
195

ISSN 1392–124X (print), ISSN 2335–884X (online) INFORMATION TECHNOLOGY AND CONTROL, 2015, T. 44, Nr. 2

A Provably Secure Three-Party Password Authenticated Key Exchange

Protocol without Using Server’s Public-Keys and Symmetric Cryptosystems

Fushan Wei1, 2, Jianfeng Ma1, Aijun Ge2, Guangsong Li2, Chuangui Ma2

1 School of Computer Science and Technology, Xidian University,

Xi'an, 710071, China

e-mail: weifs831020@163.com, jfma@mail.xidian.edu.cn

2 State Key Laboratory of Mathematical Engineering and Advanced Computing,

Zhengzhou 450002, China

e-mail: geaijun@163.com, lgsok@163.com, chuanguima@sina.com

 http://dx.doi.org/10.5755/j01.itc.44.2.8197

Abstract. Three-party password authenticated key exchange (3PAKE) protocols allow two clients to establish a

common secure session key via the help of an authentication server, in which each client only needs to share a single

password with the server. Many researchers pay attention to 3PAKE protocols since they are well suited for large-scale

communication in mobile environments. Recently, Farash et al. proposed an enhanced 3PAKE protocol without using

server’s public-keys and symmetric cryptosystems. They claimed that their protocol is secure against various attacks.

However, we found that Farash et al.’s protocol is vulnerable to partition attacks and off-line dictionary attacks.

Moreover, their protocol needs 5 rounds to work, so it is inefficient in terms of communication. To overcome these

shortcomings, we improve their protocol and propose a provably secure 3PAKE protocol, which is more efficient and

secure than other related protocols.

Keywords: three-party; password authenticated key exchange; partition attack; dictionary attack; provable

security.

1. Introduction

Password authenticated key exchange (PAKE)

protocols enables users, who are communicating over

an insecure network, to bootstrap a weak and low-

entropy shared secret (i.e. password) into a much

longer common session key. Users can easily

remember the password and don’t need to carry any

cryptographic devices. Due to their convenience and

simplicity, PAKE protocols are widely used in practice

and become the most popular authentication

mechanism in the network. PAKE protocols have been

extensively studied since the seminal work of Bellovin

and Merritt [1]. Until now, a great deal of PAKE

protocols have been proposed [2-15]. Most of them

are designed in the two-party “client-server” setting.

Although two-party PAKE (2PAKE) protocols are

very useful in real applications, they are not suitable

for large-scale client-to-client communication

environments. If a client wants to communicate with

n different clients using 2PAKE protocols, he has to

remember n different passwords. This is a heavy

burden for human beings. To solve the problem, three-

party PAKE (3PAKE) are developed [16, 17]. In a

3PAKE protocol, an authentication server mediates

between two clients and each client only needs to

share a password with the authentication server. Two

clients can establish a session with the help of the

authentication server. 3PAKE protocols suffer from

two types of new attacks which are not considered in

the two-party setting. The first one is the undetectable

on-line dictionary attack, whereby an adversary can

iteratively guess a password and verifies its guess

without being detected. The second one is the off-line

dictionary attack from an insider attacker. Suppose

two clients A, B and the server S execute a 3PAKE

protocol, a malicious client A may get B’s password

information from the execution in an off-line manner

if the 3PAKE protocol is not well designed. These

attacks make designing secure 3PAKE protocols a

non-trivial hard work.

In 2005, Abdalla et al. proposed a generic

construction of 3PAKE protocol from any secure

2PAKE protocol [18]. This is the first provably-secure

3PAKE protocol. However, Wang et al. found that

Abdalla et al.’s generic framework is vulnerable to

F. Wei, J. Ma, A. Ge, G. Li, C. Ma

196

undetectable on-line dictionary attacks [19]. In 2005,

Abdalla et al. also proposed an efficient 3PAKE

protocol and proved its security in the random oracle

model [20]. Unfortunately, their protocol still suffers

from the undetectable on-line dictionary attack.

Recently, Farash et al. proposed two 3PAKE protocols

based on Chebyshev chaotic maps [21, 22]. In order

to resist undetectable on-line dictionary attacks, some

researchers designed 3PAKE protocols using server’s

public-keys and symmetric cryptosystems [23-25].

However, the clients need to verify the validity the

server’s public key. This is very inconvenient for the

clients. In this paper, we pay attention to the 3PAKE

protocols that require neither server’s public-keys nor

symmetric cryptosystems.

In 2009, Huang proposed a 3PAKE protocol

without using server’s public-keys and symmetric

cryptosystems [26]. Unfortunately, Yoon et al. found

that Huang’s protocol is insecure against the

undetectable on-line dictionary attack and the off-line

dictionary attack [27]. Meanwhile, Wu et al. also

pointed out that Huang’s protocol is vulnerable to the

key compromise impersonation attack [28]. In 2010,

Lee et al. put forward two novel 3PAKE protocols

without using server’s public-keys [29]. In 2011,

Chang et al. proposed a communication-efficient

3PAKE protocol which requires neither the server’s

public-keys nor symmetric cryptosystems based on

Lee et al.’s protocol [30]. However, Wu et al.

demonstrated that Chang et al.’s protocol is insecure

against partition attacks, by which the adversary can

guess the correct password in an off-line manner [31].

Tso also showed that Chang et al.’s protocol is

vulnerable even to passive attackers [32]. He

presented two improved protocols to remedy the

security flaws of Chang et al.’s protocol. Recently,

Tallapally showed that Huang’s protocol [26] suffers

from the unknown key share attack [33]. To overcome

the shortcomings of Huang’s protocol, Tallapally also

proposed an enhanced 3PAKE protocol. However,

Farash et al. indicated that Tallapally’s protocol [33]

not only is vulnerable to the undetectable on-line

password guessing attack, but also is insecure against

the off-line password guessing attack [34]. They also

put forward an improved 3PAKE protocol to

overcome the security pitfalls of Tallapally’s protocol.

Surprisingly, we found that Farash et al.’s protocol

[34] still suffers from the same attack. In this paper,

we show that Farash et al.’s protocol is insecure

against the partition attack and the off-line dictionary

attack by an insider attacker. Moreover, the

communication cost of Farash et al.’s protocol is

expensive since their protocol needs 5 rounds to work.

To remedy these problems, we propose an improved

3PAKE protocol without using server’s public-keys

and symmetric cryptosystems. The proposed protocol

is provably secure in the random oracle model based

on the GDH assumption. Compared with other related

protocol, our proposed protocol not only achieves

stronger security but also has higher communication

efficiency.

The remainder of this paper is organized as

follows. In Section 2, we briefly review Farash et al.’s

3PAKE protocol. We demonstrate the vulnerabilities

of Farash et al.’s 3PAKE protocol in Section 3. In

Section 4, our improved protocol is described. The

security of our protocol is proven in the random oracle

model in Section 5. We compare the efficiency and

security features of our protocol with related protocols

in Section 6. We conclude our paper in Section 7.

2. Review of Farash et al.’s 3PAKE Protocol

In this section, we will briefly review Farash et

al.’s 3PAKE protocol [34]. For more details, refer to

[34].

2.1. Notations

Some notations used throughout this paper are

summarized in Table 1.

Table 1. Notations

Notation meaning

A,B Legitimate clients

S The authentication server

Apw Password shared between A and S

Bpw Password shared between B and S

p A large prime number

pZ The ring of integers modulo p

*

pZ The non-zero residues modulo p

q A large prime number with (1)q p

qG A multiplicative group of order q

g A generator of qG

()h A cryptographic hash function

 Exclusive OR

2.2. Protocol description

The detailed steps of Farash et al.’s 3PAKE

protocol, as shown in Fig. 1, are described as follows:

Round 1. The client A chooses
*

qx Z and

computes (, ,)x

A AR g h pw A B  . A then sends

(, ,)AA B R to S. Similarly, the client B also selects

*

qy Z and computes (, ,)y

B BR g h pw A B  , and

sends (, ,)BB A R to S.

Round 2. Upon receiving the messages (, ,)AA B R

and (, ,)BB A R from the client A and B respectively,

S obtains (, ,)x

A Ag R h pw A B  and

(, ,)y

B Bg R h pw A B  , then chooses a random

A Provably Secure Three-Party Password Authenticated Key Exchange Protocol without Using Server’s Public-Keys
and Symmetric Cryptosystems

197

number
*

qz Z , computes z

ST g , xz

SAK g and

yz

SBK g . Finally, S computes two

values (0, , , , ,)A A SAZ h A B S pw K and

(0, , , , ,)B B SBZ h A B S pw K , and sends (,)A SZ T and

(,)B SZ T to A and B, respectively.

Round 3. Upon receiving the message (,)A SZ T , A

computes x

AS SK T and verifies whether

(0, , , , ,)A ASh A B S pw K equals to
AZ or not. If it holds,

she computes (, , , , ,)A A AS SV h A B S pw K T and sends

AV to S. At the same time, upon receiving (,)B SZ T , B

also computes y

BS SK T and verifies whether

(0, , , , ,)B BSh A B S pw K equals to
BZ or not. If it

holds, she computes (, , , , ,)B B BS SV h A B S pw K T and

sends
BV to S.

Round 4. Upon receiving the messages
AV and

BV ,

S verifies if (, , , , ,)A A SA SV h A B S pw K T and

(, , , , ,)B B SB SV h A B S pw K T . If these equations hold,

S computes (1, , , , ,)A SB A SAX K h A B S pw K  and

(1, , , , ,)B SA B SBX K h A B S pw K  , and finally sends

AX and
BX to A and B, respectively.

Round 5. Upon receiving
AX , A computes

' (1, , , , ,)SB A A ASK X h A B S pw K  and the shared

secret '()x xyz

AB SBK K g  . Then A computes

(,)A ABS h K A and sends
AS to B. B also computes

' (1, , , , ,) SA B B BSK X h A B S pw K  and the shared

secret '() y xyz

AB SAK K g  . Then she computes

(,B)B ABS h K and sends
BS to A.

Verification Phase. Finally, A verifies the validity

of
AS and B also verifies the validity of

BS . If they are

valid, then A and B computes the session key
'(, , , , ,).AS SB ABSK h A B S K K K

User A Server S User B

(1) , , AA B R


(2) ,B SZ T


(1) , , BB A R


(2) ,A SZ T


'

'

*

' '

(, ,)

(, ,)

,

() , ()

(0, , ,)

(0, , ,)

, ,

A A A

B B B

z

q S

z z

SA A SB B

A A SA

B B SB

R R h pw A B

R R h pw A B

z Z T g

K R K R

Z h ID pw K

Z h ID pw K

ID A B S

 

 

 

 







(0, , ,)?

(, , ,)

x

AS S

A A AS

A A AS S

K T

Z h ID pw K

V h ID pw K T






(3) AV


(3) BV



*

(, ,)

q

x

A A

x Z

R g h pw A B



 

*

(, ,)

q

y

B B

y Z

R g h pw A B



 

(0, , ,)?

(, , ,)

y

BS S

B B BS

B B BS S

K T

Z h ID pw K

V h ID pw K T







(4) BX
(4) AX



(, , ,)?

(, , ,)?

(1, , ,)

(1, , ,)

A A SA S

B B SB S

A SB A SA

B SA B SB

V h ID pw K T

V h ID pw K T

X K h ID pw K

X K h ID pw K





 

 

'

'

(1, , ,)

()

(,)

SB A A AS

x xyz

AB SB

A AB

K X h ID pw K

K K g

S h K A

 

 



'

'

(1, , ,)

()

(,)

SA B B BS

y xyz

AB SA

B AB

K X h ID pw K

K K g

S h K B

 

 

(5) AS


(5) BS


'

(,)?

(, , ,)

B AB

AS SB AB

S h K B

SK h ID K K K




'

(,A)?

(, , ,)

A AB

SA BS AB

S h K

SK h ID K K K





Figure 1. Farash et al.’s 3PAKE protocol

F. Wei, J. Ma, A. Ge, G. Li, C. Ma

198

3. Attack on Farash et al.’s 3PAKE Protocol

In this section, we analyse Farash et al.’s 3PAKE

protocol and present two attacks to the protocol.

Firstly, we show that the protocol is vulnerable to a

partition attack by an outsider adversary. Secondly, we

point out that the protocol is still insecure against an

off-line dictionary attack performed by an insider

adversary.

3.1. Partition attack from an outside attacker

In this subsection, we present a partition attack to

Farash et al.’s 3PAKE protocol. Through the attack, an

outsider attacker can partition the password space into

feasible passwords and infeasible passwords by

simply eavesdropping the messages from a valid

session. Finally, the attacker is able to recover the

correct password from the intersection of the feasible

partition of the passwords for each session after

observing several valid sessions.

First note that the hash function h is not precisely

defined in Farash et al.’s 3PAKE protocol. From the

context, we assume
*:{0,1} .qh G The group

q pG Z is a multiplicative group of order q , which

means  is not an admissible operation in group qG .

The operation  does not satisfy the “Closure”

requirement of the group. To illustrate the partition

attack, we assume the attacker has eavesdropped

(, ,)x

A AR g h pw A B  from a valid session (
AX can

also be used to mount this attack). The adversary

wants to guess the password of the client A. Note that

although
x

qg G and (, ,)A qh pw A B G , A pR Z is

not necessarily in qG . The adversary can guess a

password *

Apw and compute * *(, ,)A AX R h pw A B  .

If the guessed password
*

Apw is correct, then
* xX g

will be an element of qG . However, if the guessed

password *

Apw is wrong, it is likely that
*

pX Z but

*

qX G . To test the membership of qG , we can raise

*X to the power q and check whether 1 is obtained.

Given a guessed password *

Apw , if the value
*

pX Z

but
*

qX G , we can determine that
*

Apw is an

infeasible password of the client A. We can rule out all

the infeasible passwords from the password space.

Roughly speaking, the adversary can rule out half of

the passwords through the messages obtained from

one valid session. In practice, the size of dictionary

space is about 40~502 . Therefore, the adversary can get

the correct password by mounting 40 ~ 50 partition

attacks.

To better understand the partition attack, we pre-

sent a simple example. Let 23q  , 2 1 47p q   .

We have pZ  {0, 1, 2… 46}. Let the subgroup qG be

generated by 2g  . Then we have qG  {1,2,3,4,6,7,8,

9,12,14,16,17,18,21,24,25,27,28,32,34,36,37,42}. For

simplicity, we assume the password space has 8

passwords. We randomly choose the output of the

hash function. Suppose we have

1 2

3 4

5 6

7 8

(, ,) 12; (, ,) 3;

(, ,) 7; (, ,) 16;

(, ,) 24; (, ,) 28;

(, ,) 34; (, ,) 21.

h pw A B h pw A B

h pw A B h pw A B

h pw A B h pw A B

h pw A B h pw A B

 

 

 

 

Without loss of generality, we assume A’s

password is
1pw .Now the adversary can perform the

partition attack as follows. Suppose (1) 15AR  is the

eavesdropped message in the first valid session. The

adversary computes (1) - (, ,)(i 1,2,..,8)A iR h pw A B 

and get (3,12,8,46,38,34,28,41). Since 46,38,41 qZ ,

the adversary can determine that
4pw ,

5pw and
8pw

are infeasible passwords for A and rules out these

passwords from the password space. Suppose

(2) 37AR  is the eavesdropped message in the

second valid session. Similarly, the adversary can

compute (2) - (, ,)(i 1,2,3,6,7)A iR h pw A B  and get

(25,34,30,9,3). The adversary can rule out the

password
3pw this time. Suppose (3) 26AR  is the

eavesdropped message in the third valid session. The

adversary computes (3) - (, ,)(i 1,2,6,7)A iR h pw A B 

and get (14,23,45,39). The adversary can determine

that the correct password of A is
1pw since

23,45,39 qZ .

We should note that the partition attack is valid no

matter how the hash function is defined. For instance,

if the hash function h is defined as
*:{0,1} ph Z ,

the partition attack can still work. The essential reason

to the partition attack is that the  operation (like the

 operation) is used to operate on elements in qG

although it is not an admissible operation in group qG .

3.2. Off-line dictionary attack from an insider

attacker

In this subsection, we show that a malicious client

can guess the password of an honest client through an

off-line dictionary attack as long as they execute a

valid session of Farash et al.’s 3PAKE protocol. We

assume the malicious client is A and the victim client

is B. The malicious client A performs the following

steps:

Step 1. The malicious client A randomly chooses
*

qx Z and computes

(, ,)x

A AR g h pw A B  . She then sends

(, ,)AA B R to S. Suppose the honest client B

sends the message (, ,)BB A R to S.

A Provably Secure Three-Party Password Authenticated Key Exchange Protocol without Using Server’s Public-Keys
and Symmetric Cryptosystems

199

Step 2. Upon receiving the message (,)A SZ T , the

malicious client A sends the message
AV to

the server S according to the description of

the protocol and also eavesdrops the message

(,)B SZ T generated by S.

Step 3. Upon receiving the message
AX from S,

the malicious client A first recovers '

SBK from

AX . Note that (0, , , , ,)B B SBZ h A B S pw K

and '

SB BSK K for a valid session. At

this time, the malicious client A can

guess a password *

Bpw and check whether

* '(0, , , , ,)B B SBZ h A B S pw K or not. If the

equation holds, then the guessed password is

the correct password of B; if the equation

does not hold, the malicious client A can

guess another password and verifies the

validity of the password iteratively until she

finds out the correct password of B.

4. Our Proposed Protocol

In this section, we propose an improved version of

Farash et al.’s protocol, which not only keeps the

merits of the original protocol but also overcomes the

security weaknesses described in the previous section.

To resist the partition attack, we replace the 

operation in Farash et al.’s protocol with the group

multiplication operation. We emphasize that the

hash function h is defined as
*:{0,1} qh G . To resist

the off-line dictionary attack, we let the server use

different random numbers in authentication and

session key generation. In order to reduce the

communication cost, the improved protocol can be

executed in three rounds with the cost of two modular

exponentiations on server’s side. Another hash

function *:{0,1} {0,1}kh  is also used in our

protocol, where k is the security parameter. Detailed

steps of the proposed protocol, as shown in Fig. 2, are

described as follows:

Round 1. The user A randomly chooses
*

qx Z

and computes (, ,)x

A AR g h pw A B . Then, she sends

(, ,)AA B R to S. Similarly, the user B also randomly

chooses
*

qy Z , and then computes

(, ,)y

B BR g h pw A B , and sends (, ,)BB A R to S.

Round 2. Upon receiving the messages (, ,)AA B R

and (, ,)BB A R from the client A and B respectively, S

obtains
' / (, ,) mod A A AR R h pw A B p and

' / (, ,) mod B B BR R h pw A B p . S also chooses two

random numbers *, qz r Z , then computes the

following values:

'

' '

'

1

1

; () =g ;

() =g ; () ;

() ;

(, , , ,);

(, , , ,);

(0, , , , ,);

(0, , , , ,);

z z xz

S SA A

z yz r xr

SB B SA A

r yr

SB B

A SB S A A SA

B SA S A B SB

A S A A SA

B S B B SB

T g K R

K R M R g

M R g

X M h ID T R pw K

X M h ID T R pw K

Z h ID T R X K

Z h ID T R X K

 

  

 









where , ,ID A B S . Finally, S sends (, ,)A A SZ X T and

(, ,)B B SZ X T to A and B, respectively.

Round 3. Upon receiving (, ,)A A SZ X T , A

computes x xz

AS SK T g  and verifies whether

(0, , , , ,)S A A ASh ID T R X K equals to
AZ or not. If it

holds, she recovers
' / (, , , ,)SB A S A A ASM X h ID T R pw K from

AX and

computes '()x xyr

AB SBK M g  . A accepts the session

and computes the session key
1(1, , ,)S ABSK h ID T K .

Finally, A computes
1(2, , , , ,)A S A A ASV h ID T R X K

and sends
BV to S for mutual authentication. Upon

receiving the message (, ,)B B SZ X T , B performs

similar steps as A does. For simplicity, we omit the

description of these steps.

Verification Phase. Upon receiving the messages

AV and
BV , S verifies the following equations

1(2, , , , ,)A S A A SAV h ID T R X K

1(2, , , , ,)B S B B SBV h ID T R X K

If these equations hold, S believes this session is

executed with two honest clients. Otherwise, the

authentication request comes from an on-line

impersonation attack by an adversary, and further

measures may be taken to deal with such attacks.

5. Security Proof

In this section, we prove the security of the

proposed scheme in the random oracle model. Firstly,

we recall the security model presented in [20].

Secondly, we give some computational assumptions

which will be used in the proof. Finally, we present

the security proof of the proposed protocol in the

formal model.

5.1. Security model for 3PAKE

The presentation of the security model follows the

description in [20]. We refer the reader to [20] for

more details.

Protocol participants. Each participant in a

3PAKE protocol is either a client U  or an

authentication server S . Each of them may have

several instances called oracles involved in concurrent

executions of the protocol. We denote U (S

respectively) instances by
iU (iS respectively). Here

F. Wei, J. Ma, A. Ge, G. Li, C. Ma

200

we further divide the set into two disjoint subsets:

, the set of honest clients and , the set of

malicious clients. That is, the set of all users is the

union  . The malicious set corresponds to

the set of insider attackers, who exist only in the 3-

party setting.

Long-lived keys. Each client U  holds a

password
Upw . Each server S holds a vector of

passwords
S U U

pw pw


 with an entry for each

client.
Upw and

Spw are also called the long-lived

keys of client U and server S , respectively.

Protocol execution. The interaction between an

adversary and the protocol participants occurs only

via oracle queries, which model the adversary’s

capabilities in a real attack. During the execution, the

adversary may create several concurrent instances of a

participant. The types of oracles available to the

adversary are as follows:
1 2

1 2(, ,)
i ijExecute U S U : This query models passive

eavesdropping of a protocol execution, where the

attacker gets access to honest executions among the

client instances 1

1

i
U , 2

2

i
U and the trusted server

instance jS . At the end of the execution, a transcript

is given to the adversary, which logs everything the

adversary could see during the execution.

(,)iSendClient U m : This query models an active

attack against client instance
iU , in which the

adversary may intercept a message and then modify it,

create a newone, or simply forward it to the intended

recipient. The client instance
iU executes as specified

by the protocol and sends back its response to the

adversary.

(,)jSendServer S m : This query models an active

attack against server instance iS . The output of this

query is the message that server instance iS would

generate upon receipt of message m .

()iReveal U : This query models the misuse of the

session key by instance
iU . If a session key is not

defined for instance
iU , then return the undefined

symbol  . Otherwise, return the session key held by

instance
iU .

()iTest U : This query is used to measure the

semantic security of the session key of instance
iU , if

the latter is defined. If the key is not defined, return

the undefined symbol  . Otherwise, return either the

session key held by instance
iU if 1b  or a random

key of the same size if 0b  , where b is a hidden bit

chosen uniformly at random at the beginning of the

experiment defining the semantic security of the

session keys.

Partnering. We use the notion of partnering based

on session identifications and partner identifications.

More specifically, let the session identification of a

client instance be a function of the partial transcript of

the conversation between the clients and the server

before the acceptance. Let the partner identification of

a client instance be the instance with which a common

secret key is to be established. Two client instances
1

1

i
U and 2

2

i
U are said to be partnered if the following

conditions are met: (1) Both 1

1

i
U and 2

2

i
U accept; (2)

Both 1

1

i
U and 2

2

i
U share the same session

identification; (3) The partner identification for 1

1

i
U is

2

2

i
U and vice-versa; (4) No instance other than 1

1

i
U

and 2

2

i
U accepts with a partner identification equal to

1

1

i
U or 2

2

i
U .

Freshness. The adversary is only allowed to

perform tests on fresh instances. Otherwise, it is trivial

for the adversary to guess the hidden bit b . The

freshness notion captures the intuitive fact that a

session key is not trivially known to the adversary. An

instance is said to be fresh in the current protocol

execution if it has accepted and neither it nor its

partner have been asked for a Reveal query.

AKE semantic security. Consider an execution of

the key exchange protocol by the adversary in

which the latter is given access to all oracles. The goal

of the adversary is to guess the value of the hidden bit

b used by the Test oracle. Let Succ denote the event

in which the adversary successfully guesses the

hidden bit b used by the Test oracle. The advantage

of in violating the AKE semantic security of the

protocol and the advantage function of the protocol

, when passwords are drawn from a dictionary ,

are defined as follows:

, () 2 Pr[] 1akeAdv Succ  

, ,()(,) max{ ()}ake akeAdv t R Adv

where maximum is over all with time-complexity

at most t and using resources at most R (such as the

number of oracle queries).

A 3PAKE protocol is said to be semantically

secure if the advantage
,

akeAdv is only negligible

larger than /cn , where n is number of active

sessions and c is a constant.

5.2. Diffie-Hellman assumptions

In this subsection, we recall some hardness

assumptions upon which the security proof of our

protocol is relied. We follow the description in [31].

Let ,p q be large primes with | (1)q p and qG be

the multiplicative subgroup of *

pF of order q . Let g

be a generator of qG .

CDH assumption. The CDH assumption states

that, given (, ,)u vg g g , it is computationally intractable

to compute the value
uvg .

A Provably Secure Three-Party Password Authenticated Key Exchange Protocol without Using Server’s Public-Keys
and Symmetric Cryptosystems

201

DDH assumption. The DDH assumption can be

defined by the following two experiments,

()ddh

G

realExp  and ()ddh

G

randExp  . For a distinguisher

 , inputs (, , ,)u vg g g Z are provided, where ,u v

are drawn at random from *

qZ . uvZ g in

()ddh

G

realExp  and wZ g in ()ddh

G

randExp  , where

*

qw Z . We say that DDH assumption holds on qG if

the maximus value of

[() 1] [() 1]ddh real ddh randPr Exp Pr Exp    over all

 within polynomial time is negligible.

GDH assumption. The GDH assumption states

that, given (, ,)u vg g g , it is still computationally

intractable to compute the value uvg even with access

to a DDH oracle (given any input (, , ,)u vg g g Z , a

DDH oracle answers whether (,)u vZ CDH g g or

not).

5.3. Security proof

As the following theorem states, our protocol is a

secure 3PAKE protocol in the random oracle model as

long as the GDH problem is intractable.

Theorem 1. Let be the 3PAKE protocol in Figure

2. Let be an adversary which runs in

time t and makes
sendQ ,

sendQ D ,

queries of type Send to different

instances. Then under the GDH

assumption, the adversary’s advantage in

attacking the semantic security of the

proposed protocol is bounded by

, () ().
| |

ake sendQ
Adv negl k 

Proof. Our proof consists of a sequence of hybrid

games. In each game, we modify the way session keys

are chosen for instances involved in protocol

execution. We start by choosing random session keys

for instances for which the Execute oracle is called.

Then we continue to choose random session keys for

instances for which the Send oracle is called. In the

last game, all the session keys are selected uniformly

at random and the adversary's advantage is 0. We

denote these hybrid games by
iG and by  , iAdv G

the advantage of when participating in game
iG .

0Game .G This describes the real adversary attack

in the random oracle model. During the attack, the

adversary makes a number of oracle calls (

, ,Send Execute Reveal and Test) as specified in

section 5.1. It is clear that

   0, .Adv Adv G

1Game .G In this game, we simulate the hash

oracles h and
1h as usual by maintaining hash lists

h and
1h

 . In addition to these hash oracles, we

also simulate two private hash oracle 'h and '

1h by

maintaining hash lists 'h
 and '

1h
 , respectively.

These private hash oracles will be used in later games.

We also simulate all the instances for the

, ,Send Execute Reveal and Test queries. We can see

that this game is perfectly indistinguishable from the

real attack game. Hence, we have

   1 0, , ().Adv G Adv G negl k 

2Game .G For an easier analysis in the following,

we cancel the games in which some unlikely collisions

appear on the transcripts and on the output of the hash

functions. According to the birthday paradox, we have

   2 1, , ().Adv G Adv G negl k 

3Game .G In this game, we modify the way

Execute queries are handled. In response to a query
1 2(, ,)
i ijExecute A S B , we compute

AX ,
AZ and

AV

using private hash oracles. More precisely, we

compute these values in the following way:

'

'

1

'

1

(, ,);

 (0, , , ,);

(2, , , ,).

A SB S A

A S A A

A S A A

X M h ID T R

Z h ID T R X

V h ID T R X

 





Note that the Diffie-Hellman value
AS SAK K is

not used in the simulation.

The games
3G and

2G are indistinguishable

unless queries the hash function
1h on

(0, , , , ,)S A A SAID T R X K or on (2, , , , ,)S A A ASID T R X K ,

or queries the hash function h on

(, , , ,)S A A SAID T R pw K . We denote such an event by

PassiveAskH . To upper bound the probability of this

event, we consider an auxiliary game '

3G . The

simulation of the participants changes in game '

3G ,

but the distributions remain perfectly identical. Let us

be given an instance (,)U V of the CDH problem. To

simulate the 1 2(, ,)
i ijExecute A S B query, we first

choose
0 1 0 1, , ,a a b b from *

qZ , we simulate

0 1 (, ,)
a a

A AR U g h pw A B  and 0 1b b

ST V g . We also

set

'

'

1

'

1

(, ,);

(0, , , ,);

(2, , , ,).

A SB S A

A S A A

A S A A

X M h ID T R

Z h ID T R X

V h ID T R X

 





All other simulation is the same as the one in
2G .

Now we prove that the difference between two games

F. Wei, J. Ma, A. Ge, G. Li, C. Ma

202

2G and '

3G is at most that of breaking the CDH

assumption. Suppose an adversary can distinguish

between two games
2G and '

3G , which means the

event PassiveAskH occurs. We can extract

0 0 0 01 1

0 01 1 1 1

0 0 0 1 1 0 1 1

(,) (,)

(,) (,) (,)

(,)

a b a ba b

SA

a bb a a b

a b a b a b a b

K CDH U g V g CDH U V

CDH U g CDH g V CDH g g

CDH U V U V g

 

  

   

from '
1h

 or 'h
 . With the knowledge of

0 1 0 1, , ,a a b b ,

we can easily solve the CDH problem. Since the CDH

problem is intractable, the adversary's advantage is

negligible. Hence, we have

   3 2, , ().Adv G Adv G negl k 

4Game .G In this game, we further modify the way

Execute queries are handled. In response to a query
1 2(, ,)
i ijExecute A S B , now we compute

BX ,
BZ and

BV using private hash oracles. More specifically, we

compute ' (, ,)B SA S BX M h ID T R  ,

'

1(0, , , ,)B S B BZ h ID T R X , '

1(2, , , ,)B S B BV h ID T R X .

Note that, the Diffie-Hellman value
BS SBK K is not

used in the simulation. With a similar discussion with

the previous game, we have

   4 3, , ().Adv G Adv G negl k 

5Game .G In this game, we change the simulation

of the Execute oracles for the last time. In response

to a query 1 2(, ,)
i ijExecute A S B , we compute the

session key '

1(1, ,)SSK h ID T without using the

Diffie-Hellman value
AB BAK K . Note that, the Diffie-

Hellman values
SAK ,

SBK and
ABK are not used in

the simulation of Execute queries, so we can simply

simulate Execute queries without using passwords.

We can simply compute x

AR g and y

BR g . With

a similar discussion with game
3G , we can see that

the difference in the advantage between the current

game and previous one is at most that of breaking the

CDH assumption. Thus, we have

   5 4, , ().Adv G Adv G negl k 

6Game .G In this game, we consider passive

attacks via Send queries, in which the adversary

simply forwards the messages it receives from the

oracle instances. More precisely, as long as the values

(, , , , , , , ,)A B A B A B S A BR R Z Z X X T V V are generated by

oracle instances, we replace the hash oracles h and

1h by private hash oracles
'h and

'

1h respectively

when computing the corresponding values. The

simulation of these sessions is exactly the same as the

one to Execute queries in game 5G . As a result, the

authenticators and the session keys computed during

such sessions become completely independent of the

hash functions h ,
1h and the Diffie-Hellman values.

As in the previous game, the difference in the

advantage of between the games
6G and

5G is at

most that of breaking the CDH assumption. Hence, we

have

   6 5, , ().Adv G Adv G negl k 

7Game .G In this game, we begin to modify the

Send oracles. Upon receiving a

(,(, , ,))A BSendServer S A B R R query, we change the

simulation rules to honest clients. Without loss of

generality, we assume A is an honest client, but B is

a malicious client. Note that the malicious clients are

under the control of the adversary. We compute
z

ST g and randomly choose
AX without using the

value
SBM . We also compute

'

1(0, , , ,)A S A AZ h ID T R X using the private hash

oracle '

1h . The simulation to the malicious client B is

the same as the description of the protocol except we

randomly choose the value
SAM . Furthermore, when

the adversary sends back the message
AV , we let the

server instance simply reject without verifying the

value. Obviously, the games
7G and

6G are

indistinguishable unless the adversary queries the

hash function
1h on (0, , , , ,)S A A SAID T R X K or on

(2, , , , ,)S A A ASID T R X K , or queries the hash

function h on (, , , ,)S A A SAID T R pw K , we denote this

bad event by AskS . Thus

   7 6 7, , [].Adv G Adv G Pr AskS 

8Game .G In this game, we modify the simulation

of the Send oracles for the last time. For an honest

client A , we compute x

AR g without using the

password
Apw , where x is chosen uniformly at

random from *

qZ . Furthermore, when the adversary

sends back the message (, ,)A A SZ X T , we simply let

the client instance terminate without accepting. The

adversary cannot distinguish the games
8G and

7G

unless the adversary queries the hash function
1h on

(0, , , , ,)S A A SAID T R X K or on (2, , , , ,)S A A ASID T R X K ,

in which
' / (, ,)A A AR R h pw A B and

(,)AS A SK CDH R T . We denote this bad event by

AskC . Thus

   8 7 8, , [].Adv G Adv G Pr AskC 

In this final game, the session keys in passive

sessions are all randomly chosen, and the active

sessions are terminated without accepting. As a result,

A Provably Secure Three-Party Password Authenticated Key Exchange Protocol without Using Server’s Public-Keys
and Symmetric Cryptosystems

203

the adversary will have no advantage in distinguishing

the session keys, thus we have

 8, 0.Adv G 

Now, we evaluate the probabilities of the bad

events
8AskS and

8AskC . Note that the passwords of

the honest clients are never used during the

simulation; they can be chosen at the very end. The

event
8AskS corresponds to an attack where the

adversary tries to impersonate the client A to the

server S . Since the values
AV sent by the adversary

has been computed with at most one (, ,)Ah pw A B

value. Without any collision of the hash oracles, it

corresponds to at most one
Apw . Thus

8[] .
| |

sendserverq
Pr AskS 

With a similar discussion with the event
8AskS , we

can evaluate the probability of event
8AskC

8[] .
| |

sendclientq
Pr AskC 

Combining all the above equations, we could get

the announced result.

6. Performance Analysis

In this section, we compare security features and

efficiency of the proposed protocol with related

protocols [26, 30, 31, 33, 34], which are summarized

in Table 2. In terms of computation, we only consider

the modular exponentiation operation, which entails

the highest computational complexity, and neglect the

computational complexity of all other operations such

as hash computation, which can be done efficiently.

The “E” stands for “modular exponentiation”. In terms

of communication, we assume that the identifications

can be represented with 32 bits, a point in qG can be

represented with 160 bits; the output size of secure

one-way hash functions/MAC function is 160 bits. We

also compare the communication complexity in terms

of communication round. We let a round consist of

one message sent by each party simultaneously. We

denote ROM, UODA and ODA as the Random Oracle

Model, the Undetectable On-line Dictionary Attack,

and the Off-line Dictionary Attack, respectively.

From Table 2, we can see that our protocol needs 5

modular exponentiations on the server side. Each

client needs 3 modular exponentiations in our

protocol. As a result, our protocol has higher

computational costs than other protocols. In terms of

bandwidth, our protocol is less efficient than Huang’s

protocol and Tallapally’s protocol. However, these

protocols are insecure against the undetectable on-line

dictionary attack and the off-line dictionary attack.

With respect the communication round, our protocol

only needs 3 rounds, which is among the most

efficient ones. Chang et al.’s protocol was claimed to

be provably secure in the random oracle model under

the CDH assumption. However, Wu et al.’s attack

invalidates their claim. Consequently, only Wu et al.’s

protocol and our protocol are provably secure. The

security proofs are both conducted in the random

oracle model based on the GDH assumption.

Considering the security and efficiency, only Wu et

al.’s protocol is comparable to our protocol. Wu et

al.’s protocol needs one less modular exponentiation

on the server side. However, our protocol is more

efficient than their protocol in terms of

communication costs. In wireless communication

environments, transmitting radio signals on resource-

constrained wireless devices usually consumes much

more power than computation does, so sometimes it is

more important to reduce the communication cost than

the computation cost. As a result, our protocol is more

suitable for large scale wireless client-to-client

communication environments.

7. Conclusions

In this paper, we have analysed the security

weaknesses of a recently proposed 3PAKE protocol by

Farash et al. We show that their scheme is susceptible

to the partition attack and the off-line dictionary

attack. Moreover, their protocol is inefficient in terms

of communication. To remedy these problems, we

propose an improved 3PAKE protocol, which is

provably secure in the random oracle model under the

GDH assumption. The proposed protocol not only

preservers the merits of Farash et al.’s protocol but

also fixes its security flaws. The security and

performance comparison shows that our protocol

achieves both higher efficiency and stronger security.

Therefore, we believe the proposed scheme is more

suitable for applications in wireless communication

environments.

Acknowledgment

The authors would like to thank the anonymous

referees for their helpful comments. This work is

supported by the National High Technology Research

and Development Program (863 Program) (No.

2015AA011704), the Key Program of NSFC Union

Foundation (U1135002,U1405255), the National

Natural Science Foundation of China (Nos.

61309016,61379150,61201220,61202389,61103230),

Postdoctoral Science Foundation of China (No.

2014M\\562493), Postdoctoral Science Foundation of

Shanxi Province, Fundamental Research Funds for the

Central Universities (Program No. JB140302), the

Funding of Science and Technology on Information

Assurance Laboratory (No. KJ-13-02) and Key

Scientific Technological Project of Henan Province

(No. 122102210126,092101210502).

F. Wei, J. Ma, A. Ge, G. Li, C. Ma

204

Table 2. Comparisons of efficiency and security

Protocols Huang’s[26] Chang’s[30] Wu’s[31] Tallapally’s[33] Farash’s[34] Ours

Exponentiations of Client 2E 3E 3E 2E 3E 3E

Exponentiations of Server 2E 4E 4E 2E 3E 5E

Bandwidth 1376bits 2432bits 2656bits 1344bits 2048bits 1728bits

Round 5 3 6 3 5 3

Security Assumptions CDH GDH GDH

Security Model No Proof ROM ROM No Proof No Proof ROM

Resistance to UODA N Y Y N Y Y

Resistance to ODA N N Y N N Y

References

[1] S.M. Bellovin, M. Merritt. Encrypted key exchange:

Password-based protocols secure against dictionary

attacks. In: IEEE Symp. On Security and Privacy,

IEEE, New York, 1992, pp. 72-84.

[2] M. Bellare, D. Pointcheval, and P. Rogaway.
Authenticated key exchange secure against dictionary

attacks. In: B Preneel (ed.), EUROCRYPT2000, LNCS

1807, Springer, Berlin--Heidelberg, 2000, pp. 139-

155.

[3] M. S. Farash, M. A. Attari. An enhanced

authenticated key agreement for session initiation

protocol. Information Technology and Control, 2013,

Vol. 42, No. 4, 333-341.

[4] M. S. Farash, M. A. Attari. Cryptanalysis and

improvement of a chaotic aps-based key agreement

protocol using Chebyshev sequence membership

esting. Nonlinear Dynamics, 2013, Vol. 76, No. 2,

1203-1213.

[5] M. Bayat, M. S. Farash, A. Movahed. A novel secure

bilinear pairing based emote user authentication

scheme with smartcard. EUC2010, IEEE, New York,

2010, pp. 578-82.

[6] M. S. Farash. An anonymous and untraceable

password-based authentication scheme for session

initiation protocol using smart cards. International

Journal of Communication Systems, DOI:

10.1002/dac.2848.

[7] D.B. He, D. Wang, S.H. Wu. Cryptanalysis and

improvement of a password-based remote user

authentication scheme without smart cards.

Information Technology and Control, 2013, Vol. 42,

No. 2, 170-177.

[8] M. S. Farash. Security analysis and enhancements of

an improved authentication for session initiation

protocol with provable security. Peer-to-Peer

Networking and Applications, DOI: 10.1007/s12083-

014-0315-x.

[9] D.B. He, S.H. Wu, J.H. Chen. Note on “Design of

improved password authentication and update scheme

based on elliptic curve cryptography”. Mathematical

and Computer Modelling, 2012, Vol. 55, Issue 3-4,

1661-1664.

[10] M. S. Farash, M. A. Attari. An improved password-

based authentication scheme for session initiation

protocol using smartcards without verification table.

International Journal of Communication Systems, DOI:

10.1002/dac.2879.

[11] D.B. He, J.H. Chen, J. Hu. Improvement on a

smartcard based password authentication scheme.

Journal of Internet Technology, 2012, Vol. 13, No. 3,

405-410.

[12] D.B. He, J.H. Chen, J. Hu. Further improvement of

Juang et al.’s password-authenticated key agreement

scheme using smart cards. Kuwait Journal of Science

and Engineering, 2011, Vol. 38, No. 2A, 55-68.

[13] M. S. Farash, M. A. Attari. A provably secure and

efficient authentication scheme for access control in

mobile pay-TV systems. Multimedia Tools and

Applications, DOI: 10.1007/s11042-014-2296-4.

[14] M. S. Farash. Cryptanalysis and improvement of an

improved authentication with key agreement scheme

on elliptic curve cryptosystem for global mobility

networks. International Journal of Network

Management, DOI: 10.1002/nem.1883.

[15] J. Katz, V. Vaikuntanathan. Smooth projective

hashing and password-based authenticated key

exchange from lattices. In: M Matsui (ed.),

ASIACRYPT 2009, LNCS 5912, Springer, Berlin–

Heidelberg, 2009, pp. 636-652.

[16] C. L. Lin, H. M Sun, M. Steiner, and T. Hwang.

Three-party encrypted key exchange without server

public-keys. IEEE Communications Letters, 2000,

Vol. 5, No. 11, 497-499.

[17] C. L. Lin, H. M Sun, and T. Hwang. Three-party

encrypted key exchange: attacks and a solution. ACM

SIGOPS Operating Systems Review, 2000, Vol. 34,

No. 4, 12-20.

[18] M. Abdalla, P. Fouque, D. Pointcheval. Password-

based authenticated key exchange in the three-party

setting. In: S Vaudenay (ed.), PKC 2005, LNCS 3386,

Springer, Berlin–Heidelberg, 2005, pp. 65-84.

[19] W. Wang, L. Hu. Efficient and provably secure

generic construction of three-party password-based

authenticated key exchange protocols. In: R Barua and

T Lange (eds.), INDOCRYPT 2006, LNCS 4329,

Springer, Berlin–Heidelberg, 2006, pp. 118–132.

[20] M. Abdalla, D. Pointcheval. Interactive Diffie-

Hellman assumptions with applications to password

based authentication. In: A Patrick and M Yung (eds.),

FC 2005, LNCS 3570, Springer, Berlin–Heidelberg,

2005, pp. 341–356.

[21] M. S. Farash, M. A. Attari. An efficient and provably

secure three-party password-based authenticated key

exchange protocol based on Chebyshev chaotic maps.

Nonlinear Dynamics, 2014, Vol. 77, No. 1-2, 399-411.

[22] M. S. Farash, M. A. Attari, S. Kumari.
Cryptanalysis and improvement of a three-party

A Provably Secure Three-Party Password Authenticated Key Exchange Protocol without Using Server’s Public-Keys
and Symmetric Cryptosystems

205

password based authenticated key exchange protocol

with user anonymity using extended chaotic maps.

International Journal of Communication Systems, DOI:

10.1002/dac.2912.

[23] M. S. Farash, M. A. Attari. An efficient client-client

password-based authentication scheme with provable

security. The Journal of Supercomputing, 2014,

Vol. 70, No. 2, 1002-1022.

[24] K. Yoneyama. Efficient and strongly secure

password-based server aided key exchange. In: D

Chowdhury, V. Rijmen (eds.), INDOCRYPT 2008,

LNCS 5365, Springer, Berlin–Heidelberg, 2008,

pp. 172–184.

[25] J. J. Zhao, D. W. Gu. Provably secure three-party

password-based authenticated key exchange protocol.

Information Sciences, 2012, Vol. 184, No. 1, 310-323.

[26] H. F. Huang. A simple three-party password-based

key exchange protocol. International Journal of

Communication Systems, 2009, Vol. 22, No. 7, 857-

862.

[27] E. J. Yoon, K. Y. Yoo. Cryptanalysis of a simple

three-party password-based key exchange protocol.

International Journal of Communication Systems,

2011, Vol. 24, No. 4, 532–542.

[28] S. Wu, K. Chen, and Y. Zhu. Enhancements of a

three-party password-based authenticated key

exchange protocol. International Arab Journal of

Information Technology, 2013, Vol. 10, No. 3, 215-

221.

[29] T. F. Lee, T. Hwang. Simple password-based three-

party authenticated key exchange without server public

keys. Information Sciences, 2010, Vol. 180, No. 9,

1702-1714.

[30] T. Y. Chang, M. S. Hwang, W. P. Yang. A

communication-efficient three-party password

authenticated key exchange protocol. Information

Sciences, 2011, Vol. 181, No. 1, 217-226.

[31] S. Wu, Q. Pu, S. Wang, D. He. Cryptanalysis of a

communication-efficient three-party password

authenticated key exchange protocol. Information

Sciences, 2012, Vol. 215, No. 1, 83-96.

[32] R. Tso. Security analysis and improvements of a

communication-efficient three-party password

authenticated key exchange protocol. The Journal of

Supercomputing, 2013, Vol. 66, No. 2, 863–874.

[33] S. Tallapally. Security enhancement on simple three-

party PAKE protocol. Information Technology and

Control, 2012, Vol. 41, No. 1, 15-22.

[34] M. S. Farash, M. A. Attari. An enhanced and secure

three-party password-based authenticated key

exchange protocol without using server’s public-keys

and symmetric cryptosystems. Information Technology

and Control, 2014, Vol. 43, No. 2, 143-150.

Received September 2014.

