
173

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2012, Vol.41, No.2

Towards Scalable Key Management for Secure Multicast Communication

Yuh–Min Tseng*,1, Chen–Hung Yu1, Tsu–Yang Wu2
1 Department of Mathematics, National Changhua University of Education,

Jin–De Campus, Chang–Hua City 500, Taiwan, R.O.C.
e–mail: ymtseng@cc.ncue.edu.tw

2 School of Computer Science and Technology, Shenzhen Graduate School,
Harbin Institute of Technology, Shenzhen 518055, P.R. China

 http://dx.doi.org/10.5755/j01.itc.41.2.846

Abstract. Secure multicast communication allows a sender to deliver encrypted messages to a group of authorized
receivers. A practical approach is that the sender uses a common key shared by the authorized receivers to encrypt the
transmitted messages. The common key must be renewed to ensure forward/backward secrecy when group members
leave/join the group, called the rekeying process. Thus, the rekeying problem is a critical issue for secure multicast
communication. Many key management schemes have been proposed to improve the performance of the rekeying
process. In 2010, Lin et al. proposed two key management schemes without the rekeying process. However, the
transmission size required in their schemes increases linearly with the number of group members. In this article, we use
the time-bound concept to propose two new key management schemes without the rekeying process. The point is that
the required transmission size is constant. Performance analysis is given to demonstrate that our schemes have better
performance as compared with the recently proposed key management schemes in terms of transmission size and
computational cost. Under several security assumptions, we prove that the proposed schemes satisfy the requirements
of secure multicast communication.

Keywords: multicast; key management; group communication; rekeying problem.

* Corresponding author

1. Introduction

With the rapid growth of the Internet and digital
technologies, group communication has widely been
used to many concrete applications such as distance
education, multi-media streaming and pay-TV [1]. To
achieve efficient group communication, multicast
technique allows a sender to deliver messages to a
group of authorized receivers. It can efficiently reduce
the required network bandwidth. Since the Internet or
wireless communications are operated on a public
channel, the multicast messages must be encrypted to
resist eavesdropping or unauthorized users obtaining
the transmitted messages. A practical approach is to
use a common key shared by all authorized users to
encrypt the transmitted messages. For preventing the
joining/left users from obtaining the previous/later
messages, the common key must be renewed when the
group membership is changed. Two requisite security
requirements for secure multicast communication are
defined as follows [2].

 Forward secrecy: When a member leaves the
group, he/she should not be able to access the
future multicast messages.

 Backward secrecy: When a member joins the
group, he/she should not be able to access the past
multicast messages.

In order to achieve forward/backward secrecy, the
common key must be refreshed, called the rekeying
process. However, it also incurs the 1–affect–n
problem [3]. That is, when a member leaves or joins
the group, all group members will be affected because
the common key is held by each group member and
must be updated. For a dynamic group, the highly
joining/leaving frequency would cause highly
computational burden for updating the common key.

For solving the 1–affect–n problem, many key
management schemes for secure multicast
communication have been proposed [3-11]. Mittra [3]
proposed the notion of secure distribution tree to solve
the scalability problem. In the proposed framework,
the group controller (GC) arranged all group members
to several smaller hierarchical subgroups, while the
management authority of each subgroup is assigned to
a subgroup controller (SGC). However, Mittra’s
scheme has a disadvantage that before the encrypted
message reaches a group member, it must be

Y. M. Tseng, C. H. Yu, T. Y. Wu

174

decrypted and encrypted repeatedly by the SGCs
which locate on the transmission path. In such a case,
it will cause the transmission delay. Since each SGC
(or called intermediate node) can access the encrypted
messages, it will incur a trusted problem whether the
SGCs are trusted or not. In order to solve the trusted
problem, Molva and Pannetrat [4] proposed a new key
management scheme based on the distributed tree
computation. In Molva and Pannetrat’s scheme, all
routers, network nodes or application proxies form a
tree structure and they can be viewed as intermediate
nodes of the distributed tree. All group members are
arranged to several subgroups according to locations
or functionalities, and each subgroup is linked to a leaf
node in the tree structure. Each intermediate node is
also responsible for a security function, but not a
decrypting/encrypting function. Thus, the trusted
problem of intermediate nodes will be resolved
partially. However, Molva and Pannetrat’s scheme did
not solve the transmission delay and the trusted
problem of intermediate nodes completely.

In 1999 and 2000, Wallner et al. [5] and Wong et
al. [6] proposed a logical key hierarchy (LKH) tree
approach, respectively. In their schemes, there is a
centralized GC without any subgroup controllers.
Thus, their schemes can avert from the transmission
delay and the trusted problem of intermediate nodes.
The root of the logical key hierarchy tree is viewed as
a traffic encryption key (TEK) which is used to
encrypt messages for multicast communications and
shared by all group members. The group members are
arranged to the leaf nodes of the LKH tree. Each leaf
node is given a key encryption key (KEK) which is
shared only for the group member and the GC. Each
internal node of the LKH tree is also given a KEK in
order to be used to encrypt the broadcast messages and
smooth the way of the rekeying process. Each group
member has to store all KEKs of the path from the
root to its seat while memorizing the key path. In
addition, the GC must keep all KEKs corresponding to
each node of the LKH tree. When a member wants to
join or leave the group, the keys of all nodes on the
path from this leaving/joining member to the root have
to be renewed to satisfy forward/backward secrecy. As
a result, they reduced the transmission cost of the
rekeying process from O(n) to O(logn), where n is the
number of the group members.

Afterwards, many LKH–like schemes [7-11] were
proposed to improve the performance of the rekeying
process and the key storage requirement. In order to
solve the inefficiency problem of the rekeying
process, Li et al. [7] proposed a periodic batch
rekeying method to reduce the overhead of the
rekeying process. Sherman and McGrew [8] also
proposed an optimization of the hierarchical binary
tree. The Sherman and McGrew’s contribution is to
reduce the rekeying transmission cost from 2log2n to
log2n. In 2003, Tseng [9] proposed a scalable key
management scheme to reduce the key storage of the
GC to a constant size. In addition, for the tree

balancing problem, Goshi and Ladner [10] proposed a
height-balanced 2-3 tree and presented that it has the
best performance for the tree balancing strategies.
However, to balance the 2-3 tree after member joining
will involve the node-splitting problem. It requires 5h
worst-case rekeying cost, where h is the height of the
LKH tree. In 2005, Lu [11] proposed an NSBHO
(Non–Split Balancing High–Order) tree, in which the
NSBHO tree approach resolves the node-splitting
problem. Nevertheless, these LKH–like schemes still
require the rekeying process when group members
join/leave the group.

In 2010, Lin et al. [12] proposed two key
management schemes without the rekeying process.
They described a star–based construction for multicast
key management. However, the transmission size
required in their schemes increases linearly with the
number of group members. Thus, it inspires us to
solve this transmission size problem. In this article, we
propose two key management schemes without the
rekeying process while the transmission size is
constant. In the proposed schemes, we use the time–
bound concept to solve the rekeying problem. The first
scheme is suitable for group members with continuous
time intervals. In the second scheme, it is suitable for
discrete time intervals (or called non-continuous time
intervals). Under several security assumptions, we
shall prove that the proposed schemes satisfy the
requirements of secure multicast communication.
Performance analysis is given to demonstrate that our
schemes have the better performance as compared
with the recently proposed key management schemes
in terms of transmission size and computational cost.

The remainder of this paper is organized as
follows. Preliminaries are given in Section 2. In
Section 3, we propose our key management schemes
for secure multicast communication. Security analysis
of the proposed schemes is presented in Section 4. In
Section 5, we demonstrate performance analysis and
comparisons with the previously proposed schemes.
Conclusions are drawn in Section 6.

2. Preliminaries

In this section, we briefly review the concepts of
bilinear pairings, the RSA cryptosystem, the Lucas
function, and some security problems as well as
assumptions.

2.1. Bilinear pairings and its security assumptions

Let G1 and G2 be two multiplicative cyclic groups
of large prime order q, and let g be a generator of G1.
We say that the map ê: G1G1  G2 is an admissible
bilinear map if it satisfies the following properties:

1. Bilinear: For all g1, g2  G1 and x,
y  Zq

*, ê (1
xg , 2

yg) = ê (g1, g2)
xy.

2. Non–degenerate: There exist g1, g2  G1 such
that ê (g1, g2)  1.

Towards Scalable Key Management for Secure Multicast Communication

175

3. Computable: For all g1, g2  G1, there is an
efficient algorithm to compute ê(g1, g2).

To prove the security of the proposed schemes, we
define several security problems and assumptions for
bilinear pairings defined on elliptic curves as follows.

 Computational Diffie–Hellman (CDH)
problem: Given g, ga, gb  G1 for unknown a,
b  Zq

*, the CDH problem is to compute
gab  G1.

 CDH assumption: No probabilistic
polynomial time (PPT) algorithm can solve the
CDH problem with a non–negligible
advantage.

 Decision bilinear Diffie–Hellman (DBDH)
problem: Given g, ga, gb, gc, gd  G1, for some
a, b, c, d  Zq

*, the DBDH problem is to
distinguish (g, ga, gb, gc, gd, ê(g, g)abc) from (g,
ga, gb, gc, gd, ê(g, g)d).

 DBDH assumption: No PPT algorithm can
solve the DBDH problem with a non–
negligible advantage.

The detailed descriptions and security assumptions
for bilinear pairings can be referred to [13-16].

2.2. Other security assumptions

[Integer factorization and RSA cryptosystem]

Given two large prime numbers p and q, it is easy
to compute qpn  . Given n, however, no

probabilistic polynomial time algorithm can find its
factors p and q. The detailed characterizations for
integer factorization can be referred to [17]. The
security of the RSA cryptosystem is based on the
difficulty of integer factoring problem. In the RSA
cryptosystem, there are the public values n and d, as
well as the secret values p, q and e such that qpn 

and de  1 mod)(n , where)1)(1()( qpn .

Without knowing p and q, given n and d, an attacker
cannot compute the secret key e. The detailed
descriptions for the RSA cryptosystem can be referred
to [18, 19].

[Lucas function]

The detailed definitions and properties of the
Lucas function are referred to [20-22]. Here, we
briefly present them. Let qpn  , where p and q are

two large primes. The Lucas function is defined as
















1

0 2

2 mod)()(

)(
21

ix

i

inxVxVx

xV
ii

i
,

where x is an integer and the sequence 

0
)(

ii xV is

called the Lucas sequence over x.

Lucas function has the following properties:

1. For all a, b, xN, we have
)())(())((xVxVVxVV ababba  and

nxVxVxVxV bababa mod)()()()(  . Thus, we

can obtain the following equations

 nxVxV aa mod 2)()(2
2  ,

and

 nxxVxVxV aaa mod)()()(112  
.

2. For all 3e and Nd  satisfying two
equations gcd (e, (p21) (q21)) = 1 and

ed)1)(1mod(1 22  qp , we have

Ve (Vd (x))=1.
3. Given the values a, n and Va (x) above, to

compute x is intractable.

[Hash Function]

A secure one–way hash function H [23] operates
on an arbitrary length input m and outputs the fixed
length y = H(m) such that

 Function feasibility: Given m, it is easy to
compute y = H(m).

 Pre-image resistance: Given y, it is
computationally infeasible to derive m such
that y = H(m).

 Second pre-image resistance: Given m, it is
computationally infeasible to find
m (mm ) such that H(m) = H(m).

 Collision resistance: It is computationally
infeasible to find m and m such that
H(m) = H(m).

2.3. Notations

The following notations are used throughout the
whole paper:

 ê: an admissible bilinear map
211 GGG  ,

where G1 and G2 are multiplicative cyclic
groups of a large prime order q.

 H(): a secure one–way hash function
H: {0, 1}* Zq

*
.

 IDi: the user Ui’s identity.

 z: the maximum time of the system life cycle.

 (Ic, ai, iK): the secret key tuple of Ui , where Ic

is the time–bound information for a continuous
time interval from t1 to t2, where ztt  210 .

 (Id, ai, iK): the secret key tuple of Ui, where Id

is the time–bound information for a discrete
time interval set Ti  T, where T ={1,2,…z} is
the set of all discrete intervals of the system
life cycle.

 E(): a symmetric encryption function.

Y. M. Tseng, C. H. Yu, T. Y. Wu

176

 D(): the corresponding symmetric decryption
function of E().

3. Scalable key management schemes

In this section, we present two scalable key
management schemes (Scheme 1 and Scheme 2) for
secure multicast communication without the rekeying
process. Scheme 1 is suitable for users with
continuous time intervals and Scheme 2 is suitable for
users with discrete time intervals. In Scheme 1, we
adopt the Lucas function and the ID-based broadcast
scheme [24] to construct it. On the other hand,
Scheme 2 uses the RSA-based key assignment scheme
and the ID-based broadcast scheme. Note that we
adopt the functionality of the ID-based broadcast
encryption technique in [24] into the proposed
schemes, but no traitor tracing functionality is used.

3.1. Scheme 1

Assume that there is a group controller (GC) and
n members Ui with IDi, where 1  i  n. Here, the GC
is also the key generation center to generate all needed
keys and public parameters. Now, the GC would like
to broadcast a message to members at time t, where

zt 0 and z denotes the maximum time of the
system life cycle. If t is located within members’
time–bound intervals, these members can decrypt the
broadcasting encrypted message. The proposed
scheme consists of four phases: the system setup, the
key assignment, the encryption and the decryption
phases. We describe four phases in details as follows:

[System setup]

The GC first selects two large prime numbers p1,
q1, and computes

111 qpn  . The GC defines an

admissible bilinear map ê :
211 GGG  , where G1

and G2 are multiplicative cyclic groups of the same
order q. Then the GC randomly selects five integers a,
f1, f2 Z , x1, x2Zq

*, where 1<a<n1. Note that three
values a, x1 and x2 are kept as secret. Finally, the GC
selects a secure one–way hash function
H :{0, 1}* Zq

*. Then, the GC publishes the public
parameters {n1, f1, f2, ê, H()}.

[Key assignment]

When a user Ui wants to join the group and obtain
a time–bound information Ic for the continuous time
from t1 to t2, Ui submits her/his identity IDi to the GC.
Upon receiving the request, the GC randomly selects
an integer ai  Zq

* and computes

iK

= 1 21/ ()

1
i iH ID x a xg  

 and Ic=)(1
2

2
1

aV ttz ff  , where g1

is a secret value of G1 and z denotes the maximum
time of the system life cycle. Finally the GC sends (Ic,
ai, Ki) to Ui as her/his private key via a secure channel.

[Encryption]

Let M be a message to be broadcasted by the GC at
time t, where zt 0 . Then, the GC performs the
following steps:

Step 1: The GC randomly selects a secret value
g2  G1, s  G2 and r Zq

* to compute

X1  rxg)(1
2 , X2 

rxg)(2
2 , 1 2

rY g and

Y2 sê(g1, g2)
r.

Step 2: The GC computes)(
21

aVw ttz fft  mod n1

and kc=H(s||wt). The GC uses the encryption
key kc to encrypt the message M as C=E(kc,
M).

Step 3: Finally, the GC broadcasts (t, X1, X2, Y1, Y2,
C) to all users.

[Decryption]

Suppose that a user Ui owns the private key (Ic, ai,
Ki) for the continuous time from t1 to t2. If t1  t  t2,
the user Ui can perform the following steps to recover
the message M.

Step 1: Upon receiving (t, X1, X2, Y1, Y2, C), the user
Ui can use her/his secret key tuple (Ic, ai, iK)

and public parameters to compute

s  Y2 / ê (iK ,)(
121

ii IDHa YXX) and

tw

=)(1

2
2

1
cff

IV tttt  .

Step 2: Then the user Ui can obtain the decryption
key kc=H(s||wt).

Step 3: The user Ui then uses the key kc to decrypt the
message M= D(kc, C).

Here, we present the correctness of s and tw in

Step 1 of the decryption phase as follows:

Y2 / ê(iK ,)(
121

ii IDHa YXX)

 sê(g1, g2)
r/ê(21)(/1

1
xaxIDH iig  ,)(

221)(ii IDHra gXX)

 sê(g1,g2)
r/ê(21)(/1

1
xaxIDH iig  , rIDHxax ii ggg)()(

222
21)

 sê(g1, g2)
r/ê(21)(/1

1
xaxIDH iig  , rxaxIDH iig))((

2
21)

 sê(g1, g2)
r/ê(g1, g2)

r

 s

and

)(1
2

2
1

cff
IV tttt 

=))((1
2

2
1

1
2

2
1

aVV ttztttt ffff 

)(1
2

2
1

1
2

2
1

aV ttztttt ffff 

=
)(

21
aV ttz ff 

= tw .

Towards Scalable Key Management for Secure Multicast Communication

177

3.2. Scheme 2

In Scheme 2, assume that a user Ui wants to join
the group and she/he is allowed to obtain the time–
bound information with a discrete time interval set
Ti  T. Now, the GC would like to broadcast a
message to group members at time t. If t Ti, the
member Ui can decrypt the broadcasting encrypted
message while the other members Uj cannot obtain the
message if t Tj. The proposed scheme also consists
of four phases: the system setup, the key assignment,
the encryption and the decryption phases. The detailed
descriptions of four phases are presented as follows.

[System setup]

The GC first selects two prime numbers p2 and q2
to compute

222 qpn  and)1)(1()(222  qpn .

The GC defines an admissible bilinear map ê:

211 GGG  , where G1 and G2 are multiplicative

cyclic groups of the same order q. Then, the GC
chooses three secret values bZ, x1, x2Zq

*, where
1<b<n2. Then the GC selects a secure one–way hash
function H:{0, 1}*  Zq

*. Finally, the GC determines
the RSA key pairs (dy , ey) such that dy·ey=1mod)(2n

for each discrete time interval zy ,...,2,1 . Then the

GC publishes the public parameters { n2, ê, H(), z, d1,
d2,…, dz}.

[Key assignment]

Assume that a user Ui wants to join the group and
obtain a time–bound information Id of a discrete time
interval set Ti. The user Ui submits her/his identity IDi
to the GC. Upon receiving the request, the GC
randomly selects an integer ai  Zq

* and computes

iK
= 1 21/ ()

1
i iH ID x a xg   and


  iTy

ye

d bI
2mod n , where g1

is a secret value of G1. Finally the GC sends the key
tuple (Id, ai, iK) to Ui via a secure channel.

[Encryption]

Assume that the GC wants to broadcast a message
M at time t, where Tt and T ={1,2,…z} is the set
of all discrete intervals of the system life cycle. Then,
the GC performs the following steps:

Step 1: The GC randomly selects a secret value g2
G1, s G2 and r Zq

* to compute X1 
rxg)(1

2 ,

X2  ,)(2
2

rxg ,21
rgY  and Y2  sê(g1, g2)

r.

Step 2: The GC computes te
t bk  mod n and

kd=H(s||kt). The GC uses the encryption key
kd to encrypt the message M as C=E(kd, M)
using the symmetric encryption function E().

Step 3: Finally, the group controller broadcasts (t, X1,
X2, Y1, Y2, C) to all users.

[Decryption]

Suppose that a user Ui owns the private key (Id, ai,

iK) for the discrete time interval set Ti. If t iT , the

user Ui can perform the following steps to recover the
message M.

Step 1: Upon receiving (t, X1, X2, Y1, Y2, C), the user
Ui can use her/his secret key tuple (Id, ai, iK)

and the public parameters to compute s  Y2 /

ê(
iK ,)(

121
ii IDHa YXX) and





tyiTy

yd

dt Ik
,

= teb .

Step 2: Then the user Ui can obtain the decryption
key kd=H(s||kt).

Step 3: The user Ui uses the key kd to decrypt the
message M= D(kd, C).

Note that the correctness of the key s is the same
with Scheme 1. Here, we only present the correctness
of kt in Step 1 as follows:





tyiTy

yd

dt Ik
, 






tyiTy

yd

iTy
ye

b
,

)(


  tyiTy
y

iTy
y de

b , = teb .

4. Security analysis

In this section, we demonstrate the security
analysis of the proposed schemes. The security of
Scheme 1 is based on the computation of both s and
wt. Meanwhile, the security of Scheme 2 is based on
the computation of both s and kt. Therefore, we must
prove the security of s, wt and kt, respectively. Since
kc=H1(s||wt) and kd=H1(s||kt), we obtain the security of
the encryption keys kc and kd if s, wt and kt are hard to
compute. Finally, we prove that Schemes 1 and 2 are
secure key management schemes for multicast
communication.

[Security of the value s]

Lemma 1. In the proposed schemes, any illegal user
cannot obtain the value s from the
broadcast messages and public parameters.

▼Proof. If an illegal user tries to compute the
value s, he must compute ê(g1, g2)

r. However, given
the broadcast messages, only 1 2

rY g is known by the

illegal user. Since g1 is a secret value of G1, an illegal
user cannot get g1 because the broadcast messages
don’t include any information about g1. So it is
impossible to compute
ê (rg1

, g2) = ê (g1, g2)
r. Thus, he cannot obtain the

secret value s. ▲

[Security of wt]

Lemma 2. Under the Lucas function assumption, a
legal user without the valid time–bound
information or an outside adversary cannot

compute tw  in the proposed Scheme 1.

Y. M. Tseng, C. H. Yu, T. Y. Wu

178

▼Proof: Assume that the GC would like to
broadcast a message to members at time t . We will
prove that unauthorized users or outside adversaries

cannot compute the key tw  . Note that legal users

with the invalid time–bound information have more
powerful information than outside adversaries. Here,
we consider the attack of legal users with invalid
time–bound information. Therefore, we must prove
the following two situations.

(1) Assume a user Bob was given a time–bound
information)(1

2
2

1

aVI ttz ffc  , the user cannot

compute tw  if t],[\],0[21 ttz . If Bob wants to

compute tw  , Bob must compute

)1)(1mod(2
1

2
1

1
1  qpf to obtain

)(1
2

21
1)(cfft IVw tttt  for t <t1 or compute

)1)(1mod(2
1

2
1

1
2  qpf to obtain

)(
11

2
2

1)(cfft IVw tttt  for t >t2. According to

the Lucas function assumption, without knowing

p1 and q1, to compute 1
1
f or 1

2
f are

computationally infeasible.

(2) Assume that there are two time–bound

information
1cI and

2cI , where
1cI denotes the

time interval from t1 to t2, and
2cI denotes the

time interval from s1 to s2. The user cannot

compute tw  if t]},[],{[\],0[2121 ssttz  . It

means that the user cannot compute tw  from

)(1
2

2
11

aVI ttz ffc  and)(1
2

2
12

aVI ssz ffc  . There

are two kinds of attack scenarios. One is that Bob
is given two time–bound information

)(1
2

2
11

aVI ttz ffc  and)(1
2

2
12

aVI ssz ffc  , and

he wants to compute tw  , where t
]},[],{[\],0[2121 ssttz  . The other one is that

Bob is given a time–bound information

)(1
2

2
11

aVI ttz ffc  and Alice is given the other

time–bound information)(1
2

2
12

aVI ssz ffc  , then

they collude to compute tw  , where t
]} ,[] ,{[\] ,0[2121 ssttz  . Without loss of

generality, we assume that zsstt  21210 .

Thus, three cases t [0, t1), t (t2, s1) and t
(s2, z] are required to be addressed. Here we use
the attacker to denote both Bob and Alice.

Case 1. For t [0, t1), if the attacker wants to
compute

tw  , he must compute

)1)(1mod(2
1

2
1

1
2  qpf to obtain

)(
2

'11
2

'2
1)(' cfft IVw tsts  or

)(
1

'11
2

'2
1)(' cfft IVw tttt  . By the Lucas

function assumption, without knowing p1 and

q1, to compute
1

2
f is computationally

infeasible.

Case 2. For t (t2, s2), if the attacker wants to

compute tw  , he must compute

)1)(1mod(2
1

2
1

1
1  qpf to obtain

)(
11'

2
2'1

1)(' cfft IVw tttt  or

)1)(1mod(2
1

2
1

1
2  qpf to obtain

)(
2

'11
2

'2
1)(' cfft IVw tsts  . By the similar

reason, to compute 1
1
f or 1

2
f are

computationally infeasible.
Case 3. For t (s2, z], if the attacker wants to

compute tw  , he must compute

)1)(1mod(2
1

2
1

1
1  qpf to obtain

)(
11'

2
2'1

1)(' cfft IVw tttt  or

)(
21'

2
2'1

1)(' cfft IVw stst  . By the Lucas

function assumption, without knowing p1 and
q1, to compute 1

1
f is computationally

infeasible. ▲

[Security of kt]

Lemma 3. Under the RSA cryptosystem assumption,
a legal user without a valid time–bound
information or an outside adversary cannot
compute tk  in the proposed Scheme 2.

▼Proof: Assume that the GC would like to
broadcast a message to members at the time t . We
will prove that unauthorized users or outside
adversaries cannot compute the key tk  . Here, we

prove two cases.

(1) Given a time–bound key Id, the attacker Ui can

compute





tyiTy

yd

dt Ik
,

teb for t iT , but the

user cannot compute te
t bk  for t’ iT . Of

course, the attacker can compute the value b, but it

is no help to obtain the data encryption key tk  .

Since t iT , the time–bound key Id didn’t

include te  . Therefore, the attacker must compute

te  from the public value td  such that td  · te  

1mod)(2n . By the RSA cryptosystem

assumption, it is hard to compute te  because the

Towards Scalable Key Management for Secure Multicast Communication

179

attacker cannot compute p2 and q2 from

222 qpn  .

(2) Given several time–bound keys

tdtdtd III ___ ,...,,
21

, where ttt ,...,, 21 iT . The

user Ui can compute
ttt kkk ,...,,

21
, but the user

cannot compute tk  for iTt  . By the similar

reason, the security is under the RSA cryptosystem
assumption. ▲

Based on the lemmas above, the following
theorems demonstrate that Schemes 1 and 2 are secure
key management schemes for multicast
communication.

Theorem 4. In the proposed Scheme 1, any illegal
user cannot compute the encryption key
kc, where kc=H1(s||wt).

▼Proof. By Lemmas 1 and 2, we have proven that
s and wt are secure against attackers, so that any illegal
users cannot obtain s and wt. If the illegal user can
obtain a value v s||wt such that)(vHkc  , there is a

contradiction with the “collision resistance” property
of the one-way hash function. Therefore, for any
illegal users, it is impossible to obtain the encryption
key Kc  H(s||wt). ▲

Theorem 5. In the proposed Scheme 2, any illegal
user cannot compute the encryption key
kd, where kd=H1(s||kt).

▼Proof. By Lemmas 1 and 3, we have proved that
s and kt are secure against adversaries, thus any illegal
users cannot obtain s and kt. If the illegal user can
obtain a value v s||kt such that)(vHkd  , there is

also a contradiction with the security property
“collision resistance” of the one-way hash function.
Therefore, for any illegal users in Scheme 2, it is im-
possible to obtain the encryption key Kd  H(s||kt). ▲

5. Discussions and comparisons

In this section, we compare our proposed schemes
with the previously proposed schemes. Here, we
briefly review and analyze several previously
proposed schemes that include the LKH scheme [5]
and Lin et al.’s schemes [12]. Then, performance
comparisons are given to demonstrate that our
proposed schemes have better performance as
compared with the recently proposed key management
schemes in terms of transmission size and
computational cost.

5.1. Review of several key management schemes

[LKH scheme]

In 1999, Wallner et al. [5] proposed the logical key
hierarchy (LKH) tree management scheme. In their

scheme, the multicast group includes the GC and n
group members u0, u1,…,un–1, where the GC is
responsible to generate all keys of the LKH tree. Each
user is assigned to one leaf of the LKH tree. For
example, eight members form the LKH tree as
depicted in Fig 1. The GC gives a key kv to every node
v in the LKH tree, and sends each user (via a secure
channel) the keys along the path from the member to
the root. In Fig 1, the user u0 will obtain the keys k000,
k00, k0 and k. The GC can use k to encrypt messages
for multicast communications.

Suppose u7 is the new joining user. The GC gives
u7 a key k111 via a secure channel. For the nodes v0, v1
and v2 along the path from the root to u7, the GC
generates the new keys k  ,

1k  and
11k , respectively.

Then k  , 1k , and 11k  are encrypted with the keys k,

k1, and k11, respectively. All encryptions are
broadcasted to all old users. Then, every old user in
the group can decrypt them by their own keys.
Meanwhile,)(

111
kEk  ,),(1111

kEk  and)(11111
kEk  are

sent to the user u7, where ()E is a symmetric

encryption function. Therefore, when a user u joins
the group, both the computation cost and the
transmission size of the rekeying process are O(h) for
the GC, where h is the height of the LKH tree. At the
same reason, in order to delete the user u0 from the
LKH tree in Fig 1, the following encryptions

)(00001
kEk  ,)(000

kEk  ,)(001
kEk  ,)(

0
kEk  , and)(

1
kEk 

are transmitted. Therefore, when a user u leaves the
group, both the computation cost and the transmission
size of the rekeying process are O(h).

Figure 1. The logical key hierarchy tree

[Lin et al.’s schemes]

 In 2010, Lin et al. [12] proposed two multicast
key management schemes without the rekeying
process. Here, we briefly review their first scheme.
Without loss of generality, assume that there are n
group members U1,U2,…, Un and a group controller
(GC). The GC assigns secret keys to group members
as follows:

(1) The GC chooses two secret primes pi and qi, and
then computes the public product

iii qpN  for

each group member Ui, where i = 1, 2,…, n.

(2) The GC computes the least common multiple

v0

v1

u5u4u4 u7u6

v2

u3u2u1u0

k

k0 k1

k00 k01 k11k10

k000 k001 k010 k011 k100 k101 k110 k111

Y. M. Tseng, C. H. Yu, T. Y. Wu

180

))(),...,(),((210 nNNNLCML  ,

where)1()1()( iii qpN and 1  I  n. The

GC then chooses a prime
)}(),...,(),(min{ 210 nNNNe  such that

gcd (e0,L0)=1. Also, the GC computes
)}(),...,(),(min{ 210 nNNNd  such that

000 mod1 Lde  .

(3) The GC, respectively, sends the secret key
)(mod0 ii Ndd  to each group member Ui via a

secure channel, where i = 1, 2,…, n.

Suppose that the GC wants to send a message M to
some group members. The GC first defines a set DU
of dedicated users whom the GC wants to send to.
Then the GC encrypts the message M by using





DUU

i
e

i

NMC mod0

, where M∈[0, min{N1,N2,…,

Nn}−1]. Upon receiving the encrypted message C,
each user UiDU can decrypt the message

i
d

i NNCM i mod)mod( by using his/her secret key di

and the corresponding public parameter Ni. Thus, the
transmission size is |mod||| 0 




DUU

i
e

i

NMC .

Obviously, the transmission size is dependent on the
number of dedicated users in the set DU.

5.2. Performance analysis and Comparisons

For convenience, the following notations are used
to analyze the computational cost and the transmission
size.

 n: the number of members in the group.

 d: the degree of the tree in the tree–based
schemes.

 h: the height of the balanced LKH tree.

 TH: the time of executing a one–way hash
function H().

 TE: the time of executing a symmetric
encryption or decryption.

 TL: the time of executing the Lucas function
operation.

 TGe: the time of executing bilinear pairing
operation ê.

 Tinv: the time of executing modular inverse
operation in Zq

*.

 Tpow: the time of executing modular
exponential operation in Zq

*.

 Tex: the time of executing modular exponential
operation in G1.

 Tm: the time of executing modular
multiplication operation in Zq

*.

 |m|: the bit size of a message m.

As reviewed in Subsection 5.1, every user in the
LKH tree is assigned logdn keys from his/her location
to the root. The LKH-like schemes [5-11] may apply
the d–ary key trees to arrange members so that the
height is h = logdn. In the following, we analyze the
performance of two cases (worst case and best case) in
the LKH-like schemes. For the worst case, the GC
must encrypt the same message using at most n/2
different keys. Thus, the transmission size in the LKH
approach is O(n). For example, in Fig. 1, the GC
wants to send the message M to u0, u2, u4, and u6.
Then, M is encrypted using k000, k010, k100, and k110,
respectively. Considering the transmission size in the
best case of multicast communication in Fig. 1, the
GC encrypts the message using the root key k in the
LKH tree. Obviously, it requires O(1) transmission
size. According to the number of encryptions, the
computational costs of the GC are O(1) and O(n) for
the best and worst cases, respectively. Since each
member performs one decryption to obtain the
message for two cases, the computational cost is O(1).

As reviewed in Subsection 5.1, Lin et al. [12] use





DUU

i
e

i

NMC mod0 to send the message to the set

DU of dedicated users. According to the mentioned
best and worst cases above, the set DU includes n
members and n/2 members, respectively. Since the
transmission size is dependent on || 

DUU
i

i

N , two

cases require O(n) transmission size. Considering the
computational cost, the GC and each member require
O(n) and O(1) for two cases, respectively.

In the following, let us discuss the transmission
size of our proposed schemes. In our Schemes 1 and 2,
the GC broadcasts (t, X1, X2, Y1, Y2, C) to all members.
It is obvious that the transmission size is constant
since these values X1, X2, Y1 G1, Y2 G2, and C=E(kc,
M). Thus, the transmission size required for both
Schemes 1 and 2 is O(1). Considering the required
computational costs for the GC and each member, the
GC and each member, respectively, perform the
encryption and decryption procedures described in
Section 3. In Scheme 1, the GC and each member
require 3Tex+Tpow+TGe+TL+TH+TE and 2Tex+TGe+
+Tinv +TH+TE time, respectively. In Scheme 2, the GC
and each member, respectively, require 3Tex+2Tpow+
+TGe+TH+TE and 2Tex+TGe+Tinv+Tpow+TH+TE+lTm ti-
me, where l denotes the size of the discrete time
interval set Ti. Nevertheless, four computational costs
are independent on the number of group members.
The computational costs of both the GC and each
member are O(1).

Table 1 summarizes the comparisons between the
LKH-like schemes [5-11], Lin et al.’s scheme [12] and
our proposed schemes (Scheme 1 and Scheme 2) in
terms of the rekeying process, the computational cost
and the transmission size in the worst case and best
case. According to Table 1, it is obvious that our
schemes have the better performance than the

Towards Scalable Key Management for Secure Multicast Communication

181

previously proposed schemes in terms of transmission
size and computational cost.

Table 1. Comparisons of our schemes and the previously
proposed schemes

Rekeying
process

Transmission
size

Computational
cost in best/worst

cases

Best
case

Worst
case

GC Member

LKH-like
schemes [5-11]

O(h) O(1) O(n) O(1)/O(n) O(1)

Lin’s scheme
[12]

Not
required

O(n) O(n) O(n) O(1)

Our Scheme 1
Not

required
O(1) O(1) O(1) O(1)

Our Scheme 2
Not

required
O(1) O(1) O(1) O(1)

6. Conclusions

In this paper, we have proposed two scalable key
management schemes without the rekeying process.
The point is that the transmission size is independent
on the number of group members. Meanwhile, the
required computational costs of each member and the
group controller are constant. We have proved that the
proposed schemes are secure key management
schemes without the rekeying process. As compared
with the previously proposed schemes, performance
analysis has been made to demonstrate that our
schemes have the better performance and are suitable
for a dynamic multicast group.

Acknowledgements

The authors would like to thank the anonymous
referees for their valuable comments and constructive
suggestions. This research was partially supported by
National Science Council, Taiwan, R.O.C., under
contract no. NSC97-2221-E-018-010-MY3.

References

[1] T. Liao. Webcanal: a multicast web application. In:
Computer Networks and ISDN Systems, 1998, 29 (8-
13), 1091–1102.

[2] S. Rafaeli, D. Hutchison. A survey of key
management for secure group communication. In:
ACM Computing Surveys, 2003, 35 (3), 309–329.
http://dx.doi.org/10.1145/937503.937506.

[3] S. Mittra. Iolus: A Framework for Scalable Secure
Multicasting. In: Proc. ACM SIGCOMM’97, 1997,
277–288.

[4] R. Molva, A. Pannetrat. Scalable multicast security
with dynamic recipient groups. In: ACM Transactions
on Information and System Security, 2000, 3(3), 136–
160. http://dx.doi.org/10.1145/357830.357834.

[5] D. Wallner, E. Harder, R. Agee. Key Management
for Multicast: Issues and Architectures. In: Technical

Report RFC 2727, Internet Engineering Task Force,
1999.

[6] C. K. Wong, M. Gouda, S. S. Lam. Secure Group
Communications Using Key Graphs. In: IEEE/ACM
Transactions on Networking, 2000, 8(1), 16–30.
http://dx.doi.org/10.1109/90.836475.

[7] X. S. Li, Y. R. Yang, M. G. Gouda, S. S. Lam. Batch
Rekeying for Secure Group Communications. In: Proc.
ACM SIGCOMM’01, 2001, 525–534.

[8] A. T. Sherman, D. A. McGrew. Key establishment in
large dynamic groups using one–way function trees.
In: IEEE Trans. Softw. Eng., 2003, 29(5), 444–458.
http://dx.doi.org/10.1109/TSE.2003.1199073.

[9] Y. M. Tseng. A Scalable Key Management Scheme
with Minimizing Key Storage for Secure Group
Communications. In: International Journal of Network
Management, 2003, 13(6), 419–425. http://dx.doi.
org/10.1002/nem.503.

[10] J. Goshi, R. E. Ladner. Algorithms for Dynamic
Multicast Key Distribution Trees. In: Proc. Twenty–
second Annual Symp. Principles of Distributed
Computing, 2003, 243–251. http://dx.doi.org/10.1145/
872035.872071.

[11] H. Lu. A novel high–order tree for secure multicast
key management. In: IEEE Trans. Computers, 2005,
54(2), 214–224. http://dx.doi.org/10.1109/TC.2005.15.

[12] I. C. Lin, S. S. Tang, C. M. Wang. Multicast Key
Management without Rekeying Processes. In: The
Computer Journal, 2010, 53 (7), 939-950.
http://dx.doi.org/10.1093/comjnl/bxp060.

[13] T. Y. Wu, Y. M. Tseng. An efficient user
authentication and key exchange protocol for mobile
client-server environment. In: Computer Networks,
2010, 54 (9), 1520-1530. http://dx.doi.org/10.1016/
j.comnet.2009.12.008.

[14] Y. M. Tseng, T. Y. Wu, J. D. Wu. An efficient and
provably secure ID-based signature scheme with batch
verifications. In: International Journal of Innovative
Computing, Information and Control, 2009, 5 (11),
3911-3922.

[15] L. Chen, Z. Cheng, N. P. Smart. Identity–based key
agreement protocols from pairings. In: International
Journal of Information Security, 2007, 6 (4), 213–241.
http://dx.doi.org/10.1007/s10207-006-0011-9.

[16] D. Boneh, M. Franklin. Identity–based encryption
from the Weil pairing. In: Proc. CRYPTO 2001,
LNCS, 2139, 2001, 213–229.

[17] A. K. Lenstra. Integer Factoring. In: Designs, Codes
and Cryptography, 2000, 19 (2-3), 101–128.
http://dx.doi.org/10.1023/A:1008397921377.

[18] J. H. Yeh. A secure time-bound hierarchical key
assignment scheme based on RSA public key
cryptosystem. In: Information Processing Letters,
2008, 105 (4), 117–120. http://dx.doi.org/10.1016/
j.ipl.2007.08.017.

[19] A. J. Menezes, P. C. van Oorschot, S. A. Vanstone.
Handbook of Applied Cryptography, CRC press, 1996.
http://dx.doi.org/10.1201/9781439821916.

[20] W. G. Tzeng. A Time–Bound Cryptographic Key
Assignment Scheme for Access Control in a
Hierarchy. In: IEEE Trans. Knowledge and Data Eng.,
2002, 14 (1), 182–188. http://dx.doi.org/10.1109/
69.979981.

[21] S. M. Yen, C. S. Laih. Fast Algorithms for LUC
Digital Signature Computation. IEE Proceedings on

Y. M. Tseng, C. H. Yu, T. Y. Wu

182

Computers and Digital Techniques, 1995, 142 (2),
165–169. http://dx.doi.org/10.1049/ip-cdt:19951788.

[22] S. Chiou, C. S. Laih. An efficient algorithm for
computing the LUC chain. IEE Proceedings on
Computers and Digital Techniques, 2000, 147 (4),
263–265. http://dx.doi.org/10.1049/ip-cdt:20000534.

[23] NIST/NSA FIPS 180–2, SHS. Gaithersburg, MD,
USA, 2005.

[24] C. Yang, W. Ma, X. Wang. New traitor tracing
scheme against anonymous attack. I
n: Proc. 1st International Conference on Innovative
Computing, Information and Control, IEEE, 2006,
389–392.

Received September 2010.

