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Abstract. The goal of the paper is to define requirements to OWL 2 ontologies, under which their semantics may 
be preserved in a relational database, and to demonstrate that the hybrid approach for transforming OWL 2 ontologies 
into relational databases possesses such capability. The hybrid approach maps part of ontology concepts to relational 
database concepts on the base of their common semantics; ontology constructs having no direct equivalents in 
databases are stored in metatables. The paper defines requirements for ontologies under transformation as ontology 
normalization and integrity rules, and presents a set of SQL queries for extracting rich data, covering semantics of 
source ontology, from the resulting database. The capability of the hybrid approach to preserve semantics of OWL 2 
ontologies in relational databases is demonstrated with a representative example of a Vehicle ontology. 
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1. Introduction 

Storing ontologies in relational databases becomes 
one of ordinary needs of Semantic Web and networked 
enterprises where knowledge models are emerging in 
various new fields e.g. [1, 2]. While a lot of methods 
and approaches for transforming ontologies into 
relational databases (and vice versa) are proposed, the 
shared comprehension about suitable ways for linking 
the two technologies still does not exist. One of 
painful aspects of such transformations is preserving 
semantics of ontology when it is stored in relational 
database (RDB). Though storing Web Ontology 
Language OWL 2 ontology [3, 4] in one vertical table 
[5] or ontology metamodel based schema [6, 7] 
guarantee preservation of ontological semantics, 
obtained relational schemas are suitable for processing 
ontologies only as they are meaningless from the 
conceptual point of view; they do not avail advantages 
of relational databases, and are not applicable for 
applications of information systems. There are 
arguments for having different storing models [8, 9] 
reflecting common semantics of ontologies and 
conceptual models familiar for domain experts and 
application developers. We have proposed a reversible 
OWL2ToRDB transformation pursuing a hybrid 
approach according which part of ontology concepts is 
directly mapped to relational schema on the base of 
their common semantics; ontology constructs having 
no direct equivalents in database schema are stored in 
metadata tables [1].  

Transformation is semantics preserving if the 
meaning of the two models is the same, even though it 
is represented in a different technical space or using a 
different abstract syntax [11]. A reversible 
transformation is semantics preserving transformation 
[12] that does not lose semantics when it executes 
from a source model to a target model and backwards 
 from the obtained target model to the source model; 
but the reverse may not be true if that transformation 
executes from whatever model of the target type to a 
model of the source type and backwards. It means that 
the OWL2ToRDB transformation could be applied 
starting from ontology and converting it into a 
database. A converted ontology could be fully restored 
from the database; however, it does not mean that the 
reverse OWL2ToRDB transformation could be 
applied for any database that was not created by a 
direct one. 

Transformation starting from any relational 
database into ontology may be considered as a reverse 
engineering problem [13]. Though such a 
transformation may be reversible, semantics 
preserving, and conforming to the semantics common 
for ontologies and information systems (as described 
in Section 3), it would start from considering different 
constructs – tables, constraints and dependencies, 
implemented via functionality of relational database 
systems. Therefore, it would be a quite different task 
relevant to exposing contents of existing databases on 
the Semantic Web (e.g. [14, 15]). For developing new 
databases, it is desirable to pre-establish their 
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connection to ontologies by creating the required 
ontology and transforming it into relational database 
via the proposed OWL2ToRDB approach. 

We apply the following quality criteria to 
OWL2ToRDB transformation: transformation 
completeness – coverage of ontology constructs; 
transformation reversibility – preservation of semantic 
information; semantic suitability of database schema – 
relevance of its conceptual data model to semantics of 
problem domain; schema explicitness – declarative 
versus procedural representation of ontology 
constraints in a database; schema stability – schema is 
stable if it does not change when ontology changes; 
automation – whether transformation is fully 
automatic or not. 

In the current paper, we focus on requirements that 
ontology under transformation should fulfil. For being 
stored in a relational database without loss of 
information, ontology should conform to rules of 
ontology design. Also, this ontology should fulfil 
quality criteria of conceptual models – it should be 
syntactically correct, precise, and semantically 
suitable description of a problem domain. Conceptual 
model is precise if it unambiguously describes the 
domain. Conceptual model is suitable if it 1) conforms 
to sets of objects (instances) of the domain including 
at least one complete instance of the model; 2) allows 
representing all feasible states of the domain and 
disallows representing infeasible ones. We illustrate 
fulfilling of these requirements with Vehicle ontology 
example and use it for validating completeness and 
semantics preserving features of OWL2ToRDB 
transformation. 

The rest of the paper is organized as follows. In 
section 2, the overview of related works is presented. 
Section 3 describes requirements for ontologies 
intended for storing in relational databases. Section 4 
presents an ontology example;  section 5  − a database 
schema, obtained by OWL2ToRDB transformation, 
along with SQL queries capable for obtaining the 
same results as SPARQL queries to ontology. Section 
6 gives conclusions and highlights the future work. 

2. Related work 

2.1. Ontology design methodologies 

For representing ontology in a relational database, 
ontology should meet certain quality requirements. 
However, existing methods for transforming OWL 
ontologies into relational databases rarely analyse 
such requirements. First, ontology under 
transformation should be well formed in accordance 
with rules for ontology design. There are many 
research works on methodologies for developing 
ontologies e.g. [16−18] that mainly focus on processes 
for developing ontologies but not on the essence of 
domain conceptualization. Consequently, these 
methods also give no knowledge useful for ensuring 
quality of ontologies. Fundamentals for 

conceptualizing the problem domain were the subject 
of early research on ontologies e.g. [19] but such 
research works are very generic. They had been 
conducted much time before the Web Ontology 
Language had emerged. More recently, quality and 
principles of ontology design and their relation to 
conceptual models were considered in [8, 20−25] 
sources, which seem most relevant for our purpose. 

The key requirement for quality of relational 
databases is their normalisation. The normalisation of 
information models for relational databases is widely 
accepted and applied in practise of designing 
databases and information systems. The analogous 
normalisation for ontologies was discussed in [22, 23], 
where goals for normalisation of ontology 
implementations were described including 1) domain 
correctness that means that the interpretation of the 
classification inferred by the ontology reasoner 
corresponds to the desirable model of the domain; 2) 
modularity  that ontologies are constructed from 
independently evolving, explicitly described 
components. Ontologies assume conceptualisation of 
the open and fractal world, which is often changing, 
so such requirements are important for their reuse, 
maintainability and evolution. 

According to [22], ontology consists of primitive 
concepts, composite concepts, roles, descriptions and 
axioms. Primitive concepts that are not inferable from 
other concepts are described by necessary conditions 
expressed as Boolean combinations of other 
primitives, descriptions and defined concepts, and 
they can participate in subsumption hierarchy of other 
primitive concepts. Composite (defined) concepts that 
may be derived from other concepts are defined by 
necessary and sufficient conditions. Roles (object 
properties) relate concepts and can also participate in 
subsumption hierarchy; they can be functional, 
transitive, symmetric, or inverse to other roles. 
Descriptions define constraints on role-concept pairs. 
Axioms declare constraints on instances of concepts 
and their combinations. The goal of normalization is 
to constrain these constructs so that the ontology 
meets the reusability, maintainability and evolvability 
criteria. 

The essence of Rector‘s proposal for normalization 
[22] is that the primitive taxonomy of the domain 
ontology should consist of disjoint homogeneous 
trees. Principles proposed for ontology normalization 
in [23, 24] were used in our research for formulating 
requirements for ontologies intended to transforming 
into relational databases. 

For representing ontology in a relational database, 
the ontology must satisfy certain integrity constraints 
inherent for relational databases. Otherwise, the 
structure of relational database should become too 
complex, or semantic information could be lost 
because it would be impossible to store it in the 
obtained database schema. Ontology axioms define 
such constraints but ontology development tools use 
them for inference and do not support ensuring 
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integrity of ontology. Ouyang et al. [26] have 
proposed to represent integrity constraints as OWL 
axioms and to conduct manual improvement of 
ontology before transforming it into RDB. However, 
the set of constraints Ouyang et al. have attributed to 
manual improvement of ontology is incomplete (e.g. it 
lacks exact constraints; symmetric, asymmetric, 
reflexive properties); from the other side, it includes 
some constraints that are inferable by ontology 
reasoners (e.g. transitive, inverse functional 
properties). Though OWL2ToRDB transformation 
principles are different from the ones proposed by 
Ouyang et al. [26], we state similar integrity rules for 
ontology under transformation on the base of OWL 2 
specification [3], but we 1) use the reasoner for 
reducing the manual work; 2) take into consideration 
other required constraints that were not involved in 
[26]. 

2.2. Common semantics of ontologies and 
information systems 

Semantics based mapping of ontology to database 
concepts can provide better flexibility and practical 
applicability of obtained relational database schema to 
applications of information systems. The target 
database schema should not only store ontology 
concepts but also should allow efficient querying and 
manipulating in Semantic Web or Enterprise 
Information systems, integrating ontological and 
relational data models etc. Consequently, it is 
desirable that relational database schemas, obtained 
from ontology, could represent semantics common to 
ontological and conceptual data models.  

The most fundamental understanding of 
conceptual schemas was defined by Van Griethuysen 
in [27] where they are understood as schemas of state 
and behaviour of information systems. Conceptual 
schema describes all storable states of problem 
domain; all causes of changes of these states; how 
these states are changing; what states are consistent, 
and what are derivation rules for deriving new states 
of problem domain.  

A problem domain is described by object types and 
their relation types that are classified to concepts. 
Conceptual model includes collections of instances 
that correspond to conceptual schema (a conceptual 
schema does not include instances and this makes it 
different from a conceptual model). A concept is an 
abstract idea that generalizes individual instances 
(objects). The concept has its intention (definition), 
extension (a set of objects (instances)) and 
representation (symbol) [28]. Entity type is a concept, 
which instances are individual identifiable objects 
(entities, e. g. locations, persons, goods). Concepts, 
whose instances are links, are called relationship 
types. A set of entity and relationship types, 
representing states of a problem domain, is called a 
conceptual schema of state. 

Relational database schemas mostly are developed 
on the base of conceptual data models, which usually 

are presented in modelling languages (ER, ORM or 
UML). Semantics of conceptual models should 
involve (in UML terms) object types, relationships, 
properties, instances and constraints of a problem 
domain. This semantics is equivalent to semantics of 
ontology and can be defined on the base of ontological 
analysis provided by El-Ghalayini et al. [9] where 
authors state that ontologies and conceptual models 
have much in common. Ontology as well as a 
conceptual model consists of concepts, properties, 
individuals, and constraints (restrictions and axioms). 
For semantic mapping between ontologies and 
conceptual models, El-Ghalayini et al. propose rules 
based on semantics of the Bunge-Wand-Weber 
(BWW) ontology used for modelling information 
systems: 

Rule 1. An individual corresponds to an entity or 
object in conceptual model. 

Rule 2. Every named class maps to an entity type 
under corresponding constraints. 

Rule 3. Every data property maps to attribute of 
the class along with constraints associated with this 
property. 

Rule 4. Every object property corresponds to 
relationship in conceptual model. SubClassOf 
relation in ontology can be mapped to a generalization 
/specialization relation between super/sub-entity 
types. In contrast with conceptual models, properties 
are considered first-class elements in ontology and can 
exist without specifying classes related by that 
property. Such properties are senseless in databases 
and conceptual models [9]. El-Ghalayini et al. propose 
to map only properties that are related to classes 
satisfying constraints in the ontology under 
consideration. 

Rule 5: Every property constraint used in ontology 
class corresponds to a relationship constraint that 
restricts the kind of the relation, number of entities or 
entity type of this relationship. 
ObjectIntersectionOf and ObjectUnionOf are 
mapped to {and} and {or} constraints. An existential 
and universal quantifier restrict the minimum 
cardinality of the target entity type to 1 and its 
maximum cardinality to n. Cardinality restricts the 
number of objects of the target entity type that can 
participate in a role of a relationship. 

Rule 6: A composition relation corresponds to a 
property relating a composite and its components 
where the existence of the component depends on the 
composite, i.e. any individual of a component-class, 
which is connected to an individual of a whole-class, 
must not be connected to any other individual. A 
composition relation has no direct representation in 
ontology but it can be defined by ontology constraints. 

Our proposed OWL2ToRDB transformation [29, 
30] supports this common semantics [9]. It maps 
ontology classes to relational tables; individuals – to 
rows; functional object properties (or having 
cardinality restricted to 1) – to foreign keys; object 
properties with cardinality greater than 1 – to tables 
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having foreign key relations from tables representing 
classes of property domain and range; SubClassOf 
relation is mapped to a foreign key from a parent table 
to a child table, for which that foreign key, a primary 
key of a parent table, is also a primary key; data 
properties are mapped to columns; OWL data types – 
to RDB data types. Such a relational schema satisfies 
mappings of conceptual models to relational schemas 
and corresponds to practised schemas of relational 
databases well understandable for analysts and 
application developers. Besides, that schema has 
metatables for storing axioms and properties of 
OWL 2 constructs – i.e. explicit (versus implicit [31]) 
representation of ontology constraints that may be 
used for ensuring integrity of a database or reasoning 
about its contents. 

2.3. Retrieving ontology data from RDB 

There are several possibilities for querying 
ontologies from relational databases.  Semantic query 
language SPARQL [32, 33] is used for querying 
ontologies on the Web. When ontology data are stored 
in a relational database, queries may be executed in 
several ways: 1) on ontology layer when ontology and 
its instances are recovered from a database into 
ontology processing environment; 2) both on ontology 
model layer (for finding classes, properties and 
restrictions), and relational database layer for finding 
individuals and assertions; 3) on database layer when 
ontology concepts and instances are retrieved via SQL 
queries. 

The first case is a traditional approach to querying 
ontologies; it suffers from problems related with 
handling large ontologies. The second case for 
OWL2RDB method was investigated in [10]. For 
searching concepts of ontology model, Pellet OWL 
Reasoner was used here to manipulate the ontology 
model restored from OWL 2 metaschema in relational 
database. This recovered ontology model does not 
contain information about individuals and assertions; 
they are retrieved from the tables of relational schema 
by executing SQL queries. The querying algorithm 
firstly executes a part of SPARQL query responsible 
of obtaining information about ontology concepts, and 
then separately searches individuals and assertions by 
using SQL query language. The experimental 
investigation of the algorithm has shown its semantic 

equivalence to traditional approach (i.e. querying 
ontologies and instances entirely on ontology layer) 
along with better capabilities for handling large 
ontologies. 

In the third case, when ontology concepts and 
instances are retrieved exclusively via SQL queries, 
querying depends on ontology storage model and the 
mode of storing ontology. If obtained database stores 
ontology and its instances together with inference 
results, inferred values can be retrieved by SQL 
queries in the same manner, as other data. If inferred 
data are not stored, as in the case of OWL2ToRDB 
transformation, SQL queries are needed for extracting 
information about ontology concepts and axioms as 
well as for finding instances. 

Semantics preserving SPARQL to SQL translation 
was investigated in [34] where a proof is given for 
equivalence of SPARQL and SQL interpretations of 
RDF data and their representation in relational 
database. The same proof is valid for OWL ontologies 
if we analyse them w.r.t. RDF-based semantics. 
Regarding direct OWL 2 semantics [35], 
transformation [34] is necessary but not sufficient as 
OWL 2 gives additional sense beyond RDF. This 
factor requires additional SQL queries for 
understanding the inquired ontology and formulating 
further queries allowing obtaining data, relevant to 
source ontology, from RDB. We present such query 
patterns in Section 5. 

3. Requirements for ontology under 
transformation 

For ensuring that OWL2ToRDB transformation is 
semantics preserving, source ontology should conform 
to Ontology Normalization Rules (ONR1ONR6) 
summarized from [9, 22, 23]. In [24], additional 
advices are given how to ensure domain correctness. 
We refer to these advices as to additional ontology 
normalization rules (ONR7ONR10) (Table 1). 

For ensuring consistency of ontology under 
transformation, we supplement ontology 
normalization rules with Ontology Integrity Rules 
(OIR1OIR18), formulating them on the base of 
OWL 2 specification [1] (Table 2). 
 

Table 1. Ontology normalization rules 

Rule Desciption 

ONR1 No primitive domain concept should have more than one primitive parent. 

ONR2 Primitive taxonomy of the domain ontology should comprise homogeneous disjoint trees, specialised by subsumption 
based on the same or gradually narrower criteria. 

ONR3 Self-standing concepts (types and roles) of primitive taxonomy should form open disjoint taxonomies where all the 
primitive children of each primitive concept should be disjoint, but not necessarily covering the parent. Value types and 
values should form closed taxonomies where the primitive values are disjoint, but primitive value types may be disjoint 
or overlapping. 

ONR4 Any named individual must be an instance of exactly one most specific self-standing concept; axioms should be defined 
in such a way that inferences should never result in subsumption of one primitive concept by another, since this would 
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Rule Desciption 
denormalise the ontology. 

ONR5 Primitive concepts should be described by conjunctions of one primitive and zero or more descriptors; every primitive 
open concept or value should be disjoint with its siblings; every set of primitive values of a concept should be covering. 

ONR6 The primitive taxonomy of domain concepts should be untangled, i.e. if a primitive concept is disjoint from its siblings, 
its children must also be disjoint, and if a primitive concept is part of a partition, its children must also form a partition. 

ONR7 To avoid trivially satisfiable restrictions, an existential restriction someValuesFrom should supplement every universal 
restriction allValuesFrom in the class or one of its superclasses. 

ONR8 For ensuring desired inferences, classes should be defined. 

ONR9 To avoid the open world assumption, closure restrictions should be defined for covering subclasses. 

ONR10 To be able to represent ontology in relational database, each ObjectProperty or its parent must have exactly one 
domain and exactly one range; the same holds for each DataProperty.  

Table 2. Ontology integrity rules 

Rule Desciption 

OIR1 For each functional object property OPE and for each individual x, there can be at most one distinct individual y such 
that x is connected by OPE to y. The same rule holds if ObjectMinCardinality restriction on OPE is less than 1 and 
ObjectMaxCardinality equals 1. 

OIR2 For each inverse functional object property OPE and for each individual x, there can be at most one distinct individual y 
such that y is connected by OPE with x. 

OIR3 For each object property OPE and for each individual x, there must be exactly one distinct individual y such that x is 
connected by OPE to y if ObjectMinCardinality and ObjectMaxCardinality restriction on OPE is equal to 1, or 
ObjectExactCardinality equals 1. 

OIR4 For each object property OPE and for each individual x, there must be exactly n distinct individuals y such that x is 
connected by OPE to y if ObjectExactCardinality restriction on OPE equals n. 

OIR5 For each object property OPE and for each individual x, there must be at least n distinct individuals y such that x is 
connected by OPE to y if ObjectMinCardinality equals n. 

OIR6 For each object property OPE and for each individual x that is an instance of class C having existential class expression 
ObjectSomeValuesFrom (OPE C) there must be at least one distinct individual y such that x is connected by OPE to 
y. 

OIR7 For each object property OPE and individual x, there must be at most n distinct individuals y such that x is connected by 
OPE to y if ObjectMaxCardinality equals n. 

OIR8 For each object property OPE and for each individual x, the value of OPE must equal individuals y1, …, yn that are 
connected to x by class expressions ObjectHasValue (OPE y1), …. ,ObjectHasValue (OPE yn). 

OIR9 For each functional data property DPE and for each individual x, there can be at most one distinct literal y such that x is 
connected by DPE to y. The same rule holds if DataMinCardinality is less than 1 and DataMaxCardinality is 
equal 1. 

OIR10   For each data property DPE and for each individual x, there must be exactly one distinct literal y such that x is 
connected by DPE to y if DataMinCardinality and DataMaxCardinality equal 1, or DataExactCardinality 
equals 1. 

OIR11   For each object property DPE and for each individual x, there must be exactly n distinct literals y such that x is 
connected by DPE to y if DataExactCardinality equals n. 

OIR12   For each data property DPE and for each individual x, there must be at least n distinct literals y such that x is 
connected by DPE to y if DataMinCardinality equals n. 

OIR13   For each data property DPE and for each individual x, there must be at most n distinct literals y such that x is connected 
by DPE to y if DataMaxCardinality equals n. 

OIR14 For each data property DPE and for each individual x that is an instance of class C having existential class expression 
DataSomeValuesFrom (DPE C) there must be at least one distinct literal y such that x is connected by DPE to y. 

OIR15 For each data property DPE and for each individual x, the value of DPE must equal literals y1, …, yn that are 
connected to x by class expressions DataHasValue(DPE y1), …, DataHasValue (DPE yn). 

OIR16 For ensuring ontology consistency and integrity rules, ontology must have enough number of instances – at least one 
individual for each class and at least n individuals required for each integrity rule. For example, for ensuring 
ObjectMinCardinality(5 OPE C) we will need to have 5 instances of class C. 

OIR17 All inferable concepts and properties should not have values, properties or restrictions, and should not participate in 
axioms because it could make ontology inconsistent.   

OIR18 Inference should be made before transforming ontology for ensuring consistency of ontology and retrieving all relevant 
data from the obtained database via SQL queries. Ontological data are inferred in accordance with symmetric, reflexive, 
transitive, inverse, equivalent object properties, object property chains, object has value, and other axioms. Another set 
of axioms and restrictions (e.g. functional properties, existential class expressions, etc) serve for ensuring consistency of 
ontology. 
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4. An ontology example  

Ontology example, constructed according 
ONR1−ONR10 and OIR1−OIR18 rules, is represented 
in Figure 1. For brevity, we do not use full UML 
OWL 2 profile [36] as the mapping of OWL 2 
constructs to UML is self-explaining. In Figure 1, 
UML classes represent OWL 2 classes; associations 
represent object properties; generalizations stand for 
SubClassOf axioms; attributes represent data 
properties; UML constraints correspond to OWL 2 
restrictions; 0:0..1 cardinality corresponds to 
functional property or inverse of inverse functional 
object property (except settings when explicit 
cardinality restrictions exist); cardinality of 1 
represent exact (object or data) cardinality; 0:n 
cardinality corresponds to non-functional property or 
inverse of functional property. Vehicle ontology 
involves at least one representative of main OWL 2 
constructs (examples are given in Tables 1−2) thus it 
can serve as a representative example for validating 
OWL2RDB capability to preserve OWL 2 semantics 
in a relational database. Types and examples of 
OWL 2 constructs having impact on semantic OWL2 
to RDB mapping (i. e. structure of schema tables) are 

presented in Table 3; constructs having impact on 
semantic querying are listed in Table 4. 

For ensuring semantic suitability of ontology 
model I, we must describe at least one interpretation 
of ontology (a set of named individuals) satisfying all 
its axioms and having at least one interpretation for 
each construct of the ontology [35]. Such an 
interpretation is also a model of ontology.  

Ontology model may be constructed w.r.t. 
principles of Formal Concept Analysis (FCA) [37] 
applied in formal and relational contexts [38]. In FCA, 
a formal context is defined as a triple C = (U, A, B), 
where U is a universe (a finite set of objects), A is a 
finite set of attributes, and B is a binary relation 
between U and A. Concept structure of  Vehicle 
ontology is presented in Figure 2. Such a structure 
comprises a complete lattice as every concept has its 
greatest lower and smallest upper bound [37]. FCA 
allows creating right taxonomies and validating 
completeness of concept lattices but it does not 
directly help to construct a set of individuals 
comprising ontology model because it does not take 
into account relations between objects. 

 

Table 3. Ontology concepts having impact on semantic mapping 

OWL 2 construct Example 
SubClassOf SubclassOf(a:Organization a:Party) 
ObjectInverseOf ObjectInverseOf(a:isAssembledFrom) 
DisjointClasses DisjointClasses(a:Organization a:Person)) 
DisjointUnion DisjointUnion(a:Party(a:Organization a:Person)) 
ObjectUnionOf ObjectUnionOf(a:Organization a:Person) 
ObjectHasSelf ObjectHasSelf(a:believesIn) 
ObjectSomeValuesFrom ObjectSomeValuesFrom(a:hasInsurance a:Insurance) 
ObjectAllValuesFrom  ObjectAllValuesFrom(a:hasInsurance a:Insurance) 
ObjectHasValue ObjectHasValue(a:isSuppliedBy a:Company3) 
FunctionalObjectProperty FunctionalObjectProperty(a:hasFather) 
InverseFunctionalObject Property InverseFunctionalObjectProperty(a:hasInsurance) 
SubObjectPropertyOf SubObjectPropertyOf(a:isProducedBy a:hasMaker) 
DisjointObjectProperties DisjointObjectProperties(a:hasMother a:hasFather) 
ObjectMinCardinality ObjectMinCardinality(5 a:isAssembledFrom a:AutomobilePart)) 
ObjectMaxCardinality ObjectMaxCardinality(1 ObjectHasSelf(a:hasChief a:Assurer)) 
ObjectExactCardinality ObjectExactCardinality(1 a:insuredBy a:Assurer)) 
FunctionalDataProperty FunctionalDataProperty(a:birthDate xsd:dateTime) 
SubDataPropertyOf SubDataPropertyOf(a:personCode a:partyCode). 
DataMinCardinality DataMinCardinality(a:AutomobileModelVersionTitle 

xsd:string) 
DataMaxCardinality DataMaxCardinality(a:ownedTillDate xsd:dateTime) 
DataExactCardinality DataExactCardinality(1 a:automobileModelTitle xsd:string)) 
DataHasValue DataHasValue(a:automobileCountryCode "LT"^^xsd:string) 
HasKey HasKey(a:AutomobileModelVersion(a:isOfAutomobileModel) 

(a:AutomobileModelVersionNumber)) 

Table 4. Ontology concepts having impact on semantic querying 

OWL 2 construct Example 
SubClassOf SubclassOf(a:Organization a:Party) 
EquivalentClasses EquivalentClasses(a:Automobile a:Car) 
ObjectInverseOf ObjectInverseOf(a:isAssembledFrom) 
TransitiveObjectProperty TransitiveObjectProperty(a:consistsIn) 
SymmetricObjectProperty SymmetricObjectProperty(a:isColleagueOf) 
EquivalentObjectProperties EquivalentObjectProperties(a:isColleagueOf a:isPartnerOf) 
EquivalentDataProperties EquivalentDataProperties(a:certificationNumber 

a:assurerLicenceNumber) 
SubObjectPropertyOf SubObjectPropertyOf(a:isProducedBy a:hasMaker). 
SubDataPropertyOf SubDataPropertyOf(a:companyCode a:partyCode). 
ObjectPropertyChain SubObjectPropertyOf(ObjectPropertyChain(a:isInsuredBy 

a:isEmployedBy) a:isVerifiedBy) 
HasKey HasKey(a:AutomobileModelVersion(a:isOfAutomobileModel) 

(a:AutomobileModelVersionNumber)) 
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Figure 1. Vehicle ontology represented by UML class diagram (annotations are not visualized due to space limits) 

A relational context is defined as a pair R = (U, r), 
where r is a binary relation in U and describes links 
between objects of U. In [38], the formal proof is 
given that C is a corresponding formal context of 
relational context R, if B is such that for any x, y  U, 
ay  A  xBay if r(x, y). Further, Jiang et al. [38] 
introduce reflexive, transitive and symmetric 
relations r. 

Analysis of a relational context can help to ensure 
the partial order w.r.t. functional dependencies and 
identify a number of individuals required for having a 
complete set of them comprising ontology model. 
Concept hierarchy extended with functional 
dependencies of Vehicle ontology is represented in 
Figure 3 (note that UML diagram of Vehicle ontology 
in Figure 1 also reflects ordering based both on 
SubClassOf relation and functional object 
properties). One object is required for representing 
each most specific concept in SubClassOf hierarchy 
if all siblings in that hierarchy are disjoint and 

covering their parents; open disjoint hierarchies 
require one object for each concept. Bijective 
functional dependencies between two concepts require 
one object for each concept; functional dependencies 
(i.e. FunctionalObjectProperty or Inverse 
of Inverse Functional Object Property) 
require two objects for a domain concept and one 
object for a range to analyse cases when the relation 
exists and when it does not. 

For representing reflexive, irreflexive, symmetric, 
and assymetric  relations between objects, we need 
two objects for representing one concept from the 
corresponding formal context, and three objects for 
transitive relations; constraints on a number of objects 
participating in relations also should be taken into 
account. One value or value object is required for each 
value from closed disjoint value sets. The number of 
required objects may be reduced as the same object 
can (or even must) participate in several relations if 
this participation is not forbidden by axioms and does 
not cause inconssistency of ontology. 
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Figure 2. Concept lattice of the Vehicle ontology 

 

Figure 3. Concept structure of the Vehicle ontology ordered w.r.t. SubclassOf and functional dependencies

Following these principles, the set of 42 objects for 
the Vehicle ontology was identified allowing us to 
define a partial order w.r.t. SubClassOf relation and 
functional dependencies on a set of objects of the 
Vehicle domain. Note that in Figures 2 and 3, only 
those attributes (from Figure 1), which correspond to 
essential characteristics and determine existence of 
objects, were used. The set of these 42 individuals is a 
model I satisfying the Vehicle ontology O (this was 

verified by HermiT reasoner in Protégé) and it is 
suitable for validating semantics preserving properties 
of OWL2ToRDB transformation. 

5. Representing and querying ontology in 
database 

Relational database schema obtained from Vehicle 
ontology by applying OWL2ToRDB transformation, 
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implemented in Protégé plug-in, is presented in 
Figure 4. The overall transformation and metaschema 
are described in detail in [29, 30]; here we concentrate 
on retrieving the semantics of ontology when it is 
stored in a database. 

Querying ontology axioms is required for knowing 
how to retrieve additional, richer data that ontology 
contains beyond those stored in relational tables. For 
example, we can find instances of equivalent classes, 
values of inverse or other inferable object properties 
etc. 

For querying transitive relations, equivalent 
recursive SQL queries are needed while queries of 
symmetric, equivalent and inverse relations are much 
simpler. In the hybrid method for storing ontologies in 
a database method, transitive subsumption relations 
between classes and properties are discovered by SQL 
queries on metatables. A special attention is needed 
for querying OWL 2 transitive, symmetric, equivalent, 
inverse properties and object property chains. 

Transitivity, symmetry, equivalence, or inversion 
of relational table records is not supported by native 

functionality of relational databases. For example, the 
transitive closure of the relation consistsOf (Figure 1) 
is a relation that contains all automobile part pairs (i, 
j) such that j is direct or indirect part of i. The previous 
SQL standard, SQL’92, did not support computation 
of transitive closure; therefore, relational databases 
were not suitable for using them for storing 
knowledge data. Current SQL standard, SQL’99 
supports iterative or recursive SQL queries and allows 
to compute transitive closure. 

SPARQL queries for graph patterns presented in 
Figure 5 would find subclasses (Q1) and 
subproperties; instances by types (Q2), supertypes 
(Q3) and key values (Q4); annotations, e.g. comments 
(Q5), labels (Q6); property values by properties (Q7) 
and subproperties; property paths (Q8), inverse 
properties (Q9); object property chains (Q10); 
equivalent (Q11), transitive (Q12) and symmetric 
(Q13)  properties. Answers to these queries 
(Q1a−Q13a) are given in Figure 8. 

 

 

Figure 4. Relational database schema for Vehicle ontology 
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Figure 5. SPARQL queries for graph patterns of Vehicle ontology 

More complex SPARQL queries may be 
formulated from graph patterns, obtained by queries in 
Figure 5, by using SPARQL conjunction, OPTIONAL, 
UNION, FILTER constructs [32] or more advanced 
features of SPARQL 1.1 [33]. FILTER expressions 
may include IRIs, variables, literals, constants, logical 
connectives (⌐, ˄, ˅), inequality symbols (<, ≤, >, ≥), 
the equality symbol (=), and other features. 

For querying ontology from database and 
retrieving all semantics obtainable by SPARQL, we 
should know structure of ontology. Therefore, first we 
should extract ontology constructs. SQL queries 
providing information about ontology from 
metatables, should find all classes; subclass – class 
pairs; object properties, domains and ranges; inverse 
object properties, their domains and ranges; equivalent 
object and data properties, their domains and ranges; 
properties of properties − symmetric, reflexive and 

transitive object properties, sub object properties and 
sub data properties; keys and object property chains 
(e.g. in Figure 6). This knowledge should be used for 
formulating queries allowing finding rich information 
equivalent to source ontology. 

SQL queries on metatables are simple ones; some 
examples for finding transitive (SM1) and inverse 
(SM2) object properties along with 
OWLObjectProperties metatable and results of 
these queries (SM1a, SM2a) are presented in Figure 6.  

SQL queries, retrieving ontology data from 
relational database, are presented in Figure 7. They 
provide results S1a−S13a equivalent to SPARQL 
queries Q1a−Q13a (Figure 8) and may be applied as 
query patterns for constructing SQL queries about 
ontologies of other domains. 

 

 

Figure 6. Example of SQL queries on metatable OWLObjectProperties (more metatables are presented in [29]) 
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Figure 7. SQL queries for retrieving Vehicle ontology data from relational database 

6. Conclusions and future works 

Analysis provided in the paper has shown that the 
hybrid method for transforming OWL 2 ontology to 
relational database allows meeting contrasting 
requirements of preserving all ontology information 
and having a meaningful database schema 
corresponding to semantics of information systems. 
For this purpose, the ontology under transformation 
must meet ontology normalization and integrity rules 
taken from several sources and summarized in the 
paper. The method was analysed using a 
representative example – ontology model satisfying 
Vehicle ontology created according ontology 
normalisation and integrity rules. 

The method is able to cover all OWL 2 constructs 
by storing information about them in metatables. 
Metatables explicitly represent ontology constraints 
that may be used for ensuring integrity of a database 
or reasoning about its contents. Having knowledge 
about OWL 2 transitive subsumption relations 
between classes as well as transitive, symmetric, 
equivalent, inverse object properties and object 
property chains, it becomes possible to retrieve more 
meaningful data on the base of subsumption, 
transitivity, symmetry, equivalence, or inversion of 
relational tables. SQL query patterns are presented for 
retrieving semantics, equivalent to semantics of 
OWL 2 ontologies, from databases. 
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Figure 8. Results of SPARQL and SQL queries for Vehicle ontology (prefixes are omitted for brevity) 

The method is fully automatic and allows 
obtaining database schemas meaningful for developers 
of semantic applications of information systems. Our 
future research is related with two practical issues: 1) 
providing support for preparing existing ontologies for 
storing them in relational databases; 2) maintaining 
changes in database schema when ontology changes, 
as a part of the schema is domain-dependent and only 
metatables have a stable structure. Since changes of 
constraints are much faster than changes of domain 
concepts the method partially meets the requirement 
of schema stability but it is not able to avoid this 
problem on the whole. 
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