actuator 

faults in linear multi-input single-output (MISO) 

systems with unknown system parameters. The fault 

tolerant control problem is resolved using the 

remaining operative actuators. In [18], a class of 

adaptive control methods based on output feedback 

approach in order to stabilize linear systems with 

complete actuator failures is developed. Jin and Yang 

in [19] designed a direct adaptive state feedback 

control approach based on Lyapunov stability theory. 

The resulting closed-loop system is then asymptoti-

cally stable in the presence of actuator faults and 

external disturbances. The method is extended and 

improved in [20]. Wang et al. in [21] developed an 

adaptive output feedback control to accommodate 

actuator faults including outage, loss of efficiency and 

stuck. An adaptive fault tolerant controller including a 

fault estimation error minimization problem is 

designed by Casavola and Garone in [22]. The consi-

dered fault in this case is assumed to be piecewise 

constant with a slowly varying behavior. For the 

singularly perturbed systems, their control in presence 

of actuator failures is investigated by some authors. 

Liu in [14] developed a controller scheme for singu-

larly perturbed systems in presence of actuator satura-

tion under the assumption that the fast subsystem is 

stable. Xin et al. in [23,24] proposed the reduced-order 

adjoint systems, by which some methods to estimate 

the basin of attraction of singularly perturbed systems 

were developed. In [25], an optimal controller based 

on state-feedback approach is designed to control non-

linear singularly perturbed systems subject to actuator 

saturation. However, the above-mentioned approaches 

were limited to actuator saturation and did not 

consider the loss of efficiency by sensors and 

actuators. 

The main goal of this paper is to design an 

adaptive fault tolerant control scheme for singularly 

perturbed systems in presence of external disturbances 

and additive faults characterized by a loss of 

effectiveness in sensors and actuators. The remaining 

part of this work is organized as follows. The system 

description and preliminaries are presented in Section 

2. The fault model and the control problem are 

formulated in case of sensor faults in Section 3. In 

Section 4, an adaptive fault tolerant control approach 

against actuator faults and external disturbances is 

established. An example of application is developed in 

Section 5 followed by a conclusion in the last section.  

2. System description and preliminaries  

Consider the following time-invariant two-time 

scales singularly perturbed system under external 

disturbances described by 

 
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where 
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and 
2nz are state vectors, 

mu is the control vector, ly  is the output, 

qw models piecewise continuous bounded 

external disturbances acting on the system and 

verifying ‖𝑤‖ ≤ 𝑤 with 𝑤 being an unknown positive 

constant. 1x 1
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2x

2 n m

zB are constant matrices. The matrix 𝐴22  is 

assumed to be nonsingular (standard singularly 

perturbed systems). The parameter ε, called singular 

perturbation parameter, is a positive scalar taking 

values between 0 and 1. Denote throughout the paper:
 

   
T

T T

i ix izB B B  for 𝑖 = 1, 2 and ‖(. )‖ the Euclidian 

norm of (.).  

According to the time-scale property of the 

singularly perturbed system, the slow and the fast 
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subsystems of full-order system (1) can be derived by 

formally setting the singular perturbation parameter ε 

to zero [2,26]. The slow subsystem is obtained as 

1 2s s s s s s s

s s s s s

x A x B w B u

y C x D u

  


 

  (2) 

where 1

11 12 22 21sA A A A A  , 1

1 2 22 21

 sC C C A A , 

1

2 22 2

 sD C A B
 
, 1

12 22is ix izB B A A B   for 𝑖 = 1, 2 ; xs, 

us, and ws are respectively, the slow part of the states, 

the control input u, and the disturbance input w. 

If  (𝐴𝑠, 𝐵2𝑠) is stabilizable and (𝐶𝑠, 𝐴𝑠) is detectable, 

then there exists a symmetric and positive definite 

matrix 𝑃𝑠  satisfying the following slow Lyapunov 

equation  
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where 𝑄𝑠  is any given positive definite symmetric 

matrix and 𝐾𝑠  is a static output feedback gain 

stabilizing the slow subsystem such that 𝑢𝑠 = 𝐾𝑠 𝑦𝑠 . 

The closed-loop slow subsystem is then defined by 

2 1( )s s s s s s s sx A B K C x B w    . (4)

 

 

Most often in literature [13,27,28], the following 

approximation is used: 𝐴𝑠 = 𝐴11 , 𝐵1𝑠 = 𝐵1𝑥 , 𝐵2𝑠 =

𝐵2𝑥 and 
1sC C . Consequently, the slow subsystem 

(2), the slow Lyapunov equation (3) and the closed-

loop slow subsystem (4) can be approached 

respectively, by the equations (5), (6) and (7): 
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Since C is of full rank, it is assumed, without loss 

of generality, that the output matrix can be 

transformed to block-diagonal form [29], 𝐶 =

[
𝐶1 0
0 𝐶2

] , where 𝐶1𝑥  and 𝐶2𝑧  describe respectively, 

the slow and the fast part of the output.   

The fast subsystem is given by 
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where zf, uf and wf are the fast parts respectively, of the 

states, the control input u and the disturbance input w. 

The fast subsystem can be rewritten in the stretching 

(fast) time scale 𝑡/𝜀 as follows 
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Assuming that (𝐴22, 𝐵2𝑧)  is stabilizable and 

(𝐶2, 𝐴22) is detectable, there exists a symmetric and 

positive definite matrix 𝑃𝑓 satisfying the following fast 

Lyapunov equation:   
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where 𝑄𝑓  is any given positive definite symmetric 

matrix and 𝐾𝑓  is a static output feedback gain 

stabilizing the fast subsystem such that 𝑢𝑓 = 𝐾𝑓  𝑦𝑓 . 

The closed-loop fast subsystem is then defined by: 

22 2 2 1( )f z f f z fz A B K C z B w    . (11) 

3. Controller design with respect to sensor 

fault 

This section will concentrate on the design of an 

adaptive fault tolerant controller to handle sensor 

faults in presence of external disturbances. 

3.1. Failure model and problem formulation 

The sensor faults which have been taken into 

account in this section involve loss of efficiency. For 

the output 𝑦𝑖,  𝑖 = 1, . . , 𝑙 , let 𝑦𝑖
𝑓
 be the signal issued 

from the i-th faulty sensor; accordingly, the sensor-

fault model is expressed as follows,  

𝑦𝑖
𝑓(𝑡) = 𝜌𝑖  𝑦𝑖(𝑡), (12) 

where 𝜌𝑖  represents the sensor efficiency factor and 

verifies  0 ≤ 𝜌𝑖 ≤ 𝜌𝑖 ≤ 𝜌
𝑖

≤ 1. 𝜌𝑖  and  𝜌
𝑖
 indicate the 

known lower and upper bounds of 𝜌𝑖 , respectively. 

The case 𝜌𝑖 =  𝜌
𝑖

= 0  describes the completely 

interruption of the sensor i. 𝜌𝑖 > 0 denotes the case of 

partial failure of 𝑦𝑖 . If  𝜌𝑖 = 𝜌
𝑖

= 1 , then 𝑦𝑖
𝑓(𝑡) =

 𝑦𝑖(𝑡), which depicts the case of no failure. Denoting 

𝜌 = 𝑑𝑖𝑎𝑔(𝜌𝑖) , 𝑖 = 1, . . , 𝑙 , the uniform sensor-fault 

model becomes: 

𝑦𝑓(𝑡) = 𝜌 𝑦(𝑡). (13) 

The assumption that the control signals and 

disturbances use identical channels is used by many 

authors [19, 21] to solve robust control problems. 

Consequently, the following supposition will be held: 

𝐵1𝑥 =  𝐵2𝑥  𝐹  and 𝐵1𝑧 =  𝐵2𝑧 𝐹 , where F is a matrix 

with appropriate dimension. 

The problem under consideration is to design a 

control law such that the closed-loop singularly 

perturbed system is asymptotically stable for any 𝜀 ∈
 ]0, 𝜀∗]  despite the sensor fault occurrence and 

disturbance. 

3.2. Controller proposal for the full-order 

singularly perturbed system 

Let us introduce the following notations 
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System (1) can be expressed as 
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By using the sensor-fault model (13) and the 

hypothesis assumed for the disturbances, system (14) 

is transformed to 
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The proposed fault tolerant controller to stabilize 

the system (14) is described by: 

𝑢(𝑡) = 𝐾1 𝑦(𝑡) + 𝐾2(𝑡) (16) 

where K1 is chosen such that 
2 1( ( ) ( ) )A B K C   is 

Hurwitz and K2(t) is governed by the following update 

law  
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where �̂�3 is adjusted using the following adaptive law 
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where γ is a suitable positive constant and ε is the 

singular perturbation parameter. Let �̃�3(𝑡) = �̂�3(𝑡) −
𝑘3 . Then the expression (18) can be transformed to 

3 2( ) ( ) ( )Tk t X P B    .  

As mentioned in [20], to avoid discontinuity which 

can be caused by the term 
2( ) ( )TX P B  in the case 

where 𝑋 = 0, it is sufficient to add a small constant in 

the denominator of the control law (17). 

The following theorem is proposed to solve the fault 

tolerant control problem (15):  

Theorem 1: Consider the singularly perturbed system 

described by equation (14). Suppose the 

following assumptions are satisfied, 

1. There exists a singular perturbation 

parameter 𝜀∗ > 0  such that (𝐴(𝜀), 𝐵2(𝜀))  is 

stabilizable and (𝐶, 𝐴(𝜀)) is detectable for all 

𝜀 ∈ ]0, 𝜀∗]; 

2. There exists a symmetric and positive 

definite matrix 𝑃(𝜀) satisfying the following 

Lyapunov equation : 
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where Q is any given positive definite symmetric 

matrix;  

3. K1 is designed such that 
2 1( ( ) ( ) )A B K C   is 

Hurwitz.  

Then the fault tolerant controller (16) verifying the 

adaptive laws (17) and (18), stabilizes asymptotically 

the system (14) subject to sensor fault (13) and 

external disturbances for any 𝜀 ∈ ]0, 𝜀∗].  

Proof. From equations (15) and (16), it follows for the 

closed-loop fault tolerant control system: 
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Define an ε-dependent Lyapunov function 

candidate, 

𝑉(𝜀) = 𝑋𝑇 𝑃(𝜀) 𝑋 + 𝜀−1 𝛾−1 �̃�3
2  > 0. (22) 

Computing the derivative of 𝑉(𝜀)  along the 

trajectories of system (21) and taking into account the 

assumptions about the disturbances leads to 
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Let 𝑘3 be a constant used to limit the unknown 

bounded constant 𝑤 such that [21] 
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Since  𝜌
𝑖

≤ 1, it can be shown that  
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Substituting the adaptive law (17) and the 

expression (19) into the equation (23) yields the 

following form 
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This can be transformed into the following form, 

2

3 3 1 1

1 1

3 3

( ) 2 2 ( ) ( )

ˆ( ( ) )

2

T TV X QX X P B

k k t K CX K CX

k k

  

  

  

     (27) 

In the light of the adaptation law (18), it is easy to 

see that �̇�(𝜀) ≤ 0.  Therefore, the faulty closed-loop 

system is asymptotically stable for any singular 

perturbation parameter ε ∈ ]0, ε∗].  

3.3. Controller simplification 

The fault tolerant controller (16) involves an 

output feedback gain 𝐾1  designed such that 

2 1( ( ) ( ) )A B K C   is Hurwitz. Under mild 

technical conditions, asymptotic stability of the full-

order singularly perturbed system is guaranteed 

through the asymptotic stability of both the slow 

subsystem and fast subsystem for sufficiently small 

values of the singular perturbation parameter ε [2,30].  

The conception of the static output feedback gain 

𝐾1  can be achieved through the simultaneous design 

of static output feedback controllers for the reduced 

slow and fast subsystems for small ε and some 

constraints on the system [3,30,31]. Thus, a simplified 

ε-independent feedback controller is designed to 

stabilize the full-order system. 

The approximations taken in Section 2 (see 

equations (5) and (9)) permit to simplify 𝐵2(𝜀) in the 

control law (17) through 𝐵2 = [
𝐵2𝑥

𝐵2𝑧
]. The ε-dependent 

𝑃(𝜀) will be simplified in the following section. 

3.4. Solving Lyapunov equation using reduced 

order models 

In order to alleviate the numerical stiffness caused 

by the simultaneous occurrence of slow and fast 

phenomena and characterized by the presence of the 

small singular perturbation parameter ε, the full-order 

Lyapunov equation (19) will be formulated using slow 

and fast subsystem components. 

The structure of 𝑃(𝜀) is assumed to be of the form 

1 2

2 3

( )
T

P P
P

P P


 
  
 

. (28) 

The solution 𝑃(𝜀)  is ɛ-dependent, because 

equation (19) contains 𝜀−1-order matrices. Let 𝑄 be of 

the form 1

1

2

0

0

n

n

I
Q

I 

 
  
 

where 𝐼 is identity matrix 

and 𝐾1 = [𝐾11 𝐾12] . Expanding the Lyapunov 

equation (19) after the substitution of 𝑃(𝜀) leads to the 

following partitioned three equations  

1 1

11 1 21 2 1 11 2 21 1

T T T

na P a P P a P a I        (29) 

1 1

21 3 11 2 1 12 2 22 0T Ta P a P P a P a       (30) 

1 1 1

12 2 22 3 2 12 3 22 2

T T T

na P a P P a P a I          (31) 

where 
11 11 2 11 1xa A B K C  , 

12 12 2 12 2xa A B K C  , 

21 21 2 11 1za A B K C   and 
22 22 2 12 2za A B K C  .  

Pre- and post-multiplying equations (29) and (31) 

by the singular perturbation parameter ε and letting 

ε → 0 leads to the following zero-order equations  

11 1 1 11 1

T

na P P a I    (32) 

22 3 3 22 2

T

na P P a I     (33) 

21 2 2 21 0T Ta P P a  . (34) 

Since K11 and K12 can be approximated, 

respectively, by Ks and Kf  [29,31], it is clear that 

equations (32) and (33) correspond, respectively, to 

the Lyapunov equations of the slow subsystem 

approximation described by equations (5) and the fast 

subsystem given by equation (9) of the singularly 

perturbed system (1). Hence, 𝑃1  and 𝑃3  correspond, 

respectively, to the solution 𝑃𝑠 of the slow Lyapunov 

equation (3) (approximated by equation (6)) and the 

solution 𝑃𝑓  of the fast Lyapunov equation (10). It 

follows that the solution 𝑃(𝜀) of the equation (19) can 

be approximated by 
0

( )
0

s

f

P
P

P


 
  
 

. Thus, the ill-

defined controller (16) is simplified and made ε-

independent using the corresponding reduced order 

well defined problem. 

4. Controller design with respect to actuator 

fault 

In this section, a fault tolerant controller will be 

designed to compensate actuator fault and external 

disturbances and then the singular perturbation 

method will be used to simplify the ε-dependent 

controller to avoid the numerical stiffness caused by 

the presence of time scales. 

4.1. Preliminaries and failure model  

Consider the LTI singularly perturbed system (1) 

with its slow subsystem (2) and fast subsystem (9).  

If  (𝐴𝑠, 𝐵2𝑠) is stabilizable, then the state feedback 

controller 𝑢𝑠 = 𝐺𝑠𝑥𝑠   is considered to stabilize the 

slow subsystem (2). 𝐺𝑠  is the slow controller gain 

satisfying the following slow Lyapunov equation   

2 2( ) ( )T

s s s s s s s s sA B G L L A B G M      (35) 
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with 𝑀𝑠 any given positive definite symmetric matrix. 

The closed-loop slow subsystem is then obtained 

2 1( )s s s s s s sx A B G x B w    . (36)

 

 

Employing the same approximation used in 

Section 2 for the system matrices of the slow 

subsystem, the slow Lyapunov equation (35) and the 

closed-loop slow subsystem (36) can be 

approximated, respectively, by the equations (37) and 

(38):  

11 2 11 2( ) ( )T

x s s s x s sA B G L L A B G M      (37) 

11 2 1( )s x s s x sx A B G x B w     (38)

 

 

Assuming that (𝐴22, 𝐵2𝑧)  is stabilizable, there 

exists a feedback controller 𝑢𝑓 = 𝐺𝑓𝑧𝑓 stabilizing the 

fast subsystem (9). 𝐺𝑓  is the fast controller gain 

satisfying the following fast Lyapunov equation,   

22 2 22 2( ) ( )T

z f f f z f fA B G L L A B G M      (39) 

with 𝑀𝑓 any given positive definite symmetric matrix. 

The closed-loop fast subsystem is then described by 

22 2 1( )f z f f z fz A B G z B w   . (40) 

The faults dealt with in this section are given by a 

decrease in effectiveness. For the control input 𝑢𝑖, 𝑖 =
1, . . , 𝑚  , consider 𝑢𝑖

𝐹  the signal from the faulty 

actuator; consequently, the failure model is adopted as 

follows 

F
i ai i=u u

 (41) 

where 𝛼𝑎𝑖 represents the actuator efficiency factor and 

verifies  0 ≤ 𝛼𝑎𝑖 ≤ 𝛼𝑎𝑖 ≤ 𝛼𝑎𝑖 ≤ 1 . 𝛼𝑎𝑖  and  𝛼𝑎𝑖 

indicate the known lower and upper bounds on 𝛼𝑎𝑖 , 

respectively. Thus, if   𝛼𝑎𝑖 = 𝛼𝑎𝑖 = 1, the ith actuator 

is working perfectly, whereas if  𝛼𝑎𝑖 > 0, partial loss 

of effectiveness is present. The case  𝛼𝑎𝑖 = 𝛼𝑎𝑖 = 0 

describes the completely failing of the actuator i. 

Denoting 𝛼𝑎 = 𝑑𝑖𝑎𝑔(𝛼𝑎𝑖) , 𝑖 = 1, . . , 𝑚 , the uniform 

actuator-fault model becomes, 

𝑢𝐹(𝑡) = 𝛼𝑎 𝑢(𝑡)  (42) 

The problem under consideration is to develop a 

fault tolerant controller making the closed-loop 

singularly perturbed system asymptotically stable in 

presence of actuator faults and external disturbances.  

4.2. Controller synthesis for the global singularly 

perturbed system 

Considering the system (14), the actuator fault (42) 

and the assumption held for the disturbances, system 

(14) can be rewritten as   

2 2( ) ( ) ( ) ( ) ( ) ( ) ( )aX t A X t B F w t B u t     
(43) 

The proposed controller model to stabilize the 

system (14) under actuator faults and external 

disturbances is given by: 

𝑢(𝑡) = 𝐺1(𝑡) 𝑋(𝑡) + 𝐺2(𝑡) (44) 

where G1 is chosen such that 
2 1( ( ) ( ) )A B G   is 

Hurwitz and G2(t) is designed using the following 

update law:  

2
2 1

2

( ) ( ) ˆ( ) ( ( ) )
( ) ( )

T

T

B L X
G t k t G X

B L X

  

  
    (45) 

where α and β are appropriate positive constants 

satisfying [19-21] 

22

2 2( ) ( ) ( ) ( )T T

aB L X B L X        (46) 

and �̂� obeys the following adaptive law:  

2

ˆ( )
( ) ( )Tdk t

X L B
dt

      (47) 

where γ is an appropriate positive constant and ε is the 

singular perturbation parameter. Let �̃�(𝑡) = �̂�(𝑡) − 𝑘, 

where k is a constant verifying 

2

2

( ) ( )

( ) ( )

T

T

X L B F w

X L B k

 

 


 (48) 

then the update law (47) can be expressed as 

2( ) ( ) ( )Tk t X L B     (49) 

As main result, the following theorem will be 

proposed to solve the fault tolerant control problem 

(43),  

Theorem 2: Consider the system described by 

equation (14). Suppose that: 

1. There exists a singular perturbation 

parameter 𝜀∗ > 0  such that (𝐴(𝜀), 𝐵2(𝜀))  is 

stabilizable for all 𝜀 ∈ ]0, 𝜀∗]; 

2. For any given positive definite symmetric 

matrix M, there exists a symmetric and 

positive definite matrix 𝐿(𝜀)  satisfying the 

following Lyapunov equation : 

2 1

2 1

( ( ) ( ) ) ( )

( ) ( ( ) ( ) )

TA B G L

L A B G M

  

  



   
 (50) 

3. G1 is chosen such that 
2 1( ( ) ( ) )A B G   is 

Hurwitz.  

Then there exists 𝜀∗ > 0  such that for every 

𝜀 ∈ ]0, 𝜀∗], the controller described by equation (44), 

with the update laws (45) and (47) and the controller 

gain G1, stabilize asymptotically the system (43) 

subject to actuator fault (42) and external 

disturbances.  

Proof. The Lyapunov-based proof of stability can be 

shown using the following Lyapunov function 

candidate  

𝑉(𝜀) = 𝑋𝑇 𝐿(𝜀) 𝑋 + 𝜀−1 𝛾−1�̃�2  > 0. (51) 

The other steps are similar to theorem 1 and are 

detailed in [32]. 
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4.3. Design of the ε-independent controller 

𝐺1  represents the state-feedback controller gain 

stabilizing the full-order singularly perturbed system 

(1) in absence of faults and perturbations. It is well 

known [2,33] that 𝐺1 can be designed using the locale 

feedback gains  𝐺𝑠  and 𝐺𝑓  provided that (𝐴𝑠, 𝐵𝑠) and 

(𝐴𝑓 , 𝐵𝑓) are controllable and A22
−1 exists. Accordingly, 

the composite control is of the form 𝑢(𝑡) =

𝐺1(𝑡) 𝑋(𝑡) = [𝐺11 𝐺12] [
𝑥
𝑧

]  where 𝐺12 = 𝐺𝑓  and 

-1 -1

11 22 2 22 21( )f f s fG I G A B G G A A= + + . Thus, the 

simplification of the feedback controller gain 𝐺1 

conserves the stability of the full-order singularly 

perturbed system. To simplify the adaptive laws (45) 

and (47), it is adequate to use the slow parts of the 

command matrix 𝐵2(𝜀) and the simplified form of the 

Lyapunov matrix 𝐿(𝜀)  which will be derived in the 

following.  

4.4. Simplifying of the Lyapunov equation  

To remove the numerical stiffness in the Lyapunov 

equation given by expression (50), the latter will be 

decomposed in slow and fast parts [34]. The structure 

of L(ε)  is assumed to be of the form 

1 2

2 3

( )
T

L L
L

L L


 
  
 

. The solution 𝐿(𝜀) is dependent on 

the singular perturbation parameter ɛ because equation 

(50) contains 𝜀−1-order matrices. A positive definite 

symmetric matrix 𝑀  will be chosen of the form 

1

1

2

0

0

n

n

I
M

I 

 
  
 

, where 𝐼  is identity matrix. 

Substituting 𝐿(𝜀) into Lyapunov equation (50) yields 

the following partitioned three equations 

1 1

11 1 21 2 1 11 2 21 1

T T T

na L a L L a L a I        (52) 

1 1

21 3 11 2 1 12 2 22 0T Ta L a L L a L a       (53) 

1 1 1

12 2 22 3 2 12 3 22 2

T T T

na L a L L a L a I          (54) 

where 
11 11 2 11xa A B G  , 

12 12 2 12xa A B G  , 

21 21 2 11za A B G   and 
22 22 2 12za A B G  .  

Using the same method as in Section 2 yields the 

following equations 

11 1 1 11 1

T

na L L a I    (55) 

22 3 3 22 2

T

na L L a I     (56) 

21 2 2 21 0T Ta L L a   (57) 

It is well known that the controller gains 𝐺11 and 

𝐺12  can be approximated, respectively, by the slow 

controller gain 𝐺𝑠 and the fast controller gain 𝐺𝑓 [35]. 

Hence, expressions (55) and (56) match respectively, 

the slow and the fast Lyapunov equations until  

𝑀𝑠 = 𝐼𝑛1  and 𝑀𝑓 = 𝐼𝑛2 . Furthermore, considering 

equation (57), the approximate solution of the 

Lyapunov matrix becomes 0
( )

0

s

f

L
L

L


 
  
 

, which 

removes the numerical stiffness in the solution of 

equation (50).  

5. Example of application 

To illustrate the effectiveness of the proposed 

method, the following numerical example is given 

below.  

5.1. Fault tolerant control in presence of sensor 

faults and disturbance 

Consider the singularly perturbed system (1) with 

parameters given by 

11

5 0.2

0.5 6
A

 
  

 

, 
12

0 0.1

1 1
A

 
  

 

,  

21

9 8

0.3 0.1
A

  
  
 

,
22

7 1

0.5 6
A

 
  

  

, 

2 1

1 1.55

1 0.5

0.9 0.8

0.2 0.11

B B

 
 


  
 
 
 

, 
2 0.5 0 0

1 2 0 0
C =

 
 

 

  

and 
0.01 sin(5 )

0.5

t
w=

 
 
 

. 

The full-order system is open loop unstable (the 

system has one positive pole). The considered faulty 

model is a 50% loss of effectiveness in the first sensor 

and 70% in the second sensor, that is, 𝛼𝑎 =
𝑑𝑖𝑎𝑔(0.5,0.7). The singular perturbation parameter is 

set to 𝜀 = 0.05 . In the fault free case, the output 

feedback controller is computed using the method 

described in [30] based on the reduced order models. 

The states trajectories starting from 𝑋0 =
[0.2, 0.03, 0.02, 0.01]𝑇, the output and the simplified 

controller gain are shown in Fig. 1. It is clear from the 

above mentioned figure that the full-order system  

 

 

Figure 1. (a) States, (b) Output and (c) Controller u(t) in the 

fault-free case by output feedback control and by ε = 0.05. 
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Figure 2. (a) States, (b) Output and (c) Controller u(t) in the 

faulty case by output feedback control and by ε = 0.05. 

 

Figure 3. (a) States, (b) Output and (c) Controller u(t) in the 

faulty case by adaptive fault tolerant control and by ε = 0.05. 

is stabilized using the output feedback controller. 

However, the occurrence of sensor faults at time 

instance 50 sec causes instability of the full-order 

system (see Fig. 2). Next, an adaptive fault tolerant 

controller will be designed in presence of sensor faults 

and external disturbances. The simulation results are 

shown in Fig. 3. They indicate that the designed 

adaptive fault tolerant controller stabilizes asympto-

tically the singularly perturbed system subject to 

sensor faults and external disturbances. 

Next, the case of actuator faults will be examined.  

5.2. Fault tolerant control in presence of actuator 

faults and disturbance 

The same singularly perturbed system treated 

below is considered with 10% loss of efficiency in the 

first actuator and 50% in the second actuator, that is, 

ρ = diag(0.1,0.5). In the fault free case, the full-order 

system is stabilized through a composite controller 

based on the slow and fast subsystems (see Fig. 4). 

The appearance of defects at time 50 sec yields a loss 

of the actuators performances which is indicated in 

Fig. 5. To compensate the fault effect, an adaptive 

fault tolerant controller is designed. Fig. 6 shows the 

trajectories of the states, the output, the controller 𝑢(𝑡) 

and the gain 𝑘3(𝑡) after fault occurrence at time 50 sec 

by initial values 𝑋0 = [0.2, 0.03, 0.02, 0.01]𝑇 and 𝜀 =
0.05. It can be deduced that the computed adaptive 

controller compensates the actuator faults in presence 

of external disturbances. 

 

Figure 4. (a) States, (b) Output and (c) Controller u(t) in the 

fault-free case by composite control  

 

Figure 5. (a) States, (b) Output and (c) Controller u(t)  in the 

Faulty case by composite control  

 

Figure 6. (a) States, (b) Output, (c) Gain k3(t) and (d) 

Controller u(t) in the faulty case by adaptive ftc control  

6. Conclusion 

In this paper, the stabilization problem of 

singularly perturbed systems subject to additive faults 

and external disturbances is investigated. ε-dependent 
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controllers are first proposed to handle sensor and 

actuator faults covering the normal operation and 

faulty cases. In both cases, the control scheme 

includes a feedback controller to handle the fault free 

case and an adaptive part to compensate additive 

faults and external disturbances. The resulting Ill-

conditioned Lyapunov equation in the two cases is 

solved using the singular perturbation method and the 

simultaneous design of Lyapunov equations of the 

slow and fast subsystems. In the case of sensor faults, 

the first part of the controller, designed by an output 

feedback controller, is approximated by gains 

stabilizing the reduced order systems. While, in 

occurrence of actuator faults, the state-feedback 

controller is approximated by a composite controller 

which depends on the gains stabilizing the slow and 

fast subsystems. In both cases, the adaptive laws are 

simplified using ε-independent matrices. The synthesis 

of the reconfigurable control system guarantees the 

desired asymptotic stability of the full-order singularly 

perturbed system not only in the fault-free case, but 

also in occurrence of additive faults and external 

disturbances. The determination of the upper bound of 

singular perturbation parameter ε remains, as 

perspective, an important thematic. 
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