
98

ISSN 1392–124X (print), ISSN 2335–884X (online) INFORMATION TECHNOLOGY AND CONTROL, 2015, T. 44, Nr. 1

Topology Based Automatic Formal Model Generation for Point

Automation Systems

Muhammet Ali Nur Oz, Ibrahim Sener, Ozgür Turay Kaymakcı,

Ilker Ustoğlu, Galip Cansever

Department of Control and Automation Engineering, Yıldız Technical University,

Istanbul, 34220, TURKEY

e-mail: maoz@yildiz.edu.tr, isener@yildiz.edu.tr, kaymakci@yildiz.edu.tr, ustoglu@yildiz.edu.tr,

cansever@yildiz.edu.tr

 http://dx.doi.org/10.5755/j01.itc.44.1.7382

Abstract. Designing and developing a point automation system is a challenging task since railway transportation

systems are required to be highly secure and safe systems. Nowadays point automation systems are usually designed

manually, this results in a waste of personnel, time and resources. So in this study, we developed and established a

software tool in order to automatically generate formal models for point automation systems. The novelty of our study

is that our models are created automatically by a software. Here designing time and human errors are reduced to a

minimum thus safe, reliable and secure system models are generated. The developed software has a built in graphical

interface which is used to model the basic station topology and using this model, software generates a point automation

system’s Timed-Arc Petri Net (TAPN) models, which is a strongly recommended formal method by CENELEC

EN50128 standard, automatically. Generated TAPN models are also verified automatically for specified safety

requirements by using Computational Tree Logic (CTL), which is also a formal proof method strongly recommended by

CENELEC EN50128 standard. The TAPN models were automatically generated and verified with 100% success by

taking the point automation systems of stations on M1 Aksaray-Airport line, operated by Istanbul Transportation Co., as

the reference.

Keywords: Point automation; Timed-arc Petri net; Automatic model generation; Formal verification; Interlocking;

Railway systems.

1. Introduction

Transportation has become one of the most

important concerns for people living at cities

nowadays. People can travel from one place to another

more economical, safer and faster through the railway

systems in urban and interurban transportation.

Considering that railway transportation has such

advantages, it is seen that the railway systems have a

great superiority to other modes of transportation. The

safe journey to be guaranteed against any collision or

accidents in railway transportation system is very

important. A small error at the railway system, which

may occur, can cause very serious consequences such

as loss of human lives, severe injuries, considerable

economic penalties and environmental damages.

Because of these dangers, railway safety systems like

interlocking, signalization and point automation

systems are essentially designed within strict rules and

binding standards. These systems are usually realized

based on the CENELEC (Comite Europeen de

Normalisation Electrotechnique) EN5012x family of

railway standards including EN50126, EN50128 and

EN50129 standards, which concentrate on the

modeling methods necessary for ensuring safety and

reliability in railway transportation systems. These

standards apply to both heavy rail systems and light rail

systems [1].

Formal methods, which are based on mathematical

foundation, are strongly recommended to be utilized in

the modeling and verifying of signalization and

interlocking systems for railway applications by

CENELEC EN50128 (Table A.17). The reliability and

robustness of a designed system can be increased using

these methods. There exist a great number of studies in

literature regarding the designing and verifying of

signalization and interlocking systems using formal

methods. Zafar [2] formed a formal model for railway

moving interlocking system by using Z notation, which

is a formal modeling language. In a study [3], Winter

used CSP (Communicating Sequential Processes) and

also checked the functional specifications of the formal

model using FDR (Failures-Divergences Refinement)

Topology Based Automatic Formal Model Generation for Point Automation Systems

99

model checking tool. Banci and Fantechi [4] modeled a

railway interlocking system using state charts. In our

previous study [5], we formed a formal model for point

automation system by using Timed-Arc Petri Nets,

which is a recommended formal modeling method by

the relevant standard. Moreover, identified safety

requirements for the automation of the points were

verified through CTL (Computational Tree Logic),

which is one of the recommended formal proof

methods by the concerned standard. Also for detailed

information about TAPN refer to [6 - 9].

The generation of formal models of system is

currently a manual process, which is inefficient and

error-prone due to the complexity of the railway yard,

where there are many points and routes, and human

interferences. Adding to the fact that mistakes in design

can lead to serious accidents resulting in loss of many

lives not to mention financial losses. For this reason,

the automatic generation of models, which describe the

system, from the railway topology and the automatic

verification of identified safety requirements using

formal proof methods according to generated models

based on the topology is very significant. The main

advantage of automatic modeling is to significantly

reduce the human errors and improve the efficiency in

the generation and verification of formal models of

system. Automatic generated models are generally

more reliable and so the reliability and safety of the

whole system increases. Automatic generation of the

models has a great importance in order to minimize the

modeling faults.

Moreover, there exist a limited number of studies in

literature regarding the automatic generation and

verification of models that describe the system as well

as software tool, which can be used for railway trans-

portation system. Interlocking tables were generated

from the station topology automatically in some studies

[10, 11] but here the obtained interlocking tables were

not verified. Cao et al. [12] developed a tool, which can

be used to automatically generate and verify the inter-

locking table of railway station designed by DSL-CBI

(Domain Specific Language for Computer Based

Interlocking). In a study [13], Sachdev et al. a software

application that can be used to automatically generate

interlocking schemes for substations and also tested

them. In [14], a component-based model, which is used

to describe the topology of the station, was introduced.

In another study [15], a method for the automatic gene-

ration of application data for interlocking simulation

system based on GIS infrastructure data was proposed,

and the design of the complementary software tool was

described. Haxthausen [16] described a tool for

extracting formal safety conditions from interlocking

tables for relay interlocking systems.

This study focuses on the automatic generation of

the models from the station topology for automation

and control of the points. In this study, using a software

tool, which was developed by using C# programming

language, station TAPN models were formed automa-

tically. The development of station TAPN models from

the topology is simplified thanks to this generalized

tool. Automatically generated models are stored in

XML format. These models can be viewed using

TAPAAL [17], which is a tool for modeling, simulation

and verification of Timed-Arc Petri nets. Another

important issue is to test whether the models, which

were formed automatically from the station topology to

ensure the accurate and safe conduct of the point

automation system, fulfill the identified safety require-

ments or not. Therefore, TAPAAL editor was used to

verify the existence of anticipated safety requirements

for the relevant models. The verification of the iden-

tified safety requirements was made automatically

through CTL, which is also recommended formal proof

methods by CENELEC EN50128.

The paper is organized as follows. In section 2, the

description of formal modeling of point automation

system subcomponents is given. Automatic generation

of formal models for point automation system is

introduced in section 3. Automatic generation of formal

models of Bastabya Station is presented in section 4.

Verification of automatic generated formal models for

point automation system of Bastabya Station is given in

section 5. Software performance for different stations

is shown followed by conclusion.

2. Formal Modeling of Point Automation

System Subcomponents

Complex systems can be obtained by assembling

simpler components, which are building blocks of the

system. The blocking blocks for point automation

system are points, signals and track circuits. Points are

mechanical tools, which are usually controlled with an

electrical motor. They are movable components, which

guide the trains towards from one line to another at a

railway intersection according to the desired route. So,

they play a crucial role in ensuring a safer and speedier

journey. A point has generally two positions, which can

be settled, named as normal and diverging. The correct

position of points according to the desired route is

fundamental to the safe running of a railway. In case of

any wrong position, two trains may be on the same

track and they may crush each other. Efficiency and

speed of a railway is highly affected by the number and

form of the points. Reliability and safety of a railway is

also directly relevant to the automation and controlling

of these points. For all these reasons, automation and

controlling of points are extremely significant, even

indispensable. The major purpose of conducting point

automation is to considerably minimize the human

errors and improve the efficiency.

The TAPN model, which was formed for points in

[5], was used as point model. Point model consists of

six places and four transitions. It is accepted that all

points in the station are at normal position at the initial

stage. For changing the position of point, it should be

enabled (P_Enable), which means the point is not

locked for any route and there should be no tokens in

the TCM place, which means the point is not occupied

M. A. N. Oz, I. Sener, O. T. Kaymakcı, I. Ustoğlu, G. Cansever

100

by a train. When enabled, the point at normal position

(Point_N) moves towards diverging position (Point_R).

It is required to reach diverging position by completing

its movement within a certain time period interval

([max1, max2]). In case it does not achieve diverging

position within [max1, max2] time interval, this will be

identified as point position error and the intended route

is not opened. The same rule applies for the point at

diverging position when it moves from diverging

position to normal position. The relevant TAPN model

formed can be seen in Fig. 1. Here Table 1 also repre-

sents the definitions of places in point model.

t1

t2

P_Enable

t3

t0

Point_N

TCM

Point_R

NtoR

RtoN

0,0

[max1 , max2]

[max1 , max2]

[0 , inf)

[0 , inf)

[0 , inf)

[0 , inf)

Figure 1. Point timed-arc Petri net model

Table 1. Definitions of places in point model

Place Definition

Point_N Point is in normal position

Point_R Point is in diverging position

P_Enable Point can change its position

NtoR Point goes from normal to diverging

RtoN Point goes from diverging to normal

TCM Point is occupied

Other components such as signals and track circuits

also play an important role in the conducting of point

automation at a station. Railway signals are a system

used to control railway traffic safely so that collision of

the trains can be prevented. Signals transmit colored

light (green, red, yellow) notice, which notifies the

trains regarding the proceeding of the trains and feed up

until the next signal. It becomes necessary to use

signals, which enable a safe area between the trains,

when the brake distance of railway transportation

vehicles is taken into consideration. The TAPN model,

which was formed for signals in [5], was used as signal

model. Signal model consists of four places and two

transitions. It is accepted that all signals are red at the

initial stage. After the points on the route to be opened

achieve the relevant position, the signal is enabled and

green notification is transmitted to the train for

allowing pass. As the train passes the signal and

occupies the first track circuit (TrEntM), the signal

indicates red once again. TAPN model formed for the

signal can be seen in Fig. 2. Table 2 also represents the

definitions of places in signal model.

It is important to know at which point the trains are

so that railway traffic can be managed safely. Track

circuit is a simple electrical circuit designed to detect

the absence or presence of a railway vehicle in a certain

part of a railway. They provide information whether the

route is available or occupied by a railway vehicle. The

basic principle of a track circuit is based on short

circuiting the rails by the train wheels and axles. If there

is a short circuit between rails in a part of the railway,

it is understood that there is a train in this part and so

any other trains are not allowed to enter this track.

Otherwise, namely if there is no train on the track, it is

understood that the track is safe to set a route and permit

a train to proceed.

CENELEC EN 50128 Table A.4-Software Design

& Imp. requires the use of Modular Approach in

modeling and designing of railway systems. Modular

approach enables us to analyze and define the system

in elementary pieces as well as facilitation of the

modeling. In order to model and design of the system

on modular basis, separate TAPN models were formed

for point and signal as shown above. No standard model

was formed for the track circuit, because it changes

according to desired route.

Signal_Enable

t1

t0

Signal_red

TrEntM

0,0

Signal_green
(0 , inf]

(0 , inf]

(0 , inf]

(0 , inf]

Figure 2. Signal timed-arc Petri net model

Table 2. Definitions of places in signal model

Place Definition

Signal_red Signal indicates red

Signal_green Signal indicates green

Signal_Enable Signal is enabled

TrEntM Train enters the first track circuit

3. Automatic Generation of Formal Models for

Point Automation System

A software tool was developed to generate automa-

tically the system TAPN models from the railway

station topology. C# programming language, which is

recommended by CENELEC EN 50128, was used in

development of the tool. The specially developed soft-

ware consists of two parts, a graphical user interface,

which allows users to be able to draw the station

topology and application software, which generates the

system TAPN models and stores them in a XML file.

Topology Based Automatic Formal Model Generation for Point Automation Systems

101

Users don’t need to write an additional program

through this tool in order to generate the relevant

models. The main task of the user is to draw the station

topology and add the necessary components to the

station diagram. Flowchart shows the automatic model

generation stages in Fig. 3.

Start

Wait For the user to

create a topology

Identify all

components in the

topology

Is the topology

created correctly?

End

No

Yes

Generate the models and store

them in a XML file

Figure 3. Flowchart of topology drawing

3.1. Graphical User Interface

In order to create an automatic pattern net model for

stations, users need to specify a graphical representa-

tion of the station, namely its single line diagram. To

solve this problem, a graphical user interface, which

provides a simple way for user to draw stations topolo-

gy, was developed. Graphical user interface consists of

a layout editor, a toolbox and an information panel. The

layout editor is used to display the represented graphi-

cal model. It is divided into grids to enable simple

clicks and create actions. The toolbox, which includes

point, track and signal, allows the modeler to choose

the component in order to add to the graphical model.

All the components, which are successfully added to

the layout, are labeled such as P = {P1, P2,…Pn} for

points, T={T1, T2,…Tn} for track circuits and S={S1,

S2,…Sn} for signals. These labels are shown in the

information panel.

In order to model the station, the user must know

the number of tracks, the number of points and where

these points connect to the tracks. The user must go

through four steps in order to complete the graphical

representation model. Tracks are created in the first step

by choosing the track icon on the toolbox and later

specifying the start and end locations by clicking on the

layout editor. Secondly points are created. To do this,

modeler chooses the point icon from the toolbox and

then specifies the locations where the point intersects

with tracks. The third step is to build signals. Signal is

created in the same way like point by clicking the signal

icon from the toolbox and specifying its location on the

track. In the last step, the modeler has to point out

where the train can enter the station. To do this, the

modeler must first click on the specify icon and later

click on the locations where the train can enter the

station. Graphical modeling of the station is finished by

clicking the end button. After the successful creation of

the output file, a massage appears at the bottom side of

the interface. A screenshot of the interface with an

example station model can be seen in Fig. 4.

Figure 4. Screenshot of the interface

3.2. Application Software

The application software is developed by using C#,

which is an object oriented programming language.

The main purpose of the application software is to

create the system model using information, which

comes from the station topology in the process of

automatic generation of the models. The validated

information by graphical interface, belonging to

station, is transferred to the application software. The

application software generates the route and track

circuit TAPN models and stores in XML file including

all point and signal models. Automatic generated

models can be seen by using TAPAAL, which is a tool

for modeling, simulation and verification of TAPN.

M. A. N. Oz, I. Sener, O. T. Kaymakcı, I. Ustoğlu, G. Cansever

102

Figure 5. UML model of the program

Also for detailed information about TAPAAL refer to

[13, 14]. The UML model of the application software

can be seen in Fig. 5.

Application software’s duties can be divided into

four major sections. Managing the interface is the first

duty. All of the components, which are created in the

station representative model by the graphical user

interface, are created inside the program as instances of

component classes such as point, signal and track

circuit classes. In order to create these component class

instances, a manager class is used. Thus, if a new

component is created or edited in the interface,

corresponding instances of component class can be

updated. Since graphics class should only be created

once and should be accessible from a few classes it is

created as a singleton. Component classes which are

track, point and signal classes inherit their properties

from a parent class called Element class. Element class

contains common functions and variables of compo-

nent classes. Component class instances are stored in

an array for future use.

Secondly, the application software sorts out the

information, which is received from the user interface.

This sorting process will increase efficiency and lead to

fast data processing. In order to carry out the sorting

process, manager class creates an instance of Sort class

and sends the component arrays to the Sort class using

the constructer of Sort class. Two intermittent arrays are

produced by this Sort class. The first one is called

“PointInformation”, which is composed of point class

and contains point data such as where points are located

on tracks. The other array is called “TrackInformation”,

which is composed of track class and contains infor-

mation about all components that are located on the

tracks and their locations. “PointInformation” array is

used for producing of “TrackInformation” array by the

Sort class, which is created by the manager class. Signal

data are also needed as well as point data, where are

stored in “PointInformation” array, in order to produce

“TrackInformation” array. However, an array was not

created for signals. The data, belonging to the signals

in the station, are taken directly by manager class and

transferred to the Sort class. Thereby, “TrackInfor-

mation” array is created based on “PointInformation”

array and signal data. The algorithm that creates

“TrackInformation” array is given in Fig. 6.

The third duty is to create an instance of Create-

Route class. CreateRoute class produces a final array

which contains the number of possible routes and

whose components are included in these routes and

what the state of the components should be according

to these routes. This is not an easy task as points can

take two positions. Furthermore, multiple routes might

be available while traveling from any entrance to any

Topology Based Automatic Formal Model Generation for Point Automation Systems

103

Algorithm Track Information Search

1: for(i € tracks[])

2: endpointx=tracks[i].locationx2

3: endpointy=tracks[i].locationy2

4: x=tracks[i].locationx1

5: y=tracks[i].locationy1

6: cont=true;

7: while(cont)

8: for(j € points[])

9: if point[j].x1 is equal to x and point[j].y1 is equal to y then

10: add point[j].id1 to track info

11: elseif point[j].x2 is equal to x and point[j].y2 is equal to y then

12: add point[j].id2 to track info

13: endif

14: endfor

15: for(j € signals[])

16: if signals[j].x is equal to x and signals [j].y is equal to y then

17: add signals [j].id to track info

18: endif

19: endfor

20: if endpointx is equal to x and endpointy is equal to y then

21: add exit to track info

22: cont=false

23: endif

24: decreament x

25: end while

26: endfor

Figure 6. Algorithm that creates “TrackInformation” matrix

Algorithm Route Information Search

1: for (i € Pointstates[,i])

2: counter=0;

3: position=0;//ray verilerindeki yer
4: exit=true;

5: while (exit)

6: for (l € PointInformation[])
7:

8:

9:

 if TrackInformation[position] is equal to pointInformation[l] and

 States[l,i] is equal to reverse

 then
10: add the point and its state to a temp

11: position=getnewposition()

12: currenttrack = getcurrenttrack()
13: increment position

14:

15:
16:

 else TrackInformation[position] is equal to pointInformation[l] and

 States[l,i] is equal to normal
 then

17: add the point and its state to a temp

18: increment position
19: end if

20: if TrackInformation[position] is equal to a signal

21: add the signal to temp
22: increment position

23: end if

24: if TrackInformation[position] is equal to a signal
25: add the signal to temp

26: increment position

27: end if
28: if TrackInformation[position] is equal to an exit then

29: if TrackInformation[position] is equal to the desired exit then

30: add exit to temp

31: Routeinformation[,]=temp[,]

32: else

33: exit = false;
34: end if

35: return “no route”

36: end if
37: end for

38: end while

39: end for

Figure 7. Algorithm that creates “RouteInformation” matrix

M. A. N. Oz, I. Sener, O. T. Kaymakcı, I. Ustoğlu, G. Cansever

104

exit. Especially, in complex stations, where there are

many points and routes, finding an optimal route inside

all available routes becomes a tough task. In this study,

in all possible routes, an optimal route, which is the

shortest and simplest one, that is, it has the minimum

number of points, is searched between an entrance and

an exit in station topology. We created a matrix repre-

senting all possible positions of all points. Rows

represent different combinations of states and columns

represent points. Additionally, the optimal route must

have minimum amount of points that are in diverging

position and, because of this assumption, combinations

of states are ordered inside the matrix by their number

of reverse points. Once one of the rows of this matrix

can get the train from the chosen entrance to the chosen

exit points, it is assumed to be the optimal route because

optimal routes have lower row number. The states of

points along this route are stored along with the signals

on the route inside an array called “RouteInformation”.

The algorithm written for this purpose is given in

Fig. 7. After “RouteInformation” array is created,

“XmlCreater” class is created and “RouteInformation”

and “PointInformation” arrays are sent to its

constructer.

Pattern net models can be produced using the data,

which are stored inside Route Information and Point

Information arrays. In an attempt to create pattern net

models, first models are divided into blocks and each

pattern net model contains an initialize block and the

remaining blocks are associated with a component in a

certain state.

The algorithm that produces track circuit models is

given in Fig. 8. This figure is associated with Fig. 9,

which contains track circuit pattern net model. The

algorithm first selects an entrance point and creates

pattern net model for this entrance by first initializing.

Initializing is basically creating initial places, which are

found in all route models, at the beginning of the

algorithm. This process is shown in Fig. 9 as part A.

Later each route that starts from that entrance is found

and, for each point inside that route, a pattern net block

is created. Part B in Fig. 9 represents a pattern net block

for a point, which should be connected to the normal

part of the previous point. Part D in Fig. 9 represents a

pattern net block for a point, which should be connected

to the reverse part of the previous point. Once all points

are processed, the algorithm will reach an exit and for

this exit another block will be placed on the respected

pattern net model. Part C in Fig. 9 represents a pattern

net block for an exit, which should be connected to the

normal part of the previous point. Part C in Fig. 9

represents a pattern net block for an exit, which should

be connected to the reverse part of the previous point.

Algorithm Track Circuit Model

1: int PreviousPoint=null

2: string PlacedPoints[]=null

3: for(i є RouteInformation[i,]) //i as respected route

4: PreviousPoint=null

5: PlacedPoints[]=null

6: for(j є RouteInformation[,j]) // j as components on the respective route

7: if new route equals true then

8: doinitilization() // see Figure9 Part A

9: endif

10: if RouteInformation[i,j] equal to a point then

11: for(k є PlacedPoints[])

12: if PlacedPoints[k] equals to RouteInformation[i,j] then

13: PreviousPoint= RouteInformation[i,j]

14: break

15: else

16: add point to PlacedPoints[]

17: if point is on normal then

18: place point on track circuit model // see Figure9 Part B

19: PreviousPoint = RouteInformation[i,j]

20: else

21: place point on track circuit model // see Figure9 Part D

22: PreviousPoint = RouteInformation[i,j]

23: endif

24: endif

25: endfor

26: endif

27: if RouteInformation[i,j] equal to an exit then

28: if PreviousPoint is on normal then

29: place exit on the track circuit // see Figure9 Part C

30: else

31: place exit on the track circuit // see Figure9 Part E

32: endif

33: break

34: endif

35: endfor

36: endfor

Figure 8. Algorithm that creates track circuit model

Topology Based Automatic Formal Model Generation for Point Automation Systems

105

t1

t2

t3

t0

[max1 , max2]

[max1 , max2]

[0 , inf)

[0 , inf)

0,0

PartialField(i,j)_Entrance

Signal(i,j)_green

Signal(i,j)_yellow

Point1Busy

Point1End Point1Normal

Point2_R

t8t10

[0 , inf)

[0 , inf)

[0 , inf)

[0 , inf)

[0 , inf)

[min1 , inf]

0,0

[0 , inf)

t(i,j)

[0 , inf)

Point(i,j)Busy

Point(i,j)End

[max1 , max2]

Point(i,j)Reverse

PartialField(i)_ExitBusy(i)

t(i,j)+2

t(i,j)+1

[max1 , max2]

0,0

[max1 , max2]

Point(i,j)Normal

Point1Reverse

t4

t(i,j)

t(i,j)+1

Point(i,j)Busy

Point(i,j)End

PartialField(i)_Exit(i)

PartialField(i)_Exit(i)

PartialField(i)_ExitBusy(i)

[min1 , inf]

P0

t(i,j)

PartA

PartB

PartC

PartD

PartE

Figure 9. Sample pattern net blocks of track circuit models

Algorithm Route Model

1: int PreviousPoint=null

2: for(i є RouteInformation[i,]) //i as respected route

3: doinitilization() //see figure11 part A

4: for(j є RouteInformation[j,]) //j as components on the respected route

5: for(k є RouteInformation[k,])

6: for(m є RouteInformation[m,])

7: if RouteInformation[i,j] equal RouteInformation[k,m] then

8: Place route as inhibitor on route model//see figure11 part B

9: endif

10: endfor

11: endfor

12: if RouteInformation[i,j] equal to a point then

13: if point is on normal then

14: place point on route model //see figure11 part C

15: PreviousPoint = RouteInformation[i,j]

16: else

17: place point on routemodel //see figure11 part D

18: PreviousPoint = RouteInformation[i,j]

19: endif

20: if RouteInformation[i,j] equal to an exit then

21: place signal on route model //see figure11 part E

22: break

23: endif

24: endfor

25: endfor

Figure 10. Algorithm that creates route models

The algorithm that produces Route models is given

in Fig. 10. This figure is associated with Fig. 11 which

contains route pattern net model. The algorithm starts

by selecting route from “RouteInformation” and

creates a pattern net model for this route by first

initializing as mentioned above. This process is shown

in Fig. 11 as Part A. The algorithm searches for routes

that have common components with the selected route

and adds them to the model as an inhibitor as shown

in Fig. 11 Part B. After, for each point on this selected

route, a block pattern net model is produced and an

inhibitor is added to the model to prevent the route

M. A. N. Oz, I. Sener, O. T. Kaymakcı, I. Ustoğlu, G. Cansever

106

(i

(i,j

PreviousPoint

(,j

Point(i,j)OK

(d

()

0,0
t0

t(i,j)

t3

0,0

] 0

,

0

(0,inf]

Route
(k)A

0,0

(,

t2

PartA

PartB

PartC

PartC

PartD

PartD

PartE

P0 (0,inf

Route(i) Exit
(,inf]

Route i Entrance

Route) Active

(0,inf]

)iRoute En

](0,inf

Point i) Enable

Point) Reverse

P(i,j)
(],0 inf

(0,inf]

(,inf] (0,inf]

t(i,j)+1

t(i,j)+2
(0 inf]

(0,inf]

i)jPoint Normal Point Enable(i,j)

(0,inf]

P(i,j

t(i,j)+3(0,inf]

t(i,j)+1,(0 inf]

(0,inf] (0,inf]

t(i,j)

(0,inf]

Point(i,j) Reverse

Point(i,j)OK

Signal(i,j) Enable

R(i)

Point(i,j) Normal
Point(i,j) Busy

Point(i,j) Busy

Figure 11. Sample pattern net blocks of route models

Algorithm Signal Model

1: bool reverse=false

2: String ConnectedPoint=null

3: for(i є signals[i])

4: for(j є RouteInformation[j])

5: if signals[i] equals RouteInformation[j,-] then

6: doinitialize() // See Figure13 Part A

7: for(k є routeinformation[,k])

8: If (RouteInformation[j,k] equals the first point then

9: ConnectedPoint= RouteInformation[j,k]

10: Add connectedPoint to Signal Model // See Figure13 Part B

11: endif

12: if RouteInformation[j,k] point on reverse then

13: reverse=true

14: endif

15: endfor

16: if reverse equals true then

17: add route on signal model // See Figure13 Part D

18: reverse=false

19: else

20: add route on signal model // See Figure13 Part C

21: endif

22: endif

23: endfor

24: endfor

Figure 12. Algorithm that creates signal models

from opening. Part C in Fig. 11 represents a pattern net

block for a point which is normal position. Part D in

Fig. 11 represents a pattern net block for a point which

is in diverging position. Once all points are processed,

the algorithm will need to enable the appropriate

signal as shown in Fig. 11 Part E.

The algorithm that produces Signal models is

given in Fig. 12. This figure is associated with Fig. 13

which contains a signal representation pattern net

model. The algorithm starts by searching “RouteInfor-

mation” to find only the signals that are used to reduce

complexity. Once a signal is found, an initialization

block is produced as shown in Fig. 13 Part A. After all

routes in “RouteInformation” that use the respected

signal are searched for a reverse point. If there is no

reverse point on the route, it is added to the model as

an enabler for the green signal as shown in Fig. 13 Part

C. Otherwise the route is added as an enabler for signal

yellow as shown in Fig. 13 Part D. Once the point right

after the signal is no longer busy, the signal should go

back to red, so the respected point should be added as

shown in Fig. 13 Part B.

4. Automatic Generation of Formal Models of

Bastabya Station

Bastabya Station on T4 Topkapı-Habibler line

operated by Istanbul Transportation Co. was chosen as

a model. The station has five points, five signals and

ten track circuits. Sets to represent the following items

at Bastabya Station, whose topology is shown in Fig.

14, were defined: five points 𝑃 = {𝑝1, 𝑝2, 𝑝3, 𝑝4,

Topology Based Automatic Formal Model Generation for Point Automation Systems

107

Signal(i)_Enable

t1

t0

Signal(i)_red

Point(i,k)End

0,0

Signal_green

(0 , inf]

(0 , inf]

(0 , inf]

(0 , inf]

Route(j)Active

Route(j)Active

Signal(i)_yellow

(0 , inf]

(0 , inf]

(0 , inf]
(0 , inf]

PartC

PartB

PartD

PartA

Figure 13. Sample pattern net blocks of signal models

C

A

E

D

B

TCC

TCB

TCD

TCA

TCE

P1P2

P3P4
P5

S1

S2

S3

S4

S5

~13m

~73m~13m

M
e

tr
is

Figure 14. The topology of Bastabya station

Point2_N

Signal1_Enable

Route1_Active

P0

Point1_N

Point1_R

Set_Point

P1

P1_Enable

Point1_OK

P2_Enable

Point2_R

P2

Set_Signal

P3

TrEntD

TCC

TCM1

TCM2

TCD

Route7_Active

Route3_Active

Route2_Active

Route5_Active

0,0

t0 t1

t2

t3

t4

t5

t6

t7

t8

0,0

0,0

(0,inf] (0,inf]

(0,inf] (0,inf]

(0,inf]
(0,inf]

(0,inf]

(0,inf]

(0,inf] (0,inf](0,inf]

(0,inf]

(0,inf]

(0,inf]

(0,inf]

(0,inf]

(0,inf]

(0,inf]

PART B

PART C

PART C

PART E

PART A

Figure 15. Timed-arc Petri net model of the route r1

M. A. N. Oz, I. Sener, O. T. Kaymakcı, I. Ustoğlu, G. Cansever

108

𝑝5} , ten track circuits 𝑇𝐶 = {𝑇𝐶𝐴, 𝑇𝐶𝐵, 𝑇𝐶𝐶, 𝑇𝐶𝐷,
𝑇𝐶𝐸, 𝑇𝐶𝑀1, 𝑇𝐶𝑀2, 𝑇𝐶𝑀3, 𝑇𝐶𝑀4, 𝑇𝐶𝑀5, } , first

of five indicating the entering and departing of the

station and the last five indicating the occupancy of the

points as well as five signals 𝑆 = {𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5}.

The entrances of the station are identified as 𝑇𝐸 =
{𝐴, 𝐶, 𝐸}according to the operation of the station by

Istanbul Transportation Co.

The routes identified can be opened for the trains on

the condition that the track circuits are not occupied and

the train proceeding on the second route to be opened

should not be facing the train proceeding on the first

route. Based on this, separate TAPN models were

generated for each route through the developed

software tool. As an example, the route r1TAPN model,

which is generated for a train proceeding on CD route,

can be seen in Fig. 15.

Based on the model generated, route r1 can be

opened provided that TCC and TCD track circuits are

unoccupied [PART A] and the relevant points (Point1

and Point2) are not occupied [PART C], either. In

addition, any of the routes, which can be in conflict

with r1, should be opened; they should not be locked

[PART B]. The points (Point1_N and Point2_N) on the

route are placed in appropriate position in the right

order once the route is chosen [PART C]. As a next step,

signal 1 is enabled and green notification is transmitted

[PART E]. At that point the train starts moving. Any

route, which might clash with the route of the train,

from C (the entrance point of the train into the station)

to D (where the train leaves the station) is not allowed

to be opened. The same situation applies for all the

other routes. A new route can be opened on the

condition that the track circuits on that route are

unoccupied and the points are not occupied, either. It is

also required that any other route has not been opened.

Table 3 represents the points, their relevant positions

based on the routes to be opened, and which track

circuits are controlled according to the generated

models.

Table 3. Track circuits, points and point positions by route

Entrance

into the

station

Route
Controlled Point

and its Position

Track Circuit

Controlled

C

r1 (CD) P1_N, P2_N
TCC, TCD

TCM1, TCM2

r2 (CA)
P1_N, P2_R

P4_R, P5_N

TCC, TCA

TCM1, TCM2

TCM4, TCM5

r3 (CE)
P1_N, P2_R

P4_R, P5_R

TCC, TCE

TCM1, TCM2

TCM4, TCM5

A

r4 (AB)
P3_N, P4_N

P5_N

TCA, TCB

TCM3, TCM4

TCM5

r5 (AC)
P1_N, P2_R

P4_R, P5_N

TCA, TCC

TCM1, TCM2

TCM4, TCM5

E

r6 (EB)
P3_N, P4_N

P5_R

TCE, TCB

TCM3, TCM4

TCM5

r7 (EC)
P1_N, P2_R

P4_R, P5_R

TCE, TCA

TCM1, TCM2

TCM4, TCM5

t1

t2

t3

t0

[max1 , max2]

[max1 , max2]

[0 , inf)

[0 , inf)

0,0

TCC

TrEntM1

Signal1_green

TCM1

Signal1_yellow

TCM2

TrEntM2

[max1 , max2]

Point2_N

TCD

TrEntD

Point2_R

TrEntM4

TCM4

TrEntM5
TCM5

Point5_NTCA

TrEntA

Point5_RTCE

TrEntE

t4

t5

t6

t7

t8

t9

t10

t11

[0 , inf)

[0 , inf)

[0 , inf)

[0 , inf)

[0 , inf)

[0 , i
nf)

[max1 , max2]

[min1 , inf]

[0 , inf)

[max1 , max2]

[max1 , max2]

[min1 , inf]

[min1 , inf] [0 , inf)

[0 , inf)

0,0

0,0

PART A PART A

PART C

PART C

PART D

PART E

PART F

Figure 16. Track circuit timed-arc Petri net model for trains entering the station from C side

Topology Based Automatic Formal Model Generation for Point Automation Systems

109

Track circuits working based on the occupancy

principle, constantly provide the feed on where the

trains are. This is a condition required for a safe

journey. The set TCx = {TCA, TCC, TCE} denotes the

track circuit set occupied by the trains during their

entrance into the Bastabya station whereas the set

TCy = {TCA, TCB, TCC, TCD, TCE} depicts the track

circuit set occupied by the trains while they are leaving

the station. With x, y = {A, B, C, D, E} and 𝑥 ≠ 𝑦, it is

assumed that the train remains at the station as long as

it does not pass from a second track circuit based on the

route opened after it passes a track circuit. The

automatic generated track circuit TAPN model, which

indicates the actions of the trains entering the station

from C side, can be seen in Fig. 16. Similarly, TAPN

models for trains entering the station from A and E were

also generated by the software tool.

As specified in the previous section and based on

the model generated, the trains entering the station from

C can leave the station from D, A or E depending on the

route to be chosen. The train occupies the TCC track

circuit initially. Then, it proceeds on the route opened,

occupying one of the track circuits, which are TCD,

TCA or TCE, and leaves the station.

5. Verification of Automatic Generated Formal

Models for Point Automation System

It is of great importance to verify and prove that the

automatic generated models for point automation

system fulfill the identified safety requirements so that

a safe journey can be ensured on railway systems. The

safety requirements necessary for point automation

system were identified in our previous study [5]. These

safety requirements are added to the automatically

generated models by the software tool. Thus, there is no

need to write any query after the generation of the

models. To verify the accuracy of the safety

requirements (SR) identified in the point automation

system, TAPAAL editor was used. The editor allows

modeling, simulation and verification of the systems

through TAPN. The verification of the identified safety

requirements was made automatically as (EF, EG, AF,

AG) was written on the CTL formulation, which is a

subcategory of temporal logic. Thus, it is possible to

determine whether the formulation verifies the

generated model or not as a result of the verification

procedure. All queries are checked via TAPAAL

Discrete Verification method based on the Breadth First

search order in state space. As the coverability tree is

too large, it is not given in the study.

Safety requirements (safety requirement-SR),

which are added to the automatically generated models

by the software tool, can be listed as follows:

SR1: The point should either be in its normal

position or in diverging position as it cannot remain in

the same position concurrently.

SR1 is written in CTL formulation as

𝐴𝐺¬(𝑃𝑜𝑖𝑛𝑡𝑘_𝑁 ≥ 1 ∧ 𝑃𝑜𝑖𝑛𝑡𝑘_𝑅 ≥ 1). Table 4

represents the verification results and time for SR1.

Table 4. Verification results and time for SR1

Query Result Verification time

Point1_SR1 Satisfied 0.166 s

Point2_SR1 Satisfied 0.163 s

Point3_SR1 Satisfied 0.163 s

Point4_SR1 Satisfied 0.165 s

Point5_SR1 Satisfied 0.165 s

SR2: For a point to be locked, the point should

either be in its normal position or in diverging position.

SR2 is written in CTL formulation as

𝐴𝐺¬(𝑃𝑘_𝐸𝑛𝑎𝑏𝑙𝑒 = 0 ∧ (𝑃𝑜𝑖𝑛𝑡𝑘_𝑁 ≥ 1 ∧
𝑃𝑜𝑖𝑛𝑡𝑘_𝑅 ≥ 1)). Table 5 represents the verification

results and time for SR2.

Table 5.Verification results and time for SR2

Query Result Verification time

Point1_SR2 Satisfied 0.164 s

Point2_SR2 Satisfied 0.165 s

Point3_SR2 Satisfied 0.166 s

Point4_SR2 Satisfied 0.165 s

Point5_SR2 Satisfied 0.169 s

SR3: The point should not be moving while the

train occupies any point, which means while the train is

on its way over the point, it should not get any point

engine command or move.

SR3 is written in CTL formulation as

𝐴𝐺¬(𝑇𝐶𝑀𝑘 ≥ 1 ∧ (𝑃𝑘 . 𝑁𝑡𝑜𝑅 ≥ 1 ∨ 𝑃𝑘 . 𝑅𝑡𝑜𝑁 ≥ 1)).

Table 6 represents the verification results and time for

SR3.

Table 6.Verification results and time for SR3

Query Result Verification time

Point1_SR3 Satisfied 0.166 s

Point2_SR3 Satisfied 0.167 s

Point3_SR3 Satisfied 0.166 s

Point4_SR3 Satisfied 0.170 s

Point5_SR3 Satisfied 0.165 s

SR4: Signal should be locked into green, yellow

and red light, referring to normal direction, siding

direction and stopping direction, respectively. The train

should start moving when the signal notifies

proceeding direction, and the signal should give red

notification again once the train occupies the first track

circuit.

SR4 includes two different requirements to be

written in the CTL formulation. They are written as

𝐴𝐺(𝑆𝑖𝑔𝑛𝑎𝑙1_𝑔𝑟𝑒𝑒𝑛 ≥ 1 ∨ 𝑆𝑖𝑔𝑛𝑎𝑙1_𝑦𝑒𝑙𝑙𝑜𝑤 ≥ 1 ∨
𝑆𝑖𝑔𝑛𝑎𝑙1_𝑟𝑒𝑑 ≥ 1)) and 𝐴𝐺¬(𝑆𝑖𝑔𝑛𝑎𝑙1_𝑔𝑟𝑒𝑒𝑛 ≥ 1 ∧
(𝑅𝐶𝑀1 ≥ 1 ∧ 𝑅𝐶𝑀2 ≥ 1)).

M. A. N. Oz, I. Sener, O. T. Kaymakcı, I. Ustoğlu, G. Cansever

110

SR5: When the route selected is locked and opened,

the points on the route should also be locked in the

relevant position and there should be no proceeding

until the route is free.

SR5 also includes two different requirements to be

written in the CTL formulation. They are written as
𝐴𝐺¬(𝑅𝑜𝑢𝑡𝑒1𝑙𝑜𝑐𝑘𝑒𝑑 ≥ 1 ∧ (𝑃𝑜𝑖𝑛𝑡1_𝑅 ≥ 1 ∨
𝑃𝑜𝑖𝑛𝑡2_𝑅 ≥ 1)) and 𝐸𝐹(𝑅𝑜𝑢𝑡𝑒1𝑙𝑜𝑐𝑘𝑒𝑑 ≥ 1 ∧
(𝑃𝑜𝑖𝑛𝑡1_𝑁 ≥ 1 ∧ 𝑃𝑜𝑖𝑛𝑡2_𝑁 ≥ 1)).

SR6: Points should firstly be locked based on the

route chosen. Then, relevant signal notification should

be given when the route is locked.

SR6 is written in CTL formulation as

𝐴𝐺¬(𝑅𝑜𝑢𝑡𝑒1𝑙𝑜𝑐𝑘𝑒𝑑 = 0 ∧ 𝑆𝑖𝑔𝑛𝑎𝑙1_𝑔𝑟𝑒𝑒𝑛 ≥ 1).

Table 7 represents the verification results and time for

SR4, SR5 and SR6.

Table 7.Verification results and time for SR4, SR5 and SR6

Query Result Verification time

Signal1_SR4_1 Satisfied 0.166 s

Signal1_SR4_2 Satisfied 0.167 s

RouteCD_SR5_1 Satisfied 0.166 s

RouteCD_SR5_2 Satisfied 0.170 s

RouteCD_SR6_1 Satisfied 0.170 s

RouteCD_SR6_2 Satisfied 0.165 s

6. Conclusion

A software tool, which can be used for automatic

TAPN model generation from the station topology and

verification of the generated models for point

automation system, was successfully developed. TAPN

models of Bastabya station, operated by Istanbul

Transportation Co. in Turkey, were formed

automatically by using the developed software tool

based on CENELEC EN 50128. Additionally, it was

verified and proven through temporal logic, one of the

formal methods recommended by CENELEC EN

50128 standard, that the generated TAPN models

fulfilled the identified safety requirements. The tool

was tried for different stations on M1 Aksaray-Airport

metro line, operated by Istanbul Transportation Co. and

successful models were obtained. The TAPN models,

which are generated for these stations, were also

verified. As a result, the information, which is shown in

Table 8, was obtained.

It was concluded that the tool significantly reduced

the modeling faults caused by human factor and

improved the efficiency in the generation of the models.

Moreover, reliability and safety of the whole system

increases thanks to automatic generation of the system

models. Our future work will focus on the development

of a process to generate the discussed models

automatically from the programming codes, which are

written in STL format in Programmable Logic

controller.

Table 8. Results of model generation and verification for different stations

Station Number of
Application

Runtime
Verification

 Points Tracks Entrances queries Second(s) Mb Second(s)

Aksaray 2 2 4 48 0.724 84 6.662

Davutpaşa 2 2 2 34 0.654 48 3.525

Esenler 1 2 2 26 0.642 33 2.819

Otogar 4 3 4 78 1.007 428 615.815

Bahçelievler 2 2 4 48 0.755 150 22.2

System Info

Intel Core I7-2630QM Cpu @2,00 Ghz x64

6 Gb Ram

Windows 8 64-Bit

Verification tool Tapaal 3.00

Acknowledgment

This work is supported by Yıldız Technical

University Research Project Fund under Grant 2012-

04-04-KAP04.

References

[1] CENELEC EN 50128. Railway applications - Commu-

nication, Signaling and Processing Systems - Software

for Railway Control and Protection Systems, 2011.

[2] N. A. Zafar. Formal specification and validation of

railway network components using Z notation. IET

Software, 2009, Vol. 3, No. 4, 312-320.

[3] K. Winter. Model checking railway interlocking

systems. Australian Computer Science Communica-

tions, 2002, Vol. 24, No. 1, 303-310.

Topology Based Automatic Formal Model Generation for Point Automation Systems

111

[4] M. Banci, A. Fantechi. Geographical Versus

Functional Modeling by Statecharts of Interlocking

Systems. Electronic Notes in Theoretical Computer

Science, 2005, Vol. 133, 3-19.

[5] I. Sener, O. T. Kaymakçı, I. Ustoğlu, G. Cansever.
Specification and formal verification of safety

properties in point automation system. Turkish Journal

of Electrical Engineering and Computer Sciences, 2014

(Accepted). DOI: 10.3906/elk-1311-27.

[6] L. Jacobsen, M. Jacobsen, M. H. Moller, J. Srba.
Verification of timed-arc Petri nets. Lecture Notes in

Computer Science, 2011, Vol. 6543, 46-72.

[7] J. A. Mateo, J. Srba, M. G. Sørensen. Soundness of

timed-arc workflow nets. Lecture Notes in Computer

Science, 2014, Vol. 8489, 51-70.

[8] M. Andersen, H. G. Larsen, J. Srba, M. G. Sørensen,

J. H. Taankvist. Verification of liveness properties on

closed timed-arc Petri nets. Lecture Notes in Computer

Science, 2013, Vol. 7721, 69-81.

[9] S. V. Birch, T. S. Jacobsen, J. J. Jensen, C. Moes-

gaard, N. N. Samuelsen, J. Srba. Interval abstraction

refinement for model checking of timed-arc Petri nets.

Lecture Notes in Computer Science, 2014, Vol. 8711,

237-251.

[10] A. Kuzu, O. Songuler, A. Sonat, S. Turk, B. Birol,

E. H. Dogruguven. Automatic interlocking table

generation from railway topology. In: Proceedings of

the IEEE International Conference on Mechatronics,

Istanbul, Turkey, April 13-15, 2011, pp. 13-15.

[11] U. Yildirim, M. S. Durmus, M. T. Soylemez. Automa-

tic interlocking table generation for railway stations

using symbolic algebra. In: Proceedings of the 13th

IFAC Symposium on Control in Transportation

Systems, Sofia, Bulgaria, September 12-14, 2012, Vol.

13, pp. 171-176.

[12] Y. Cao, T. Xu, T. Tang, H. Wang, L. Zhao. Automatic

Generation and Verification of Interlocking Tables

Based on Domain Specific Language for Computer Ba-

sed Interlocking Systems (DSL-CBI). In: Proceedings

of the IEEE International Conference on Computer

Science and Automation Engineering, Shanghai, China,

June, 10-12, 2011, Vol. 2, pp. 511-515.

[13] M. S. Sachdev, P. Dhakal, T. S. Sidhu. A computer-

aided technique for generating substation interlocking

schemes. IEEE Transactions on Power Delivery, 2000,

Vol. 15, No. 2, 538-544.

[14] X. Chen, Y. He, H. Huang. A component-based topo-

logy model for railway interlocking systems. Mathema-

tics and Computers in Simulation, 2011, Vol. 81, No. 9,

1892-1900.

[15] Z. Yong, P. Zhibin, Y. Chungui. Research on the

method and tool for automatic generation of application

data for interlocking simulation system. International

Conference on Control, Automation and Systems

Engineering, Singapore, July 30-31, 2011, pp. 1-4.

[16] A. E. Haxthausen. Automated generation of safety

requirements from railway interlocking tables. Lecture

Notes in Computer Science, 2012, Vol. 7610, 261-275.

[17] A. David, L. Jacobsen, M. Jacobsen, K. Y. Jørgen-

sen, M. H. Møller, J. Srba. TAPAAL 2.0: integrated

development environment for timed-arc Petri nets.

Lecture Notes in Computer Science, 2012, Vol. 7214,

492-497.

Received June 2014.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Sachdev,%20M.S..QT.&searchWithin=p_Author_Ids:37276006200&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Dhakal,%20P..QT.&searchWithin=p_Author_Ids:37353019600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Sidhu,%20T.S..QT.&searchWithin=p_Author_Ids:37276000700&newsearch=true

