
103

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2012, Vol.41, No.2

Preserving Semantics of Owl 2 Ontologies in Relational Databases Using
Hybrid Approach

Ernestas Vyšniauskas, Lina Nemuraitė, Bronius Paradauskas

Kaunas University of Technology, Department of Information Systems
Studentų st. 50-308, LT-51368 Kaunas, Lithuania

e-mail: vernest@email.lt, lina.nemuraite@ktu.lt, bronius.paradauskas@ktu.lt

 http://dx.doi.org/10.5755/j01.itc.41.2.833

Abstract. The goal of the paper is to define requirements to OWL 2 ontologies, under which their semantics may
be preserved in a relational database, and to demonstrate that the hybrid approach for transforming OWL 2 ontologies
into relational databases possesses such capability. The hybrid approach maps part of ontology concepts to relational
database concepts on the base of their common semantics; ontology constructs having no direct equivalents in
databases are stored in metatables. The paper defines requirements for ontologies under transformation as ontology
normalization and integrity rules, and presents a set of SQL queries for extracting rich data, covering semantics of
source ontology, from the resulting database. The capability of the hybrid approach to preserve semantics of OWL 2
ontologies in relational databases is demonstrated with a representative example of a Vehicle ontology.

Keywords: Ontology; relational database; OWL 2; RDB; semantics preserving transformation; SPARQL; SQL.

1. Introduction

Storing ontologies in relational databases becomes
one of ordinary needs of Semantic Web and networked
enterprises where knowledge models are emerging in
various new fields e.g. [1, 2]. While a lot of methods
and approaches for transforming ontologies into
relational databases (and vice versa) are proposed, the
shared comprehension about suitable ways for linking
the two technologies still does not exist. One of
painful aspects of such transformations is preserving
semantics of ontology when it is stored in relational
database (RDB). Though storing Web Ontology
Language OWL 2 ontology [3, 4] in one vertical table
[5] or ontology metamodel based schema [6, 7]
guarantee preservation of ontological semantics,
obtained relational schemas are suitable for processing
ontologies only as they are meaningless from the
conceptual point of view; they do not avail advantages
of relational databases, and are not applicable for
applications of information systems. There are
arguments for having different storing models [8, 9]
reflecting common semantics of ontologies and
conceptual models familiar for domain experts and
application developers. We have proposed a reversible
OWL2ToRDB transformation pursuing a hybrid
approach according which part of ontology concepts is
directly mapped to relational schema on the base of
their common semantics; ontology constructs having
no direct equivalents in database schema are stored in
metadata tables [1].

Transformation is semantics preserving if the
meaning of the two models is the same, even though it
is represented in a different technical space or using a
different abstract syntax [11]. A reversible
transformation is semantics preserving transformation
[12] that does not lose semantics when it executes
from a source model to a target model and backwards
 from the obtained target model to the source model;
but the reverse may not be true if that transformation
executes from whatever model of the target type to a
model of the source type and backwards. It means that
the OWL2ToRDB transformation could be applied
starting from ontology and converting it into a
database. A converted ontology could be fully restored
from the database; however, it does not mean that the
reverse OWL2ToRDB transformation could be
applied for any database that was not created by a
direct one.

Transformation starting from any relational
database into ontology may be considered as a reverse
engineering problem [13]. Though such a
transformation may be reversible, semantics
preserving, and conforming to the semantics common
for ontologies and information systems (as described
in Section 3), it would start from considering different
constructs – tables, constraints and dependencies,
implemented via functionality of relational database
systems. Therefore, it would be a quite different task
relevant to exposing contents of existing databases on
the Semantic Web (e.g. [14, 15]). For developing new
databases, it is desirable to pre-establish their

E. Vyšniauskas, L. Nemuraitė, B. Paradauskas

104

connection to ontologies by creating the required
ontology and transforming it into relational database
via the proposed OWL2ToRDB approach.

We apply the following quality criteria to
OWL2ToRDB transformation: transformation
completeness – coverage of ontology constructs;
transformation reversibility – preservation of semantic
information; semantic suitability of database schema –
relevance of its conceptual data model to semantics of
problem domain; schema explicitness – declarative
versus procedural representation of ontology
constraints in a database; schema stability – schema is
stable if it does not change when ontology changes;
automation – whether transformation is fully
automatic or not.

In the current paper, we focus on requirements that
ontology under transformation should fulfil. For being
stored in a relational database without loss of
information, ontology should conform to rules of
ontology design. Also, this ontology should fulfil
quality criteria of conceptual models – it should be
syntactically correct, precise, and semantically
suitable description of a problem domain. Conceptual
model is precise if it unambiguously describes the
domain. Conceptual model is suitable if it 1) conforms
to sets of objects (instances) of the domain including
at least one complete instance of the model; 2) allows
representing all feasible states of the domain and
disallows representing infeasible ones. We illustrate
fulfilling of these requirements with Vehicle ontology
example and use it for validating completeness and
semantics preserving features of OWL2ToRDB
transformation.

The rest of the paper is organized as follows. In
section 2, the overview of related works is presented.
Section 3 describes requirements for ontologies
intended for storing in relational databases. Section 4
presents an ontology example; section 5 − a database
schema, obtained by OWL2ToRDB transformation,
along with SQL queries capable for obtaining the
same results as SPARQL queries to ontology. Section
6 gives conclusions and highlights the future work.

2. Related work

2.1. Ontology design methodologies

For representing ontology in a relational database,
ontology should meet certain quality requirements.
However, existing methods for transforming OWL
ontologies into relational databases rarely analyse
such requirements. First, ontology under
transformation should be well formed in accordance
with rules for ontology design. There are many
research works on methodologies for developing
ontologies e.g. [16−18] that mainly focus on processes
for developing ontologies but not on the essence of
domain conceptualization. Consequently, these
methods also give no knowledge useful for ensuring
quality of ontologies. Fundamentals for

conceptualizing the problem domain were the subject
of early research on ontologies e.g. [19] but such
research works are very generic. They had been
conducted much time before the Web Ontology
Language had emerged. More recently, quality and
principles of ontology design and their relation to
conceptual models were considered in [8, 20−25]
sources, which seem most relevant for our purpose.

The key requirement for quality of relational
databases is their normalisation. The normalisation of
information models for relational databases is widely
accepted and applied in practise of designing
databases and information systems. The analogous
normalisation for ontologies was discussed in [22, 23],
where goals for normalisation of ontology
implementations were described including 1) domain
correctness that means that the interpretation of the
classification inferred by the ontology reasoner
corresponds to the desirable model of the domain; 2)
modularity  that ontologies are constructed from
independently evolving, explicitly described
components. Ontologies assume conceptualisation of
the open and fractal world, which is often changing,
so such requirements are important for their reuse,
maintainability and evolution.

According to [22], ontology consists of primitive
concepts, composite concepts, roles, descriptions and
axioms. Primitive concepts that are not inferable from
other concepts are described by necessary conditions
expressed as Boolean combinations of other
primitives, descriptions and defined concepts, and
they can participate in subsumption hierarchy of other
primitive concepts. Composite (defined) concepts that
may be derived from other concepts are defined by
necessary and sufficient conditions. Roles (object
properties) relate concepts and can also participate in
subsumption hierarchy; they can be functional,
transitive, symmetric, or inverse to other roles.
Descriptions define constraints on role-concept pairs.
Axioms declare constraints on instances of concepts
and their combinations. The goal of normalization is
to constrain these constructs so that the ontology
meets the reusability, maintainability and evolvability
criteria.

The essence of Rector‘s proposal for normalization
[22] is that the primitive taxonomy of the domain
ontology should consist of disjoint homogeneous
trees. Principles proposed for ontology normalization
in [23, 24] were used in our research for formulating
requirements for ontologies intended to transforming
into relational databases.

For representing ontology in a relational database,
the ontology must satisfy certain integrity constraints
inherent for relational databases. Otherwise, the
structure of relational database should become too
complex, or semantic information could be lost
because it would be impossible to store it in the
obtained database schema. Ontology axioms define
such constraints but ontology development tools use
them for inference and do not support ensuring

Preserving Semantics of OWL 2 Ontologies in Relational Databases Using Hybrid Approach

105

integrity of ontology. Ouyang et al. [26] have
proposed to represent integrity constraints as OWL
axioms and to conduct manual improvement of
ontology before transforming it into RDB. However,
the set of constraints Ouyang et al. have attributed to
manual improvement of ontology is incomplete (e.g. it
lacks exact constraints; symmetric, asymmetric,
reflexive properties); from the other side, it includes
some constraints that are inferable by ontology
reasoners (e.g. transitive, inverse functional
properties). Though OWL2ToRDB transformation
principles are different from the ones proposed by
Ouyang et al. [26], we state similar integrity rules for
ontology under transformation on the base of OWL 2
specification [3], but we 1) use the reasoner for
reducing the manual work; 2) take into consideration
other required constraints that were not involved in
[26].

2.2. Common semantics of ontologies and
information systems

Semantics based mapping of ontology to database
concepts can provide better flexibility and practical
applicability of obtained relational database schema to
applications of information systems. The target
database schema should not only store ontology
concepts but also should allow efficient querying and
manipulating in Semantic Web or Enterprise
Information systems, integrating ontological and
relational data models etc. Consequently, it is
desirable that relational database schemas, obtained
from ontology, could represent semantics common to
ontological and conceptual data models.

The most fundamental understanding of
conceptual schemas was defined by Van Griethuysen
in [27] where they are understood as schemas of state
and behaviour of information systems. Conceptual
schema describes all storable states of problem
domain; all causes of changes of these states; how
these states are changing; what states are consistent,
and what are derivation rules for deriving new states
of problem domain.

A problem domain is described by object types and
their relation types that are classified to concepts.
Conceptual model includes collections of instances
that correspond to conceptual schema (a conceptual
schema does not include instances and this makes it
different from a conceptual model). A concept is an
abstract idea that generalizes individual instances
(objects). The concept has its intention (definition),
extension (a set of objects (instances)) and
representation (symbol) [28]. Entity type is a concept,
which instances are individual identifiable objects
(entities, e. g. locations, persons, goods). Concepts,
whose instances are links, are called relationship
types. A set of entity and relationship types,
representing states of a problem domain, is called a
conceptual schema of state.

Relational database schemas mostly are developed
on the base of conceptual data models, which usually

are presented in modelling languages (ER, ORM or
UML). Semantics of conceptual models should
involve (in UML terms) object types, relationships,
properties, instances and constraints of a problem
domain. This semantics is equivalent to semantics of
ontology and can be defined on the base of ontological
analysis provided by El-Ghalayini et al. [9] where
authors state that ontologies and conceptual models
have much in common. Ontology as well as a
conceptual model consists of concepts, properties,
individuals, and constraints (restrictions and axioms).
For semantic mapping between ontologies and
conceptual models, El-Ghalayini et al. propose rules
based on semantics of the Bunge-Wand-Weber
(BWW) ontology used for modelling information
systems:

Rule 1. An individual corresponds to an entity or
object in conceptual model.

Rule 2. Every named class maps to an entity type
under corresponding constraints.

Rule 3. Every data property maps to attribute of
the class along with constraints associated with this
property.

Rule 4. Every object property corresponds to
relationship in conceptual model. SubClassOf
relation in ontology can be mapped to a generalization
/specialization relation between super/sub-entity
types. In contrast with conceptual models, properties
are considered first-class elements in ontology and can
exist without specifying classes related by that
property. Such properties are senseless in databases
and conceptual models [9]. El-Ghalayini et al. propose
to map only properties that are related to classes
satisfying constraints in the ontology under
consideration.

Rule 5: Every property constraint used in ontology
class corresponds to a relationship constraint that
restricts the kind of the relation, number of entities or
entity type of this relationship.
ObjectIntersectionOf and ObjectUnionOf are
mapped to {and} and {or} constraints. An existential
and universal quantifier restrict the minimum
cardinality of the target entity type to 1 and its
maximum cardinality to n. Cardinality restricts the
number of objects of the target entity type that can
participate in a role of a relationship.

Rule 6: A composition relation corresponds to a
property relating a composite and its components
where the existence of the component depends on the
composite, i.e. any individual of a component-class,
which is connected to an individual of a whole-class,
must not be connected to any other individual. A
composition relation has no direct representation in
ontology but it can be defined by ontology constraints.

Our proposed OWL2ToRDB transformation [29,
30] supports this common semantics [9]. It maps
ontology classes to relational tables; individuals – to
rows; functional object properties (or having
cardinality restricted to 1) – to foreign keys; object
properties with cardinality greater than 1 – to tables

E. Vyšniauskas, L. Nemuraitė, B. Paradauskas

106

having foreign key relations from tables representing
classes of property domain and range; SubClassOf
relation is mapped to a foreign key from a parent table
to a child table, for which that foreign key, a primary
key of a parent table, is also a primary key; data
properties are mapped to columns; OWL data types –
to RDB data types. Such a relational schema satisfies
mappings of conceptual models to relational schemas
and corresponds to practised schemas of relational
databases well understandable for analysts and
application developers. Besides, that schema has
metatables for storing axioms and properties of
OWL 2 constructs – i.e. explicit (versus implicit [31])
representation of ontology constraints that may be
used for ensuring integrity of a database or reasoning
about its contents.

2.3. Retrieving ontology data from RDB

There are several possibilities for querying
ontologies from relational databases. Semantic query
language SPARQL [32, 33] is used for querying
ontologies on the Web. When ontology data are stored
in a relational database, queries may be executed in
several ways: 1) on ontology layer when ontology and
its instances are recovered from a database into
ontology processing environment; 2) both on ontology
model layer (for finding classes, properties and
restrictions), and relational database layer for finding
individuals and assertions; 3) on database layer when
ontology concepts and instances are retrieved via SQL
queries.

The first case is a traditional approach to querying
ontologies; it suffers from problems related with
handling large ontologies. The second case for
OWL2RDB method was investigated in [10]. For
searching concepts of ontology model, Pellet OWL
Reasoner was used here to manipulate the ontology
model restored from OWL 2 metaschema in relational
database. This recovered ontology model does not
contain information about individuals and assertions;
they are retrieved from the tables of relational schema
by executing SQL queries. The querying algorithm
firstly executes a part of SPARQL query responsible
of obtaining information about ontology concepts, and
then separately searches individuals and assertions by
using SQL query language. The experimental
investigation of the algorithm has shown its semantic

equivalence to traditional approach (i.e. querying
ontologies and instances entirely on ontology layer)
along with better capabilities for handling large
ontologies.

In the third case, when ontology concepts and
instances are retrieved exclusively via SQL queries,
querying depends on ontology storage model and the
mode of storing ontology. If obtained database stores
ontology and its instances together with inference
results, inferred values can be retrieved by SQL
queries in the same manner, as other data. If inferred
data are not stored, as in the case of OWL2ToRDB
transformation, SQL queries are needed for extracting
information about ontology concepts and axioms as
well as for finding instances.

Semantics preserving SPARQL to SQL translation
was investigated in [34] where a proof is given for
equivalence of SPARQL and SQL interpretations of
RDF data and their representation in relational
database. The same proof is valid for OWL ontologies
if we analyse them w.r.t. RDF-based semantics.
Regarding direct OWL 2 semantics [35],
transformation [34] is necessary but not sufficient as
OWL 2 gives additional sense beyond RDF. This
factor requires additional SQL queries for
understanding the inquired ontology and formulating
further queries allowing obtaining data, relevant to
source ontology, from RDB. We present such query
patterns in Section 5.

3. Requirements for ontology under
transformation

For ensuring that OWL2ToRDB transformation is
semantics preserving, source ontology should conform
to Ontology Normalization Rules (ONR1ONR6)
summarized from [9, 22, 23]. In [24], additional
advices are given how to ensure domain correctness.
We refer to these advices as to additional ontology
normalization rules (ONR7ONR10) (Table 1).

For ensuring consistency of ontology under
transformation, we supplement ontology
normalization rules with Ontology Integrity Rules
(OIR1OIR18), formulating them on the base of
OWL 2 specification [1] (Table 2).

Table 1. Ontology normalization rules

Rule Desciption

ONR1 No primitive domain concept should have more than one primitive parent.

ONR2 Primitive taxonomy of the domain ontology should comprise homogeneous disjoint trees, specialised by subsumption
based on the same or gradually narrower criteria.

ONR3 Self-standing concepts (types and roles) of primitive taxonomy should form open disjoint taxonomies where all the
primitive children of each primitive concept should be disjoint, but not necessarily covering the parent. Value types and
values should form closed taxonomies where the primitive values are disjoint, but primitive value types may be disjoint
or overlapping.

ONR4 Any named individual must be an instance of exactly one most specific self-standing concept; axioms should be defined
in such a way that inferences should never result in subsumption of one primitive concept by another, since this would

Preserving Semantics of OWL 2 Ontologies in Relational Databases Using Hybrid Approach

107

Rule Desciption
denormalise the ontology.

ONR5 Primitive concepts should be described by conjunctions of one primitive and zero or more descriptors; every primitive
open concept or value should be disjoint with its siblings; every set of primitive values of a concept should be covering.

ONR6 The primitive taxonomy of domain concepts should be untangled, i.e. if a primitive concept is disjoint from its siblings,
its children must also be disjoint, and if a primitive concept is part of a partition, its children must also form a partition.

ONR7 To avoid trivially satisfiable restrictions, an existential restriction someValuesFrom should supplement every universal
restriction allValuesFrom in the class or one of its superclasses.

ONR8 For ensuring desired inferences, classes should be defined.

ONR9 To avoid the open world assumption, closure restrictions should be defined for covering subclasses.

ONR10 To be able to represent ontology in relational database, each ObjectProperty or its parent must have exactly one
domain and exactly one range; the same holds for each DataProperty.

Table 2. Ontology integrity rules

Rule Desciption

OIR1 For each functional object property OPE and for each individual x, there can be at most one distinct individual y such
that x is connected by OPE to y. The same rule holds if ObjectMinCardinality restriction on OPE is less than 1 and
ObjectMaxCardinality equals 1.

OIR2 For each inverse functional object property OPE and for each individual x, there can be at most one distinct individual y
such that y is connected by OPE with x.

OIR3 For each object property OPE and for each individual x, there must be exactly one distinct individual y such that x is
connected by OPE to y if ObjectMinCardinality and ObjectMaxCardinality restriction on OPE is equal to 1, or
ObjectExactCardinality equals 1.

OIR4 For each object property OPE and for each individual x, there must be exactly n distinct individuals y such that x is
connected by OPE to y if ObjectExactCardinality restriction on OPE equals n.

OIR5 For each object property OPE and for each individual x, there must be at least n distinct individuals y such that x is
connected by OPE to y if ObjectMinCardinality equals n.

OIR6 For each object property OPE and for each individual x that is an instance of class C having existential class expression
ObjectSomeValuesFrom (OPE C) there must be at least one distinct individual y such that x is connected by OPE to
y.

OIR7 For each object property OPE and individual x, there must be at most n distinct individuals y such that x is connected by
OPE to y if ObjectMaxCardinality equals n.

OIR8 For each object property OPE and for each individual x, the value of OPE must equal individuals y1, …, yn that are
connected to x by class expressions ObjectHasValue (OPE y1), …. ,ObjectHasValue (OPE yn).

OIR9 For each functional data property DPE and for each individual x, there can be at most one distinct literal y such that x is
connected by DPE to y. The same rule holds if DataMinCardinality is less than 1 and DataMaxCardinality is
equal 1.

OIR10 For each data property DPE and for each individual x, there must be exactly one distinct literal y such that x is
connected by DPE to y if DataMinCardinality and DataMaxCardinality equal 1, or DataExactCardinality
equals 1.

OIR11 For each object property DPE and for each individual x, there must be exactly n distinct literals y such that x is
connected by DPE to y if DataExactCardinality equals n.

OIR12 For each data property DPE and for each individual x, there must be at least n distinct literals y such that x is
connected by DPE to y if DataMinCardinality equals n.

OIR13 For each data property DPE and for each individual x, there must be at most n distinct literals y such that x is connected
by DPE to y if DataMaxCardinality equals n.

OIR14 For each data property DPE and for each individual x that is an instance of class C having existential class expression
DataSomeValuesFrom (DPE C) there must be at least one distinct literal y such that x is connected by DPE to y.

OIR15 For each data property DPE and for each individual x, the value of DPE must equal literals y1, …, yn that are
connected to x by class expressions DataHasValue(DPE y1), …, DataHasValue (DPE yn).

OIR16 For ensuring ontology consistency and integrity rules, ontology must have enough number of instances – at least one
individual for each class and at least n individuals required for each integrity rule. For example, for ensuring
ObjectMinCardinality(5 OPE C) we will need to have 5 instances of class C.

OIR17 All inferable concepts and properties should not have values, properties or restrictions, and should not participate in
axioms because it could make ontology inconsistent.

OIR18 Inference should be made before transforming ontology for ensuring consistency of ontology and retrieving all relevant
data from the obtained database via SQL queries. Ontological data are inferred in accordance with symmetric, reflexive,
transitive, inverse, equivalent object properties, object property chains, object has value, and other axioms. Another set
of axioms and restrictions (e.g. functional properties, existential class expressions, etc) serve for ensuring consistency of
ontology.

E. Vyšniauskas, L. Nemuraitė, B. Paradauskas

108

4. An ontology example

Ontology example, constructed according
ONR1−ONR10 and OIR1−OIR18 rules, is represented
in Figure 1. For brevity, we do not use full UML
OWL 2 profile [36] as the mapping of OWL 2
constructs to UML is self-explaining. In Figure 1,
UML classes represent OWL 2 classes; associations
represent object properties; generalizations stand for
SubClassOf axioms; attributes represent data
properties; UML constraints correspond to OWL 2
restrictions; 0:0..1 cardinality corresponds to
functional property or inverse of inverse functional
object property (except settings when explicit
cardinality restrictions exist); cardinality of 1
represent exact (object or data) cardinality; 0:n
cardinality corresponds to non-functional property or
inverse of functional property. Vehicle ontology
involves at least one representative of main OWL 2
constructs (examples are given in Tables 1−2) thus it
can serve as a representative example for validating
OWL2RDB capability to preserve OWL 2 semantics
in a relational database. Types and examples of
OWL 2 constructs having impact on semantic OWL2
to RDB mapping (i. e. structure of schema tables) are

presented in Table 3; constructs having impact on
semantic querying are listed in Table 4.

For ensuring semantic suitability of ontology
model I, we must describe at least one interpretation
of ontology (a set of named individuals) satisfying all
its axioms and having at least one interpretation for
each construct of the ontology [35]. Such an
interpretation is also a model of ontology.

Ontology model may be constructed w.r.t.
principles of Formal Concept Analysis (FCA) [37]
applied in formal and relational contexts [38]. In FCA,
a formal context is defined as a triple C = (U, A, B),
where U is a universe (a finite set of objects), A is a
finite set of attributes, and B is a binary relation
between U and A. Concept structure of Vehicle
ontology is presented in Figure 2. Such a structure
comprises a complete lattice as every concept has its
greatest lower and smallest upper bound [37]. FCA
allows creating right taxonomies and validating
completeness of concept lattices but it does not
directly help to construct a set of individuals
comprising ontology model because it does not take
into account relations between objects.

Table 3. Ontology concepts having impact on semantic mapping

OWL 2 construct Example
SubClassOf SubclassOf(a:Organization a:Party)
ObjectInverseOf ObjectInverseOf(a:isAssembledFrom)
DisjointClasses DisjointClasses(a:Organization a:Person))
DisjointUnion DisjointUnion(a:Party(a:Organization a:Person))
ObjectUnionOf ObjectUnionOf(a:Organization a:Person)
ObjectHasSelf ObjectHasSelf(a:believesIn)
ObjectSomeValuesFrom ObjectSomeValuesFrom(a:hasInsurance a:Insurance)
ObjectAllValuesFrom ObjectAllValuesFrom(a:hasInsurance a:Insurance)
ObjectHasValue ObjectHasValue(a:isSuppliedBy a:Company3)
FunctionalObjectProperty FunctionalObjectProperty(a:hasFather)
InverseFunctionalObject Property InverseFunctionalObjectProperty(a:hasInsurance)
SubObjectPropertyOf SubObjectPropertyOf(a:isProducedBy a:hasMaker)
DisjointObjectProperties DisjointObjectProperties(a:hasMother a:hasFather)
ObjectMinCardinality ObjectMinCardinality(5 a:isAssembledFrom a:AutomobilePart))
ObjectMaxCardinality ObjectMaxCardinality(1 ObjectHasSelf(a:hasChief a:Assurer))
ObjectExactCardinality ObjectExactCardinality(1 a:insuredBy a:Assurer))
FunctionalDataProperty FunctionalDataProperty(a:birthDate xsd:dateTime)
SubDataPropertyOf SubDataPropertyOf(a:personCode a:partyCode).
DataMinCardinality DataMinCardinality(a:AutomobileModelVersionTitle

xsd:string)
DataMaxCardinality DataMaxCardinality(a:ownedTillDate xsd:dateTime)
DataExactCardinality DataExactCardinality(1 a:automobileModelTitle xsd:string))
DataHasValue DataHasValue(a:automobileCountryCode "LT"^^xsd:string)
HasKey HasKey(a:AutomobileModelVersion(a:isOfAutomobileModel)

(a:AutomobileModelVersionNumber))

Table 4. Ontology concepts having impact on semantic querying

OWL 2 construct Example
SubClassOf SubclassOf(a:Organization a:Party)
EquivalentClasses EquivalentClasses(a:Automobile a:Car)
ObjectInverseOf ObjectInverseOf(a:isAssembledFrom)
TransitiveObjectProperty TransitiveObjectProperty(a:consistsIn)
SymmetricObjectProperty SymmetricObjectProperty(a:isColleagueOf)
EquivalentObjectProperties EquivalentObjectProperties(a:isColleagueOf a:isPartnerOf)
EquivalentDataProperties EquivalentDataProperties(a:certificationNumber

a:assurerLicenceNumber)
SubObjectPropertyOf SubObjectPropertyOf(a:isProducedBy a:hasMaker).
SubDataPropertyOf SubDataPropertyOf(a:companyCode a:partyCode).
ObjectPropertyChain SubObjectPropertyOf(ObjectPropertyChain(a:isInsuredBy

a:isEmployedBy) a:isVerifiedBy)
HasKey HasKey(a:AutomobileModelVersion(a:isOfAutomobileModel)

(a:AutomobileModelVersionNumber))

Preserving Semantics of OWL 2 Ontologies in Relational Databases Using Hybrid Approach

109

Figure 1. Vehicle ontology represented by UML class diagram (annotations are not visualized due to space limits)

A relational context is defined as a pair R = (U, r),
where r is a binary relation in U and describes links
between objects of U. In [38], the formal proof is
given that C is a corresponding formal context of
relational context R, if B is such that for any x, y  U,
ay  A  xBay if r(x, y). Further, Jiang et al. [38]
introduce reflexive, transitive and symmetric
relations r.

Analysis of a relational context can help to ensure
the partial order w.r.t. functional dependencies and
identify a number of individuals required for having a
complete set of them comprising ontology model.
Concept hierarchy extended with functional
dependencies of Vehicle ontology is represented in
Figure 3 (note that UML diagram of Vehicle ontology
in Figure 1 also reflects ordering based both on
SubClassOf relation and functional object
properties). One object is required for representing
each most specific concept in SubClassOf hierarchy
if all siblings in that hierarchy are disjoint and

covering their parents; open disjoint hierarchies
require one object for each concept. Bijective
functional dependencies between two concepts require
one object for each concept; functional dependencies
(i.e. FunctionalObjectProperty or Inverse
of Inverse Functional Object Property)
require two objects for a domain concept and one
object for a range to analyse cases when the relation
exists and when it does not.

For representing reflexive, irreflexive, symmetric,
and assymetric relations between objects, we need
two objects for representing one concept from the
corresponding formal context, and three objects for
transitive relations; constraints on a number of objects
participating in relations also should be taken into
account. One value or value object is required for each
value from closed disjoint value sets. The number of
required objects may be reduced as the same object
can (or even must) participate in several relations if
this participation is not forbidden by axioms and does
not cause inconssistency of ontology.

E. Vyšniauskas, L. Nemuraitė, B. Paradauskas

110

Figure 2. Concept lattice of the Vehicle ontology

Figure 3. Concept structure of the Vehicle ontology ordered w.r.t. SubclassOf and functional dependencies

Following these principles, the set of 42 objects for
the Vehicle ontology was identified allowing us to
define a partial order w.r.t. SubClassOf relation and
functional dependencies on a set of objects of the
Vehicle domain. Note that in Figures 2 and 3, only
those attributes (from Figure 1), which correspond to
essential characteristics and determine existence of
objects, were used. The set of these 42 individuals is a
model I satisfying the Vehicle ontology O (this was

verified by HermiT reasoner in Protégé) and it is
suitable for validating semantics preserving properties
of OWL2ToRDB transformation.

5. Representing and querying ontology in
database

Relational database schema obtained from Vehicle
ontology by applying OWL2ToRDB transformation,

Preserving Semantics of OWL 2 Ontologies in Relational Databases Using Hybrid Approach

111

implemented in Protégé plug-in, is presented in
Figure 4. The overall transformation and metaschema
are described in detail in [29, 30]; here we concentrate
on retrieving the semantics of ontology when it is
stored in a database.

Querying ontology axioms is required for knowing
how to retrieve additional, richer data that ontology
contains beyond those stored in relational tables. For
example, we can find instances of equivalent classes,
values of inverse or other inferable object properties
etc.

For querying transitive relations, equivalent
recursive SQL queries are needed while queries of
symmetric, equivalent and inverse relations are much
simpler. In the hybrid method for storing ontologies in
a database method, transitive subsumption relations
between classes and properties are discovered by SQL
queries on metatables. A special attention is needed
for querying OWL 2 transitive, symmetric, equivalent,
inverse properties and object property chains.

Transitivity, symmetry, equivalence, or inversion
of relational table records is not supported by native

functionality of relational databases. For example, the
transitive closure of the relation consistsOf (Figure 1)
is a relation that contains all automobile part pairs (i,
j) such that j is direct or indirect part of i. The previous
SQL standard, SQL’92, did not support computation
of transitive closure; therefore, relational databases
were not suitable for using them for storing
knowledge data. Current SQL standard, SQL’99
supports iterative or recursive SQL queries and allows
to compute transitive closure.

SPARQL queries for graph patterns presented in
Figure 5 would find subclasses (Q1) and
subproperties; instances by types (Q2), supertypes
(Q3) and key values (Q4); annotations, e.g. comments
(Q5), labels (Q6); property values by properties (Q7)
and subproperties; property paths (Q8), inverse
properties (Q9); object property chains (Q10);
equivalent (Q11), transitive (Q12) and symmetric
(Q13) properties. Answers to these queries
(Q1a−Q13a) are given in Figure 8.

Figure 4. Relational database schema for Vehicle ontology

E. Vyšniauskas, L. Nemuraitė, B. Paradauskas

112

Figure 5. SPARQL queries for graph patterns of Vehicle ontology

More complex SPARQL queries may be
formulated from graph patterns, obtained by queries in
Figure 5, by using SPARQL conjunction, OPTIONAL,
UNION, FILTER constructs [32] or more advanced
features of SPARQL 1.1 [33]. FILTER expressions
may include IRIs, variables, literals, constants, logical
connectives (⌐, ˄, ˅), inequality symbols (<, ≤, >, ≥),
the equality symbol (=), and other features.

For querying ontology from database and
retrieving all semantics obtainable by SPARQL, we
should know structure of ontology. Therefore, first we
should extract ontology constructs. SQL queries
providing information about ontology from
metatables, should find all classes; subclass – class
pairs; object properties, domains and ranges; inverse
object properties, their domains and ranges; equivalent
object and data properties, their domains and ranges;
properties of properties − symmetric, reflexive and

transitive object properties, sub object properties and
sub data properties; keys and object property chains
(e.g. in Figure 6). This knowledge should be used for
formulating queries allowing finding rich information
equivalent to source ontology.

SQL queries on metatables are simple ones; some
examples for finding transitive (SM1) and inverse
(SM2) object properties along with
OWLObjectProperties metatable and results of
these queries (SM1a, SM2a) are presented in Figure 6.

SQL queries, retrieving ontology data from
relational database, are presented in Figure 7. They
provide results S1a−S13a equivalent to SPARQL
queries Q1a−Q13a (Figure 8) and may be applied as
query patterns for constructing SQL queries about
ontologies of other domains.

Figure 6. Example of SQL queries on metatable OWLObjectProperties (more metatables are presented in [29])

Preserving Semantics of OWL 2 Ontologies in Relational Databases Using Hybrid Approach

113

Figure 7. SQL queries for retrieving Vehicle ontology data from relational database

6. Conclusions and future works

Analysis provided in the paper has shown that the
hybrid method for transforming OWL 2 ontology to
relational database allows meeting contrasting
requirements of preserving all ontology information
and having a meaningful database schema
corresponding to semantics of information systems.
For this purpose, the ontology under transformation
must meet ontology normalization and integrity rules
taken from several sources and summarized in the
paper. The method was analysed using a
representative example – ontology model satisfying
Vehicle ontology created according ontology
normalisation and integrity rules.

The method is able to cover all OWL 2 constructs
by storing information about them in metatables.
Metatables explicitly represent ontology constraints
that may be used for ensuring integrity of a database
or reasoning about its contents. Having knowledge
about OWL 2 transitive subsumption relations
between classes as well as transitive, symmetric,
equivalent, inverse object properties and object
property chains, it becomes possible to retrieve more
meaningful data on the base of subsumption,
transitivity, symmetry, equivalence, or inversion of
relational tables. SQL query patterns are presented for
retrieving semantics, equivalent to semantics of
OWL 2 ontologies, from databases.

E. Vyšniauskas, L. Nemuraitė, B. Paradauskas

114

Figure 8. Results of SPARQL and SQL queries for Vehicle ontology (prefixes are omitted for brevity)

The method is fully automatic and allows
obtaining database schemas meaningful for developers
of semantic applications of information systems. Our
future research is related with two practical issues: 1)
providing support for preparing existing ontologies for
storing them in relational databases; 2) maintaining
changes in database schema when ontology changes,
as a part of the schema is domain-dependent and only
metatables have a stable structure. Since changes of
constraints are much faster than changes of domain
concepts the method partially meets the requirement
of schema stability but it is not able to avoid this
problem on the whole.

References

[1] A. Morkevičius, S. Gudas. Enterprise Knowledge
Based Software Requirements Elicitation. In:
Information Technology and Control, 40(3), 2011,
181−190.

[2] A. Sasa, O. Vasilecas. Ontology based support for
Complex Events. In: Electronika ir Elektrotechnika, 7,
2011, 83−88.

[3] B. Motik, P.F. Patel-Schneider, B. Parsia. OWL 2
Web Ontology Language Structural Specification and
Functional-Style Syntax. W3C Proposed Recommen-
dation 22 September 2009. Available from: http://
www.w3.org/TR/2009/PR-owl2-syntax-20090922.
[Accessed 10 Jan 2011].

[4] C. Golbreich, E.K. Wallace, P.F. Patel-Schneider.
OWL 2 Web Ontology Language New Features and
Rationale. W3C Proposed Recommendation, 2009,
Available from: http://www.w3.org/TR/2009/PR-
owl2-new-features-20090922 [Accessed 11 Jan 2011].

[5] R. Agrawal, A. Somani, Y. Xu. Storage and querying
of e-commerce data. In: Proceedings of the 27th
International Conference on Very Large Databases
(VLDB’01), Sep 11−14, 2001, Roma, Italy. Roma,
Italy: Morgan Kaufmann Publishers, 2001, 149−158.

[6] J. Zhou, L. Ma, Q. Liu, L. Zhang, Y. Yu, Y. Pan.
Minerva: A Scalable OWL Ontology Storage and
Inference System. In: The Semantic Web – ASWC
2006, LNCS 4185, 2006, 429443.

[7] J. Lu, L. Ma, L. Zhang, J.S. Brunner, C. Wang,
Y. Pan, Y. Yu. SOR: a practical system for ontology
storage, reasoning and search. In: Proceedings of the
33rd International Conference on Very Large Data
Bases, Vienna, Austria, 2007, 1402–1405.

[8] B. Motik, A. Maedche, R. Volz. Ontology Repre-
sentation and Querying for Realizing Semantics-
Driven Applications. In: G. Stamou, S. Kollias (Eds.):
Multimedia Content and the Semantic Web: Methods,
Standards and Tools, John Wiley & Sons, Ltd,
Chichester, UK, 2005, 45−73.

[9] H. El-Ghalavini, M. Odeh, R. McClatchey,
T. Solomonides. Reverse Engineering Ontology to
Conceptual Data Models. In: M.H. Hamza (Ed.):
IASTED International Conference on Databases and
Applications, part of the 23rd Multi-Conference on

Preserving Semantics of OWL 2 Ontologies in Relational Databases Using Hybrid Approach

115

Applied Informatics, Innsbruck, Austria, February 14-
16, 2005. IASTED/ACTA Press, 2005, 222227.

[10] E. Vyšniauskas, L. Nemuraitė, A. Šukys. A hybrid
approach for relating OWL 2 ontologies and relational
databases. In: P. Forbrig, H. Gunther (Eds.): Perspek-
tives in Business Informatics Research. Proceedings of
the 9th international conference, BIR 2010, Rostock,
Germany, September 29 - October 1, 2010. Berlin-
Heidelberg-New York, Springer, 2010, 86–101.

[11] M. Biehl. Literature Study on Model Transformations.
Technical Report, Royal Institute of Technology,
ISRN/KTH/MMK/R-10/07-SE, Stockholm, Sweden,
July 2010.

[12] J.L. Hainaut, C. Tonneau, M. Joris, M. Chandelon.
Transformation-based Database Reverse Engineering.
In: Proceedings of the 12th International Conference
on the Entity-Relationship Approach, LNCS 823,
Springer-Verlag, 1993, pp. 364–375.

[13] B. Paradauskas, A. Laurikaitis. Extracting concep-
tual data specifications from legacy information
systems. In: Electronika ir Elektrotechnika, 2011,
1(107), 46–50.

[14] R. Ghawi, N. Cullot. Database-to-Ontology Mapping
Generation for Semantic Interoperability. In: VDBL’07
conference, VLDB Endowment ACM, 2007, 1–8.

[15] M.E. Saleh. Semantic-Based Query in Relational
Database Using Ontology. In: Canadian Journal on
Data, Information and Knowledge Engineering, 2(1),
January 2011, 1−16.

[16] M. Fernandez, A. Gomez-Perez, N. Jurist.
METHONTOLOGY: From Ontological Art Towards
Ontological Engineering. AAAI Technical Report SS-
97-06, 1997, AAAI, 33−40.

[17] O. Corcho, M. Fernandez-Lopez, A. Gomez-Perez.
Methodologies, tools and languages for building
ontologies. Where is their meeting point? In: Data &
Knowledge Engineering, 46, 2003, 41–64.

[18] A. De Nicola, M. Missikoff, R. Navigli. A software
engineering approach to ontology building. In:
Information Systems, 34(2), 2009, 258–275.

[19] T.R. Gruber. Toward Principles for the Design of
Ontologies Used for Knowledge Sharing. In:
International Journal Human-Computer Studies, 43,
1993, 907–928.

[20] N. Guarino, C. Welty. Towards a methodology for
ontology based model engineering. In: ECOOP-2000
Workshop on Model Engineering, Cannes, France,
2000.

[21] G. Guizzardi, G. Wagner, N. Guarino, M. Sinderen.
An Ontologically Well-Founded Profile for UML
Conceptual Models. In: A. Person and J. Stirna (Eds.):
CAISE 2004, LNCS 3084, 2004, 112–126.

[22] A.L. Rector. Normalisation of ontology implementa-
tions: Towards modularity, re-use, and maintainability.
In: Proceedings Workshop on Ontologies for Multi-
agent Systems (OMAS) in conjunction with European
Knowledge Acquisition Workshop, 2002, 1–16.

[23] A.L. Rector. Modularisation of domain ontologies
implemented in description logics and related forma-
lisms including owl. In: J. Genari (Ed.): Proceedings
of the 2nd International Conference on Knowledge
Capture K−CAP 03, ACM, 2003, 121–128.

[24] A.L. Rector, N. Drummond, M. Horridge,
J. Rogers, H. Knublauch, R. Stevens, H. Wang,
C. Wroe. OWL Pizzas: Practical Experience of
Teaching OWL-DL: Common Errors & Common
Patterns. In: Engineering Knowledge in the Age of the
Semantic Web, LNCS 3257, 2004, 63–81.

[25] OMG. Information Management Metamodel (IMM)
Specification. OMG document: ad/2011-05-06, 2011.

[26] D. Ouyang, X. Cui, Y. Ye. Mapping integrity
constraint ontology to relational databases. In: The
Journal of China Universities of Posts and
Telecommunications, 17(6), December 2010, 113–121.

[27] J.J. Van Griethuysen. Concepts and Terminology for
the Conceptual Schema and the Information Base.
Publication Number ISO/TC97/SC5 – N 695, New
York: ANSI, 1982.

[28] J. Martin, J. Odell. Object-Oriented Methods: A
Foundation. Prentice-Hall, 2004.

[29] E. Vyšniauskas, L. Nemuraitė, R. Butleris,
B. Paradauskas. Reversible Lossless Transformation
from OWL 2 Ontologies into Relational Databases. In:
Information Technology and Control 40(4), 2011,
293−306.

[30] E. Vyšniauskas, L. Nemuraitė, B. Paradauskas.
Hybrid Method for Storing and Querying Ontologies in
Databases. In: Elektronika ir Elektrotechnika, 9(115),
2011, 67−72.

[31] O. Vasilecas, D. Kalibatiene, G. Guizzardi. Towards
a Formal Method for the Transformation of Ontology
Axioms to Application Domain Rules. In: Information
Technology and Control 38(4), 2009, 271−282.

[32] W3C. SPARQL query language for RDF.
E. Prud’hommeaux, A. Seaborne (Eds.): W3C
Recommendation 15 January 2008.

[33] W3C. SPARQL 1.1 Query Language. S. Harris,
A. Seaborne (Eds.), W3C Working Draft 12 May
2011.

[34] A. Chebotko, S. Lu, F. Fotouhi. Semantics preserving
SPARQL-to-SQL translation. In: Data & Knowledge
Engineering, 68(10), 2009, 973−1000.

[35] W3C. OWL 2 Web Ontology Language Direct
Semantics. I. Horrocs, B. Parsia, U. Sattler (Eds.).
W3C Recommendation 27 October 2009.

[36] OMG, 2009. Ontology Definition Metamodel. Version
1.0. OMG Document Number: formal/2009-05-01,
2009.

[37] R. Wille. Formal Concept Analysis as Mathematical
Theory of Concepts and Concept Hierarchies. In
B. Ganter et al. (Eds.): Formal Concept Analysis,
LNCS 3626, 2005, 47−70.

[38] F. Jiang, Y. Meng, Y. Liu. Formal Concept Analysis
in Relational Contexts. In: Proceedings of the IEEE
International Conference of Granular Computing GRC
2008, 2008, 326−329.

Received November 2011.

