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Abstract. In this paper, two different control methods, namely sliding mode control and passive control, are 

investigated for the synchronization of two identical chaotic finance systems with different initial conditions. Based on 

the sliding mode control theory, a sliding surface is determined. A Lyapunov function is used to prove that the passive 

controller provides global asymptotic stability of the system. Numerical simulations validate the synchronization of 

chaotic finance systems with the proposed sliding mode and passive control methods. The synchronization performance 

of these two methods is compared and discussed. 
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1. Introduction 

Financial system dynamics have a significant role 

in micro- and macroeconomics [6, 10, 39]. The 

financial and economic systems become more 

complicated and economic growth changes from low to 

high financial markets. Based on multiple variables, the 

process of economical development and growth is more 

complex. They have some nonlinear factors such as 

interest rate, the price of goods, investment demand, 

and stock [25]. Even if an economical system possesses 

deterministic characteristics, a chaotic behaviour can 

occur in the financial system. Chaotic systems have 

sensitive dependence on initial conditions. Because of 

slight errors, chaotic dynamical systems can lead to 

completely different trajectories. Hence, the 

synchronization of chaos in the financial systems is 

required. It has great importance from the management 

point of view to avoid undesirable trajectories and 

make the precise economic adaptation and prediction 

possible. 

The synchronization of chaos has recently received 

much attention due to its complex behaviour and 

potential applications in information processing such as 

secure communication [13, 28, 36], and it becomes one 

of the major issues in the control engineering area. 

Many methods have been used in synchronization of 

chaotic systems including active control [18], sliding 

mode control [14, 21, 29], adaptive control [22], 

passive control [31, 32, 34], impulsive control [2], and 

backstepping design [24]. Among them, the active 

control method is popular due to its simplicity in 

implementation and configuration; and it has been 

applied in synchronization of chaotic finance systems 

[40]. The sliding mode control is one of the other well-

known control methods, and its dynamic performance 

is determined by the prescribed manifold or sliding 

surface where a switching structure maintains the 
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control. This method provides discontinuous control by 

enforcing the system states to stay on the sliding surface 

[19]. Recently, the sliding mode control has been used 

to synchronize many chaotic systems [14, 21, 29]. 

Nowadays, applying the synchronization using only 

one state controller is preferred due to its considerable 

significance in reducing the cost and complexity [33, 

37]. The passive control method has been gaining 

importance in synchronization and control of chaotic 

systems on account of using only a single controller. 

The main idea of passivity theory is to keep the system 

internally stable with implementing a controller which 

renders the closed loop system passive upon the 

properties of the system. In recent years, the passive 

control method has been successfully implemented for 

the synchronization of hyperchaotic Lorenz [31], 

unified [32], Rikitake [34], and other chaotic systems. 

The methodology of sliding mode and passive control 

is studied in many papers [14, 19, 21, 29, 31, 32, 34]. 

In the last decade, some chaotic finance systems 

were introduced [3, 8, 25]. The dynamic behaviours of 

the chaotic finance systems such as equilibrium points, 

stability, topological structure, Lyapunov exponents 

and Hopf bifurcation analysis were investigated in 

detail [1, 10, 25–27, 38, 39]. The control of the chaotic 

finance systems was implemented with effective speed 

feedback control [5, 8, 35, 38], linear feedback control 

[5, 30, 35, 38], adaptive control [5], the selection of 

gain matrix control [35], the revision of gain matrix 

control [35], passive control [9], and time-delayed 

feedback control [6, 11, 39] methods. The control of 

fractional-order chaotic finance system has been 

realized using a sliding mode control method [7]. 

Active controllers [17, 40], nonlinear feedback 

controllers [4, 16], adaptive controllers [15], and a 

single controller based on Lyapunov stability theory 

and linear matrix inequality [20] are employed for 

synchronizing the chaotic finance systems. To the 

knowledge of the authors, neither sliding mode control 

nor passive control approach for the synchronization of 

the chaotic finance systems exist in the literature. 

In this study, further investigations on the 

synchronization of chaotic finance system have been 

explored. First, a brief description of the chaotic 

finance system is given. Then, sliding mode controllers 

are employed for achieving the synchronization of two 

identical chaotic finance systems. Based on the 

property of passivity theory, a single passive controller 

is designed for synchronization of this nonlinear 

system. Afterwards, numerical simulations are 

performed for the synchronization of the chaotic 

finance systems to show the effectiveness of the 

proposed sliding mode and passive control methods. 

Finally, the advantages and disadvantages are 

discussed. 

2. Chaotic Finance System 

Financial systems consist of enterprise units and 

markets that interact, generally in a complex manner, 

for the purpose of economic growth within investment 

and the demand of commercials. In this study, the 

considered finance model defines the time variations of 

three state variables: x is the interest rate, y is the 

investment demand, and z is the price exponent. The 

interest rate is the amount charged, expressed as a 

percentage of principal by a lender to a borrower for the 

use of assets. Investment demand can be defined as the 

desired or planned capitals and inventories by the firms. 

It has a negative relation between investment 

expenditures and the interest rate. Price exponent 

determines the variance of the price distribution. The 

chaotic finance system is described by the set of three 

first-order differential equations as follows 
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where a, b, c are positive constant parameters, and 

represent the saving amount, the per-investment cost, 

and the elasticity of demands of commercials, 

respectively [25]. In a financial system, saving amount 

means that enterprise unit increases its gross financial. 

Per-investment cost is defined as the ratio of original 

cost less distribution received from target funds. The 

elasticity of demands of commercials is a measure of 

the relationship between a change in the quantity 

demanded of a particular good and a change in its price. 

The nonlinear finance system exhibits chaotic 

behaviour when the parameter values are taken as  

a = 0.9, b = 0.2, and c = 1.2 [35]. The time series of the 

chaotic finance system under the initial conditions   

x(0) = 1, y(0) = 2, and z(0) = –0.5 are shown in Fig. 1, 

the 2D phase portraits are shown in Fig. 2, and the 3D 

phase plane is shown in Fig. 3.
 

 

Figure 1. Time series of chaotic finance system for (a) x signals, (b) y signals, (c) z signals 
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Figure 2. Phase portraits of chaotic finance system in (a) x–y phase plane, (b) x–z phase plane, (c) y–z phase plane 

 

Figure 3. 3D phase plane of chaotic finance system 

3. The Synchronization of Chaotic Finance 

Systems using Sliding Mode Control 

The parameters a, b and c are taken in a range to 

ensure the system (1) will display chaotic behaviour. 

In order to observe the synchronization, it is assumed 

that two chaotic finance systems are taken where the 

drive system controls the response system. The initial 

position on the drive system is different from that of 

the response system. The drive system is denoted by 

subscript 1 and the response system is denoted by 

subscript 2. The drive system is given by: 
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and the response system is defined as: 
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where u1(t), u2(t), and u3(t) in Eq. (3) are the sliding 

mode control functions to be determined. The drive 

system is subtracted from response system to obtain 

the control function for synchronization. The e1, e2, 

and e3 state errors between finance system (3) that is 

to be controlled and the controlling finance system (2) 

are defined as 
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Thus, the error dynamics become 
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The error dynamics (5) can be regularized in 

matrix notation as 

uyxAee  ),(  (6) 
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According to the sliding mode control 

methodology, the control signal u is defined as [29]: 

)(),()( tBvyxtu    (8) 

where v is a control signal, and B is a matrix. B is 

chosen so that (A, B) will be controllable. Therefore, B 

is taken as 

.
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The sliding surface must be selected so that the 

system dynamics can remain stable. In order to acquire 

the sliding surface, the system is transformed into 

regular form and the sliding surface coefficients are 

evaluated by using regular form [23]. If Eq. (8) is 
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substituted into Eq. (6), the system alters to the 

following linear form: 

,BvAee   (10) 

where nxnRA  , nxmRB  , nRe  , and mRv  . 

The error dynamics of system (10) are separated into 

two subsystems and one of them includes a control 

signal. In order to transform the system into its regular 

form, a non-singular transformation can be used as 

follows: 

,Tez   (11) 

where T is a non-singular transformation matrix. 

When Eq. (11) is substituted into the linear form (10), 

the following alternative system, which consists of 

two subsystems, is revealed as  

,
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where L is a gain matrix. Then, the sliding surface 

design is considered as 

,0)( 2211  zSzSSzts  (13) 

where 
)(1

1
mnxRS   , and 

1
2 RS   . oolving for z1 in 

Eq. (13) and substituting z1 into Eq. (12) yields 

,][ 11
1

212111 zSSAAz

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which renders the ideal sliding motion. oince the 

dynamics of z2 depend on z1, the stabilization of z1 

stabilizes z2. According to the dynamics of z1, the 

eigenvalues of the expression A11 – A12S2
–1S1 should be 

in the left-half s-plane so that the dynamics of z1 are 

asymptotically stable. In order to find S2
–1S1, pole 

replacement and optimal control techniques can be 

used. S2 may be arbitrary selected on condition that it 

is not singular. After that, S1 is calculated according to 

S2. Now, the sliding surface equation becomes 

.)( CeSTeSzts   (15) 

This implies 

.STC   (16) 

The eigenvalues of A11 – A12S2
–1S1 have been 

placed in the left-half s-plane. Then S2
–1 has been 

selected as identity matrix and so S1 is calculated [12]. 

From Eq. (16), the sliding surface vector C has been 

determined as [–1.75 2.75 0]. Then, the sliding mode 

state equation gives asymptotically stable behaviour, 

when the sliding mode variable is designed as 

  .75.275.1075.275.1 21 eeeCes   (17) 

From the property of the sliding mode control 

theory [14]: 

 .)(sign)()()( 1 sqeAkICCBtv  
 (18) 

where k and q are the sliding mode control parameters. 

A large value of k can cause chattering; an appropriate 

value of q reduces chattering and the time to reach the 

sliding surface. 

Now, the v(t) control signal becomes 

 21 )(75.2)(75.1)( ebkeaktv  

).75.275.1(sign75.1 213 eeqe   (19) 

Then, the required sliding mode control signal is 

obtained as Eq. (8) where )(e  and B are described as 

in Eqs. (7) and (9), respectively: 
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The synchronization of chaotic finance system (3) 

by using the sliding mode control method is completed 

with Eqs. (19) and (20). Hence, the synchronization of 

two identical chaotic finance systems by means of 

sliding mode control is achieved. 

4. The Synchronization of Chaotic Finance 

Systems using Passive Control 

The drive system is again taken to be: 

,

,1

,)(

111

2
111

1111

czxz

xbyy

xayzx













 (21) 

and the response system is defined as: 

222

2
222

2222

,1

),()(

czxz

xbyy

tuxayzx













 (22) 

where u(t) in Eq. (22) is the passive control function 

to be determined. As in the sliding mode control, the 

drive system is subtracted from response system to 

obtain the synchronization error. Then, 
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where e1, e2, and e3 are the state errors and system (23) 

is called the error system.  

One term of system (23) can be written as  
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oo, error system (23) can be rewritten in the 

following form: 
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The purpose is to determine the passive controller 

u(t) for stabilizing error system (25) at a zero 

equilibrium point. By assuming that the state variable 

e1 is the output of the system and supposing Y = e1, Z1 

= e2, Z2 = e3, z = [Z1 Z2]T, then system (25) can be 

denoted by normal form: 
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The passive control theory has the following 

generalized form [31]: 
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and according to system (26): 
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As in [31], let the storage function is chosen as 
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According to Eq. (28), by taking the derivative of 

W(Z) 
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oince 0)( ZW   and 0)( ZW  , it can be 

concluded that W(Z) is the Lyapunov function of 

)(0 Zf   and that )(0 Zf   is globally asymptotically 

stable [34]. The controlled system (25) is equivalent to 

a passive system and can be asymptotically globally 

stabilized at its zero equilibrium by the following state 

feedback controller [32]:
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where α is a positive constant, and v is an external 

input signal. By noting Z1 = e2, Z2 = e3 and Y = e1 

conversions, the passive control function becomes 

.)()( 122111221 veexxyxyxaetu    (33) 

The synchronization of chaotic finance system 

(22) by using the passive control method is completed 

with Eq. (33). Therefore, the synchronization of two 

identical chaotic finance systems by means of passive 

control is achieved. 

5. Numerical simulations 

In this section, numerical simulations are 

performed using MATLAB™ to demonstrate the 

synchronization of two identical chaotic finance 

systems. The fourth-order Runge–Kutta method with 

fixed step size being equal to 0.001 is used to simulate 

the system. The parameter values of nonlinear finance 

systems are taken as a = 0.9, b = 0.2, and c = 1.2 to 

ensure chaotic behaviour [35]. The initial values are 

chosen as x1(0) = 1, y1(0) = 2, z1(0) = –0.5, x2(0) = –1, 

y2(0) = 1.7, z2(0) = 0.5. For reducing the chattering, the 

sliding mode control coefficient q is considered as 0.1. 

The passive control coefficient v is needed for 

controlling a chaotic system to its non-zero 

equilibrium points. oince the synchronization is 

stabilizing the errors between drive and response 

system towards to zero, v has to be 0. In order to 

determine the proper values of k and α control 

coefficients, they are varied from 1 to 7 with 2 

increments. Figs. 4 and 5 show the synchronization 

error signals for k and α coefficients when the 

controllers are activated at t = 25. 

As seen in Figs. 4 and 5, when the sliding mode 

coefficient k and the passive control coefficient α are 

greater then 1, the synchronization errors are not 

changing so much. Bigger k and α choices give slightly 

better results, but they can cause some difficulties in 

realization. As a consequence, k and α coefficients are 

taken as 5 in the simulations. When the sliding mode 

controllers and the passive controller are activated at t 

= 20, t = 25, and t = 30, the observed simulation results 

for the synchronization of two identical chaotic 

finance systems are shown in Figs. 6–8, respectively. 

The error signals of synchronization are demonstrated 

in Figs. 9–11, respectively. 
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Figure 4. The effect of k coefficient to synchronization errors when the sliding mode controllers are activated  

at t = 25 (a) e1 signals, (b) e2 signals, (c) e3 signals 

 

 

Figure 5. The effect of α coefficient to synchronization errors when the passive controller is activated  

at t = 25 (a) e1 signals, (b) e2 signals, (c) e3 signals 

 

 

 

 

Figure 6. The time response of states for synchronization of chaotic finance systems with the controllers are activated  

at t = 20 (a) x signals, (b) y signals, (c) z signals 
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Figure 7. The time response of states for synchronization of chaotic finance systems with the controllers are activated  

at t = 25 (a) x signals, (b) y signals, (c) z signals 

 

 

 

Figure 8. The time response of states for synchronization of chaotic finance systems with the controllers are activated  

at t = 30 (a) x signals, (b) y signals, (c) z signals 
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Figure 9. The time response of the error signals for synchronization of chaotic finance systems with the controllers activated  

at t = 20 (a) sliding mode controllers, (b) passive controller 

 

Figure 10. The time response of the error signals for synchronization of chaotic finance systems with the controllers activated  

at t = 25 (a) sliding mode controllers, (b) passive controller 

 

Figure 11. The time response of the error signals for synchronization of chaotic finance systems with the controllers activated  

at t = 30 (a) sliding mode controllers, (b) passive controller

As expected, the related Figs. 6–8 outputs show 

that both the sliding mode controllers and the passive 

controller have achieved synchronization of chaotic 

finance systems with an appropriate time period. The 

error signals that are shown in Figs. 9–11 converge 

asymptotically to zero. The figures include compara-

tive results for the synchronization of chaotic finance 

systems. While synchronization is provided at t ≥ 24 

by using the sliding mode control, it is reached when t 

≥ 28 with the passive control when the controllers are 

activated at t = 20. Also, the synchronization is first 

observed with the sliding mode controllers when the 

controllers are activated at t = 25, and t = 30. 

Therefore, these comparisons show that the sliding 

mode control method performs better than the passive 

control method for the synchronization of two 

identical chaotic finance systems. The sliding mode 

control method realizes the synchronization using two 

controllers while the passive control method requires 

only one controller. Multiple controllers appear to 

reduce the synchronization time period, whereas a 

single controller provides simplicity in implemen-

tation. 

The passive control method achieves synchroni-

zation by adding or subtracting a value only to the 

interest rate which is dependent on the saving amount, 

interest rates and investment demands. It does not need 

any changes in the investment demand and price 

exponent, so it is simpler to implement. On the other 

hand, sliding mode control method achieves synchro-

nization by altering the interest rate and investment 

demand. It calculates the quantity of changes by using 

the saving amount, per-investment cost, interest rates, 

investment demands and price exponents. Both 

methods do not require the elasticity of demands of 

commercials for synchronization. The sliding mode 

control method appears to have some advantages in 

synchronization speed, but by comparison with the 

passive control, it is more difficult to apply. 

6. Conclusions 

The aim of this paper is to investigate the synchro-

nization of chaos in a nonlinear finance system. oyn-

chronization provides that a low dimensional financial 

system adapts to the global financial system. Instant 

variations such as price and interest rate are the main 
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factors of demand and volume changes. They lead to 

nonlinearity in a system. oynchronization to the global 

finance system utilizes some benefits to economic 

growth on account of obtaining the same interest rate, 

investment demand and price exponent. Also, it can 

reduce the asymmetrical economic risks.  

Based on sliding mode and passive control theory, 

two sliding mode controllers and a single passive 

controller have been designed for synchronization of 

chaos in two identical chaotic finance systems. 

Numerical simulations show all the theoretical 

analyses of the proposed control methods are 

succeeded in synchronizing the two chaotic financial 

systems. oliding mode controllers regulate the 

synchronization of chaotic finance systems more 

effectively than the passive controller in all cases that 

are shown in Figs. 6–11, so the sliding mode method 

is more appropriate. The advantage of the passive 

control method is to achieve the synchronization of 

chaotic finance systems with only one controller 

which provides simplicity in implementation. While 

the sliding mode control realizes synchronization by 

altering the interest rate and investment demand, the 

passive control only alters the interest rate. 
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