
440

ISSN 1392–124X (print), ISSN 2335–884X (online) INFORMATION TECHNOLOGY AND CONTROL, 2014, T. 43, Nr. 4

Stimuli generation framework for testing multiple processes in VHDL

Vacius Jusas, Tomas Neverdauskas

Software Engineering Department, Kaunas University of Technology,

Studentu St. 50, LT-51368, Kaunas, Lithuania, phone: +370 37 300399

e-mail: vacius.jusas@ktu.lt, tomas.neverdauskas@ktu.lt

 http://dx.doi.org/10.5755/j01.itc.43.4.7598

Abstract. Hardware Description Languages (HDL) like VHDL are used to design and simulate programmable

logic devices. Usually the description of the device under test consists of several processes. This concept introduces

problems of how to test and verify complex systems. In this paper, we present a new framework called TestBenchMulti

that is able to generate test stimuli for parallel VHDL designs. The framework combines Control Flow Graphs (CFGs),

extension of Symbolic Execution (SE) and Satisfiability Modulo Theories (SMT) into a sequence of methods to

generate stimuli capable of obtaining high code coverage. The experiments were carried out on synthesizable VHDL

circuits at the behavioural level. The obtained code coverage results were confirmed in the real implementation using

Xilinx FPGA hardware.

Keywords: Parallel processes; hardware verification; test-bench generation; code coverage evaluation.

1. Introduction

With the ever-growing demand for greater perfor-

mance and faster time to market, coupled with the

exponential growth in hardware size, verification has

become increasingly difficult and time consuming

process [1]. This raises the need for the development

of new techniques and methodologies that can provide

the verification team with the means to achieve its

goals quickly and with limited resources.

In order to determine if a chip was manufactured

correctly, or if it continues to function as intended, it

must be tested. The test is an evaluation based on a set

of requirements and is often called stimuli in hardware

verification. Test-bench is a combined set of stimuli.

Depending on the complexity of the design, the test-

bench may be a mere perusal of the product to

determine whether it suits personal needs, or it could

be a long, exhaustive checkout of a complex system to

ensure compliance with many performance and safety

criteria. Emphasis of the test may be directed a speed

of execution, an accuracy or a reliability.

In hardware design, multiple parallel processes are

a very natural way to express required computational

logic. But for human being such a representation can

be a very complex task. Therefore, the description of

the circuit having several parallel processes increases

the complexity of verification exponentially.

In this research, we focus on providing a novel

semi-automatic framework to generate test stimuli for

parallel VHDL designs. We verify the test stimuli

obtained using our framework on real FPGA

hardware, as well.

The paper is organized as follows. We review the

background information in Section 2. We present the

framework to generate test for VHDL models in

Section 3. We provide the evaluation of the results of

the experiment in Section 4. We finish with conclu-

sions in Section 5.

2. Background

2.1. Verification process

A wide variety of verification technologies are

available, broadly classified as simulation-based,

static/dynamic analysis-based and formal technolo-

gies. The simulation is still the most widely used form

of the device verification [2]. One of the problems of

simulation is to have the test-benches to validate the

design functionalities.

Test-benches have become an integral part of the

design process, enabling to verify that HDL model is

sufficiently tested before implementing design on

FPGA and helping automate the design verification

process. Collecting code coverage statistics during si-

mulation helps to ensure the quality and thoroughness

of stimuli [3]. A tester captures the response at the out-

put pins and compares that response to the expected

response determined by applying the stimuli to a

known fault-free device and recording the response, or

Stimuli generation framework for testing multiple processes in VHDL

441

by creating a model of the circuit (a representation or

abstraction of selected features of the system) and

simulating the input stimuli by means of that model.

Hardware designers perform extensive simulations

called “behavioural verification”. Because VHDL is

similar to a high-level programming language and it

borrowed a lot of constructs from Ada [4], we can

apply software quality assurance techniques to a hard-

ware design in order to identify and remove faults.

These faults need to be detected through the use of

test-benches. Test-bench automation through the gene-

ration of test patterns and test cases increases the effi-

ciency and effectiveness of behavioural verification

[5].

Fig. 1 shows a test configuration in which stimuli

are applied to a device under test (DUT), and the

response is evaluated. If we know what the expected

response is from the correctly operating device, we

can compare it to the response of the DUT to

determine if the DUT is responding correctly.

Figure 1. Concise description of the FPGA verification

process in simulation mode

The same applies to the model and physical FPGA

hardware. The FPGA itself can provide the circuitry

you need to monitor and control your own application

circuit. JTAG is an IEEE standard (1149.1) developed

in the 1980s to solve printed circuit board manufactu-

ring issues [6]. Nowadays it finds more use as pro-

gramming, test and probing port. In our research, we

use JTAG for testing of FPGA. The basic idea is

provided in Fig. 2 and it can be explained as follows.

The test stimuli are shifted into the FPGA, then they

are applied to the primary inputs of circuit, next the

responses are captured at the primary outputs and they

are loaded into the shift register, and finally the resp-

onses are shifted out of the FPGA. The shift register is

a cascade of flip flops possessing the same clock, in

which the output of each flip-flop is connected to the

“data” input of the next chained flip-flop, resulting in

a circuit that shifts by one position the “bit array”

stored in it, shifting in the data present at its input and

shifting out the last bit in the array, at each transition

of the clock input. We can use the same test-bench

both for the model and for FPGA hardware by provi-

ding JTAG interface library to simulation software and

by changing configuration of verification target. The

use of the same test-bench enables us to compare the

results obtained during simulation and in the imple-

mentation of the real hardware.

2.2. VHDL as a programming language

The VHDL description of the device in source

code consists of two parts: entity and architecture. The

entity represents the interface of the device, and the

architecture is used to code the functional implementa-

tion of the device [7]. Different levels of functional

implementation can be used. The most frequently used

description levels are the following: behavioural, re-

gister transfer level (RTL), and structural. The

behavioural architecture body of entity describes its

function in an abstract way and the concurrent state-

ments in it are limited to process statements, subpro-

gram calls and signal assignments. The process

Figure 2. Xilinx Spartan3 JTAG interface used for verification

V. Jusas, T. Neverdauskas

442

statements are further made up of sequential

statements that are much like the kinds of statements

we see in a conventional programming language such

as statements evaluating expressions, statements

assigning values to variables (variable-assignment

statements), conditional execution statements (if-then-

else, case, etc.), repeated execution statements (loops)

and subprogram calls. In addition, there is the signal

assignment statement, which is unique to hardware

modelling languages. This statement is similar to

variable assignment statement, except that it causes

the value on a signal to be updated at some future

time. Signals are used to connect different parts of the

design and they are the objects through which

information is propagated between processes.

Semantics of signals is closely connected to the notion

of time in VHDL; a signal has not only a current value

but also a projected waveform that determines its

future values at certain moments of simulation time.

Figure 3. Control flow graph of each process in

GCD circuit

2.3. Control flow in VHDL

In behavioural descriptions of VHDL, the main

statement is the process statement. The statement part

of an architecture body can consist of several

concurrent processes. After activation of the

architecture body all the concurrent statements are

started and executed in parallel. The body of the

process statement includes sequential statements like

those found in software programming languages and it

can be implemented as control flow. In our

framework, each process is treated as separate control

flow graph 𝐺 = (𝑉, 𝐸). Each statement in a process is

a node 𝑣 ∈ 𝑉 in the control flow graph and the

edges 𝑒 ∈ 𝐸 represent the control flow among

statements. We add an edge (𝑒𝑎1, 𝑒𝑎2) if the statement

𝑎1 is executed immediately after the statement 𝑎2 .

Such a CFG is presented in Fig. 3. It represents a

greatest common divisor (GCD) implementation in

VHDL using parallelized Euclidean algorithm. GCD

architecture consists of three processes – load_swap,

subtract_test, write_output. First process is

responsible for resetting circuit, loading the data and

checking the difference between two input vector

values A and B. Second process subtract_test

calculates subtraction between two signals A_h and

B_h. Last process write_output writes result to output

port Y and flags the indicator that the result is

obtained.

Our framework supports branch statements (Case,

If/Else) of VHDL. For each branch, a node is

introduced to edge connection to parent element. A

start and an end node will be added as unique entry

and exit points of the process. In a control flow graph

(Fig. 3), each node represented as a rectangular block

matches a straight-line code without any branching.

The rectangular blocks can be used to denote any

other sequential statements. Directed edges are used to

represent jumps in the control flow. Branch operations

mostly have two directed edges denoted by yes/no.

2.4. Symbolic execution

Symbolic execution is one of the many techniques

that has been used to automate software testing by

generating test cases that achieve high coverage of

program executions. Symbolic execution is by default

static code analysis technique. Computational

definitions for the basic operators of the language are

extended to accept symbolic inputs and produce

symbolic formulas as output [7]. The state of a

symbolically executed program includes the symbolic

values of program variables, a path condition (PC)

and a program counter, representing next statement to

be executed. The path condition is a (quantifier-free)

BOOLEAN formula over the symbolic inputs. It

accumulates constraints which the inputs must satisfy

in order for an execution to follow the particular

associated path [8]. A symbolic execution tree

characterizes the execution paths followed during the

symbolic execution of a program. The nodes represent

program states and the edges represent transitions

between states. The main difference between CFG and

symbolic execution is that symbolic execution

produces all possible execution paths of the program.

Result of symbolic execution is Boolean formula that

is solved using a SMT solver in order to provide

concrete values.

Symbolic execution went its long way in software

testing and it achieved quite considerable results [9],

but the use of symbolic execution for hardware

verification is still in evolving phase. One of the first

researches devoted for VHDL using symbolic

execution was presented in [10], [11] The symbolic

execution was applied in the narrow sense; the faults

were concurrently injected and simulated

symbolically. After injection, the fault path was traced

in order to verify its propagation to the primary

outputs. The authors used statement coverage and bit

coverage metrics. As the advantage of the approach

we could notice that the authors considered the VHDL

descriptions having multiple statements.

More classical approach was presented in [12].

Andrews et al. defined heuristic rules to generate test

cases for VHDL behavioral designs. The rules were

based on control-flow and data-flow analysis. The

authors used branch coverage metric. But the Andrews

Stimuli generation framework for testing multiple processes in VHDL

443

at al. did not pay attention to the VHDL designs

having multiple process statements.

Liu et al. [12] presented an approach that

combined dynamic simulation data and static analysis

of control flow graphs at the register transfer level. A

concrete simulation was applied over a fixed number

of cycles. That is the disadvantage of the approach.

The authors implemented the Verilog register transfer

level symbolic execution engine and used branch

coverage and path coverage metrics. The research was

based on designs having single process only.

Jusas and Neverdauskas [13] proposed an

approach that combined the specifics of hardware and

software. The finite state machine represents the spe-

cifics of the hardware. The control flow graph repre-

sents the specifics of the software. The proposed

approach allowed obtaining high code coverage but

for the designs having single process only. Therefore,

in this paper, we are going to extend the approach [13]

to the designs having multiple processes.

2.5. Evaluation metrics

To evaluate the generated test cases, we use three

code coverage metrics: statement, branch and toggle.

Statement coverage measures the number of execu-

table statements within the model that have been exe-

cuted during the simulation run. In most verification

cases, statement coverage is used as minimum goal

[14]. Branch coverage [15] sometimes is referred to as

decision coverage. This coverage metric measures

how many times each branch in an IF/ELSE construct

was executed and it is particularly useful in situations

where a branch does not contain any executable

statements. Toggle coverage answers the question

“Did this bit of this input/output change from a value

of zero (0) to one (1) and back from one (1) to zero (0)

during simulation?”.

3. Framework for VHDL programs consisting

of multiple processes

3.1. Structure

Test generation framework “TestBenchMulti”

combines and extends methods shortly introduced in

previous section into novel methodology. Basic

framework structure is presented in Fig. 4. All the

parts of framework are implemented in Python pro-

gramming language. “TestBenchMulti” is continuation

of the previous research [15], devoted for VHDL

programs having a single process.

Figure 4. Basic structure of TestBenchMulti

The flow of the data through framework is

indicated by arrows in Fig. 4. Firstly, the code in

Extensible Markup Language (XML) is generated

using circuit description in VHDL code. Next, the

control flow graphs (CFG’s) are created using XML

code. This is followed by symbolic execution process.

The stimuli generation cases on the base of CFG’s are

considered in the next subsection. Result of the

symbolic execution is a tree (SET) structure. A

significant scalability challenge for symbolic execu-

tion is how to handle the exponential number of paths

in the code. Each abstract path condition in a leaf node

of SET is computed using Satisfiability Modulo

Theories library Z3 [16] in order to obtain the concrete

values. SMT is an area of automated deduction that

studies methods for checking the satisfiability of first-

order formulae in accordance to some logical theory

of interest. While SMT techniques have been

traditionally used to support deductive software very-

fication, we are using this for calculation of concrete

values from SMT formulae. Finally, stimuli are

converted to test-bench format using VHDL language.

This final step is performed completely in manual

manner. We did not create the tool to convert the

stimuli to test-bench format yet. This step does not

require any calculation efforts. Therefore, its

automation was left to the end.

3.2. Stimuli generation

In parallel software programming, two common

approaches are used: lightweight and heavyweight

processes. In lightweight process, the threads of the

process share the same address space. This approach

can easily lead to conflicts in case of improper

synchronization, for example, if processes are writing

to the same memory location at the same time.

Each heavyweight process contains its own

address space. This approach is more general, safer,

but it is more complex. This execution model is used

in VHDL. Communication between processes is

accomplished using signals that are declared in

declaration part of the architecture unit. These signals

are visible to all the processes that are present in the

architecture body. The restriction is imposed on the

writing rights to these signals; single process can

assign a value to the particular signal.

The most designs use clock signal to synchronize

the circuit. Therefore, we consider the descriptions of

the synchronous circuits. Consequently, at least one

process in the architecture body will be sensitive to

the clock signal and such a process will always be

present. All the other processes can be sensitive to the

same clock signal, to some other signals at the primary

inputs or to the signals that are declared in the

declaration part of the architecture unit.

The designed circuits usually perform some

definite prescribed functions. Based on the knowledge

of VHDL and of design we define the following

axiom:

V. Jusas, T. Neverdauskas

444

Axiom. Every design described in VHDL at the

behavioural level has at least one master process.

There can be several master processes if the design

performs some functions independently.

Bearing in mind the Axiom we divide the

descriptions of the circuits into three categories. We

assign to the first category the circuits that are

described by the independent processes. The processes

can be driven either by the clock signal or by the other

signals at the primary inputs. We assign to the second

category the circuits that are described by one explicit

master process driven by clock signal and all the other

processes are slave and follow the commands from

this process. In this case, all the slave processes are

sensitive to the signals that obtain values from the

master process. We assign to the third category all the

other circuits that have implicit master process. In this

case, several processes are sensitive to clock signal

and processes share some common information.

Usually one process assigns value to the signal; the

other process tests the value of the assigned signal.

The task is to find which process is master. According

to the Axiom such a process must be present.

3.3. Independent processes

This is the simplest case. All signals declared in

sensitivity list of each process are independent, and

processes do not share information. Parallel execution

of each process depends only on sensitivity list and

the signal values at the primary inputs. In this

situation, we can form CFG of each process

independently. The count of CFG is equal to the count

of processes. Then each CFG is executed symbolically

independently, as well.

3.4. Explicit master and slave processes

In this case, the master process is activated by the

clock signal. Slave processes are activated by the

signals, values to which are assigned in the master

process. We inject CFG of each slave process into the

CFG of the master process to the place where

appropriate signals are used. After this code manipu-

lation, we obtain single sequential process that is

executed symbolically.

We already have presented the graphical

representation of such CFG’s for GCD circuit in

Fig. 3. We present for the same circuit the abstract

view of the processes and the relations among the

processes defined by the signals in Fig. 5. The process

load_swap is the master process. The processes

subtract_test and write_output are the slave processes.

The master process assigns values to the signals a_h

and b_h that activate slave processes. The slave

process subtract_test assigns the value to the signal

A_lessthan_B that is tested in the master process.

Symbolic code execution enables to obtain SET

tree that is presented in Fig. 6. As we can see,

although our design is small enough it contains in total

10 leaf nodes. Every path into leaf node will be

converted to test stimulus. Large number of leaf nodes

ensures large number of test stimuli. Consequently,

large number of test stimuli guarantees high quality of

code coverage.

Figure 5. Relation of processes in GCD circuit

3.5. Implicit master and slave processes

In this case, several or all the processes are

sensitive to the clock signal. The master process

cannot be distinguished according to the sensitivity to

the clock signal. In order to find the master process we

construct the directed graph of data flow among the

processes. We name it the graph of relation (GoR). In

GoR, the vertex maps the process. The edge is

directed from the first vertex to the second vertex if

the value to the signal is assigned in the first process

and the value is tested in the second process. We

present an example of the graph of some hypothetical

circuit having 5 processes in Fig. 7. We label using

letter I and the sequential number the primary inputs.

The primary outputs are labelled using letter O and the

sequential number. The numbers shown in parentheses

denote the bit size. We label using letter C and the

sequential number the inner relations among the

processes. Reset and clock signals are not included

because they are present in the sensitivity lists of all

the processes.

In order to find the master process we define the

following three rules:

1. The process must be sensitive to the clock

signal and reset signal if the reset signal is

present.

2. The process must send commands to several

other processes. Either possible master

process or the processes directly related to

possible master process must receive data

from primary inputs.

3. The process must receive and test answers

from the processes, to which it has sent

commands either directly or indirectly.

If we look to Fig. 7, we see that process P3

satisfies the defined rules. Therefore, the process P3 is

the master process for our considered hypothetical

circuit.

When the master process is determined, then the

procedure follows the same steps as in the case of the

explicit master process.

4. Experiments

We carried out experiments on 3 VHDL circuits:

Stimuli generation framework for testing multiple processes in VHDL

445

Figure 6. Combined Symbolic Execution Tree of GCD

Figure 7. Graph of relation of hypothetical circuit

chopper circuit [17], GCD implementation in VHDL

using parallelized Euclidean algorithm and B13 circuit

from ITC99 benchmark suite [18]. The characteristics

of the circuits are presented in Table 1. The chopper is

a circuit that converts fixed dc input to a variable dc

output voltage directly. B13 is interface to meteo

sensors [18]. The chopper circuit represents the first

category of the circuits. GCD circuit represents the

second category of the circuits. B13 circuit represents

the third category of the circuits.

Framework “TestBenchMulti” generates for each

circuit code stimuli for verification. In our research,

we use Mentor Graphics ModelSim software to

simulate our design and compute code coverage.

During this phase the coverage analysis tool inspects

the VHDL source code and computes statement,

branch, toggle and toggle after permutation coverage

results (Table 2).

Table 1. Designs under Test

Circuit Number of processes Lines of code

Chopper 7 51

GCD 3 43

B13 (ITC99) 5 296

As we can see from Table 2, we did not obtain

high toggle coverage for the GCD and B13 circuits.

Therefore, we employed the tool that added missing

toggles at the primary inputs. Such extra stimuli

allowed obtaining complete toggle coverage for all the

circuits. We did not obtain complete statement and

branch coverage for B13 circuit. We investigated the

problem and we learnt that one of the processes has an

implicit loop. Our tool cannot manage this problem

correctly. There is a room for improvement in test

stimuli generation for single process. Stimuli

generation for a loop using symbolic analysis

technique always was a challenge.

To our best knowledge we do not know the results

of automatic test stimuli generation of the researches

that would consider the circuits described in VHDL at

P1

P4

P3

P2

P5

I1
O1

O2
O3

O4(4)

O5 O6

O7 I2(8)

I3

C1 C2

C3

C4

C6

C5

C8

C7

V. Jusas, T. Neverdauskas

446

the behavioural level and having multiple processes.

Consequently, we cannot compare our obtained results

with the results of the other researches.

We implemented all the mentioned circuits into

real FPGA hardware. For FPGA hardware, we used

Xilinx Spartan XC3S200A FPGA and Xilinx ISE

Suite for FPGA configuration. Generated binary

stimuli are transferred to FPGA through JTAG

interface. The same verification process is applied. We

obtained exactly the same coverage results as in

simulation mode.

Table 2. Coverage results

B
en

ch
m

a
rk

S
ta

te
m

en
t,

 %

B
ra

n
ch

,
%

T
o

g
g
le

,
%

T
o

g
g
le

 a
ft

er

p
er

m
u

ta
ti

o
n

s,
 %

Chopper 100 100 100 100

GCD 100 100 27 100

B13 78 85 25 100

5. Conclusions

Verification is an important part of design process.

The test stimuli are needed to verify the behaviour of

designed circuit. The tool, which is able to generate

test stimuli automatically, quite substantially eases the

process of verification. We presented the updated

version of the test stimuli generation framework for

the verification of VHDL model having parallel

processes. The framework combines several tools and

the final result of the framework is a test-bench for the

verification of the circuit model described in VHDL at

the behavioural level and having multiple processes.

To our best knowledge, we presented the

framework of test stimuli generation for VHDL

models at the behavioural level having multiple

processes for the first time. The obtained coverage

results using various metrics indicate high quality of

generated test stimuli.

We verified the results obtained using simulation

environment in the real FPGA implementation.

Hardware implementation confirmed the results

obtained using software implementation.

References

[1] E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas.

The use of a software prototype for verification test

generation. Information Technology and Control,

2008, Vol. 37, No. 4, 265–274.

[2] D. Zheng, W. Yichen, Z. Xueyi. The methods of

FPGA software verification. In: Proceedings of the

2011 IEEE International Conference on Computer

Science and Automation Engineering (CSAE), 2011,

Vol. 3, pp. 86–89.

[3] K. Arshak, E. Jafer, C. Ibala. Power Testing of an

FPGA based System Using Modelsim Code Coverage

capability. In: Proceedings on the 2007 IEEE Interna-

tional Conference on Design and Diagnostics of Elec-

tronic Circuits and Systems, 2007, pp. 1–4.

[4] J. Barnes. Ada 95 Rationale: The Language, the

Standard Libraries. Springer, 1997.

[5] L. Feng, Z. Dai, W. Li, J. Cheng. Design and applica-

tion of reusable SoC verification platform. In:

Proceedings of the 2011 IEEE 9th International

Conference on ASIC (ASICON), 2011, pp. 957–960.

[6] IEEE Standard Test Access Port and Boundary Scan

Architecture, IEEE Std. 1149.1-2001, 1–212, Jul. 2001.

[7] J. A. Darringer, J. C. King. Applications of Symbolic

Execution to Program Testing. IEEE Computer, 1978,

Vol. 11, No. 4, 51–60.

[8] S. Khurshid, C. S. Păsăreanu, W. Visser. Generali-

zed symbolic execution for model checking and

testing. In: Tools and Algorithms for the Construction

and Analysis of Systems, Springer, 2003, 553–568.

[9] C. Cadar, P. Godefroid, S. Khurshid, C. S.

Păsăreanu, K. Sen, N. Tillmann, W. Visser.

Symbolic execution for software testing in practice:

preliminary assessment. In: Proceedings of the 33rd

International Conference on Software Engineering,

2011, pp. 1066–1071.

[10] A. Andrews, A. O'Fallon, T. Chen. RUBASTEM: A

Method for Testing VHDL Behavioral Models. In:

Proceedings of the 2004 IEEE International Sympo-

sium on High Assurance Systems Engineering, 2004,

pp. 187-196.

[11] L. Liu, S. Vasudevan. Efficient validation input gene-

ration in RTL by hybridized source code analysis. In:

Proceedings of the Design, Automation and Test in

Europe Conference and Exhibition, 2011, pp. 1596–

1601.

[12] F. Ferrandi, F. Fummi, L. Gerli, D. Sciuto. Symbo-

lic functional vector generation for VHDL specifica-

tions. In: Proceedings of the Design, Automation and

Test in Europe Conference and Exhibition, 1999, pp.

442–446.

[13] I. G. Harris. Fault models and test generation for

hardware-software covalidation. IEEE Design & Test

of Computers, 2003, Vol. 20, No. 4, 40–47.

[14] S. Tasiran, K. Keutzer. Coverage metrics for

functional validation of hardware designs. IEEE

Design & Test of Computers, 2001, Vol. 18, No. 4, 36–

45.

[15] V. Jusas, T. Neverdauskas. Combining Software and

Hardware Test Generation Methods to Verify VHDL

Models. Information Technology and Control, 2013,

Vol. 42, No. 4, 362–368.

[16] L. De Moura, N. Bjørner. Z3: An efficient SMT

solver. In: Tools and Algorithms for the Construction

and Analysis of Systems, Springer, 2008, 337–340.

[17] M. Jenihhin, A. Tsepurov, V. Tihhomirov, J. Raik,

H. Hantson, R. Ubar, G. Bartsch, J. M. Escobar,

H.-D. Wuttke. Automated Design Error Localization

in RTL Designs. IEEE Design & Test, 2014, Vol. 31,

No. 1, 83–92.

[18] ITC99 Benchmark Suite. CAD Group at Politecnico di Torino,

http://www.cad.polito.it/downloads/tools/itc99.html.

Received July 2014.

