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Abstract. Hardware Description Languages (HDL) like VHDL are used to design and simulate programmable 

logic devices. Usually the description of the device under test consists of several processes. This concept introduces 

problems of how to test and verify complex systems. In this paper, we present a new framework called TestBenchMulti 

that is able to generate test stimuli for parallel VHDL designs. The framework combines Control Flow Graphs (CFGs), 

extension of Symbolic Execution (SE) and Satisfiability Modulo Theories (SMT) into a sequence of methods to 

generate stimuli capable of obtaining high code coverage. The experiments were carried out on synthesizable VHDL 

circuits at the behavioural level. The obtained code coverage results were confirmed in the real implementation using 

Xilinx FPGA hardware. 
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1. Introduction 

With the ever-growing demand for greater perfor-

mance and faster time to market, coupled with the 

exponential growth in hardware size, verification has 

become increasingly difficult and time consuming 

process [1]. This raises the need for the development 

of new techniques and methodologies that can provide 

the verification team with the means to achieve its 

goals quickly and with limited resources. 

In order to determine if a chip was manufactured 

correctly, or if it continues to function as intended, it 

must be tested. The test is an evaluation based on a set 

of requirements and is often called stimuli in hardware 

verification. Test-bench is a combined set of stimuli. 

Depending on the complexity of the design, the test-

bench may be a mere perusal of the product to 

determine whether it suits personal needs, or it could 

be a long, exhaustive checkout of a complex system to 

ensure compliance with many performance and safety 

criteria. Emphasis of the test may be directed a speed 

of execution, an accuracy or a reliability.  

In hardware design, multiple parallel processes are 

a very natural way to express required computational 

logic. But for human being such a representation can 

be a very complex task.  Therefore, the description of 

the circuit having several parallel processes increases 

the complexity of verification exponentially. 

In this research, we focus on providing a novel 

semi-automatic framework to generate test stimuli for 

parallel VHDL designs. We verify the test stimuli 

obtained using our framework on real FPGA 

hardware, as well. 

The paper is organized as follows. We review the 

background information in Section 2. We present the 

framework to generate test for VHDL models in 

Section 3. We provide the evaluation of the results of 

the experiment in Section 4. We finish with conclu-

sions in Section 5. 

2. Background 

2.1. Verification process 

A wide variety of verification technologies are 

available, broadly classified as simulation-based, 

static/dynamic analysis-based and formal technolo-

gies. The simulation is still the most widely used form 

of the device verification [2]. One of the problems of 

simulation is to have the test-benches to validate the 

design functionalities. 

Test-benches have become an integral part of the 

design process, enabling to verify that HDL model is 

sufficiently tested before implementing design on 

FPGA and helping automate the design verification 

process. Collecting code coverage statistics during si-

mulation helps to ensure the quality and thoroughness 

of stimuli [3]. A tester captures the response at the out-

put pins and compares that response to the expected 

response determined by applying the stimuli to a 

known fault-free device and recording the response, or 
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by creating a model of the circuit (a representation or 

abstraction of selected features of the system) and 

simulating the input stimuli by means of that model. 

Hardware designers perform extensive simulations 

called “behavioural verification”. Because VHDL is 

similar to a high-level programming language and it 

borrowed a lot of constructs from Ada [4], we can 

apply software quality assurance techniques to a hard-

ware design in order to identify and remove faults. 

These faults need to be detected through the use of 

test-benches. Test-bench automation through the gene-

ration of test patterns and test cases increases the effi-

ciency and effectiveness of behavioural verification 

[5]. 

Fig. 1 shows a test configuration in which stimuli 

are applied to a device under test (DUT), and the 

response is evaluated. If we know what the expected 

response is from the correctly operating device, we 

can compare it to the response of the DUT to 

determine if the DUT is responding correctly. 

 

Figure 1. Concise description of the FPGA verification 

process in simulation mode 

The same applies to the model and physical FPGA 

hardware. The FPGA itself can provide the circuitry 

you need to monitor and control your own application 

circuit. JTAG is an IEEE standard (1149.1) developed 

in the 1980s to solve printed circuit board manufactu-

ring issues [6]. Nowadays it finds more use as pro-

gramming, test and probing port. In our research, we 

use JTAG for testing of FPGA. The basic idea is 

provided in Fig. 2 and it can be explained as follows. 

The test stimuli are shifted into the FPGA, then they 

are applied to the primary inputs of circuit, next the 

responses are captured at the primary outputs and they 

are loaded into the shift register, and finally the resp-

onses are shifted out of the FPGA. The shift register is 

a cascade of flip flops possessing the same clock, in 

which the output of each flip-flop is connected to the 

“data” input of the next chained flip-flop, resulting in 

a circuit that shifts by one position the “bit array” 

stored in it, shifting in the data present at its input and 

shifting out the last bit in the array, at each transition 

of the clock input. We can use the same test-bench 

both for the model and for FPGA hardware by provi-

ding JTAG interface library to simulation software and 

by changing configuration of verification target. The 

use of the same test-bench enables us to compare the 

results obtained during simulation and in the imple-

mentation of the real hardware. 

2.2. VHDL as a programming language 

The VHDL description of the device in source 

code consists of two parts: entity and architecture. The 

entity represents the interface of the device, and the 

architecture is used to code the functional implementa-

tion of the device [7]. Different levels of functional 

implementation can be used. The most frequently used 

description levels are the following: behavioural, re-

gister transfer level (RTL), and structural. The 

behavioural architecture body of entity describes its 

function in an abstract way and the concurrent state-

ments in it are limited to process statements, subpro-

gram calls and signal assignments. The process 

 

Figure 2. Xilinx Spartan3 JTAG interface used for verification
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statements are further made up of sequential 

statements that are much like the kinds of statements 

we see in a conventional programming language such 

as statements evaluating expressions, statements 

assigning values to variables (variable-assignment 

statements), conditional execution statements (if-then-

else, case, etc.), repeated execution statements (loops) 

and subprogram calls. In addition, there is the signal 

assignment statement, which is unique to hardware 

modelling languages. This statement is similar to 

variable assignment statement, except that it causes 

the value on a signal to be updated at some future 

time. Signals are used to connect different parts of the 

design and they are the objects through which 

information is propagated between processes. 

Semantics of signals is closely connected to the notion 

of time in VHDL; a signal has not only a current value 

but also a projected waveform that determines its 

future values at certain moments of simulation time. 

 

Figure 3. Control flow graph of each process in  

GCD circuit 

2.3. Control flow in VHDL 

In behavioural descriptions of VHDL, the main 

statement is the process statement. The statement part 

of an architecture body can consist of several 

concurrent processes. After activation of the 

architecture body all the concurrent statements are 

started and executed in parallel. The body of the 

process statement includes sequential statements like 

those found in software programming languages and it 

can be implemented as control flow. In our 

framework, each process is treated as separate control 

flow graph 𝐺 = (𝑉, 𝐸). Each statement in a process is 

a node 𝑣 ∈ 𝑉  in the control flow graph and the 

edges  𝑒 ∈ 𝐸  represent the control flow among 

statements. We add an edge (𝑒𝑎1, 𝑒𝑎2) if the statement 

𝑎1  is executed immediately after the statement  𝑎2 . 

Such a CFG is presented in Fig. 3. It represents a 

greatest common divisor (GCD) implementation in 

VHDL using parallelized Euclidean algorithm. GCD 

architecture consists of three processes – load_swap, 

subtract_test, write_output. First process is 

responsible for resetting circuit, loading the data and 

checking the difference between two input vector 

values A and B. Second process subtract_test 

calculates subtraction between two signals A_h and 

B_h. Last process write_output writes result to output 

port Y and flags the indicator that the result is 

obtained. 

Our framework supports branch statements (Case, 

If/Else) of VHDL. For each branch, a node is 

introduced to edge connection to parent element. A 

start and an end node will be added as unique entry 

and exit points of the process. In a control flow graph 

(Fig. 3), each node represented as a rectangular block 

matches a straight-line code without any branching. 

The rectangular blocks can be used to denote any 

other sequential statements. Directed edges are used to 

represent jumps in the control flow. Branch operations 

mostly have two directed edges denoted by yes/no. 

2.4. Symbolic execution 

Symbolic execution is one of the many techniques 

that has been used to automate software testing by 

generating test cases that achieve high coverage of 

program executions. Symbolic execution is by default 

static code analysis technique. Computational 

definitions for the basic operators of the language are 

extended to accept symbolic inputs and produce 

symbolic formulas as output [7]. The state of a 

symbolically executed program includes the symbolic 

values of program variables, a path condition (PC) 

and a program counter, representing next statement to 

be executed. The path condition is a (quantifier-free) 

BOOLEAN formula over the symbolic inputs. It 

accumulates constraints which the inputs must satisfy 

in order for an execution to follow the particular 

associated path [8]. A symbolic execution tree 

characterizes the execution paths followed during the 

symbolic execution of a program. The nodes represent 

program states and the edges represent transitions 

between states. The main difference between CFG and 

symbolic execution is that symbolic execution 

produces all possible execution paths of the program. 

Result of symbolic execution is Boolean formula that 

is solved using a SMT solver in order to provide 

concrete values.  

Symbolic execution went its long way in software 

testing and it achieved quite considerable results [9], 

but the use of symbolic execution for  hardware 

verification is still in evolving phase. One of the first 

researches devoted for VHDL using symbolic 

execution was presented in [10], [11] The symbolic 

execution was applied in the narrow sense; the faults 

were concurrently injected and simulated 

symbolically. After injection, the fault path was traced 

in order to verify its propagation to the primary 

outputs. The authors used statement coverage and bit 

coverage metrics. As the advantage of the approach 

we could notice that the authors considered the VHDL 

descriptions having multiple statements.  

More classical approach was presented in [12]. 

Andrews et al. defined heuristic rules to generate test 

cases for VHDL behavioral designs. The rules were 

based on control-flow and data-flow analysis. The 

authors used branch coverage metric. But the Andrews 
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at al. did not pay attention to the VHDL designs 

having multiple process statements. 

Liu et al. [12] presented an approach that 

combined dynamic simulation data and static analysis 

of control flow graphs at the register transfer level. A 

concrete simulation was applied over a fixed number 

of cycles. That is the disadvantage of the approach. 

The authors implemented the Verilog register transfer 

level symbolic execution engine and used branch 

coverage and path coverage metrics. The research was 

based on designs having single process only. 

Jusas and Neverdauskas [13] proposed an 

approach that combined the specifics of hardware and 

software. The finite state machine represents the spe-

cifics of the hardware. The control flow graph repre-

sents the specifics of the software. The proposed 

approach allowed obtaining high code coverage but 

for the designs having single process only. Therefore, 

in this paper, we are going to extend the approach [13] 

to the designs having multiple processes. 

2.5. Evaluation metrics 

To evaluate the generated test cases, we use three 

code coverage metrics: statement, branch and toggle. 

Statement coverage measures the number of execu-

table statements within the model that have been exe-

cuted during the simulation run. In most verification 

cases, statement coverage is used as minimum goal 

[14]. Branch coverage [15] sometimes is referred to as 

decision coverage. This coverage metric measures 

how many times each branch in an IF/ELSE construct 

was executed and it is particularly useful in situations 

where a branch does not contain any executable 

statements. Toggle coverage answers the question 

“Did this bit of this input/output change from a value 

of zero (0) to one (1) and back from one (1) to zero (0) 

during simulation?”. 

3. Framework for VHDL programs consisting 

of multiple processes 

3.1. Structure 

Test generation framework “TestBenchMulti” 

combines and extends methods shortly introduced in 

previous section into novel methodology. Basic 

framework structure is presented in Fig. 4. All the 

parts of framework are implemented in Python pro-

gramming language. “TestBenchMulti” is continuation 

of the previous research [15], devoted for VHDL 

programs having a single process. 
 

 

Figure 4. Basic structure of TestBenchMulti 

The flow of the data through framework is 

indicated by arrows in Fig. 4. Firstly, the code in 

Extensible Markup Language (XML) is generated 

using circuit description in VHDL code. Next, the 

control flow graphs (CFG’s) are created using XML 

code. This is followed by symbolic execution process. 

The stimuli generation cases on the base of CFG’s are 

considered in the next subsection. Result of the 

symbolic execution is a tree (SET) structure. A 

significant scalability challenge for symbolic execu-

tion is how to handle the exponential number of paths 

in the code. Each abstract path condition in a leaf node 

of SET is computed using Satisfiability Modulo 

Theories library Z3 [16] in order to obtain the concrete 

values. SMT is an area of automated deduction that 

studies methods for checking the satisfiability of first-

order formulae in accordance to some logical theory 

of interest. While SMT techniques have been 

traditionally used to support deductive software very-

fication, we are using this for calculation of concrete 

values from SMT formulae. Finally, stimuli are 

converted to test-bench format using VHDL language. 

This final step is performed completely in manual 

manner. We did not create the tool to convert the 

stimuli to test-bench format yet. This step does not 

require any calculation efforts. Therefore, its 

automation was left to the end. 

3.2. Stimuli generation  

In parallel software programming, two common 

approaches are used: lightweight and heavyweight 

processes. In lightweight process, the threads of the 

process share the same address space. This approach 

can easily lead to conflicts in case of improper 

synchronization, for example, if processes are writing 

to the same memory location at the same time.  

Each heavyweight process contains its own 

address space. This approach is more general, safer, 

but it is more complex. This execution model is used 

in VHDL. Communication between processes is 

accomplished using signals that are declared in 

declaration part of the architecture unit. These signals 

are visible to all the processes that are present in the 

architecture body. The restriction is imposed on the 

writing rights to these signals; single process can 

assign a value to the particular signal. 

The most designs use clock signal to synchronize 

the circuit. Therefore, we consider the descriptions of 

the synchronous circuits. Consequently, at least one 

process in the architecture body will be sensitive to 

the clock signal and such a process will always be 

present. All the other processes can be sensitive to the 

same clock signal, to some other signals at the primary 

inputs or to the signals that are declared in the 

declaration part of the architecture unit.  

The designed circuits usually perform some 

definite prescribed functions. Based on the knowledge 

of VHDL and of design we define the following 

axiom: 
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Axiom. Every design described in VHDL at the 

behavioural level has at least one master process. 

There can be several master processes if the design 

performs some functions independently. 

Bearing in mind the Axiom we divide the 

descriptions of the circuits into three categories. We 

assign to the first category the circuits that are 

described by the independent processes. The processes 

can be driven either by the clock signal or by the other 

signals at the primary inputs. We assign to the second 

category the circuits that are described by one explicit 

master process driven by clock signal and all the other 

processes are slave and follow the commands from 

this process. In this case, all the slave processes are 

sensitive to the signals that obtain values from the 

master process. We assign to the third category all the 

other circuits that have implicit master process. In this 

case, several processes are sensitive to clock signal 

and processes share some common information. 

Usually one process assigns value to the signal; the 

other process tests the value of the assigned signal. 

The task is to find which process is master. According 

to the Axiom such a process must be present. 

3.3. Independent processes 

This is the simplest case. All signals declared in 

sensitivity list of each process are independent, and 

processes do not share information. Parallel execution 

of each process depends only on sensitivity list and 

the signal values at the primary inputs. In this 

situation, we can form CFG of each process 

independently. The count of CFG is equal to the count 

of processes. Then each CFG is executed symbolically 

independently, as well.  

3.4. Explicit master and slave processes 

In this case, the master process is activated by the 

clock signal. Slave processes are activated by the 

signals, values to which are assigned in the master 

process. We inject CFG of each slave process into the 

CFG of the master process to the place where 

appropriate signals are used. After this code manipu-

lation, we obtain single sequential process that is 

executed symbolically.  

We already have presented the graphical 

representation of such CFG’s for GCD circuit in 

Fig. 3. We present for the same circuit the abstract 

view of the processes and the relations among the 

processes defined by the signals in Fig. 5. The process 

load_swap is the master process. The processes 

subtract_test and write_output are the slave processes. 

The master process assigns values to the signals a_h 

and b_h that activate slave processes. The slave 

process subtract_test assigns the value to the signal 

A_lessthan_B that is tested in the master process. 

Symbolic code execution enables to obtain SET 

tree that is presented in Fig. 6. As we can see, 

although our design is small enough it contains in total 

10 leaf nodes. Every path into leaf node will be 

converted to test stimulus. Large number of leaf nodes 

ensures large number of test stimuli. Consequently, 

large number of test stimuli guarantees high quality of 

code coverage.  

 

Figure 5. Relation of processes in GCD circuit 

3.5. Implicit master and slave processes  

In this case, several or all the processes are 

sensitive to the clock signal. The master process 

cannot be distinguished according to the sensitivity to 

the clock signal. In order to find the master process we 

construct the directed graph of data flow among the 

processes. We name it the graph of relation (GoR). In 

GoR, the vertex maps the process. The edge is 

directed from the first vertex to the second vertex if 

the value to the signal is assigned in the first process 

and the value is tested in the second process. We 

present an example of the graph of some hypothetical 

circuit having 5 processes in Fig. 7. We label using 

letter I and the sequential number the primary inputs. 

The primary outputs are labelled using letter O and the 

sequential number. The numbers shown in parentheses 

denote the bit size. We label using letter C and the 

sequential number the inner relations among the 

processes. Reset and clock signals are not included 

because they are present in the sensitivity lists of all 

the processes. 

In order to find the master process we define the 

following three rules: 

1. The process must be sensitive to the clock 

signal and reset signal if the reset signal is 

present. 

2. The process must send commands to several 

other processes. Either possible master 

process or the processes directly related to 

possible master process must receive data 

from primary inputs. 

3. The process must receive and test answers 

from the processes, to which it has sent 

commands either directly or indirectly. 

If we look to Fig. 7, we see that process P3 

satisfies the defined rules. Therefore, the process P3 is 

the master process for our considered hypothetical 

circuit. 

When the master process is determined, then the 

procedure follows the same steps as in the case of the 

explicit master process. 

4. Experiments 

We carried out experiments on 3 VHDL circuits: 
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Figure 6. Combined Symbolic Execution Tree of GCD

 

Figure 7. Graph of relation of hypothetical circuit 

chopper circuit [17], GCD implementation in VHDL 

using parallelized Euclidean algorithm and B13 circuit 

from ITC99 benchmark suite [18]. The characteristics 

of the circuits are presented in Table 1. The chopper is 

a circuit that converts fixed dc input to a variable dc 

output voltage directly. B13 is interface to meteo 

sensors [18]. The chopper circuit represents the first 

category of the circuits. GCD circuit represents the 

second category of the circuits. B13 circuit represents 

the third category of the circuits. 

Framework “TestBenchMulti” generates for each 

circuit code stimuli for verification. In our research, 

we use Mentor Graphics ModelSim software to 

simulate our design and compute code coverage. 

During this phase the coverage analysis tool inspects 

the VHDL source code and computes statement, 

branch, toggle and toggle after permutation coverage 

results (Table 2).  

Table 1. Designs under Test 

Circuit Number of processes Lines of code 

Chopper 7 51 

GCD 3 43 

B13 (ITC99) 5 296 

 

As we can see from Table 2, we did not obtain 

high toggle coverage for the GCD and B13 circuits. 

Therefore, we employed the tool that added missing 

toggles at the primary inputs. Such extra stimuli 

allowed obtaining complete toggle coverage for all the 

circuits. We did not obtain complete statement and 

branch coverage for B13 circuit. We investigated the 

problem and we learnt that one of the processes has an 

implicit loop. Our tool cannot manage this problem 

correctly. There is a room for improvement in test 

stimuli generation for single process. Stimuli 

generation for a loop using symbolic analysis 

technique always was a challenge. 

To our best knowledge we do not know the results 

of automatic test stimuli generation of the researches 

that would consider the circuits described in VHDL at 
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the behavioural level and having multiple processes. 

Consequently, we cannot compare our obtained results 

with the results of the other researches. 

We implemented all the mentioned circuits into 

real FPGA hardware. For FPGA hardware, we used 

Xilinx Spartan XC3S200A FPGA and Xilinx ISE 

Suite for FPGA configuration. Generated binary 

stimuli are transferred to FPGA through JTAG 

interface. The same verification process is applied. We 

obtained exactly the same coverage results as in 

simulation mode. 

Table 2. Coverage results 
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Chopper 100 100 100 100 

GCD 100 100 27 100 

B13 78 85 25 100 

 

5. Conclusions 

Verification is an important part of design process. 

The test stimuli are needed to verify the behaviour of 

designed circuit. The tool, which is able to generate 

test stimuli automatically, quite substantially eases the 

process of verification. We presented the updated 

version of the test stimuli generation framework for 

the verification of VHDL model having parallel 

processes. The framework combines several tools and 

the final result of the framework is a test-bench for the 

verification of the circuit model described in VHDL at 

the behavioural level and having multiple processes. 

To our best knowledge, we presented the 

framework of test stimuli generation for VHDL 

models at the behavioural level having multiple 

processes for the first time. The obtained coverage 

results using various metrics indicate high quality of 

generated test stimuli. 

We verified the results obtained using simulation 

environment in the real FPGA implementation. 

Hardware implementation confirmed the results 

obtained using software implementation. 
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