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Abstract. Three-party password authenticated key exchange (3PAKE) protocols allow two clients to establish a 

common secure session key via the help of an authentication server, in which each client only needs to share a single 

password with the server. Many researchers pay attention to 3PAKE protocols since they are well suited for large-scale 

communication in mobile environments. Recently, Farash et al. proposed an enhanced 3PAKE protocol without using 

server’s public-keys and symmetric cryptosystems. They claimed that their protocol is secure against various attacks. 

However, we found that Farash et al.’s protocol is vulnerable to partition attacks and off-line dictionary attacks. 

Moreover, their protocol needs 5 rounds to work, so it is inefficient in terms of communication. To overcome these 

shortcomings, we improve their protocol and propose a provably secure 3PAKE protocol, which is more efficient and 

secure than other related protocols. 

Keywords: three-party; password authenticated key exchange; partition attack; dictionary attack; provable 

security. 

 

1. Introduction 

Password authenticated key exchange (PAKE) 

protocols enables users, who are communicating over 

an insecure network, to bootstrap a weak and low-

entropy shared secret (i.e. password) into a much 

longer common session key. Users can easily 

remember the password and don’t need to carry any 

cryptographic devices. Due to their convenience and 

simplicity, PAKE protocols are widely used in practice 

and become the most popular authentication 

mechanism in the network. PAKE protocols have been 

extensively studied since the seminal work of Bellovin 

and Merritt [1]. Until now, a great deal of PAKE 

protocols have been proposed [2-15]. Most of them 

are designed in the two-party “client-server” setting.  

Although two-party PAKE (2PAKE) protocols are 

very useful in real applications, they are not suitable 

for large-scale client-to-client communication 

environments. If a client wants to communicate with 

n  different clients using 2PAKE protocols, he has to 

remember n  different passwords. This is a heavy 

burden for human beings. To solve the problem, three-

party PAKE (3PAKE) are developed [16, 17]. In a 

3PAKE protocol, an authentication server mediates 

between two clients and each client only needs to 

share a password with the authentication server. Two 

clients can establish a session with the help of the 

authentication server. 3PAKE protocols suffer from 

two types of new attacks which are not considered in 

the two-party setting. The first one is the undetectable 

on-line dictionary attack, whereby an adversary can 

iteratively guess a password and verifies its guess 

without being detected. The second one is the off-line 

dictionary attack from an insider attacker. Suppose 

two clients A, B and the server S execute a 3PAKE 

protocol, a malicious client A may get B’s password 

information from the execution in an off-line manner 

if the 3PAKE protocol is not well designed. These 

attacks make designing secure 3PAKE protocols a 

non-trivial hard work. 

In 2005, Abdalla et al. proposed a generic 

construction of 3PAKE protocol from any secure 

2PAKE protocol [18]. This is the first provably-secure 

3PAKE protocol. However, Wang et al. found that 

Abdalla et al.’s generic framework is vulnerable to 
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undetectable on-line dictionary attacks [19]. In 2005, 

Abdalla et al. also proposed an efficient 3PAKE 

protocol and proved its security in the random oracle 

model [20]. Unfortunately, their protocol still suffers 

from the undetectable on-line dictionary attack. 

Recently, Farash et al. proposed two 3PAKE protocols 

based on Chebyshev chaotic maps [21, 22].  In order 

to resist undetectable on-line dictionary attacks, some 

researchers designed 3PAKE protocols using server’s 

public-keys and symmetric cryptosystems [23-25]. 

However, the clients need to verify the validity the 

server’s public key. This is very inconvenient for the 

clients. In this paper, we pay attention to the 3PAKE 

protocols that require neither server’s public-keys nor 

symmetric cryptosystems. 

In 2009, Huang proposed a 3PAKE protocol 

without using server’s public-keys and symmetric 

cryptosystems [26]. Unfortunately, Yoon et al. found 

that Huang’s protocol is insecure against the 

undetectable on-line dictionary attack and the off-line 

dictionary attack [27]. Meanwhile, Wu et al. also 

pointed out that Huang’s protocol is vulnerable to the 

key compromise impersonation attack [28]. In 2010, 

Lee et al. put forward two novel 3PAKE protocols 

without using server’s public-keys [29]. In 2011, 

Chang et al. proposed a communication-efficient 

3PAKE protocol which requires neither the server’s 

public-keys nor symmetric cryptosystems based on 

Lee et al.’s protocol [30].  However, Wu et al. 

demonstrated that Chang et al.’s protocol is insecure 

against partition attacks, by which the adversary can 

guess the correct password in an off-line manner [31]. 

Tso also showed that Chang et al.’s protocol is 

vulnerable even to passive attackers [32]. He 

presented two improved protocols to remedy the 

security flaws of Chang et al.’s protocol. Recently, 

Tallapally showed that Huang’s protocol [26] suffers 

from the unknown key share attack [33]. To overcome 

the shortcomings of Huang’s protocol, Tallapally also 

proposed an enhanced 3PAKE protocol. However, 

Farash et al. indicated that Tallapally’s protocol [33] 

not only is vulnerable to the undetectable on-line 

password guessing attack, but also is insecure against 

the off-line password guessing attack [34]. They also 

put forward an improved 3PAKE protocol to 

overcome the security pitfalls of Tallapally’s protocol. 

Surprisingly, we found that Farash et al.’s protocol 

[34] still suffers from the same attack. In this paper, 

we show that Farash et al.’s protocol is insecure 

against the partition attack and the off-line dictionary 

attack by an insider attacker. Moreover, the 

communication cost of Farash et al.’s protocol is 

expensive since their protocol needs 5 rounds to work. 

To remedy these problems, we propose an improved 

3PAKE protocol without using server’s public-keys 

and symmetric cryptosystems. The proposed protocol 

is provably secure in the random oracle model based 

on the GDH assumption. Compared with other related 

protocol, our proposed protocol not only achieves 

stronger security but also has higher communication 

efficiency. 

The remainder of this paper is organized as 

follows. In Section 2, we briefly review Farash et al.’s 

3PAKE protocol. We demonstrate the vulnerabilities 

of Farash et al.’s 3PAKE protocol in Section 3. In 

Section 4, our improved protocol is described. The 

security of our protocol is proven in the random oracle 

model in Section 5. We compare the efficiency and 

security features of our protocol with related protocols 

in Section 6. We conclude our paper in Section 7. 

2. Review of Farash et al.’s 3PAKE Protocol 

In this section, we will briefly review Farash et 

al.’s 3PAKE protocol [34]. For more details, refer to 

[34]. 

2.1. Notations 

Some notations used throughout this paper are 

summarized in Table 1. 

Table 1. Notations 

Notation meaning 

A,B Legitimate clients 

S The authentication server 

Apw   Password shared between A and S 

Bpw   Password shared between B and S 

p  A large prime number 

pZ  The ring of integers modulo p  

*

pZ  The non-zero residues modulo p  

q  A large prime number with ( 1)q p  

qG  A multiplicative group of order q  

g  A generator of qG  

( )h  A cryptographic hash function 

  Exclusive OR 

2.2. Protocol description 

The detailed steps of Farash et al.’s 3PAKE 

protocol, as shown in Fig. 1, are described as follows:  

Round 1. The client A chooses 
*

qx Z  and 

computes ( , , )x

A AR g h pw A B  . A then sends 

( , , )AA B R  to S. Similarly, the client B also selects

*

qy Z and computes ( , , )y

B BR g h pw A B  , and 

sends ( , , )BB A R  to S. 

Round 2. Upon receiving the messages ( , , )AA B R  

and ( , , )BB A R from the client A and B respectively,  

S obtains ( , , )x

A Ag R h pw A B   and

( , , )y

B Bg R h pw A B  , then chooses a random 
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number
*

qz Z , computes z

ST g , xz

SAK g  and

yz

SBK g . Finally, S computes two  

values (0, , , , , )A A SAZ h A B S pw K and

(0, , , , , )B B SBZ h A B S pw K , and sends ( , )A SZ T  and 

( , )B SZ T  to A and B, respectively. 

Round 3. Upon receiving the message ( , )A SZ T , A 

computes x

AS SK T  and verifies whether 

(0, , , , , )A ASh A B S pw K  equals to
AZ  or not. If it holds, 

she computes ( , , , , , )A A AS SV h A B S pw K T  and sends 

AV  to S. At the same time, upon receiving ( , )B SZ T , B 

also computes y

BS SK T  and verifies whether 

(0, , , , , )B BSh A B S pw K  equals to 
BZ  or not. If it 

holds, she computes ( , , , , , )B B BS SV h A B S pw K T  and 

sends 
BV  to S. 

Round 4. Upon receiving the messages 
AV  and

BV , 

S verifies if ( , , , , , )A A SA SV h A B S pw K T and 

( , , , , , )B B SB SV h A B S pw K T . If these equations hold, 

S computes (1, , , , , )A SB A SAX K h A B S pw K   and

(1, , , , , )B SA B SBX K h A B S pw K  , and finally sends 

AX  and 
BX  to A and B, respectively. 

Round 5. Upon receiving
AX , A computes 

' (1, , , , , )SB A A ASK X h A B S pw K   and the shared 

secret '( )x xyz

AB SBK K g  . Then A computes 

( , )A ABS h K A   and sends 
AS  to B. B also computes 

' (1, , , , , ) SA B B BSK X h A B S pw K   and the shared 

secret '( ) y xyz

AB SAK K g  . Then she computes 

( ,B)B ABS h K  and sends 
BS  to A. 

Verification Phase. Finally, A verifies the validity 

of 
AS  and B also verifies the validity of

BS . If they are 

valid, then A and B computes the session key 
'( , , , , , ).AS SB ABSK h A B S K K K

 

User A Server S User B 

(1)  , , AA B R


(2)  ,B SZ T


(1) , , BB A R


(2)  ,A SZ T


'

'

*

' '

( , , )

( , , )

,

( ) , ( )

(0, , , )

(0, , , )

, ,

A A A

B B B

z

q S

z z

SA A SB B

A A SA

B B SB

R R h pw A B

R R h pw A B

z Z T g

K R K R

Z h ID pw K

Z h ID pw K

ID A B S

 

 

 

 







(0, , , )?

( , , , )

x

AS S

A A AS

A A AS S

K T

Z h ID pw K

V h ID pw K T






(3)  AV


(3)  BV



*

( , , )

q

x

A A

x Z

R g h pw A B



 

*

( , , )

q

y

B B

y Z

R g h pw A B



 

(0, , , )?

( , , , )

y

BS S

B B BS

B B BS S

K T

Z h ID pw K

V h ID pw K T







(4)  BX
(4)  AX



( , , , )?

( , , , )?

(1, , , )

(1, , , )

A A SA S

B B SB S

A SB A SA

B SA B SB

V h ID pw K T

V h ID pw K T

X K h ID pw K

X K h ID pw K





 

 

'

'

(1, , , )

( )

( , )

SB A A AS

x xyz

AB SB

A AB

K X h ID pw K

K K g

S h K A

 

 



'

'

(1, , , )

( )

( , )

SA B B BS

y xyz

AB SA

B AB

K X h ID pw K

K K g

S h K B

 

 

(5)  AS


(5)  BS


'

( , )?

( , , , )

B AB

AS SB AB

S h K B

SK h ID K K K




'

( ,A)?

( , , , )

A AB

SA BS AB

S h K

SK h ID K K K





 

Figure 1. Farash et al.’s 3PAKE protocol 
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3. Attack on Farash et al.’s 3PAKE Protocol 

In this section, we analyse Farash et al.’s 3PAKE 

protocol and present two attacks to the protocol. 

Firstly, we show that the protocol is vulnerable to a 

partition attack by an outsider adversary. Secondly, we 

point out that the protocol is still insecure against an 

off-line dictionary attack performed by an insider 

adversary. 

3.1. Partition attack from an outside attacker 

In this subsection, we present a partition attack to 

Farash et al.’s 3PAKE protocol. Through the attack, an 

outsider attacker can partition the password space into 

feasible passwords and infeasible passwords by 

simply eavesdropping the messages from a valid 

session. Finally, the attacker is able to recover the 

correct password from the intersection of the feasible 

partition of the passwords for each session after 

observing several valid sessions. 

First note that the hash function h  is not precisely 

defined in Farash et al.’s 3PAKE protocol. From the 

context, we assume 
*:{0,1} .qh G The group 

q pG Z  is a multiplicative group of order q , which 

means   is not an admissible operation in group qG . 

The operation   does not satisfy the “Closure” 

requirement of the group. To illustrate the partition 

attack, we assume the attacker has eavesdropped 

( , , )x

A AR g h pw A B   from a valid session (
AX  can 

also be used to mount this attack). The adversary 

wants to guess the password of the client A. Note that 

although 
x

qg G  and ( , , )A qh pw A B G , A pR Z  is 

not necessarily in qG . The adversary can guess a 

password *

Apw and compute * *( , , )A AX R h pw A B  . 

If the guessed password 
*

Apw  is correct, then 
* xX g  

will be an element of qG . However, if the guessed 

password *

Apw  is wrong, it is likely that 
*

pX Z  but

*

qX G . To test the membership of qG , we can raise 

*X  to the power q  and check whether 1 is obtained. 

Given a guessed password *

Apw , if the value 
*

pX Z  

but
*

qX G , we can determine that 
*

Apw  is an 

infeasible password of the client A. We can rule out all 

the infeasible passwords from the password space. 

Roughly speaking, the adversary can rule out half of 

the passwords through the messages obtained from 

one valid session. In practice, the size of dictionary 

space is about 40~502 . Therefore, the adversary can get 

the correct password by mounting 40 ~ 50  partition 

attacks. 

To better understand the partition attack, we pre-

sent a simple example. Let 23q  , 2 1 47p q   . 

We have pZ  {0, 1, 2… 46}. Let the subgroup qG  be 

generated by 2g  . Then we have qG  {1,2,3,4,6,7,8, 

9,12,14,16,17,18,21,24,25,27,28,32,34,36,37,42}. For 

simplicity, we assume the password space has 8 

passwords. We randomly choose the output of the 

hash function. Suppose we have 

1 2

3 4

5 6

7 8

( , , ) 12;    ( , , ) 3;

( , , ) 7;     ( , , ) 16;

( , , ) 24;   ( , , ) 28;

( , , ) 34;   ( , , ) 21.

h pw A B h pw A B

h pw A B h pw A B

h pw A B h pw A B

h pw A B h pw A B

 

 

 

 

 

Without loss of generality, we assume A’s 

password is
1pw .Now the adversary can perform the 

partition attack as follows. Suppose (1) 15AR   is the 

eavesdropped message in the first valid session. The 

adversary computes (1) - ( , , )(i 1,2,..,8)A iR h pw A B   

and get (3,12,8,46,38,34,28,41). Since 46,38,41 qZ , 

the adversary can determine that
4pw ,

5pw  and 
8pw  

are infeasible passwords for A and rules out these 

passwords from the password space. Suppose 

(2) 37AR   is the eavesdropped message in the 

second valid session. Similarly, the adversary can 

compute (2) - ( , , )(i 1,2,3,6,7)A iR h pw A B   and get 

(25,34,30,9,3). The adversary can rule out the 

password 
3pw this time. Suppose (3) 26AR   is the 

eavesdropped message in the third valid session. The 

adversary computes (3) - ( , , )(i 1,2,6,7)A iR h pw A B   

and get (14,23,45,39). The adversary can determine 

that the correct password of A is 
1pw  since

23,45,39 qZ . 

We should note that the partition attack is valid no 

matter how the hash function is defined. For instance, 

if the hash function h  is defined as
*:{0,1} ph Z , 

the partition attack can still work. The essential reason 

to the partition attack is that the    operation (like the  

  operation) is used to operate on elements in qG  

although it is not an admissible operation in group qG . 

3.2. Off-line dictionary attack from an insider 

attacker 

In this subsection, we show that a malicious client 

can guess the password of an honest client through an 

off-line dictionary attack as long as they execute a 

valid session of Farash et al.’s 3PAKE protocol. We 

assume the malicious client is A and the victim client 

is B. The malicious client A performs the following 

steps: 

Step 1. The malicious client A randomly chooses 
*

qx Z   and computes 

( , , )x

A AR g h pw A B   . She then sends 

( , , )AA B R  to S. Suppose the honest client B 

sends the message ( , , )BB A R  to S. 
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Step 2. Upon receiving the message ( , )A SZ T , the 

malicious client A sends the message 
AV  to 

the server S according to the description of 

the protocol and also eavesdrops the message 

( , )B SZ T  generated by S. 

Step 3. Upon receiving the message 
AX  from S,  

the malicious client A first recovers '

SBK from 

AX . Note that (0, , , , , )B B SBZ h A B S pw K  

and '

SB BSK K  for a valid session. At  

this time, the malicious client A can  

guess a password *

Bpw  and check whether 

* '(0, , , , , )B B SBZ h A B S pw K  or not. If the 

equation holds, then the guessed password is 

the correct password of B; if the equation 

does not hold, the malicious client A can 

guess another password and verifies the 

validity of the password iteratively until she 

finds out the correct password of B.  

4. Our Proposed Protocol 

In this section, we propose an improved version of 

Farash et al.’s protocol, which not only keeps the 

merits of the original protocol but also overcomes the 

security weaknesses described in the previous section. 

To resist the partition attack, we replace the   

operation in Farash et al.’s protocol with the group 

multiplication  operation. We emphasize that the 

hash function h  is defined as
*:{0,1} qh G . To resist 

the off-line dictionary attack, we let the server use 

different random numbers in authentication and 

session key generation. In order to reduce the 

communication cost, the improved protocol can be 

executed in three rounds with the cost of two modular 

exponentiations on server’s side.  Another hash 

function *:{0,1} {0,1}kh   is also used in our 

protocol, where k  is the security parameter.  Detailed 

steps of the proposed protocol, as shown in Fig. 2, are 

described as follows:  

Round 1. The user A randomly chooses 
*

qx Z  

and computes ( , , )x

A AR g h pw A B . Then, she sends 

( , , )AA B R  to S. Similarly, the user B also randomly 

chooses
*

qy Z , and then computes 

( , , )y

B BR g h pw A B , and sends ( , , )BB A R  to S. 

Round 2. Upon receiving the messages ( , , )AA B R  

and ( , , )BB A R from the client A and B respectively, S 

obtains 
' / ( , , ) mod  A A AR R h pw A B p  and

' / ( , , ) mod  B B BR R h pw A B p . S also chooses two 

random numbers *, qz r Z , then computes the 

following values: 

'

' '

'

1

1

;  ( ) =g ;

( ) =g ;  ( ) ;

( ) ;  

( , , , , );

( , , , , );

(0, , , , , );

(0, , , , , );

z z xz

S SA A

z yz r xr

SB B SA A

r yr

SB B

A SB S A A SA

B SA S A B SB

A S A A SA

B S B B SB

T g K R

K R M R g

M R g

X M h ID T R pw K

X M h ID T R pw K

Z h ID T R X K

Z h ID T R X K

 

  

 









  

where , ,ID A B S . Finally, S sends ( , , )A A SZ X T and 

( , , )B B SZ X T to A and B, respectively. 

Round 3. Upon receiving ( , , )A A SZ X T , A 

computes x xz

AS SK T g   and verifies whether 

(0, , , , , )S A A ASh ID T R X K  equals to
AZ  or not. If it 

holds, she recovers 
' / ( , , , , )SB A S A A ASM X h ID T R pw K  from 

AX and 

computes '( )x xyr

AB SBK M g  .  A accepts the session 

and computes the session key
1(1, , , )S ABSK h ID T K  . 

Finally, A computes 
1(2, , , , , )A S A A ASV h ID T R X K  

and sends 
BV  to S for mutual authentication. Upon 

receiving the message ( , , )B B SZ X T , B performs 

similar steps as A does. For simplicity, we omit the 

description of these steps.  

Verification Phase. Upon receiving the messages 

AV and
BV , S verifies the following equations 

1(2, , , , , )A S A A SAV h ID T R X K    

1(2, , , , , )B S B B SBV h ID T R X K  

If these equations hold, S believes this session is 

executed with two honest clients. Otherwise, the 

authentication request comes from an on-line 

impersonation attack by an adversary, and further 

measures may be taken to deal with such attacks. 

5. Security Proof 

In this section, we prove the security of the 

proposed scheme in the random oracle model. Firstly, 

we recall the security model presented in [20]. 

Secondly, we give some computational assumptions 

which will be used in the proof. Finally, we present 

the security proof of the proposed protocol in the 

formal model. 

5.1. Security model for 3PAKE 

The presentation of the security model follows the 

description in [20]. We refer the reader to [20] for 

more details.  

Protocol participants. Each participant in a 

3PAKE protocol is either a client U  or an 

authentication server S . Each of them may have 

several instances called oracles involved in concurrent 

executions of the protocol. We denote U  ( S

respectively) instances by 
iU  ( iS  respectively). Here 
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we further divide the set   into two disjoint subsets: 

, the set of honest clients and , the set of 

malicious clients. That is, the set of all users  is the 

union  . The malicious set  corresponds to 

the set of insider attackers, who exist only in the 3-

party setting.  

Long-lived keys. Each client U   holds a 

password
Upw . Each server S  holds a vector of 

passwords 
S U U

pw pw


  with an entry for each 

client. 
Upw  and 

Spw  are also called the long-lived 

keys of client U  and server S , respectively. 

Protocol execution. The interaction between an 

adversary  and the protocol participants occurs only 

via oracle queries, which model the adversary’s 

capabilities in a real attack. During the execution, the 

adversary may create several concurrent instances of a 

participant. The types of oracles available to the 

adversary are as follows: 
1 2

1 2( , , )
i ijExecute U S U : This query models passive 

eavesdropping of a protocol execution, where the 

attacker gets access to honest executions among the 

client instances 1

1

i
U , 2

2

i
U  and the trusted server 

instance jS . At the end of the execution, a transcript 

is given to the adversary, which logs everything the 

adversary could see during the execution. 

( , )iSendClient U m : This query models an active 

attack against client instance 
iU , in which the 

adversary may intercept a message and then modify it, 

create a newone, or simply forward it to the intended 

recipient. The client instance 
iU  executes as specified 

by the protocol and sends back its response to the 

adversary. 

( , )jSendServer S m : This query models an active 

attack against server instance iS . The output of this 

query is the message that server instance iS  would 

generate upon receipt of message m . 

( )iReveal U : This query models the misuse of the 

session key by instance 
iU . If a session key is not 

defined for instance 
iU  , then return the undefined 

symbol  . Otherwise, return the session key held by 

instance 
iU . 

( )iTest U : This query is used to measure the 

semantic security of the session key of instance 
iU , if 

the latter is defined. If the key is not defined, return 

the undefined symbol  . Otherwise, return either the 

session key held by instance 
iU  if 1b   or a random 

key of the same size if 0b  , where b  is a hidden bit 

chosen uniformly at random at the beginning of the 

experiment defining the semantic security of the 

session keys. 

Partnering. We use the notion of partnering based 

on session identifications and partner identifications. 

More specifically, let the session identification of a 

client instance be a function of the partial transcript of 

the conversation between the clients and the server 

before the acceptance. Let the partner identification of 

a client instance be the instance with which a common 

secret key is to be established. Two client instances 
1

1

i
U  and 2

2

i
U  are said to be partnered if the following 

conditions are met: (1) Both 1

1

i
U  and 2

2

i
U  accept; (2) 

Both 1

1

i
U  and 2

2

i
U  share the same session 

identification; (3) The partner identification for 1

1

i
U   is 

2

2

i
U  and vice-versa; (4) No instance other than 1

1

i
U   

and 2

2

i
U  accepts with a partner identification equal to 

1

1

i
U   or 2

2

i
U . 

Freshness. The adversary is only allowed to 

perform tests on fresh instances. Otherwise, it is trivial 

for the adversary to guess the hidden bit b . The 

freshness notion captures the intuitive fact that a 

session key is not trivially known to the adversary. An 

instance is said to be fresh in the current protocol 

execution if it has accepted and neither it nor its 

partner have been asked for a Reveal  query. 

AKE semantic security. Consider an execution of 

the key exchange protocol  by the adversary  in 

which the latter is given access to all oracles. The goal 

of the adversary is to guess the value of the hidden bit 

b  used by the Test  oracle. Let Succ  denote the event 

in which the adversary successfully guesses the 

hidden bit b  used by the Test  oracle. The advantage 

of  in violating the AKE semantic security of the 

protocol  and the advantage function of the protocol

, when passwords are drawn from a dictionary , 

are defined as follows:  

, ( ) 2 Pr[ ] 1akeAdv Succ    

, ,( )( , ) max{ ( )}ake akeAdv t R Adv  

where maximum is over all  with time-complexity 

at most t  and using resources at most R  (such as the 

number of oracle queries).  

A 3PAKE protocol  is said to be semantically 

secure if the advantage 
,

akeAdv  is only negligible 

larger than /cn , where n  is number of active 

sessions and c  is a constant. 

5.2. Diffie-Hellman assumptions 

In this subsection, we recall some hardness 

assumptions upon which the security proof of our 

protocol is relied. We follow the description in [31].  

Let ,p q  be large primes with | ( 1)q p   and qG  be 

the multiplicative subgroup of *

pF   of order q  . Let g   

be a generator of qG . 

CDH assumption.  The CDH assumption states 

that, given ( , , )u vg g g , it is computationally intractable 

to compute the value
uvg  . 
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DDH assumption.  The DDH assumption can be 

defined by the following two experiments, 

( )ddh

G

realExp   and ( )ddh

G

randExp  . For a distinguisher

 , inputs ( , , , )u vg g g Z   are provided, where ,u v   

are drawn at random from *

qZ  . uvZ g  in 

( )ddh

G

realExp    and wZ g   in ( )ddh

G

randExp   , where

*

qw Z  . We say that DDH assumption holds on qG  if 

the maximus value of 

[ ( ) 1] [ ( ) 1]ddh real ddh randPr Exp Pr Exp      over all 

 within polynomial time is negligible. 

GDH assumption.  The GDH assumption states 

that, given ( , , )u vg g g ,  it is still computationally 

intractable to compute the value uvg  even with access 

to a DDH oracle (given any input ( , , , )u vg g g Z , a 

DDH oracle answers whether ( , )u vZ CDH g g   or 

not). 

5.3. Security proof 

As the following theorem states, our protocol is a 

secure 3PAKE protocol in the random oracle model as 

long as the GDH problem is intractable. 

Theorem 1. Let  be the 3PAKE protocol in Figure 

2. Let   be an adversary which runs in 

time t and makes
sendQ  ,

sendQ D  , 

queries of type Send   to different 

instances. Then under the GDH 

assumption, the adversary’s advantage in 

attacking the semantic security of the 

proposed protocol is bounded by 

, ( ) ( ).
| |

ake sendQ
Adv negl k   

Proof. Our proof consists of a sequence of hybrid 

games. In each game, we modify the way session keys 

are chosen for instances involved in protocol 

execution. We start by choosing random session keys 

for instances for which the Execute   oracle is called. 

Then we continue to choose random session keys for 

instances for which the Send  oracle is called. In the 

last game, all the session keys are selected uniformly 

at random and the adversary's advantage is 0. We 

denote these hybrid games by 
iG  and by  , iAdv G  

the advantage of   when participating in game
iG . 

0Game .G  This describes the real adversary attack 

in the random oracle model. During the attack, the 

adversary  makes a number of oracle calls (

, ,Send Execute Reveal  and Test ) as specified in 

section 5.1. It is clear that  

   0, .Adv Adv G  

1Game .G  In this game, we simulate the hash 

oracles h   and 
1h   as usual by maintaining hash lists 

h   and
1h

  . In addition to these hash oracles, we 

also simulate two private hash oracle 'h   and '

1h   by 

maintaining hash lists 'h
   and '

1h
 , respectively. 

These private hash oracles will be used in later games. 

We also simulate all the instances for the 

, ,Send Execute Reveal and Test queries. We can see 

that this game is perfectly indistinguishable from the 

real attack game. Hence, we have 

   1 0, , ( ).Adv G Adv G negl k   

2Game .G For an easier analysis in the following, 

we cancel the games in which some unlikely collisions 

appear on the transcripts and on the output of the hash 

functions. According to the birthday paradox, we have 

   2 1, , ( ).Adv G Adv G negl k    

3Game .G In this game, we modify the way 

Execute   queries are handled. In response to a query
1 2( , , )
i ijExecute A S B  , we compute

AX  ,
AZ    and 

AV   

using private hash oracles. More precisely, we 

compute these values in the following way: 

'

'

1

'

1

( , , );

 (0, , , , );

(2, , , , ).

A SB S A

A S A A

A S A A

X M h ID T R

Z h ID T R X

V h ID T R X

 





 

Note that the Diffie-Hellman value 
AS SAK K   is 

not used in the simulation. 

The games 
3G  and 

2G  are indistinguishable 

unless   queries the hash function 
1h   on 

(0, , , , , )S A A SAID T R X K  or on (2, , , , , )S A A ASID T R X K  , 

or   queries the hash function h   on 

( , , , , )S A A SAID T R pw K   . We denote such an event by

PassiveAskH  . To upper bound the probability of this 

event, we consider an auxiliary game '

3G  . The 

simulation of the participants changes in game '

3G , 

but the distributions remain perfectly identical. Let us 

be given an instance ( , )U V   of the CDH problem. To 

simulate the 1 2( , , )
i ijExecute A S B   query, we first 

choose 
0 1 0 1, , ,a a b b   from *

qZ  , we simulate 

0 1 ( , , )
a a

A AR U g h pw A B    and 0 1b b

ST V g  . We also 

set 

'

'

1

'

1

( , , );  

(0, , , , );

(2, , , , ).

A SB S A

A S A A

A S A A

X M h ID T R

Z h ID T R X

V h ID T R X

 





 

All other simulation is the same as the one in
2G . 

Now we prove that the difference between two games 
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2G  and '

3G  is at most that of breaking the CDH 

assumption. Suppose an adversary  can distinguish 

between two games 
2G   and '

3G , which means the 

event PassiveAskH  occurs. We can extract  

0 0 0 01 1

0 01 1 1 1

0 0 0 1 1 0 1 1

( , ) ( , )

( , ) ( , ) ( , )

( , )

a b a ba b

SA

a bb a a b

a b a b a b a b

K CDH U g V g CDH U V

CDH U g CDH g V CDH g g

CDH U V U V g

 

  

   

 

from '
1h

  or 'h
 . With the knowledge of

0 1 0 1, , ,a a b b  , 

we can easily solve the CDH problem. Since the CDH 

problem is intractable, the adversary's advantage is 

negligible. Hence, we have 

   3 2, , ( ).Adv G Adv G negl k    

4Game .G In this game, we further modify the way 

Execute  queries are handled. In response to a query
1 2( , , )
i ijExecute A S B , now we compute

BX , 
BZ and 

BV  using private hash oracles. More specifically, we 

compute ' ( , , )B SA S BX M h ID T R  , 

'

1(0, , , , )B S B BZ h ID T R X , '

1(2, , , , )B S B BV h ID T R X  . 

Note that, the Diffie-Hellman value 
BS SBK K   is not 

used in the simulation. With a similar discussion with 

the previous game, we have 

   4 3, , ( ).Adv G Adv G negl k    

5Game .G In this game, we change the simulation 

of the Execute   oracles for the last time. In response 

to a query 1 2( , , )
i ijExecute A S B  , we compute the 

session key '

1(1, , )SSK h ID T   without using the 

Diffie-Hellman value
AB BAK K . Note that, the Diffie-

Hellman values
SAK  , 

SBK  and 
ABK  are not used in 

the simulation of Execute  queries, so we can simply 

simulate Execute  queries without using passwords. 

We can simply compute x

AR g  and y

BR g  . With 

a similar discussion with game
3G  , we can see that 

the difference in the advantage between the current 

game and previous one is at most that of breaking the 

CDH assumption. Thus, we have 

   5 4, , ( ).Adv G Adv G negl k   

6Game .G In this game, we consider passive 

attacks via Send   queries, in which the adversary 

simply forwards the messages it receives from the 

oracle instances. More precisely, as long as the values 

( , , , , , , , , )A B A B A B S A BR R Z Z X X T V V   are generated by 

oracle instances, we replace the hash oracles h   and 

1h   by private hash oracles 
'h   and 

'

1h  respectively 

when computing the corresponding values. The 

simulation of these sessions is exactly the same as the 

one to Execute   queries in game 5G  . As a result, the 

authenticators and the session keys computed during 

such sessions become completely independent of the 

hash functions h , 
1h  and the Diffie-Hellman values. 

As in the previous game, the difference in the 

advantage of   between the games 
6G  and 

5G  is at 

most that of breaking the CDH assumption. Hence, we 

have 

   6 5, , ( ).Adv G Adv G negl k   

7Game .G In this game, we begin to modify the 

Send  oracles. Upon receiving a 

( ,( , , , ))A BSendServer S A B R R   query, we change the 

simulation rules to honest clients. Without loss of 

generality, we assume A  is an honest client, but B   is 

a malicious client. Note that the malicious clients are 

under the control of the adversary. We compute 
z

ST g   and randomly choose 
AX   without using the 

value
SBM  . We also compute  

'

1(0, , , , )A S A AZ h ID T R X   using the private hash 

oracle '

1h . The simulation to the malicious client B   is 

the same as the description of the protocol except we 

randomly choose the value
SAM  . Furthermore, when 

the adversary sends back the message
AV  , we let the 

server instance simply reject without verifying the 

value. Obviously, the games 
7G   and 

6G   are 

indistinguishable unless the adversary   queries the 

hash function 
1h   on (0, , , , , )S A A SAID T R X K  or on

(2, , , , , )S A A ASID T R X K  , or  queries the hash 

function h   on ( , , , , )S A A SAID T R pw K  , we denote this 

bad event by AskS  . Thus 

   7 6 7, , [ ].Adv G Adv G Pr AskS   

8Game .G In this game, we modify the simulation 

of the Send  oracles for the last time. For an honest 

client A , we compute x

AR g  without using the 

password
Apw , where x   is chosen uniformly at 

random from *

qZ  . Furthermore, when the adversary 

sends back the message ( , , )A A SZ X T , we simply let 

the client instance terminate without accepting. The 

adversary cannot distinguish the games 
8G   and 

7G  

unless the adversary queries the hash function 
1h  on 

(0, , , , , )S A A SAID T R X K  or on (2, , , , , )S A A ASID T R X K  , 

in which 
' / ( , , )A A AR R h pw A B   and

( , )AS A SK CDH R T  . We denote this bad event by

AskC . Thus 

   8 7 8, , [ ].Adv G Adv G Pr AskC   

In this final game, the session keys in passive 

sessions are all randomly chosen, and the active 

sessions are terminated without accepting. As a result, 
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the adversary will have no advantage in distinguishing 

the session keys, thus we have 

 8, 0.Adv G   

Now, we evaluate the probabilities of the bad 

events 
8AskS   and

8AskC  . Note that the passwords of 

the honest clients are never used during the 

simulation; they can be chosen at the very end. The 

event 
8AskS   corresponds to an attack where the 

adversary tries to impersonate the client A  to the 

server S . Since the values 
AV   sent by the adversary 

has been computed with at most one ( , , )Ah pw A B   

value. Without any collision of the hash oracles, it 

corresponds to at most one
Apw  . Thus 

8[ ] .
| |

sendserverq
Pr AskS   

With a similar discussion with the event
8AskS , we 

can evaluate the probability of event 
8AskC  

8[ ] .
| |

sendclientq
Pr AskC   

Combining all the above equations, we could get 

the announced result. 

6. Performance Analysis 

In this section, we compare security features and 

efficiency of the proposed protocol with related 

protocols [26, 30, 31, 33, 34], which are summarized 

in Table 2. In terms of computation, we only consider 

the modular exponentiation operation, which entails 

the highest computational complexity, and neglect the 

computational complexity of all other operations such 

as hash computation, which can be done efficiently. 

The “E” stands for “modular exponentiation”. In terms 

of communication, we assume that the identifications 

can be represented with 32 bits, a point in qG  can be 

represented with 160 bits; the output size of secure 

one-way hash functions/MAC function is 160 bits. We 

also compare the communication complexity in terms 

of communication round. We let a round consist of 

one message sent by each party simultaneously. We 

denote ROM, UODA and ODA as the Random Oracle 

Model, the Undetectable On-line Dictionary Attack, 

and the Off-line Dictionary Attack, respectively. 

From Table 2, we can see that our protocol needs 5 

modular exponentiations on the server side. Each 

client needs 3 modular exponentiations in our 

protocol. As a result, our protocol has higher 

computational costs than other protocols. In terms of 

bandwidth, our protocol is less efficient than Huang’s 

protocol and Tallapally’s protocol. However, these 

protocols are insecure against the undetectable on-line 

dictionary attack and the off-line dictionary attack. 

With respect the communication round, our protocol 

only needs 3 rounds, which is among the most 

efficient ones. Chang et al.’s protocol was claimed to 

be provably secure in the random oracle model under 

the CDH assumption. However, Wu et al.’s attack 

invalidates their claim. Consequently, only Wu et al.’s 

protocol and our protocol are provably secure. The 

security proofs are both conducted in the random 

oracle model based on the GDH assumption. 

Considering the security and efficiency, only Wu et 

al.’s protocol is comparable to our protocol. Wu et 

al.’s protocol needs one less modular exponentiation 

on the server side. However, our protocol is more 

efficient than their protocol in terms of 

communication costs. In wireless communication 

environments, transmitting radio signals on resource-

constrained wireless devices usually consumes much 

more power than computation does, so sometimes it is 

more important to reduce the communication cost than 

the computation cost. As a result, our protocol is more 

suitable for large scale wireless client-to-client 

communication environments.  

7. Conclusions 

In this paper, we have analysed the security 

weaknesses of a recently proposed 3PAKE protocol by 

Farash et al. We show that their scheme is susceptible 

to the partition attack and the off-line dictionary 

attack. Moreover, their protocol is inefficient in terms 

of communication. To remedy these problems, we 

propose an improved 3PAKE protocol, which is 

provably secure in the random oracle model under the 

GDH assumption. The proposed protocol not only 

preservers the merits of Farash et al.’s protocol but 

also fixes its security flaws. The security and 

performance comparison shows that our protocol 

achieves both higher efficiency and stronger security. 

Therefore, we believe the proposed scheme is more 

suitable for applications in wireless communication 

environments.  
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Table 2. Comparisons of efficiency and security 

Protocols Huang’s[26] Chang’s[30] Wu’s[31] Tallapally’s[33] Farash’s[34] Ours 

Exponentiations of Client 2E 3E 3E 2E 3E 3E 

Exponentiations of Server 2E 4E 4E 2E 3E 5E 

Bandwidth 1376bits 2432bits 2656bits 1344bits 2048bits 1728bits 

Round 5 3 6 3 5 3 

Security Assumptions  CDH GDH   GDH 

Security Model No Proof ROM ROM No Proof No Proof ROM 

Resistance to UODA N Y Y N Y Y 

Resistance to ODA N N Y N N Y 
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