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Abstract. The aim of the given paper is the development of the criterion and some expressions for recognizing a non-
aliased realization in the set of realizations obtained by multifold decimation (f ltering and downsampling) of any oversampled
bandlimited signal that has been obtained at the beginning by periodic sampling of a continuous-time signal. For each non-
decimated as well as decimated realization discrete-time Fourier series coeff cient values, located at Nyquist frequency are
calculated, using speedy recursive expressions based on reverse order processing of the given realizations. In such a case,
the summing calculation amount has been signif cantly reduced by applying the expressions that use, in each iteration, the
respective values obtained by processing samples of a previously downsampled realization and some samples of the currently
downsampled one. We formulate def nitions and prove the corollaries that refer to the recursive Fourier coeff cient calculation
and present here an example. Finally, the simulation results for the bandlimited signal with a triangularshaped spectrum are
presented.
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1. Introduction

The sampling operation of an analogous sig-
nal U(t) with a sampling frequency Fs signif cantly
higher than twice the highest signal’s frequency B is
frequently used while processing U(t) digitally [1,
2, 9, 13, 14]. There are some reasons for perform-
ing such an oversampling. One of the main ones of
them is a less complex and inexpensive anti-aliasing
f lter: a signal can be f ltered digitally, and afterwards,
downsampled to the desired sampling frequency by
reducing a large digital data set considerably [6, 8]. A
time-scaling operation is used here that is equivalent
to changing the sampling rate of an analogous signalU(t) from 1=Ts to 1=PTs, where Ts is a sampling
period and its reciprocal 1=Ts = Fs, i.e., decreas-
ing the sampling rate by factor P. On the other hand,
the number of samples N to be processed decreases
P times, as well. In general, the basic sampling fre-
quency Fs could be decreased by varying the inte-
ger number of times if not the fact that the data dec-

imation process ought to be f nished before the fre-
quency content of the downsampled signal is above
the new Nyquist frequency [13]. In the opposite case,
the spectrum X(F=Fs) of the discrete-time signalU(kTs) 8 k 2 0;N� 1 contains aliased frequency
components F of the spectrum Xa(F ) of an analo-
gous signal U(t), because the downsampling in the
frequency domain leads to the spread of signal’s spec-
trum by the same factor P [3, 4]. That is why there
arises a question: how much can we downsample the
signal in order to reduce the amount of samples to
be processed, without loss of information. Therefore,
to prevent the loss of information due to aliasing of
frequencies, it is important to choose a proper crite-
rion and to develop a technique that could be used
to recognize non-aliased realizations in the given set
of realizations obtained after multifold downsampling
of an oversampled discrete-time bandlimited signal.
There also arises a problem to reduce the number of
routine mathematical operations used to recognize the
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non-aliased realization. How to reduce the number
of summing operations while calculating the f rst and
the second order statistical moments of decimated re-
alizations using recursive equations is shown in [10,
11]. Note that recursive or iterative schemes are fre-
quently used to reduce the computational complexity
[5, 7]. The criterion for recursive stopping of multi-
fold downsampling of discrete-time bandlimited sig-
nals has been developed in [12]. On the other hand,
in this paper the general problem is solved – the data
decimation is used by means of f ltering and down-
sampling operations.

In Section 2, the statement of the problem is given.
In Section 3, the criterion based on the calculation of
the Fourier series coeff cient located at Nyquist fre-
quency has been proposed. Recursive expressions for
recognition of the very last non-aliased decimated re-
alization in the given set of downsampled realizations
are made up in Section 4. In Section 5, an example
is given for any realization of 128 samples. The sim-
ulation results are presented in Section 6. Section 7
contains conclusions.

2. Statement of the problem

We consider a discrete-time bandlimited signalU(kTs) 8 k 2 0;N� 1 that is obtained by uni-
form sampling with the sampling frequency Fs its
continuous-time counterpart U(t) having a band-
width [–B, B]. Here N is the general number of sam-
ples of the basic signal U(kTs) 8 k 2 0;N� 1 under
consideration.

Let us assume that, after onetime lowpass f lter-
ing, used to prevent the aliasing of frequencies, and
after following multifold downsampling of the real-
ization u(kTs) 8 k 2 0;N� 1 of the basic signalU(kTs) 8 k 2 0;N� 1, one has to store in the mem-
ory of a computer the set 
 of realizations:x1(k) � u(kTs) 8 k 2 0;N� 1;

(1)x2(k) � u(k2Ts) 8k 2 0;N=2� 1;x3(k) � u(k22Ts) 8 k 2 0;N=22 � 1;
...xm�1(k) � u(k2(m�1)Ts) 8k 2 0;N=2(m�2) � 1;xm(k) � u(k2mTs) 8 k 2 0;N=2(m�1) � 1:

In spite of lowpass f ltering of the realization u(kTs)8 k 2 0;N� 1 the maximal frequencies of some
realizations, obtained after repeated downsampling,
could be higher than the varying new Nyquist fre-
quencies leading to overlapping of respective signal

frequencies when the spectrum replicates. Thus, the
set 
 could be subdivided in turn, into two subsets: a
subset of non-aliased realizations
1, and a subset of
aliased ones 
2. The last realization of subset 
1 is
the very last non-aliased realization, after which there
follows the f rst aliased one from the subset 
2.

The aim of the given paper is, f rstly, to choose some
criterion that could be used to recognize the very last
downsampled realization in the given set 
 with the
maximal frequency that is still below the new Nyquist
frequency, and, secondly, to considerably reduce the
number of routine calculations required to recognize
the same non-aliased realization.

3. Determination of the criterion

For the initial non-decimated centered realizationx1(k) � u(kTs) 8 k 2 0;N of a discrete-time signalU(kTs) 8 k 2 0;N, one can write the Fourier series
expansion [1]x1(k) = A1(0) + 2(n�1)Xq=1 A1(q)cos (2�(n�1)�qk)

(2)+ 2(n�1)�1Xq=1 B1(q)sin (2�(n�1)�qk);8 k 2 0; 2n � 1:
Here N is the period of the same discrete-time signal,
divisible n times by 2, i.e., N = 2n; andA1(0) = 12n 2n�1Xk=0 x1(k) = 0; (3)A1(q) = 2�(n�1) 2n�1Xk=0 x1(k)cos (2�(n�1)�qk);

(4)A1(2(n�1)) = 12n 2n�1Xk=0 x1(k)cos�k; (5)B1(q) = 2�(n�1) 2n�1Xk=0 x1(k)sin (2�(n�1)�qk); (6)q = 1; 2; :::; 2(n�1) � 1
are the respective coeff cients of real DFT.

It is known that, for a discrete-time bandlimited
signal, Fourier series coeff cients are nonzero inside
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the band [–B, B], and zero outside the same band
[13]. Therefore, the values of coeff cients appearing
far from the zero value for frequencies outside the
bandwidth of some decimated realization could show
us that it is time to f nish downsampling. Note that
calculations could be signif cantly reduced if for each
realization xi 8 i 2 1;m from the set 
, only the
values of Ai(2(n�i)) 8 i 2 1;m were calculated, ac-
cording to the expressionAi(2(n�i)) = 12n�i+1 2n�i+1�1Xk=0 xi(k)cos�k; (7)8 i 2 1;m, especially when the bandwidth B is
known only approximately.

Let us now formulate statements that determine the
criterion for recognizing non-aliased decimated real-
ization from the set 
.

Proposition 1. If the shifted replicas of the spectrumXa(F ) of an analogous signalU(t), that are avail-
able in the spectrumXi(ej!) of any non-decimated
and decimated realizationsxi(k) � u(kTs)8 k 2 0; 2n�i+1 � 1, and8 i 2 1;m, i.e.Xi(ej!) = 12iTs 1X�=�1Xa( j!2iTs � j2��2iTs ); (8)

do not overlap, then the value of the coefficientAi(2(n�i)) 8 i 2 1;m, located atFs/2, is zero for any
i-th decimated realization from the set
. The value
ofAi(2(n�i)) 8 i 2 1;m is non-zero, on the contrary.

Remark1. Aliasing of frequencies in any decimated
realization from the set 
 is absent, if and only ifAi(2(n�i)) = 0 8 i 2 1;m, and it is present, oth-
erwise.

Proposition 2. If, for each realization from the set
,
the values of the coefficientAi(2(n�i)) 8 i 2 1;m:A1(2(n�1)); A2(2(n�2)); A3(2(n�3)); :::;Am(2(n�m)) are calculated, then it is easy to rec-
ognize the very last non-aliased s-th realization: its
valueAs(2(n�s)) is zero, while the value of the very
first aliased s+1-st realizationAs+1(2(n�s�1)) is
non-zero.

Remark2. The values Ai(2(n�i)) 8 i 2 1;m could
be used to recognize non-aliased realizations. In gen-
eral, it is important to determine the very last non-
aliased realization that divides the set 
 into subsets
1 and
2.

Note that, really, the abovementioned coeff cient
values will be seldom equal to zero even for non-

aliased realizations due to the f nite number of sam-
ples in a respective realization and, especially, be-
cause of additive noise that has been added to samples
of the discrete-time signal and its downsampled ver-
sions. Therefore, let us choose the value of the formci = k Ai(2(n�i))� Ai+1(2(n�i�1)) k2Ek Ai+1(2(n�i�1)) k2E 100%; (9)8 i 2 1;m� 1, as the criterion of recognition of
the very last non-aliased realization assuming that
the values of Ai(2(n�i)), Ai+1(2(n�i�1)) will be
calculated in reverse order, i.e., f rst, we calculateAi+1(2(n�i�1)), afterwards, Ai(2(n�i)). The gross
value of (9) as compared with its other values shows
us that the current realization is the last non-aliased
one.

By continuing the procedure in reverse order, one
could obtain the recursive formulas for calculatingAi(2(n�i)) 8 i 2 1;m.

4. Recursive expressions

In order to reduce calculations completely, we
will work out a recursive expression to be used to
determine Ai(2(n�i)) 8 i 2 1;m. Firstly, let us for-
mulate corollaries on their calculation, assuming, for
simplicity, that the basic Ts for each downsampled
realization is increased by 2 times. In general, it can
be increased arbitrarily integer number times until
the maximal frequency of the decimated realization
is still below the new Nyquist frequency.

Corollary 1. The value of the coefficientAi(2(n�i))
of each i-th realization from the set
 is calculated
in reverse order, using the recursive expression of the
formAi(2(n�i)) = 12n�i+1 f2(n�i)Ai+1(2(n�i�1)) (10)+2 2(n�i�1)Xk=1 xi(22k � 2)� 2(n�i)Xk=1 xi(2k � 1)g8 i 2 1;m� 1:
Here Ai(2(n�i)); Ai+1(2(n�i�1)) are currentand previous values of the Fourier coefficientthat has been located atNyquist frequency; xi(k)8 i 2 1;m� 1 is a current realization from theset 
.

Proof. For the initial non-decimated realization x1(k)
of a discrete-time signal U(kTs) 8 k 2 0; 2n, the
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Fourier coeff cientA1(2(n�1)) = 12n 2n�1Xk=0 x1(k)cos�k (11)= 12n 2n�1Xk=0 (�1)kx1(k)= 12n f2(n�1)�1Xk=0 x1(2k)� 2(n�1)Xk=1 x1(2k � 1)g;
located at Fs/2, which corresponds to the normalized
frequency �, could be calculated byA1(2(n�1)) = 12n 2n�1Xk=0 (�1)kx1(k)

(12)= 12n f 20Xk=0x1(2(n�1)k) + 21Xk=1x1(2(n�1)k � 2(n�2))+ 22Xk=1x1(2(n�2)k � 2(n�3)) + : : :+ 2(n�3)Xk=1 x1(23k � 22)+ 2(n�2)Xk=1 x1(22k � 2)� 2(n�1)Xk=1 x1(2k � 1)g;
under the assumption that, in curly braces of (12),
there exist n sums in all, and the last sum has a neg-
ative sign. Then, for the very f rst downsampled re-
alization x2(k), the coeff cient A2(2(n�2)) is of the
form A2(2(n�2)) = 12(n�1) 2(n�1)�1Xk=0 (�1)kx2(k)

(13)= 12(n�1) f 20Xk=0x2(2(n�2)k) + 21Xk=1x2(2(n�2)k � 2(n�3))+ 22Xk=1x2(2(n�3)k � 2(n�4)) + : : :+ 2(n�4)Xk=1 x2(23k � 22)+ 2(n�3)Xk=1 x2(22k � 2)� 2(n�2)Xk=1 x2(2k � 1)g;
under the assumption that, there exist n� 1 sums, in
curly braces of (13), and the last sum has a negative
sign, too. Continuing the procedure, f nally one could
obtain the formula for calculating A(m�1)(2(n�m))

by means of formulas belowA(m�1)(2(n�m))= 12(n�m+1)2(n�m+1)�1Xk=0 (�1)kx(m�1)(k)= 12(n�m+1) f 20Xk=0x(m�1)(2(n�m)k)+ 21Xk=1x(m�1)(2(n�m)k � 2(n�m�1))+ 22Xk=1x(m�1)(2(n�m�1)k � 2(n�m�2))+ : : :+ 2(n�m�2)Xk=1 x(m�1)(23k � 22)+ 2(n�m�1)Xk=1 x(m�1)(22k � 2)� 2(n�m)Xk=1 x(m�1)(2k � 1)g;
and for calculating Am(2(n�m�1)) according to the
expressionAm(2(n�m�1)) = 12(n�m) 2(n�m)�1Xk=0 (�1)kxm(k)= 12(n�m) f 20Xk=0xm(2(n�m�1)k)+ 21Xk=1xm(2(n�m�1)k � 2(n�m�2))+ 22Xk=1xm(2(n�m�2)k � 2(n�m�3)) + : : :+ 2(n�m�3)Xk=1 xm(23k � 22)+ 2(n�m�2)Xk=1 xm(22k � 2)� 2(n�m�1)Xk=1 xm(2k � 1)g;
The next-to-last and last expressions have n�m+ 1
and n�m sums, respectively. In both expressions the
last sums have negative signs.
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One can rewrite (12) as follows:A1(2(n�1)) = 12n f2(n�1)A2(2(n�2)) (14)+2 2(n�2)Xk=1 x1(22k � 2)� 2(n�1)Xk=1 x1(2k � 1)g;
having in mind that x2(0) = u(0); x2(1) = u(2Ts),x2(2) = u(4Ts); :::; x2(2(n�1) � 2) = u(2nTs �4Ts); x2(2(n�1) � 1) = u(2nTs � 2Ts), and thatx2(0) � x1(0); x2(1) � x1(2); x2(2) � x1(4); :::;x2(2(n�1) � 2) � x1(2n � 4); x2(2(n�1) � 1) �x1(2n � 2).
Equation (13) can also be rewritten in a recursive
form:A2(2(n�2)) = 12(n�1) f2(n�2)A3(2(n�3))+ 2 2(n�3)Xk=1 x2(22k � 2)� 2(n�2)Xk=1 x2(2k � 1)g;
if we are aware that x3(0) = u(0); x3(1) =u(4Ts); x3(2) = u(8Ts); :::; x3(2(n�2) � 2) =u(2nTs � 8Ts); x3(2(n�2) � 1) = u(2nTs � 4Ts),
and that x3(0) � x1(0); x3(1) � x1(4); x3(2) �x1(8); :::; x3(2(n�2)�2) � x1(2n�8); x3(2(n�2)�1) � x1(2n � 4).
Proceeding with the procedure, for A(m�2) �A(m�2)(2(n�m+2)), A(m�1) � A(m�1)(2(n�m+1)),
and Am � Am(2(n�m)), one could get recursive for-
mulas of the formA(m�2)= 12n�m+3f2(n�m+2)A(m�1)

(15)+22(n�m+1)Xk=1 x(m�2)(22k � 2)�2(n�m+2)Xk=1x(m�2)(2k � 1)g;
and A(m�1)= 12(n�m+2)f2(n�m+1)Am

(16)+2 2(n�m)Xk=1 xm�1(22k � 2)� 2(n�m+1)Xk=1 xm�1(2k � 1)g;
respectively. Thus, the general expression for cal-
culating Ai(2(n�i)) 8 i 2 1;m� 1 is of the
form (10).

Corollary 2. The values of A(i+1)(2(n�i�1)) of each
i-th realization from the set
 are calculated in direct
order using the recursive expression of the formAi+1(2(n�i�1)) = 2Ai(2(n�i)) (17)� 12(n�i�1) 2(n�i�1)Xk=1 xi(22k � 2)+ 12(n�i) 2(n�i)Xk=1 xi(2k � 1)8 i 2 1;m� 1:
Proof. The proof of Corollary 2 is similar to that of
Corollary 1.

Remark3. Recursive expression for reverse order cal-
culations according to formula (10) allows us to de-
crease the number of summing operations as com-
pared with the ordinary expression (7) or even with
the direct order recursive expression of the form (17).

5. Example

After decimating the basic realization x1(k) �u(kTs) 8k 2 0; 27 � 1, we get the set 
 of the next
realizations:x1(k) � u(kTs) 8k 2 0; 27 � 1; (18)x2(k) � u(k2Ts) 8k 2 0; 26 � 1;x3(k) � u(k4Ts) 8 k 2 0; 25 � 1;x4(k) � u(k8Ts) 8 k 2 0; 24 � 1;x5(k) � u(k16Ts) 8 k 2 0; 23 � 1:
We rewrite the value A1(26) of the non-decimated re-
alization x1(k) 8 k 2 0; 27 � 1, as follows:A1(26) = 127 27�1Xk=0 (�1)kx1(k) = 127 f26�1Xk=0 x1(2k)

(19)� 26Xk=1x1(2k � 1)g = 127 f 20Xk=0x1(26k)+ 21Xk=1x1(26k � 25) + 22Xk=1 x1(25k � 24)+ 23Xk=1x1(24k � 23) + 24Xk=1 x1(23k � 22)+ 25Xk=1x1(22k � 2)� 26Xk=1 x1(2k � 1)g:
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Afterwards, the values A2(25); A3(24); A4(23) have
been found by the formulas:A2(25) = 126 f 20Xk=0x2(25k) + 21Xk=1 x2(25k � 24)

(20)+ 22Xk=1x2(24k � 23) + 23Xk=1 x2(23k � 22)+ 24Xk=1x2(22k � 2)� 25Xk=1x2(2k � 1)g;
A3(24) = 125 f 20Xk=0x3(24k) + 21Xk=1 x3(24k � 23)

(21)+ 22Xk=1x3(23k � 22) + 23Xk=1 x3(22k � 2)� 24Xk=1x3(2k � 1)g;
A4(23) = 124 f 20Xk=0x4(23k) + 21Xk=1 x4(23k � 22)

(22)+ 22Xk=1x4(22k � 2)� 23Xk=1x4(2k � 1)g;
andA5(22) = 123 f 20Xk=0x5(22k) + 21Xk=1x5(22k � 2)

(23)� 22Xk=1x5(2k � 1)g;
respectively. Proceeding with calculations in reverse
order, one could f nd that the f rst and second terms
in curly braces of (23) are equal to the f rst and sec-
ond terms of equation (22), respectively. The absolute
value of the third term in (23) is equal to the same
value of the third term in expression (22). Thus, one

can writeA4(23) = 124 f23A5(22) + 2 22Xk=1x4(22k � 2) (24)� 23Xk=1x4(2k � 1)g:
Continuing the process in the same order, one could
discover that the f rst, second, and third terms in curly
braces of (22) are equal to the respective terms in (21).
Note that the fourth terms in the same formulas are
written with different signs. Therefore, one can obtain
the recursive formulaA3(24) = 125 f24A4(23) + 2 23Xk=1x3(22k � 2) (25)� 24Xk=1x3(2k � 1)g:
Finally, by comparing the respective terms of the cor-
responding equations that have been left, we haveA2(25) = 126 f25A3(24) + 2 24Xk=1x2(22k � 2) (26)� 25Xk=1x2(2k � 1)g;
andA1(26) = 127 f26A2(25) + 2 25Xk=1x1(22k � 2) (27)� 26Xk=1x1(2k � 1)g:
Thus, one can determineA4(23); A3(24); A2(25);A1(26)
in reverse order and recursively, beginning with (24),
and f nishing with (27). Afterwards, three values of
the recognition criterionci = k Ai(2(7�i))�Ai+1(2(7�i�1)) k2Ek Ai+1(2(7�i�1)) k2E 100%; (28)8 i 2 1; 3 are calculated in reverse order, too. The
gross meaning of (28) as compared with its other
meanings shows us that the current realization is the
last non-aliased one. Note thatA1(26); A2(25); A3(24);
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A4(23) can be calculated by the ordinary formulaAi(2(7�i)) = (29)128�i 28�i�1Xk=0 (�1)kxi(k)
for i 2 1; 4. We shall need 27 + 26 + 25 + 24
summing operations in total for their calculation.
Recursive calculations according to formulas (24)
– (27) allow us to decrease the number of sum-
ming operations as compared with the ordinary ex-
pression (29). In such an example, while calculatingA4(23); A3(24); A2(25), A1(26), we avoid 4, 8, 16,
and 32 summing operations, respectively. In general,
if we have some realization consisting of 128 sam-
ples we need 60 less summing operations while cal-
culating the respective Fourier coeff cient values in
comparison with the operations performed using the
ordinary formula (29). On the other hand, in such an
example, there appear several additional multiplica-
tion operations in each recursive iteration as in [10,
11].

6. Simulation results

It is emphasized in [8] that, in a theoretical dis-
cussion of sampling theory, it is usual to represent
the signal of interest with a triangularshaped Fourier
spectrum. A triangle can be obtained in the frequency
domain in view that [8]sin(!cn=2)�n F ! 12� Z ���Y(! � �!c )Y( �!c )d�:(30)
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Here !c2� = B. It follows then that, for a unit height
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Here �( !!c ) is a unit height spectrum with the band-
width [�!c; !c]. Using the sinc() function in MAT-
LAB, which is def ned as [8]sinc(x) � sin�x�x (32)
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realization downsampled by 2 (b), by 3 (c),

and by 4 samples (d)
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the signal U(kTs) 8 k 2 0;N� 1, that for Ts = 1 is
of the formU(k) = 14sinc(14(k � 512))2 (33)8 k 2 0; 1023, has been generated. The signal
to be decimated and its spectrum before decimation
are presented in Fig1a and Fig1b, respectively. After-
wards, two experiments are carried out. In both exper-
iments the realization of signal (33) has been down-
sampled in three different ways: by 2, 4, 8, 16 sam-
ples carrying out the f rst experiment, and by 3, 6 and
9 samples during the second one. Then, the initial re-
alization of signal (33), f rstly, was f ltered by a digital
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Fig. 4. A set of f ltered realizations: initial (33),
f ltered with the digital FIR f lter (a), initial
f ltered realization downsampled by 2 (b),

by 3 (c), and by 4 samples (d)
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Fig. 5. Spectra of the initial realization (a), and
downsampled but non-f ltered versions (b,

c, d)

FIR f lter (see Fig. 3) and, secondly, downsampled in
the same ways, too [2, 8]. The different typical non-
f ltered and f ltered realizations of the initial signal re-
alization (33) (Fig. 1a) chosen after carrying out both
experiments are shown in Fig’s. 2, 4. Spectra for the
non-f ltered realizations are shown in Fig.5, while for
the f ltered ones in Fig. 6. Note that Fig. 2a, b, c, d
corresponds to Fig. 5a, b, c, d, and Fig. 4a, b, c, d
– to 6a, b, c, d, respectively. From the simulation re-
sults (Fig’s. 5c, 5d) it follows that, with a decrease
in the sampling rate by P more than 2 there appears
aliasing of frequencies for non-f ltered realizations.
On the other hand, the aliasing for f ltered realizations
is present only if P is more than 3 (Fig.5d). In such a
case, the Fourier coeff cient located at Nyquist fre-
quency is already unequal to zero. The values of the
recognition criterion have been calculated in reverse
order, as follows:c4 = k A4(2(6))�A5(2(5)) k2Ek A5(2(5)) k2E 100% = 26:05%;

(34)c3 = k A3(2(7))�A4(2(6)) k2Ek A4(2(6)) k2E 100% = 30:43%;c2 = k A2(2(8))�A3(2(7)) k2Ek A3(2(7)) k2E 100% = 100%;c1 = k A1(2(9))�A2(2(8)) k2Ek A2(2(8)) k2E 100% = 8:96e+022%;8 i 2 1; 4.
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HereAi(2(10�i)) = 1211�i 211�i�1Xk=0 (�1)kxi(k) (35)8 i 2 1; 5,x1(k) � u(k) 8 k 2 0; 210 � 1; (36)x2(k) � u(2k) 8k 2 0; 29 � 1;x3(k) � u(22k) 8 k 2 0; 28 � 1;x4(k) � u(23k) 8 k 2 0; 27 � 1;x5(k) � u(24k) 8 k 2 0; 26 � 1:
The Fourier coeff cient value obtained for the realiza-
tion x1(k) � u(k) 8 k 2 0; 210 � 1, downsampled
by 3 samples, was chosen from the second experi-
ment in order to calculate the criterion. We have de-
f ned its value 28:04%. Then the values c1; c2; c3; c4
were calculated after f ltering the f rst realization from
the set of realizations (36). We have obtained in re-
verse order the following values: c4 = 0:01%; c3 =14:92%; c2 = 99:99%; c1 = 2:70%. The Fourier co-
eff cient value calculated for the f ltered realizationx1(k) � u(k) 8 k 2 0; 210 � 1, downsampled by
3 samples, was chosen from the second experiment.
The value of the criterion, based on the abovemen-
tioned Fourier coeff cient, is 99:99%, too. Thus, af-
ter f ltering we can downsample the f ltered realiza-
tion x1(k) � u(k) 8 k 2 0; 210 � 1 by 3 sam-
ples, while non-f ltered realization only by 2 sam-
ples, avoiding the aliasing of frequencies. It could
be emphasized here that only to calculate the values
of (35), 210 + 29 + 28 + 27 + 26 summing opera-
tions will be needed: in total, 1984 summing opera-
tions. Recursive calculations in reverse order accord-
ing to formula (10) allow us to decrease the num-
ber of summing operations considerably. Note that,
in such a case, because of reverse order calculations,
it is enough for us to determine only the values ofA5(25); A4(26); A3(27); A2(28). Thus, we spend 26
summing operations for A5(25), 97 for A4(26), 193
for A3(27), and 385 for A2(28), respectively, in total,
739 summing and 6 multiplication operations.

7. Conclusions

While processing discrete-time signals, there
arises a problem to retrieve maximal information as
well as to reduce the amount of calculations on the ba-
sis of samples, especially, if oversampled signals are
available. In such a case, the data decimation is used
by means of f ltering and downsampling operations.
However, it is unknown beforehand how much we can

downsample a signal in order to reduce the amount of
samples to be processed, without loss of information
due to aliasing of frequencies. For multifold down-
sampled bandlimited signals the discrete-time Fourier
series coeff cient values located at Nyquist frequency
have been proposed, to determine each signal realiza-
tion. The number of operations for its speedy calculat-
ing is essentially reduced using original recursive ex-
pression (10) for reverse order calculations. The cri-
terion of recognition (9) of the very last non-aliased
realization, based on the calculation of the above-
mentioned Fourier coeff cient values, has been estab-
lished. The simulation results for the bandlimited sig-
nal with a triangularshaped spectrum (see Fig’s. 1–
6) have shown us the eff ciency of the recursive ap-
proach for recognition of the subset of non-aliased
downsampled realizations in the given set of realiza-
tions.
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