
173 

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2012, Vol.41, No.2  

Towards Scalable Key Management for Secure Multicast Communication 

Yuh–Min Tseng*,1, Chen–Hung Yu1, Tsu–Yang Wu2 
1 Department of Mathematics, National Changhua University of Education, 

Jin–De Campus, Chang–Hua City 500, Taiwan, R.O.C. 
e–mail: ymtseng@cc.ncue.edu.tw 

2 School of Computer Science and Technology, Shenzhen Graduate School,  
Harbin Institute of Technology, Shenzhen 518055, P.R. China 

  http://dx.doi.org/10.5755/j01.itc.41.2.846 

Abstract. Secure multicast communication allows a sender to deliver encrypted messages to a group of authorized 
receivers. A practical approach is that the sender uses a common key shared by the authorized receivers to encrypt the 
transmitted messages. The common key must be renewed to ensure forward/backward secrecy when group members 
leave/join the group, called the rekeying process. Thus, the rekeying problem is a critical issue for secure multicast 
communication. Many key management schemes have been proposed to improve the performance of the rekeying 
process. In 2010, Lin et al. proposed two key management schemes without the rekeying process. However, the 
transmission size required in their schemes increases linearly with the number of group members. In this article, we use 
the time-bound concept to propose two new key management schemes without the rekeying process. The point is that 
the required transmission size is constant. Performance analysis is given to demonstrate that our schemes have better 
performance as compared with the recently proposed key management schemes in terms of transmission size and 
computational cost. Under several security assumptions, we prove that the proposed schemes satisfy the requirements 
of secure multicast communication. 
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1. Introduction 

With the rapid growth of the Internet and digital 
technologies, group communication has widely been 
used to many concrete applications such as distance 
education, multi-media streaming and pay-TV [1]. To 
achieve efficient group communication, multicast 
technique allows a sender to deliver messages to a 
group of authorized receivers. It can efficiently reduce 
the required network bandwidth. Since the Internet or 
wireless communications are operated on a public 
channel, the multicast messages must be encrypted to 
resist eavesdropping or unauthorized users obtaining 
the transmitted messages. A practical approach is to 
use a common key shared by all authorized users to 
encrypt the transmitted messages. For preventing the 
joining/left users from obtaining the previous/later 
messages, the common key must be renewed when the 
group membership is changed. Two requisite security 
requirements for secure multicast communication are 
defined as follows [2]. 

 Forward secrecy: When a member leaves the 
group, he/she should not be able to access the 
future multicast messages. 

 Backward secrecy: When a member joins the 
group, he/she should not be able to access the past 
multicast messages. 

In order to achieve forward/backward secrecy, the 
common key must be refreshed, called the rekeying 
process. However, it also incurs the 1–affect–n 
problem [3]. That is, when a member leaves or joins 
the group, all group members will be affected because 
the common key is held by each group member and 
must be updated. For a dynamic group, the highly 
joining/leaving frequency would cause highly 
computational burden for updating the common key. 

For solving the 1–affect–n problem, many key 
management schemes for secure multicast 
communication have been proposed [3-11]. Mittra [3] 
proposed the notion of secure distribution tree to solve 
the scalability problem. In the proposed framework, 
the group controller (GC) arranged all group members 
to several smaller hierarchical subgroups, while the 
management authority of each subgroup is assigned to 
a subgroup controller (SGC). However, Mittra’s 
scheme has a disadvantage that before the encrypted 
message reaches a group member, it must be 
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decrypted and encrypted repeatedly by the SGCs 
which locate on the transmission path. In such a case, 
it will cause the transmission delay. Since each SGC 
(or called intermediate node) can access the encrypted 
messages, it will incur a trusted problem whether the 
SGCs are trusted or not. In order to solve the trusted 
problem, Molva and Pannetrat [4] proposed a new key 
management scheme based on the distributed tree 
computation. In Molva and Pannetrat’s scheme, all 
routers, network nodes or application proxies form a 
tree structure and they can be viewed as intermediate 
nodes of the distributed tree. All group members are 
arranged to several subgroups according to locations 
or functionalities, and each subgroup is linked to a leaf 
node in the tree structure. Each intermediate node is 
also responsible for a security function, but not a 
decrypting/encrypting function. Thus, the trusted 
problem of intermediate nodes will be resolved 
partially. However, Molva and Pannetrat’s scheme did 
not solve the transmission delay and the trusted 
problem of intermediate nodes completely. 

In 1999 and 2000, Wallner et al. [5] and Wong et 
al. [6] proposed a logical key hierarchy (LKH) tree 
approach, respectively. In their schemes, there is a 
centralized GC without any subgroup controllers. 
Thus, their schemes can avert from the transmission 
delay and the trusted problem of intermediate nodes. 
The root of the logical key hierarchy tree is viewed as 
a traffic encryption key (TEK) which is used to 
encrypt messages for multicast communications and 
shared by all group members. The group members are 
arranged to the leaf nodes of the LKH tree. Each leaf 
node is given a key encryption key (KEK) which is 
shared only for the group member and the GC. Each 
internal node of the LKH tree is also given a KEK in 
order to be used to encrypt the broadcast messages and 
smooth the way of the rekeying process. Each group 
member has to store all KEKs of the path from the 
root to its seat while memorizing the key path. In 
addition, the GC must keep all KEKs corresponding to 
each node of the LKH tree. When a member wants to 
join or leave the group, the keys of all nodes on the 
path from this leaving/joining member to the root have 
to be renewed to satisfy forward/backward secrecy. As 
a result, they reduced the transmission cost of the 
rekeying process from O(n) to O(logn), where n is the 
number of the group members.  

Afterwards, many LKH–like schemes [7-11] were 
proposed to improve the performance of the rekeying 
process and the key storage requirement. In order to 
solve the inefficiency problem of the rekeying 
process, Li et al. [7] proposed a periodic batch 
rekeying method to reduce the overhead of the 
rekeying process. Sherman and McGrew [8] also 
proposed an optimization of the hierarchical binary 
tree. The Sherman and McGrew’s contribution is to 
reduce the rekeying transmission cost from 2log2n to 
log2n. In 2003, Tseng [9] proposed a scalable key 
management scheme to reduce the key storage of the 
GC to a constant size. In addition, for the tree 

balancing problem, Goshi and Ladner [10] proposed a 
height-balanced 2-3 tree and presented that it has the 
best performance for the tree balancing strategies. 
However, to balance the 2-3 tree after member joining 
will involve the node-splitting problem. It requires 5h 
worst-case rekeying cost, where h is the height of the 
LKH tree. In 2005, Lu [11] proposed an NSBHO 
(Non–Split Balancing High–Order) tree, in which the 
NSBHO tree approach resolves the node-splitting 
problem. Nevertheless, these LKH–like schemes still 
require the rekeying process when group members 
join/leave the group. 

In 2010, Lin et al. [12] proposed two key 
management schemes without the rekeying process. 
They described a star–based construction for multicast 
key management. However, the transmission size 
required in their schemes increases linearly with the 
number of group members. Thus, it inspires us to 
solve this transmission size problem. In this article, we 
propose two key management schemes without the 
rekeying process while the transmission size is 
constant. In the proposed schemes, we use the time–
bound concept to solve the rekeying problem. The first 
scheme is suitable for group members with continuous 
time intervals. In the second scheme, it is suitable for 
discrete time intervals (or called non-continuous time 
intervals). Under several security assumptions, we 
shall prove that the proposed schemes satisfy the 
requirements of secure multicast communication. 
Performance analysis is given to demonstrate that our 
schemes have the better performance as compared 
with the recently proposed key management schemes 
in terms of transmission size and computational cost.  

The remainder of this paper is organized as 
follows. Preliminaries are given in Section 2. In 
Section 3, we propose our key management schemes 
for secure multicast communication. Security analysis 
of the proposed schemes is presented in Section 4. In 
Section 5, we demonstrate performance analysis and 
comparisons with the previously proposed schemes. 
Conclusions are drawn in Section 6.  

2. Preliminaries 

In this section, we briefly review the concepts of 
bilinear pairings, the RSA cryptosystem, the Lucas 
function, and some security problems as well as 
assumptions.  

2.1. Bilinear pairings and its security assumptions 

Let G1 and G2 be two multiplicative cyclic groups 
of large prime order q, and let g be a generator of G1. 
We say that the map ê: G1G1  G2 is an admissible 
bilinear map if it satisfies the following properties: 

1. Bilinear: For all g1, g2  G1 and x, 
y    Zq

*,  ê ( 1
xg , 2

yg ) = ê (g1, g2)
xy. 

2. Non–degenerate: There exist g1, g2  G1 such 
that ê (g1, g2)  1. 
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3. Computable: For all g1, g2  G1, there is an 
efficient algorithm to compute ê(g1, g2). 

To prove the security of the proposed schemes, we 
define several security problems and assumptions for 
bilinear pairings defined on elliptic curves as follows.  

 Computational Diffie–Hellman (CDH) 
problem: Given g, ga, gb  G1 for unknown a, 
b  Zq

*, the CDH problem is to compute 
gab  G1. 

 CDH assumption: No probabilistic 
polynomial time (PPT) algorithm can solve the 
CDH problem with a non–negligible 
advantage. 

 Decision bilinear Diffie–Hellman (DBDH) 
problem: Given g, ga, gb, gc, gd  G1, for some 
a, b, c, d  Zq

*, the DBDH problem is to 
distinguish (g, ga, gb, gc, gd, ê(g, g)abc) from (g, 
ga, gb, gc, gd, ê(g, g)d). 

 DBDH assumption: No PPT algorithm can 
solve the DBDH problem with a non–
negligible advantage. 

The detailed descriptions and security assumptions 
for bilinear pairings can be referred to [13-16]. 

2.2. Other security assumptions 

[Integer factorization and RSA cryptosystem] 

Given two large prime numbers p and q, it is easy 
to compute qpn  . Given n, however, no 

probabilistic polynomial time algorithm can find its 
factors p and q. The detailed characterizations for 
integer factorization can be referred to [17]. The 
security of the RSA cryptosystem is based on the 
difficulty of integer factoring problem. In the RSA 
cryptosystem, there are the public values n and d, as 
well as the secret values p, q and e such that qpn   

and de  1 mod )(n , where )1)(1()(  qpn . 

Without knowing p and q, given n and d, an attacker 
cannot compute the secret key e. The detailed 
descriptions for the RSA cryptosystem can be referred 
to [18, 19]. 

[Lucas function] 

The detailed definitions and properties of the 
Lucas function are referred to [20-22]. Here, we 
briefly present them. Let qpn  , where p and q are 

two large primes. The Lucas function is defined as  
















1                                            

0                                            2

2    mod  )()(

)(
21

ix

i

inxVxVx

xV
ii

i
,  

where x is an integer and the sequence 

0
)(

ii xV  is 

called the Lucas sequence over x. 

Lucas function has the following properties: 

1. For all a, b, xN, we have 
)())(())(( xVxVVxVV ababba  and 

nxVxVxVxV bababa mod  )()()()(   . Thus, we 

can obtain the following equations  

 nxVxV aa mod  2)()( 2
2  , 

and 

 nxxVxVxV aaa mod  )()()( 112  
. 

2. For all 3e and Nd   satisfying two 
equations gcd (e, (p21) (q21)) = 1 and 

ed  )1)(1mod(  1 22  qp , we have  

Ve (Vd (x))=1. 
3. Given the values a, n and Va (x) above, to 

compute x is intractable.  

[Hash Function] 

A secure one–way hash function H [23] operates 
on an arbitrary length input m and outputs the fixed 
length y = H(m) such that  

 Function feasibility: Given m, it is easy to 
compute y = H(m). 

 Pre-image resistance: Given y, it is 
computationally infeasible to derive m such 
that y = H(m). 

 Second pre-image resistance: Given m, it is 
computationally infeasible to find  
m ( mm  ) such that H( m ) = H(m). 

 Collision resistance: It is computationally 
infeasible to find m and m  such that 
H(m) = H( m ). 

2.3. Notations  

The following notations are used throughout the 
whole paper: 

 ê: an admissible bilinear map 
211 GGG  , 

where G1 and G2 are multiplicative cyclic 
groups of a large prime order q. 

 H(): a secure one–way hash function 
H: {0, 1}* Zq

*
. 

 IDi: the user Ui’s identity. 

 z: the maximum time of the system life cycle.  

 (Ic, ai, iK ): the secret key tuple of Ui , where Ic 

is the time–bound information for a continuous 
time interval from t1 to t2, where ztt  210 . 

 (Id, ai, iK ): the secret key tuple of Ui, where Id 

is the time–bound information for a discrete 
time interval set Ti  T, where T ={1,2,…z} is 
the set of all discrete intervals of the system 
life cycle.  

 E(): a symmetric encryption function. 



Y. M. Tseng, C. H. Yu, T. Y. Wu 

176 

 D(): the corresponding symmetric decryption 
function of E(). 

3. Scalable key management schemes  

In this section, we present two scalable key 
management schemes (Scheme 1 and Scheme 2) for 
secure multicast communication without the rekeying 
process. Scheme 1 is suitable for users with 
continuous time intervals and Scheme 2 is suitable for 
users with discrete time intervals. In Scheme 1, we 
adopt the Lucas function and the ID-based broadcast 
scheme [24] to construct it. On the other hand, 
Scheme 2 uses the RSA-based key assignment scheme 
and the ID-based broadcast scheme. Note that we 
adopt the functionality of the ID-based broadcast 
encryption technique in [24] into the proposed 
schemes, but no traitor tracing functionality is used.  

3.1. Scheme 1 

Assume that there is a group controller (GC) and 
n  members Ui with IDi, where 1  i  n. Here, the GC 
is also the key generation center to generate all needed 
keys and public parameters. Now, the GC would like 
to broadcast a message to members at time t, where 

zt 0  and z denotes the maximum time of the 
system life cycle. If t is located within members’ 
time–bound intervals, these members can decrypt the 
broadcasting encrypted message. The proposed 
scheme consists of four phases: the system setup, the 
key assignment, the encryption and the decryption 
phases. We describe four phases in details as follows: 

[System setup] 

The GC first selects two large prime numbers p1, 
q1, and computes

111 qpn  . The GC defines an 

admissible bilinear map ê : 
211 GGG  , where G1 

and G2 are multiplicative cyclic groups of the same 
order q. Then the GC randomly selects five integers a, 
f1, f2 Z , x1, x2Zq

*, where 1<a<n1. Note that three 
values a, x1 and x2 are kept as secret. Finally, the GC 
selects a secure one–way hash function 
H :{0, 1}* Zq

*. Then, the GC publishes the public 
parameters {n1, f1, f2, ê, H()}. 

[Key assignment] 

When a user Ui wants to join the group and obtain 
a time–bound information Ic for the continuous time 
from t1 to t2, Ui submits her/his identity IDi to the GC. 
Upon receiving the request, the GC randomly selects 
an integer ai  Zq

* and computes 

iK
 
= 1 21/ ( )

1
i iH ID x a xg  

 and Ic= )(1
2

2
1

aV ttz ff  , where g1 

is a secret value of G1 and z denotes the maximum 
time of the system life cycle. Finally the GC sends (Ic, 
ai, Ki) to Ui as her/his private key via a secure channel.  

[Encryption] 

Let M be a message to be broadcasted by the GC at 
time t, where zt 0 . Then, the GC performs the 
following steps: 

Step 1: The GC randomly selects a secret value 
g2   G1, s  G2 and r Zq

* to compute 

X1   rxg )( 1
2 , X2 

rxg )( 2
2 , 1 2

rY g  and 

Y2 sê(g1, g2)
r. 

Step 2: The GC computes )(
21

aVw ttz fft  mod n1 

and kc=H(s||wt). The GC uses the encryption 
key kc to encrypt the message M as C=E(kc, 
M). 

Step 3: Finally, the GC broadcasts (t, X1, X2, Y1, Y2, 
C) to all users. 

[Decryption] 

Suppose that a user Ui owns the private key (Ic, ai, 
Ki) for the continuous time from t1 to t2. If t1  t  t2, 
the user Ui can perform the following steps to recover 
the message M.  

Step 1: Upon receiving (t, X1, X2, Y1, Y2, C), the user 
Ui can use her/his secret key tuple (Ic, ai, iK ) 

and public parameters to compute 

s   Y2 / ê ( iK , )(
121

ii IDHa YXX ) and 

tw
 
= )(1

2
2

1
cff

IV tttt  . 

Step 2: Then the user Ui can obtain the decryption 
key kc=H(s||wt). 

Step 3: The user Ui then uses the key kc to decrypt the 
message M= D(kc, C). 

Here, we present the correctness of s and tw  in 

Step 1 of the decryption phase as follows: 

Y2 / ê( iK , )(
121

ii IDHa YXX ) 

 sê(g1, g2)
r/ê( 21)(/1

1
xaxIDH iig  , )(

221 )( ii IDHra gXX ) 

 sê(g1,g2)
r/ê( 21)(/1

1
xaxIDH iig  , rIDHxax ii ggg )( )(

222
21 ) 

 sê(g1, g2)
r/ê( 21)(/1

1
xaxIDH iig  , rxaxIDH iig ))((

2
21 ) 

 sê(g1, g2)
r/ê(g1, g2)

r 

 s  

and 

)(1
2

2
1

cff
IV tttt 

 

= ))(( 1
2

2
1

1
2

2
1

aVV ttztttt ffff 
 

)(1
2

2
1

1
2

2
1

aV ttztttt ffff 
 

=
)(

21
aV ttz ff 

 

= tw . 
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3.2. Scheme 2  

In Scheme 2, assume that a user Ui wants to join 
the group and she/he is allowed to obtain the time–
bound information with a discrete time interval set 
Ti   T. Now, the GC would like to broadcast a 
message to group members at time t. If t Ti, the 
member Ui can decrypt the broadcasting encrypted 
message while the other members Uj cannot obtain the 
message if t Tj. The proposed scheme also consists 
of four phases: the system setup, the key assignment, 
the encryption and the decryption phases. The detailed 
descriptions of four phases are presented as follows.  

[System setup] 

The GC first selects two prime numbers p2 and q2 
to compute 

222 qpn   and )1)(1()( 222  qpn . 

The GC defines an admissible bilinear map ê:

211 GGG  , where G1 and G2 are multiplicative 

cyclic groups of the same order q. Then, the GC 
chooses three secret values bZ, x1, x2Zq

*, where 
1<b<n2. Then the GC selects a secure one–way hash 
function H:{0, 1}*  Zq

*. Finally, the GC determines 
the RSA key pairs (dy , ey) such that dy·ey=1mod )( 2n  

for each discrete time interval zy ,...,2,1 . Then the 

GC publishes the public parameters { n2, ê, H(), z, d1, 
d2,…, dz}. 

[Key assignment] 

Assume that a user Ui wants to join the group and 
obtain a time–bound information Id of a discrete time 
interval set Ti. The user Ui submits her/his identity IDi 
to the GC. Upon receiving the request, the GC 
randomly selects an integer ai  Zq

* and computes 

iK  
= 1 21/ ( )

1
i iH ID x a xg    and 


  iTy

ye

d bI
2mod n , where g1 

is a secret value of G1. Finally the GC sends the key 
tuple (Id, ai, iK ) to Ui via a secure channel. 

[Encryption] 

Assume that the GC wants to broadcast a message 
M at time t, where Tt  and T ={1,2,…z} is the set 
of all discrete intervals of the system life cycle. Then, 
the GC performs the following steps: 

Step 1: The GC randomly selects a secret value g2
G1, s G2 and r Zq

* to compute X1 
rxg )( 1

2 , 

X2  ,)( 2
2

rxg  ,21
rgY   and Y2  sê(g1, g2)

r. 

Step 2: The GC computes te
t bk  mod n and 

kd=H(s||kt). The GC uses the encryption key 
kd to encrypt the message M as C=E(kd, M) 
using the symmetric encryption function E(). 

Step 3: Finally, the group controller broadcasts (t, X1, 
X2, Y1, Y2, C) to all users. 

[Decryption] 

Suppose that a user Ui owns the private key (Id, ai,

iK ) for the discrete time interval set Ti. If t iT , the 

user Ui can perform the following steps to recover the 
message M. 

Step 1: Upon receiving (t, X1, X2, Y1, Y2, C), the user 
Ui can use her/his secret key tuple (Id, ai, iK ) 

and the public parameters to compute s  Y2 / 

ê(
iK , )(

121
ii IDHa YXX )  and 





tyiTy

yd

dt Ik
,

= teb . 

Step 2: Then the user Ui can obtain the decryption 
key kd=H(s||kt). 

Step 3: The user Ui uses the key kd to decrypt the 
message M= D(kd, C). 

Note that the correctness of the key s is the same 
with Scheme 1. Here, we only present the correctness 
of kt in Step 1 as follows: 





tyiTy

yd

dt Ik
, 






tyiTy

yd

iTy
ye

b
,

)(


  tyiTy
y

iTy
y de

b , = teb . 

4. Security analysis 

In this section, we demonstrate the security 
analysis of the proposed schemes. The security of 
Scheme 1 is based on the computation of both s and 
wt. Meanwhile, the security of Scheme 2 is based on 
the computation of both s and kt. Therefore, we must 
prove the security of s, wt and kt, respectively. Since 
kc=H1(s||wt) and kd=H1(s||kt), we obtain the security of 
the encryption keys kc and kd if s, wt and kt are hard to 
compute. Finally, we prove that Schemes 1 and 2 are 
secure key management schemes for multicast 
communication.  

[Security of the value s]  

Lemma 1. In the proposed schemes, any illegal user 
cannot obtain the value s from the 
broadcast messages and public parameters. 

▼Proof. If an illegal user tries to compute the 
value s, he must compute ê(g1, g2)

r. However, given 
the broadcast messages, only 1 2

rY g  is known by the 

illegal user. Since g1 is a secret value of G1, an illegal 
user cannot get g1 because the broadcast messages 
don’t include any information about g1. So it is 
impossible to compute  
ê ( rg1

, g2) = ê (g1, g2)
r. Thus, he cannot obtain the 

secret value s. ▲ 

[Security of wt]  

Lemma 2. Under the Lucas function assumption, a 
legal user without the valid time–bound 
information or an outside adversary cannot 

compute tw   in the proposed Scheme 1. 
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▼Proof: Assume that the GC would like to 
broadcast a message to members at time t . We will 
prove that unauthorized users or outside adversaries 

cannot compute the key tw  . Note that legal users 

with the invalid time–bound information have more 
powerful information than outside adversaries. Here, 
we consider the attack of legal users with invalid 
time–bound information. Therefore, we must prove 
the following two situations. 

(1) Assume a user Bob was given a time–bound 
information )(1

2
2

1

aVI ttz ffc  , the user cannot 

compute tw   if t ],[\],0[ 21 ttz . If Bob wants to 

compute tw  , Bob must compute 

)1)(1mod( 2
1

2
1

1
1  qpf  to obtain 

)(1
2

21
1 )( cfft IVw tttt   for t <t1 or compute 

)1)(1mod( 2
1

2
1

1
2  qpf  to obtain 

)(
11

2
2

1 )( cfft IVw tttt   for t >t2. According to 

the Lucas function assumption, without knowing 

p1 and q1, to compute 1
1
f  or 1

2
f  are 

computationally infeasible. 

(2) Assume that there are two time–bound 

information 
1cI  and 

2cI , where 
1cI  denotes the 

time interval from t1 to t2, and 
2cI  denotes the 

time interval from s1 to s2. The user cannot 

compute tw   if t ]},[],{[\],0[ 2121 ssttz  . It 

means that the user cannot compute tw   from 

)(1
2

2
11

aVI ttz ffc   and )(1
2

2
12

aVI ssz ffc  . There 

are two kinds of attack scenarios. One is that Bob 
is given two time–bound information

)(1
2

2
11

aVI ttz ffc   and )(1
2

2
12

aVI ssz ffc  , and 

he wants to compute tw  , where t
]},[],{[\],0[ 2121 ssttz  . The other one is that 

Bob is given a time–bound information

)(1
2

2
11

aVI ttz ffc   and Alice is given the other 

time–bound information )(1
2

2
12

aVI ssz ffc  , then 

they collude to compute tw  , where t
]} ,[] ,{[\] ,0[ 2121 ssttz  . Without loss of 

generality, we assume that zsstt  21210 . 

Thus, three cases t [0, t1), t (t2, s1) and t
(s2, z] are required to be addressed. Here we use 
the attacker to denote both Bob and Alice. 

Case 1. For t [0, t1), if the attacker wants to 
compute 

tw  , he must compute 

)1)(1mod( 2
1

2
1

1
2  qpf to obtain

)(
2

'11
2

'2
1 )(' cfft IVw tsts   or 

)(
1

'11
2

'2
1 )(' cfft IVw tttt  . By the Lucas 

function assumption, without knowing p1 and 

q1, to compute 
1

2
f  is computationally 

infeasible.  

Case 2. For t (t2, s2), if the attacker wants to 

compute tw  , he must compute 

)1)(1mod( 2
1

2
1

1
1  qpf  to obtain  

)(
11'

2
2'1

1 )(' cfft IVw tttt  or 

)1)(1mod( 2
1

2
1

1
2  qpf  to obtain 

)(
2

'11
2

'2
1 )(' cfft IVw tsts  . By the similar 

reason, to compute 1
1
f  or 1

2
f  are 

computationally infeasible. 
Case 3. For t (s2, z], if the attacker wants to 

compute tw  , he must compute 

)1)(1mod( 2
1

2
1

1
1  qpf  to obtain 

)(
11'

2
2'1

1 )(' cfft IVw tttt   or 

)(
21'

2
2'1

1 )(' cfft IVw stst  . By the Lucas 

function assumption, without knowing p1 and 
q1, to compute 1

1
f  is computationally 

infeasible. ▲ 

[Security of kt] 

Lemma 3. Under the RSA cryptosystem assumption, 
a legal user without a valid time–bound 
information or an outside adversary cannot 
compute tk   in the proposed Scheme 2. 

▼Proof: Assume that the GC would like to 
broadcast a message to members at the time t . We 
will prove that unauthorized users or outside 
adversaries cannot compute the key tk  . Here, we 

prove two cases. 

(1) Given a time–bound key Id, the attacker Ui can 

compute 





tyiTy

yd

dt Ik
,

teb  for t iT , but the 

user cannot compute te
t bk  for t’ iT . Of 

course, the attacker can compute the value b, but it 

is no help to obtain the data encryption key tk  . 

Since t iT , the time–bound key Id didn’t 

include te  . Therefore, the attacker must compute 

te   from the public value td   such that td  · te   

1mod )( 2n . By the RSA cryptosystem 

assumption, it is hard to compute te   because the 
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attacker cannot compute p2 and q2 from 

222 qpn  .   

(2) Given several time–bound keys 

tdtdtd III ___ ,...,,
21

, where ttt ,...,, 21 iT . The 

user Ui can compute 
ttt kkk ,...,,

21
, but the user 

cannot compute tk   for iTt  . By the similar 

reason, the security is under the RSA cryptosystem 
assumption. ▲ 

Based on the lemmas above, the following 
theorems demonstrate that Schemes 1 and 2 are secure 
key management schemes for multicast 
communication. 

Theorem 4. In the proposed Scheme 1, any illegal 
user cannot compute the encryption key 
kc, where kc=H1(s||wt). 

▼Proof. By Lemmas 1 and 2, we have proven that 
s and wt are secure against attackers, so that any illegal 
users cannot obtain s and wt. If the illegal user can 
obtain a value v s||wt such that )(vHkc  , there is a 

contradiction with the “collision resistance” property 
of the one-way hash function. Therefore, for any 
illegal users, it is impossible to obtain the encryption 
key Kc  H(s||wt). ▲ 

Theorem 5. In the proposed Scheme 2, any illegal 
user cannot compute the encryption key 
kd, where kd=H1(s||kt). 

▼Proof. By Lemmas 1 and 3, we have proved that 
s and kt are secure against adversaries, thus any illegal 
users cannot obtain s and kt. If the illegal user can 
obtain a value v s||kt such that )(vHkd  , there is 

also a contradiction with the security property 
“collision resistance” of the one-way hash function. 
Therefore, for any illegal users in Scheme 2, it is im-
possible to obtain the encryption key Kd  H(s||kt). ▲ 

5. Discussions and comparisons  

In this section, we compare our proposed schemes 
with the previously proposed schemes. Here, we 
briefly review and analyze several previously 
proposed schemes that include the LKH scheme [5] 
and Lin et al.’s schemes [12]. Then, performance 
comparisons are given to demonstrate that our 
proposed schemes have better performance as 
compared with the recently proposed key management 
schemes in terms of transmission size and 
computational cost. 

5.1. Review of several key management schemes 

[LKH scheme] 

In 1999, Wallner et al. [5] proposed the logical key 
hierarchy (LKH) tree management scheme. In their 

scheme, the multicast group includes the GC and n 
group members u0, u1,…,un–1, where the GC is 
responsible to generate all keys of the LKH tree. Each 
user is assigned to one leaf of the LKH tree. For 
example, eight members form the LKH tree as 
depicted in Fig 1. The GC gives a key kv to every node 
v in the LKH tree, and sends each user (via a secure 
channel) the keys along the path from the member to 
the root. In Fig 1, the user u0 will obtain the keys k000, 
k00, k0 and k. The GC can use k to encrypt messages 
for multicast communications.  

Suppose u7 is the new joining user. The GC gives 
u7 a key k111 via a secure channel. For the nodes v0, v1 
and v2 along the path from the root to u7, the GC 
generates the new keys k  , 

1k   and 
11k , respectively. 

Then k  , 1k , and 11k   are encrypted with the keys k, 

k1, and k11, respectively. All encryptions are 
broadcasted to all old users. Then, every old user in 
the group can decrypt them by their own keys. 
Meanwhile, )(

111
kEk  , ),( 1111

kEk   and )( 11111
kEk   are 

sent to the user u7, where ()E  is a symmetric 

encryption function. Therefore, when a user u joins 
the group, both the computation cost and the 
transmission size of the rekeying process are O(h) for 
the GC, where h is the height of the LKH tree. At the 
same reason, in order to delete the user u0 from the 
LKH tree in Fig 1, the following encryptions 

)( 00001
kEk  , )( 000

kEk  , )( 001
kEk  , )(

0
kEk  , and )(

1
kEk 

are transmitted. Therefore, when a user u leaves the 
group, both the computation cost and the transmission 
size of the rekeying process are O(h). 

 

Figure 1. The logical key hierarchy tree 

[Lin et al.’s schemes] 

 In 2010, Lin et al. [12] proposed two multicast 
key management schemes without the rekeying 
process. Here, we briefly review their first scheme. 
Without loss of generality, assume that there are n 
group members U1,U2,…, Un and a group controller 
(GC). The GC assigns secret keys to group members 
as follows: 

(1) The GC chooses two secret primes pi and qi, and 
then computes the public product 

iii qpN   for 

each group member Ui, where i = 1, 2,…, n. 

(2) The GC computes the least common multiple 

v0

v1

u5u4u4 u7u6

v2

u3u2u1u0

k

k0 k1

k00 k01 k11k10

k000 k001 k010 k011 k100 k101 k110 k111
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))(),...,(),(( 210 nNNNLCML  ,  

where )1()1()(  iii qpN  and 1  I  n. The 

GC then chooses a prime 
)}(),...,(),(min{ 210 nNNNe   such that 

gcd (e0,L0)=1. Also, the GC computes 
)}(),...,(),(min{ 210 nNNNd   such that 

000 mod1 Lde  . 

(3) The GC, respectively, sends the secret key 
)(mod0 ii Ndd   to each group member Ui via a 

secure channel, where i = 1, 2,…, n. 

Suppose that the GC wants to send a message M to 
some group members. The GC first defines a set DU 
of dedicated users whom the GC wants to send to. 
Then the GC encrypts the message M by using 





DUU

i
e

i

NMC mod0

 

, where M∈[0,  min{N1,N2,…,

Nn}−1]. Upon receiving the encrypted message C, 
each user UiDU can decrypt the message 

i
d

i NNCM i mod)mod(  by using his/her secret key di 

and the corresponding public parameter Ni. Thus, the 
transmission size is |mod||| 0 




DUU

i
e

i

NMC . 

Obviously, the transmission size is dependent on the 
number of dedicated users in the set DU. 

5.2. Performance analysis and Comparisons  

For convenience, the following notations are used 
to analyze the computational cost and the transmission 
size.  

 n: the number of members in the group.  

 d: the degree of the tree in the tree–based 
schemes.  

 h: the height of the balanced LKH tree.  

 TH: the time of executing a one–way hash 
function H( ).  

 TE: the time of executing a symmetric 
encryption or decryption. 

 TL: the time of executing the Lucas function 
operation. 

 TGe: the time of executing bilinear pairing 
operation ê. 

 Tinv: the time of executing modular inverse 
operation in Zq

*. 

 Tpow: the time of executing modular 
exponential operation in Zq

*. 

 Tex: the time of executing modular exponential 
operation in G1. 

 Tm: the time of executing modular 
multiplication operation in Zq

*. 

 |m|: the bit size of a message m. 

As reviewed in Subsection 5.1, every user in the 
LKH tree is assigned logdn keys from his/her location 
to the root. The LKH-like schemes [5-11] may apply 
the d–ary key trees to arrange members so that the 
height is h = logdn. In the following, we analyze the 
performance of two cases (worst case and best case) in 
the LKH-like schemes. For the worst case, the GC 
must encrypt the same message using at most n/2 
different keys. Thus, the transmission size in the LKH 
approach is O(n). For example, in Fig. 1, the GC 
wants to send the message M to u0, u2, u4, and u6. 
Then, M is encrypted using k000, k010, k100, and k110, 
respectively. Considering the transmission size in the 
best case of multicast communication in Fig. 1, the 
GC encrypts the message using the root key k in the 
LKH tree. Obviously, it requires O(1) transmission 
size. According to the number of encryptions, the 
computational costs of the GC are O(1) and O(n) for 
the best and worst cases, respectively. Since each 
member performs one decryption to obtain the 
message for two cases, the computational cost is O(1).  

As reviewed in Subsection 5.1, Lin et al. [12] use 





DUU

i
e

i

NMC mod0  to send the message to the set 

DU of dedicated users. According to the mentioned 
best and worst cases above, the set DU includes n 
members and n/2 members, respectively. Since the 
transmission size is dependent on || 

DUU
i

i

N ,  two 

cases require O(n) transmission size. Considering the 
computational cost, the GC and each member require 
O(n) and O(1) for two cases, respectively. 

In the following, let us discuss the transmission 
size of our proposed schemes. In our Schemes 1 and 2, 
the GC broadcasts (t, X1, X2, Y1, Y2, C) to all members. 
It is obvious that the transmission size is constant 
since these values X1, X2, Y1 G1, Y2 G2, and C=E(kc, 
M). Thus, the transmission size required for both 
Schemes 1 and 2 is O(1). Considering the required 
computational costs for the GC and each member, the 
GC and each member, respectively, perform the 
encryption and decryption procedures described in 
Section 3. In Scheme 1, the GC and each member 
require 3Tex+Tpow+TGe+TL+TH+TE and 2Tex+TGe+ 
+Tinv +TH+TE time, respectively. In Scheme 2, the GC 
and each member, respectively, require 3Tex+2Tpow+ 
+TGe+TH+TE and 2Tex+TGe+Tinv+Tpow+TH+TE+lTm ti-
me, where l denotes the size of the discrete time 
interval set Ti. Nevertheless, four computational costs 
are independent on the number of group members. 
The computational costs of both the GC and each 
member are O(1). 

Table 1 summarizes the comparisons between the 
LKH-like schemes [5-11], Lin et al.’s scheme [12] and 
our proposed schemes (Scheme 1 and Scheme 2) in 
terms of the rekeying process, the computational cost 
and the transmission size in the worst case and best 
case. According to Table 1, it is obvious that our 
schemes have the better performance than the 
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previously proposed schemes in terms of transmission 
size and computational cost.  

Table 1. Comparisons of our schemes and the previously 
proposed schemes  

 
Rekeying 
process 

Transmission 
size  

Computational 
cost in best/worst 

cases  

Best 
case 

Worst 
case 

GC Member

LKH-like 
schemes [5-11] 

O(h) O(1) O(n) O(1)/O(n) O(1) 

Lin’s scheme 
[12] 

Not 
required 

O(n) O(n) O(n) O(1) 

Our Scheme 1 
Not 

required 
O(1) O(1) O(1) O(1) 

Our Scheme 2 
Not 

required 
O(1) O(1) O(1) O(1) 

6. Conclusions  

In this paper, we have proposed two scalable key 
management schemes without the rekeying process. 
The point is that the transmission size is independent 
on the number of group members. Meanwhile, the 
required computational costs of each member and the 
group controller are constant. We have proved that the 
proposed schemes are secure key management 
schemes without the rekeying process. As compared 
with the previously proposed schemes, performance 
analysis has been made to demonstrate that our 
schemes have the better performance and are suitable 
for a dynamic multicast group.  
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