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Abstract. In this paper a new NP-complete problem, named as multivariate quadratic power (MQP) problem, is 
presented. This problem is formulated as a solution of multivariate quadratic power system of equations over the 
semigroup (monoid) Zn and is denoted by MQP(Zn), where n is a positive integer. Two sequential polynomial-time 
reductions from the known NP-complete multivariate quadratic (MQ) problem over the field Z2, i.e. MQ(Z2) to 
MQP(Zn), are constructed. It is proved that certain restricted MQP(Zn) problem over some subgroup of Zn is equivalent 
to MQ(Z2) problem. This allows us to prove that MQP(Zn) is NP-complete also. 

The MQP problem is related to matrix power function (MPF) which was used for construction of several 
cryptographic protocols. We expect that the NP-complete problem announced here could be used to create new 
candidate one-way functions (OWF) and to construct new cryptographic primitives.. 

Keywords: NP-complete problem; multivariate quadratic power problem; one-way function; cryptography. 

 

 

1. Introduction 

Despite the first unsuccessful attempt of Merkle 
and Hellman [9] to construct a public key 
cryptosystem whose security would be based on 
solution of an NP-complete problem the significant 
interest to apply these problems in cryptography 
remains so far. For example, at Eurocrypt in 1996, 
Patarin proposed hidden fields equations (HFE) 
cryptosystem following the idea of the Matsumoto and 
Imai system. The HFE cryptosystem is designed with 
the aim to bind the security of cryptosystem with the 
complexity of solution of system of multivariate 
quadratic (MQ) equations [10]. This problem is called 
the MQ problem. Garey and Johnson [7] declared and 
Patarin and Goubin [12] proved that the MQ problem 
is NP-complete over any field. In 2004, Wolf and 
Preneel [17] have summarized main results on HFE 
cryptosystems achieved up to this time. The 
investigation in this direction is continuing so far. 

We think that cryptographic application of existing 
NP-complete problems and search of new ones 
suitable for cryptographic applications is a promising 
research trend. The confirmation of this attitude can be 
found in recent results of Shor [16]. Traditional 
cryptography based on prime factorization and 
discrete logarithm problem (DLP) is vulnerable to 
quantum cryptanalytic algorithms. The same is valid 

also for DLP in elliptic curves. As it is known, these 
problems are not NP-complete. But at the same time 
so far there are not known quantum cryptanalytic 
algorithms solving NP-complete problems in 
polynomial time. 

To the contrary of DLP or integer factorization 
problems, the sound representatives of NP-complete 
problems such as MQ problems are defined over small 
fields. This means that arithmetic operations in these 
fields are performed avoiding time and space 
consuming arithmetic operations with large integers 
and hence can be efficiently implemented in 
computational restricted environments. 

In this paper we introduce a new problem, we 
named as multivariate quadratic power (MQP) 
problem, which is represented by the system of MQP 
equations over multiplicative platform semigroup of 
integers conventionally denoted by Zn={0, 1, …, n-1} 
where n is a positive integer. We denote the MQP 
problem over this semigroup by MQP(Zn) problem. 
We construct two sequential polynomial-time 
reductions from known NP-complete MQ problem 
over the field Zn={0,1}, denoted by MQ(Z2), to the 
MQP(Zn) problem. Hence we prove that MQP(Zn) is 
NP-complete as well. 

The MQP(Zn) problem is related with so-called 
matrix power function (MPF) which is reckoned as a 
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candidate one-way function (OWF) and firstly was 
introduced for the symmetric block cipher 
construction [14]. The cryptographic primitives based 
on the MPF represent so-called non-commuting 
cryptography [10]. Non-commuting cryptography is 
based on hard problems of non-commuting algebraic 
structures and is some alternative to classical 
cryptography based on commuting algebraic 
structures and number theory. One attractive feature of 
non-commuting cryptography is that the realization of 
these algorithms does not require arithmetic 
operations with big integers which are time and space 
consuming. Together with key agreement protocol 
[15], some attempts were commited to create more 
advanced protocols such as e. signature using MPF. 
Some preliminary results on creating suitable 
algebraic structures can be found in [13]. If NP-
completeness of the MQP(Zn) problem will be proved, 
then the NP-completeness of MPF will be proved 
either. Then the protocols based on MPF will be 
proved to have provably secure property. Recall that 
informally cryptographic protocol is said to be 
provably secure if its security relies on the known 
(recognized) hard problem. 

In the second section, the MQ(Z2) and MQP(Zn) 
problems are introduced and defined. 

In Section 3, it is proved that the MQP(Zn) 
problem is NP-complete using two sequential 
polynomial-time reductions. 

In Section 4, discussions concerning construction 
of new candidate one-way function (OWF) are 
presented. 

2. Preliminaries 

Let Zn={0, 1…, n-1} be a finite ring of integers, 
where n is a positive integer and where the 
multiplication and addition are performed modulo n. 
These operations are associative and commuting and 
we will take it in mind below by default. Since we are 
not using the addition operation, we interpret the ring 
Zn as a multiplicative monoid with trivial ideal, 
consisting of zero element. 

It is well known that if n is prime, then Zn is a 
field. We use the field Z2={0,1} to define the 
multivariate quadratic (MQ) problem over this field, 
i.e. MQ(Z2). This problem is associated with the 
system of M equations and N variables and 
conventionally (e.g. see Patarin and Goubin [12]) is 
given as 

�
'(' Nji1

 aijkxixj � �
�

N

i 1

ljkxi = dk, (1 ��k ` M)(2.1) 

where aijk, lik and dk are binary constants and xi, xj are 
unknown binary variables in Z2. According to 
convention, aijkxixj and likxi are bilinear and linear 
terms of equations, respectively. Notice that if aijk=0 
or lik=0, then aijkxixj=0 or likxi=0. The bilinear and 

linear monomials are xixj and xi, respectively. For 
further considerations, we assume that linear terms 
and monomials are the special case of bilinear terms 
and monomials, when one of the variables assigns 
value 1. Hence we can deal with bilinear terms only. 
Since aijk is a constant and xi, xj are variables then 
conventionally the general bilinear term aijkxixj 
corresponds to the function defined on the domain set 
Z2 × Z2. But to perform a reduction from the MQ 
problem to the MQP problem we interpret this bilinear 
term as a function of three arguments (the argument 
aijk is added) defined on the domain set Z2 × Z2 × Z2. 

For better introduction to the MQP problem, 
formally we interpret it as a symbolic rewriting of 
every equation of MQ(Z2) system in a multiplicative 
form. This means that we rewrite every equation of 
system (2.1) by replacing the addition operation �  
with multiplication · and multiplication of constants 
by monomials by powering of constants by 
monomials.  Then by renaming aijk, lik, xi and dk by cijk, 
tik, yi and ek, respectively, we obtain the following 
MQP system of M equations and N variables 

k

N

i
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ik

Nji
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�'(' 11
, (1 ��k ` M). (2.2) 

Let us remind that obtained system (2.2) is only 
symbolic rewriting of the MQ(Z2) system (2.1) 
without defining the domains of constants and 
variables and ranges of terms yet. But nevertheless 
this allows us to point out the following 
correspondences. In analogy with MQ(Z2) system, we 
name the term ji yy

ijkc as bilinear power term and iy
ikt  

as linear power term being a special case of the 
former. The bilinear and linear power monomials of 
the MQP system are expressed as yiyj and yi 
respectively. 

It is well known that Zn contains trivial ideal (zero 
element) and zero dividers. 

Definition 2.1. If ab=0 and both a and b are in Zn 
and not equal to zero, then either a or b is a zero 
divider in Zn. 

For example, if n=pq and both p and q are primes, 
then the ring Zn consists of two sets of zero dividers 
Dp={p, 2p…, (q-1)p} and Dq={q, 2q…, (p-1)q}. By 
direct observation we see that if a�Dp and b�Dq, then 
a and b satisfy the condition of Definition 2.1 and 
hence are zero dividers. 

If some of cijk=0 and/or tik=0, then ek=0 and we say 
that the corresponding equation degenerates. The same 
is valid if some of cijk=0 and/or tik=0 are zero dividers. 

We exclude MQP problems with degenerated 
equations from our consideration since the set of 
values of variables satisfying either the single or the 
system of degenerated equations can be found 
effectively. Hence the presence of these equations 
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does not add the extra complexity of the MQP 
problem. 

 To avoid the degeneration of MQP equations, zero 
dividers and zero element should be removed from the 
set Zn. We reckon this problem being technical since 
we are considering cases when factorization of n is 
feasible and the prime factors of n are known. Hence 
we assume that we are able to construct effectively a 
non-degenerated MQP system of equations and hence 
formulate non-degenerate MQP problem in some 
subset Zn' of Zn where zero element and zero dividers 
are removed. 

For example if n=pq, then we can choose either 
Zn'= Zn\{0 U Dp} or Zn'= Zn\{0 U Dq}, where U is a 
union of sets. 

We prove two lemmas concerning the set Zn' but in 
the case when n=pq. The proof in the general case is 
performed in a very similar way but requires more 
manipulations. 

Lemma 2.2. The subset Zn' has no zero dividers. 
�Proof. Let a be a non-trivial zero divider in Zn'. 

Then there exists b
0 in Zn' such that ab=0 mod n. 
Then ab=kn=kpq for certain integer k. Since p, q are 
primes, then a and b should satisfy the following 
identities a=k1p (k1<q-1) and b=k2q (k2<p-1), where 
k1k2=k. But then b is divisible by q and is in Dq. Hence 
b) Zn'. The obtained contradiction proves the lemma. 
� 

Lemma 2.3. The subset Zn' is a multiplicative 
monoid. 

�Proof. According to the definition, 
multiplication operation is associative in Zn. The unity 
element is 1 both in Zn and Zn'. We must prove that 
the subset Zn' is closed, i.e. if a and b are in Zn' then 
ab is also in Zn'. Since q is prime then, gcd(a,q)=1 and 
gcd(b,q)=1. Using the extended euclidean algorithm 
we can find integers i1, i2, j1 and j2 such that 

i1a+i2q=1,j1b+j2q=1. 

By expressing i1a and j1b and taking their product 
we have  

i1aj1b=i1j1ab=1-i2q-j2q+i1j1q2. 

The right-hand side of the last equation is not 
divisible by q and hence i1j1ab is also not divisible by 
q. Then ab is also not divisible by q. This means that 
ab is also in Zn'. This proves the lemma. � 

We can define the MQP system of equations over 
the monoid Zn or submonoid Zn' by assigning the 
values of constants cijk, tik, and ek either in Zn or in Zn'. 
Hence we name both Zn and Zn' as platform 
(sub)monoids of the MQP system. Since power 
monomials are in exponents, then due to Oiler 
theorem, multiplication of variables must be 
performed by modulo �(n), where �( ) is Oiler’s 
totient function. Hence power monomials are defined 
over the monoid Z�(n). 

In our construction, we use the same monomials in 
both equations (2.1) and (2.2) and hence we denote 
them by the same symbols xixj. We denote the MQP 
system of equations over Zn by MQP(Zn) and over Zn' 
by MQP(Zn'). As it was pointed out above, MQP(Zn') 
is a non-degenerate system. Further we will consider 
non-degenerate MQP systems. Analogously to 
MQ(Z2) system, we define bilinear power terms  

ji yy
ijkc  of MQP(Zn') in the set Zn'× Z2 × Z2, where 

cijk � Zn' and ji yy
ijkc � Zn'. 

Analogously to the MQ(Z2) problem, we formulate 
the decisional and computational versions of the 
MQP(Zn') problem. Taking in mind that we renamed 
the variables {yi} in (2.2) by {xi} and that constants 
{cijk}, {tik} and {ek} are defined in Zn' we can 
formulate the following definitions. 

Definition 2.4. The computational MQP(Zn') 
problem is to find the unknown variable {xi} values 
when the constant {cijk}, {tik} and {ek} values are 
given. 

Definition 2.5. The decisional MQP(Zn') problem 
is to give YES answer to the question: are there any 
input variable {xi} binary values satisfying MQP(Zn') 
system, when the constant {cijk}, {tik} and {ek} values 
in Zn' are given. 

The aim of this paper is to prove that the 
decisional version of MQP(Zn') problem is NP-
complete. Since Zn' is a submonoid of Zn, then 
MQP(Zn') problem is a restriction of MQP(Zn) and 
hence MQP(Zn) is also NP-complete. 

3. The proof of NP-completeness 

NP-completeness will be proved by showing that 
the decisional version of MQP(Zn) problem is in NP 
class and by constructing two sequential polynomial-
time reductions from the general NP-complete 
MQ(Z2) problem to the MQP(Zn') problem. These 
reductions will satisfy the following conditions: 1) 
given any instance I1i of the MQ(Z2) problem, we 
construct the corresponding instance I3k of the 
MQP(Zn') problem using intermediate instance I2j of 
some intermediate problem defined below; 2) the 
answer of decision problem for any instance I1i is YES 
if and only if the answer for the corresponding 
instance I3k (I2j) is YES. 

The intermediate problem is the MQP(Z3
*) 

problem, where Z3
*={1, 2} is a multiplicative group of 

residues modulo 3. This intermediate problem is not 
required for the proof of NP-completeness of 
MQP(Zn') but it is introduced only for methodical 
interest. We will show that all instances I1 of MQ(Z2) 
problem have one-to-one correspondence with the 
instances I2 of MQP(Z3

*). Moreover we will show that 
they both are equivalent NP-complete problems. 
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By inspection of the system of equations (2.2) we 
see that the MQP(Zn') problem’s satisfiability 
verification is performed by the same number of 
multiplication and powering operations as of MQ(Z2) 
problem’s (2.1) satisfiability verification using the 
sum and multiplication operations respectively. Since 
it is done in polynomial time for the MQ(Z2) problem, 
the same is valid for the MQP(Zn') problem. Hence 
MQP(Zn') is in NP class.   

We denote the multiplication operations in Z3
* and 

Zn' by · and •, respectively. Recall that multiplication 
operation in Z3

* is performed by modulo 3 and 
multiplication operation in Zn' by modulo n. Constants 
and variables in MQ(Z2), MQP(Z3

*) and MQP(Zn') 
systems of equations we denote by triplets (aijk, xi, xj), 
(bijk, xi, xj) and (cijk, xi, xj) respectively. For 
convenience, we will consider the MQP(Z3

*) problem 
in the form of system (2.2) with constants bijk written 
instead of cijk. As it was mentioned above, to perform 
reductions we interpret the terms as a functions 	1, 	2 
and 	3 providing a mapping from domain set to the 
range set, and having the following form: 

	1 : Z2 × Z2 × Z2 # Z2, 	1(aijk, xi, xj)=aijk xixj, (3.1) 

	2 : Z3
*× Z2 × Z2  Z3

*, 	2(bijk, xi, xj)= ji xx
ijkb , (3.2) 

	3 : Zn'× Z2× Z2 # Zn', 	3(cijk, xi, xj)= ji xx
ijkc . (3.3) 

Notice that according to our construction the 
power monomial xixj in MQP(Z3

*) is computed using 
multiplication operation in Z2. The same holds true for 
MQP(Zn'). 

In this section we prove that any instance of 
MQ(Z2) problem is polynomial-time reducible to 
MQP(Zn') problem using two subsequent reductions 
�1 and �2 from MQ(Z2) to MQP(Z3

*) and from 
MQP(Z3

*) to MQP(Zn') problem, respectively.  
We express the polynomial-time reduction �1 in 

the following way 

�1 : MQ(Z2) * MQP(Z3
*). (3.4) 

This reduction will be defined if we transform the 
terms of MQ(Z2) system to the terms of MQP(Z3

*) 
system and transform � (sum) operation of terms in 
MQ(Z2) to · (multiplication) operation of terms in 
MQP(Z3

*). Then we transform every instance I1i of 
MQ(Z2) to the corresponding instance I2j of 
MQP(Z3

*). Recall that we are considering the only 
bilinear terms since the linear terms are the partial 
case of the formers. We must construct the following 
mappings: +1 for term domains and �1 for term ranges, 
respectively 

+1: Z2× Z2× Z2 # Z3
*× Z2× Z2. (3.5) 

�1 : Z2 # Z3
*. (3.6) 

We define the following mapping rule for �1 

�1(0)=1, �1(1)=2. (3.7) 

For example, let we have the bilinear term 
aijkxixj=xixj=1, when aijk=1. Then �1(aijkxixj)= ji xx2 . Let 

we have two terms a1=aijk xixj, a2=arsk xrsj in MQ(Z2) 
and corresponding two terms b1=�1(a1)= ji xx

ijkb , 

b2=�1(a2)= sr xx
rskb  in MQP(Z3

*).  Having defined 
binary sum operation � of terms in Z2 and binary 
multiplication operation · of power terms in Z3

* we 
characterize the reduction �1 in Table 1. 

Table 1. The reduction �1 characterization 

a1 a2 a=a1�a2 b1=�1(a1) b2=�1(a2) b=b1 · b2

0 0 0 1 1 1 
0 1 1 1 2 2 
1 0 1 2 1 2 
1 1 0 2 2 1 

Lemma 3.1. The function �1 is an isomorphism 
from the additive group in Z2 to the multiplicative 
group Z3

*. 
�Proof. From direct observation of Table 1, we 

can deduce that for any a1, a2 in Z2 and for a=a1�a2, 
there exists an unique b=b1·b2 in Z3

* such that 
�1(a1�a2)=�1(a)=b=b1·b2= �1(a1)·�1(a2). �  

All bilinear, linear terms and right-hand side 
constants of (2.1) can be transformed to corresponding 
bilinear, linear power terms and right-hand side 
constants of (2.2) using isomorphism �1.  Then every 
instance I1i of the MQ(Z2) problem represented by the 
system (2.1) can be by one-to-one transformation 
reduced to certain instance I2i of the MQP(Z3

*) 
problem represented by the system (2.2) and vice 
versa. 

Lemma 3.2. The answer of the decisional MQ(Z2) 
problem for every instance I1i is YES if and only if the 
answer of the decisional MQP(Z3

*) problem for 
corresponding instance I2j is YES. 

�Proof. Let we have an instance I1i defined by 
some collection of constants {aijk}, {lik},{dk}. Let 
there is a binary vector (x1

s, …, xN
s) satisfying MQ(Z2) 

system. Hence this vector provides the answer YES 
for decisional MQ(Z2) problem. For example, let us 
take a k-th equation in (2.1). If dk=0, then there must 
exist an even number of terms aijk xixj=xi

sxj
s such that 

xi
sxj

s=1. We can transform this equation to the 
corresponding equation of the MQP(Z3

*) system using 
the isomorphism �1, since it is operation preserving 
mapping. Hence we obtain the corresponding k-th 
equation with bilinear power terms 

�1(aijkxi
sxj

s)=
s

j
s

i xx
ijkb . Then according to Table 1, for all 

aijkxi
sxj

s=xi
sxj

s=1 bilinear power term 
s

j
s

i xx
ijkb = 

2�Z3
*={1,2}. Since the number of such multiplicative 

terms (which are equal to 2) is even, then their total 
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product is equal to 1, i.e. ek=1=dk+1, where dk and ek 
are the right-hand sides of (2.1) and (2.2) respectively. 
This consideration can be generalized to any equation 
of (2.1) and to any value dk� Z2={0,1}. Hence using 
the fact that �1 is isomorphism (i.e. operation 
preserving mapping) we can transform any instance of 
I1i with answer YES to the corresponding instance of 
I2j with the same answer YES. Notice also that the 
number of instances of I1 and I2 is the same. 

Let I2j be satisfied. Then applying unique inverse 
isomorphism �1

-1 we find that I1i is also satisfied. � 
Referencing to the above presented results, we 

proved the following theorem. 
Theorem 3.3. The MQP(Z3

*) problem is NP-
complete. 

We also proved that the MQ(Z2) problem is 
equivalent to the MQP(Z3

*) problem: the sets of 
instances with answer YES in MQ(Z2) and MQP(Z3

*) 
have the same cardinality. 

We define the second polynomial-time reduction 
�2 in the following way 

�2 : MQP(Z3
*) * MQP(Zn'). (3.8) 

Analogously to previous reduction, we define 
transformation of terms of the MQ(Z3

*) system to the 
terms of the MQP(Zn') system and transformation of · 
(multiplication) operation in the MQ(Z3

*) system to • 
(multiplication) operation in the MQP(Zn') system. We 
construct two functions +2 and �2 for transformation of 
the term domains and ranges  

+2 : Z3
*× Z2 × Z2 # Zn' × Z2 × Z2, (3.9) 

�2 : Z3
* # Zn'. (3.10) 

We see that unlike +1 and �1, functions +2 and �2 
perform mappings “in” Zn' but not “onto” Zn', if n>4. 
We define a subset Sn={1, n-1} in Zn', being a range 
set for +2 and �2 instead of Zn' in order to construct 
one-to-one functions +2 and �2. 

Lemma 3.4: The subset Sn with defined binary 
operation • is a subgroup of Zn'. 

�Proof. It is evident that 1 is neutral element both 
in Zn' and Sn. We prove that the set Sn is closed under 
multiplication operation • in Zn' and n-1 has its inverse 
in Sn. Hence it is sufficient to show that (n-1)2=1. 
Using the definition of multiplication operation • in 
Zn' we have: (n-1)2=(n-1)•(n-1)=(n-1)(n-1) modn = n2-
2n+1 modn = 1. � 

We define the functions +2 and �2 we define as 
one-to-one mappings substituting Zn' by subset Sn in 
(3.9) and (3.10). We define the following mapping 
rule for �2 

�2: Z3
* # Sn ; �2(1)=1, �2(2)=n-1. (3.11) 

In this way we can define the MQP problem over 
subgroup Sn, i.e. MQP(Sn), by choosing appropriate 
coefficients in (2.2). 

Analogously to the reduction �1, it is evident that 
the reduction �2 from the MQP(Z3*) to the MQP(Sn) 
is performed in polynomial time. Then having defined 
multiplication operations · and •, we characterize the 
reduction �2 in Table 2. 

Table 2. The reduction �2 characterization 

b1 b2 b=b1�b2 c1=�2(b1) c2=�2(b2) c=c1 � c2 

1 1 1 1 1 1 
1 2 2 1 n-1 n-1 
2 1 2 n-1 1 n-1 
2 2 1 n-1 n-1 1 

Lemma 3.5. The function �2 defined in (3.11) is 
isomorphic. 

�Proof. The proof is analogous to that of Lemma 
3.1 and follows from Table 2.� 

The composition of functions �1 and �2 
corresponding to reductions �1 and �2 is presented in 
Table 3. 

Table 3. The composition of functions �1 and �2 

Domain 
Z2 

Range  
�1(Z2)= Z3

* 
Range  

�2(Z3
*)=�2(�1(Z2))= Sn 

0 1 1 
1 2 n-1 

Since �2 is a one-to-one function, then analogously 
to previous reduction every instance I2i of the 
decisional MQP(Z3

*) problem can be transformed by 
one-to-one mapping to certain instance I3i of the 
decisional MQP(Sn) problem and vice versa. 

Lemma 3.6. The answer of the decisional 
MQP(Z3

*) problem for every instance I2i is YES if and 
only if the answer of the decisional MQP(Sn) problem 
for corresponding instance I3j is YES. 

�Proof. The proof is analogous to the proof of 
Lemma 3.2, taking into account that �2 is an 
isomorphism. � 

Hence we proved the following theorem. 
Theorem 3.7. The MQP(Sn) problem is NP-

complete. 
Since all variables {xi} take values from Z2={0,1} 

of the corresponding problems MQ(Z2), MQP(Z3
*) 

and the following inclusions Sn, Zn',Zn are taking 
place, we can make the following corollary. 

Corollary 3.8. The MQP(Zn') and MQP(Zn)
problems are NP-complete. 

4. Discussions 

The system of MQP equations (2.2) can be 
considered as some MQP function F with parameters 
{cijk}, {tik} and arguments {yi}. The value of function 
F is a vector (e1, …, eM). The direct value of F (i.e. of 
MQP) computation corresponds to the vector (e1, …,
eM) value computation, when the values of constants 
{cijk}, {tik} and arguments {yi} are given. The solution 
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of (2.2) with respect to {yi}, when {cijk}, {tik} and {ek} 
are given, is the inversion of the function F. In Section 
3 we showed that direct value computation of F is 
performed effectively (in polynomial time), but its 
inverse value computation corresponds to the NP-
complete problem. Putting aside the cardinal question 
either polynomial time problem is not equivalent to 
non-deterministic polynomial time problem (i.e. 
P
NP) or not and according to convention we can 
assume that MQP(Zn) is a candidate one-way function. 

Since MQP(Zn) and MQ(Z2) problems have many 
similarities the analysis of actual complexity of 
MQP(Zn) problem we perform by referencing to the 
complexity of MQ(Z2) problem which is more or less 
investigated so far. Grobner basis algorithm [2] and its 
modifications are classic methods to solve MQ 
problems over the fields, e.g. XL or XSL methods are 
effective if MQ system of equations is sparse and 
overdefined [3, 4]. The other recently appeared 
approach to solve MQ problems is a SAT-solvers 
technique using polynomial time reductions from a 
MQ problem to the SAT problem. In particular, in [1] 
it was shown that if the system of equations is sparse 
or over-defined, then the SAT-solvers technique works 
faster than brute-force exhaustive search. If the system 
is both sparse and over-defined, then this system can 
be solved quite effectively. In the case if the system is 
neither sparse nor over-defined, the efficiency of SAT-
solvers significantly decreases. In general, if we are 
considering general MQ(Z2) problem, we obtain long 
XOR terms which add a big number of disjunctors. 
This phenomena causes a difficulties for SAT-solvers 
[5]. 

Let n=p  be a prime number. Then Zp
*={1, 2, …, 

p-1} is a multiplicative group. Let us consider a 
computational version of the MQP(Zp

*) problem. 
Then for every MQP equation over Zp

* we can take a 
discrete logarithm with respect to the base of any 
generator in Zp

*. As a consequence, due to Fermat 
theorem we obtain a system of multivariate quadratic 
(MQ) equations defined over the ring Zp-1. Since the 
MQ problem over the field is NP-complete and is hard 
for certain class of instances, we can expect that MQ 
problem over the ring is no less hard due to the fact 
that not all elements in the ring have they inverses, i.e. 
division operation can’t be performed with some 
elements of the ring. This simply means that 
computations in the ring are more complex than in the 
field. For example, it is widely recognized that the 
solution of linear system of equations over the ring is 
more complex than over the field. 

Faugere and Joux used Grobner basis algorithms 
for algebraic cryptanalysis of hidden field equations 
(HFE) cryptosystems [6]. According to this analysis 
they concluded that solution of MQ(Z2) systems like 
(2.1) with the number of equations and variables more 
that 80 using  Grobner basis algorithms is hopeless. 

In our case, we have a monoid Zn' (Zn) instead of 
the field Z2. Since Zn' has no  generators, there is no 
polynomial-time transformation from MQP(Zn') 
system to some MQ system (the discrete logarithm 
operation cannot be applied). This means that known 
algorithms for solution of MQ problems cannot be 
applied as well. 

So far we do not know any algorithms being able 
to deal with MQP systems of equations and we have 
no imagination yet on how to try to solve them. We 
think it could be a matter of further investigations. 

Since MQP(Zn) problem is NP-complete, the 
further step should be to create a candidate one-way 
function (OWF) based on this problem being suitable 
for cryptographic applications. After that, the provable 
security property will be proved for existing protocols 
and the new ones could be created on this base. 

The effective realization of these computations is 
based on the fact that we use platform monoid Zn of 
low cardinality n. The cardinality n can be chosen as a 
product of two small primes pq, say n�{6, 10, 15, 21, 
...}. Then power and multiplication operations could 
be performed using lookup tables. The lookup table 
for multiplication operation consists of 20x20=400 
entries and for power operation of 20x12=240 entries 
when n=21. If we consider the MQP system (2.2) with 
80 equations and variables, then the number of look-
up power operations, multiplications and sum 
operations does not exceed 6500, 6500 and 3280, 
respectively. Hence according to the OWF definition 
the direct value computation can be performed quite 
effectively and considerably more effective than in the 
case of classical cryptographic methods based on 
arithmetic with large integers in high order cyclic 
groups or high characteristic rings and elliptic curve 
groups. 
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