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Abstract. Designing and developing a point automation system is a challenging task since railway transportation 

systems are required to be highly secure and safe systems. Nowadays point automation systems are usually designed 

manually, this results in a waste of personnel, time and resources. So in this study, we developed and established a 

software tool in order to automatically generate formal models for point automation systems. The novelty of our study 

is that our models are created automatically by a software. Here designing time and human errors are reduced to a 

minimum thus safe, reliable and secure system models are generated. The developed software has a built in graphical 

interface which is used to model the basic station topology and using this model, software generates a point automation 

system’s Timed-Arc Petri Net (TAPN) models, which is a strongly recommended formal method by CENELEC 

EN50128 standard, automatically. Generated TAPN models are also verified automatically for specified safety 

requirements by using Computational Tree Logic (CTL), which is also a formal proof method strongly recommended by 

CENELEC EN50128 standard. The TAPN models were automatically generated and verified with 100% success by 

taking the point automation systems of stations on M1 Aksaray-Airport line, operated by Istanbul Transportation Co., as 

the reference. 

Keywords: Point automation; Timed-arc Petri net; Automatic model generation; Formal verification; Interlocking; 

Railway systems. 

 

1. Introduction 

Transportation has become one of the most 

important concerns for people living at cities 

nowadays. People can travel from one place to another 

more economical, safer and faster through the railway 

systems in urban and interurban transportation. 

Considering that railway transportation has such 

advantages, it is seen that the railway systems have a 

great superiority to other modes of transportation. The 

safe journey to be guaranteed against any collision or 

accidents in railway transportation system is very 

important. A small error at the railway system, which 

may occur, can cause very serious consequences such 

as loss of human lives, severe injuries, considerable 

economic penalties and environmental damages. 

Because of these dangers, railway safety systems like 

interlocking, signalization and point automation 

systems are essentially designed within strict rules and 

binding standards. These systems are usually realized 

based on the CENELEC (Comite Europeen de 

Normalisation Electrotechnique) EN5012x family of 

railway standards including EN50126, EN50128 and 

EN50129 standards, which concentrate on the 

modeling methods necessary for ensuring safety and 

reliability in railway transportation systems. These 

standards apply to both heavy rail systems and light rail 

systems [1].  

Formal methods, which are based on mathematical 

foundation, are strongly recommended to be utilized in 

the modeling and verifying of signalization and 

interlocking systems for railway applications by 

CENELEC EN50128 (Table A.17). The reliability and 

robustness of a designed system can be increased using 

these methods. There exist a great number of studies in 

literature regarding the designing and verifying of 

signalization and interlocking systems using formal 

methods. Zafar [2] formed a formal model for railway 

moving interlocking system by using Z notation, which 

is a formal modeling language. In a study [3], Winter 

used CSP (Communicating Sequential Processes) and 

also checked the functional specifications of the formal 

model using FDR (Failures-Divergences Refinement) 
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model checking tool. Banci and Fantechi [4] modeled a 

railway interlocking system using state charts. In our 

previous study [5], we formed a formal model for point 

automation system by using Timed-Arc Petri Nets, 

which is a recommended formal modeling method by 

the relevant standard. Moreover, identified safety 

requirements for the automation of the points were 

verified through CTL (Computational Tree Logic), 

which is one of the recommended formal proof 

methods by the concerned standard. Also for detailed 

information about TAPN refer to [6 - 9]. 

The generation of formal models of system is 

currently a manual process, which is inefficient and 

error-prone due to the complexity of the railway yard, 

where there are many points and routes, and human 

interferences. Adding to the fact that mistakes in design 

can lead to serious accidents resulting in loss of many 

lives not to mention financial losses. For this reason, 

the automatic generation of models, which describe the 

system, from the railway topology and the automatic 

verification of identified safety requirements using 

formal proof methods according to generated models 

based on the topology is very significant. The main 

advantage of automatic modeling is to significantly 

reduce the human errors and improve the efficiency in 

the generation and verification of formal models of 

system. Automatic generated models are generally 

more reliable and so the reliability and safety of the 

whole system increases. Automatic generation of the 

models has a great importance in order to minimize the 

modeling faults. 

Moreover, there exist a limited number of studies in 

literature regarding the automatic generation and 

verification of models that describe the system as well 

as software tool, which can be used for railway trans-

portation system. Interlocking tables were generated 

from the station topology automatically in some studies 

[10, 11] but here the obtained interlocking tables were 

not verified. Cao et al. [12] developed a tool, which can 

be used to automatically generate and verify the inter-

locking table of railway station designed by DSL-CBI 

(Domain Specific Language for Computer Based 

Interlocking). In a study [13], Sachdev et al. a software 

application that can be used to automatically generate 

interlocking schemes for substations and also tested 

them. In [14], a component-based model, which is used 

to describe the topology of the station, was introduced. 

In another study [15], a method for the automatic gene-

ration of application data for interlocking simulation 

system based on GIS infrastructure data was proposed, 

and the design of the complementary software tool was 

described. Haxthausen [16] described a tool for 

extracting formal safety conditions from interlocking 

tables for relay interlocking systems.  

This study focuses on the automatic generation of 

the models from the station topology for automation 

and control of the points. In this study, using a software 

tool, which was developed by using C# programming 

language, station TAPN models were formed automa-

tically. The development of station TAPN models from 

the topology is simplified thanks to this generalized 

tool. Automatically generated models are stored in 

XML format. These models can be viewed using 

TAPAAL [17], which is a tool for modeling, simulation 

and verification of Timed-Arc Petri nets. Another 

important issue is to test whether the models, which 

were formed automatically from the station topology to 

ensure the accurate and safe conduct of the point 

automation system, fulfill the identified safety require-

ments or not. Therefore, TAPAAL editor was used to 

verify the existence of anticipated safety requirements 

for the relevant models. The verification of the iden-

tified safety requirements was made automatically 

through CTL, which is also recommended formal proof 

methods by CENELEC EN50128. 

The paper is organized as follows. In section 2, the 

description of formal modeling of point automation 

system subcomponents is given. Automatic generation 

of formal models for point automation system is 

introduced in section 3. Automatic generation of formal 

models of Bastabya Station is presented in section 4. 

Verification of automatic generated formal models for 

point automation system of Bastabya Station is given in 

section 5. Software performance for different stations 

is shown followed by conclusion. 

2. Formal Modeling of Point Automation 

System Subcomponents  

Complex systems can be obtained by assembling 

simpler components, which are building blocks of the 

system. The blocking blocks for point automation 

system are points, signals and track circuits. Points are 

mechanical tools, which are usually controlled with an 

electrical motor. They are movable components, which 

guide the trains towards from one line to another at a 

railway intersection according to the desired route. So, 

they play a crucial role in ensuring a safer and speedier 

journey. A point has generally two positions, which can 

be settled, named as normal and diverging. The correct 

position of points according to the desired route is 

fundamental to the safe running of a railway. In case of 

any wrong position, two trains may be on the same 

track and they may crush each other. Efficiency and 

speed of a railway is highly affected by the number and 

form of the points. Reliability and safety of a railway is 

also directly relevant to the automation and controlling 

of these points. For all these reasons, automation and 

controlling of points are extremely significant, even 

indispensable. The major purpose of conducting point 

automation is to considerably minimize the human 

errors and improve the efficiency.  

The TAPN model, which was formed for points in 

[5], was used as point model. Point model consists of 

six places and four transitions. It is accepted that all 

points in the station are at normal position at the initial 

stage. For changing the position of point, it should be 

enabled (P_Enable), which means the point is not 

locked for any route and there should be no tokens in 

the TCM place, which means the point is not occupied 
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by a train. When enabled, the point at normal position 

(Point_N) moves towards diverging position (Point_R). 

It is required to reach diverging position by completing 

its movement within a certain time period interval 

([max1, max2]). In case it does not achieve diverging 

position within [max1, max2] time interval, this will be 

identified as point position error and the intended route 

is not opened. The same rule applies for the point at 

diverging position when it moves from diverging 

position to normal position. The relevant TAPN model 

formed can be seen in Fig. 1. Here Table 1 also repre-

sents the definitions of places in point model. 

t1

t2

P_Enable

t3

t0

Point_N

TCM

Point_R

NtoR

RtoN

0,0

[max1 , max2]

[max1 , max2]

[0 , inf)

[0 , inf)

[0 , inf)

[0 , inf)

Figure 1. Point timed-arc Petri net model 

Table 1. Definitions of places in point model  

Place Definition 

Point_N Point is in normal position 

Point_R Point is in diverging position 

P_Enable Point can change its position 

NtoR Point goes from normal to diverging 

RtoN Point goes from diverging to normal  

TCM Point is occupied 

 

Other components such as signals and track circuits 

also play an important role in the conducting of point 

automation at a station. Railway signals are a system 

used to control railway traffic safely so that collision of 

the trains can be prevented. Signals transmit colored 

light (green, red, yellow) notice, which notifies the 

trains regarding the proceeding of the trains and feed up 

until the next signal. It becomes necessary to use 

signals, which enable a safe area between the trains, 

when the brake distance of railway transportation 

vehicles is taken into consideration. The TAPN model, 

which was formed for signals in [5], was used as signal 

model. Signal model consists of four places and two 

transitions. It is accepted that all signals are red at the 

initial stage. After the points on the route to be opened 

achieve the relevant position, the signal is enabled and 

green notification is transmitted to the train for 

allowing pass. As the train passes the signal and 

occupies the first track circuit (TrEntM), the signal 

indicates red once again. TAPN model formed for the 

signal can be seen in Fig. 2. Table 2 also represents the 

definitions of places in signal model. 

It is important to know at which point the trains are 

so that railway traffic can be managed safely. Track 

circuit is a simple electrical circuit designed to detect 

the absence or presence of a railway vehicle in a certain 

part of a railway. They provide information whether the 

route is available or occupied by a railway vehicle. The 

basic principle of a track circuit is based on short 

circuiting the rails by the train wheels and axles. If there 

is a short circuit between rails in a part of the railway, 

it is understood that there is a train in this part and so 

any other trains are not allowed to enter this track. 

Otherwise, namely if there is no train on the track, it is 

understood that the track is safe to set a route and permit 

a train to proceed. 

CENELEC EN 50128 Table A.4-Software Design 

& Imp. requires the use of Modular Approach in 

modeling and designing of railway systems. Modular 

approach enables us to analyze and define the system 

in elementary pieces as well as facilitation of the 

modeling. In order to model and design of the system 

on modular basis, separate TAPN models were formed 

for point and signal as shown above. No standard model 

was formed for the track circuit, because it changes 

according to desired route. 

Signal_Enable

t1

t0

Signal_red

TrEntM

0,0

Signal_green
(0 , inf]

(0 , inf]

(0 , inf]

(0 , inf]

 

Figure 2. Signal timed-arc Petri net model 

Table 2. Definitions of places in signal model  

Place Definition 

Signal_red Signal indicates red 

Signal_green Signal indicates green 

Signal_Enable Signal is enabled 

TrEntM Train enters the first track circuit 

3. Automatic Generation of Formal Models for 

Point Automation System  

A software tool was developed to generate automa-

tically the system TAPN models from the railway 

station topology. C# programming language, which is 

recommended by CENELEC EN 50128, was used in 

development of the tool. The specially developed soft-

ware consists of two parts, a graphical user interface, 

which allows users to be able to draw the station 

topology and application software, which generates the 

system TAPN models and stores them in a XML file. 
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Users don’t need to write an additional program 

through this tool in order to generate the relevant 

models. The main task of the user is to draw the station 

topology and add the necessary components to the 

station diagram. Flowchart shows the automatic model 

generation stages in Fig. 3.  

Start

Wait For the user to 

create a topology

Identify all 

components in the 

topology

Is the topology 

created correctly?

End

No

Yes

Generate the models and store 

them in a XML file

 

Figure 3. Flowchart of topology drawing 

3.1. Graphical User Interface 

In order to create an automatic pattern net model for 

stations, users need to specify a graphical representa-

tion of the station, namely its single line diagram. To 

solve this problem, a graphical user interface, which 

provides a simple way for user to draw stations topolo-

gy, was developed. Graphical user interface consists of 

a layout editor, a toolbox and an information panel. The 

layout editor is used to display the represented graphi-

cal model. It is divided into grids to enable simple 

clicks and create actions. The toolbox, which includes 

point, track and signal, allows the modeler to choose 

the component in order to add to the graphical model. 

All the components, which are successfully added to 

the layout, are labeled such as P = {P1, P2,…Pn} for 

points, T={T1, T2,…Tn} for track circuits and S={S1, 

S2,…Sn} for signals. These labels are shown in the 

information panel. 

In order to model the station, the user must know 

the number of tracks, the number of points and where 

these points connect to the tracks. The user must go 

through four steps in order to complete the graphical 

representation model. Tracks are created in the first step 

by choosing the track icon on the toolbox and later 

specifying the start and end locations by clicking on the 

layout editor. Secondly points are created. To do this, 

modeler chooses the point icon from the toolbox and 

then specifies the locations where the point intersects 

with tracks. The third step is to build signals. Signal is 

created in the same way like point by clicking the signal 

icon from the toolbox and specifying its location on the 

track. In the last step, the modeler has to point out 

where the train can enter the station. To do this, the 

modeler must first click on the specify icon and later 

click on the locations where the train can enter the 

station. Graphical modeling of the station is finished by 

clicking the end button. After the successful creation of 

the output file, a massage appears at the bottom side of 

the interface. A screenshot of the interface with an 

example station model can be seen in Fig. 4. 

 

Figure 4. Screenshot of the interface

3.2. Application Software 

The application software is developed by using C#, 

which is an object oriented programming language. 

The main purpose of the application software is to 

create the system model using information, which 

comes from the station topology in the process of 

automatic generation of the models. The validated 

information by graphical interface, belonging to 

station, is transferred to the application software. The 

application software generates the route and track 

circuit TAPN models and stores in XML file including 

all point and signal models. Automatic generated 

models can be seen by using TAPAAL, which is a tool 

for modeling, simulation and verification of TAPN.  
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Figure 5. UML model of the program 

Also for detailed information about TAPAAL refer to 

[13, 14]. The UML model of the application software 

can be seen in Fig. 5. 

Application software’s duties can be divided into 

four major sections. Managing the interface is the first 

duty. All of the components, which are created in the 

station representative model by the graphical user 

interface, are created inside the program as instances of 

component classes such as point, signal and track 

circuit classes. In order to create these component class 

instances, a manager class is used.  Thus, if a new 

component is created or edited in the interface, 

corresponding instances of component class can be 

updated. Since graphics class should only be created 

once and should be accessible from a few classes it is 

created as a singleton. Component classes which are 

track, point and signal classes inherit their properties 

from a parent class called Element class. Element class 

contains common functions and variables of compo-

nent classes. Component class instances are stored in 

an array for future use.   

Secondly, the application software sorts out the 

information, which is received from the user interface. 

This sorting process will increase efficiency and lead to 

fast data processing. In order to carry out the sorting 

process, manager class creates an instance of Sort class 

and sends the component arrays to the Sort class using 

the constructer of Sort class. Two intermittent arrays are 

produced by this Sort class. The first one is called 

“PointInformation”, which is composed of point class 

and contains point data such as where points are located 

on tracks. The other array is called “TrackInformation”, 

which is composed of track class and contains infor-

mation about all components that are located on the 

tracks and their locations. “PointInformation” array is 

used for producing of “TrackInformation” array by the 

Sort class, which is created by the manager class. Signal 

data are also needed as well as point data, where are 

stored in “PointInformation” array, in order to produce 

“TrackInformation” array. However, an array was not 

created for signals. The data, belonging to the signals 

in the station, are taken directly by manager class and 

transferred to the Sort class. Thereby, “TrackInfor-

mation” array is created based on “PointInformation” 

array and signal data. The algorithm that creates 

“TrackInformation” array is given in Fig. 6. 

The third duty is to create an instance of Create-

Route class. CreateRoute class produces a final array 

which contains the number of possible routes and 

whose components are included in these routes and 

what the state of the components should be according 

to these routes. This is not an easy task as points can 

take two positions. Furthermore, multiple routes might 

be available while traveling from any entrance to any  
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Algorithm Track Information Search 

1:  for(i € tracks[]) 

2:         endpointx=tracks[i].locationx2 

3:         endpointy=tracks[i].locationy2 

4:         x=tracks[i].locationx1 

5:         y=tracks[i].locationy1 

6:         cont=true; 

7:      while(cont)  

8:             for(j € points[]) 

9:                   if point[j].x1 is equal to x and point[j].y1 is equal to y then 

10:                                add point[j].id1 to track info 

11:                      elseif point[j].x2 is equal to x and point[j].y2 is equal to y then 

12:                               add point[j].id2 to track info 

13:                  endif 

14:             endfor 

15:             for(j € signals[]) 

16:                  if signals[j].x is equal to x and signals [j].y is equal to y then 

17:                       add signals [j].id to track info 

18:                  endif 

19:             endfor 

20:             if endpointx is equal to x and endpointy is equal to y then 

21:                   add exit to track info 

22:                   cont=false 

23:             endif 

24:              decreament x 

25:      end while 

26: endfor 

Figure 6. Algorithm that creates “TrackInformation” matrix 

Algorithm  Route Information Search 

1:   for (i € Pointstates[,i]) 

2:     counter=0; 

3:     position=0;//ray verilerindeki yer 
4:     exit=true; 

5:       while (exit) 

6:              for (l € PointInformation[]) 
7: 

8: 

9: 

                 if TrackInformation[position] is equal to pointInformation[l] and                                                      

                    States[l,i] is equal to reverse  

                         then  
10:                                  add the point and its state to a temp 

11:                                  position=getnewposition() 

12:                                  currenttrack = getcurrenttrack() 
13:                                  increment position 

14: 

15: 
16: 

                         else TrackInformation[position] is equal to pointInformation[l] and  

                                States[l,i] is equal to normal  
                         then  

17:                                  add the point and its state to a temp 

18:                                  increment position 
19:                  end if 

20:                  if TrackInformation[position] is equal to a signal 

21:                          add the signal to temp 
22:                          increment position 

23:                  end if 

24:                  if TrackInformation[position] is equal to a signal 
25:                          add the signal to temp 

26:                          increment position 

27:                  end if 
28:                  if TrackInformation[position] is equal to an exit then 

29:                          if TrackInformation[position] is equal to the desired exit then 

30:                                   add exit to temp 

31:                                  Routeinformation[,]=temp[,] 

32:                            else 

33:                                  exit = false; 
34:                          end if 

35:                          return “no route” 

36:                  end if 
37:             end for 

38:       end while  

39:  end for 

Figure 7. Algorithm that creates “RouteInformation” matrix 
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exit. Especially, in complex stations, where there are 

many points and routes, finding an optimal route inside 

all available routes becomes a tough task. In this study, 

in all possible routes, an optimal route, which is the 

shortest and simplest one, that is, it has the minimum 

number of points, is searched between an entrance and 

an exit in station topology. We created a matrix repre-

senting all possible positions of all points. Rows 

represent different combinations of states and columns 

represent points. Additionally, the optimal route must 

have minimum amount of points that are in diverging 

position and, because of this assumption, combinations 

of states are ordered inside the matrix by their number 

of reverse points.  Once one of the rows of this matrix 

can get the train from the chosen entrance to the chosen 

exit points, it is assumed to be the optimal route because 

optimal routes have lower row number. The states of 

points along this route are stored along with the signals 

on the route inside an array called “RouteInformation”. 

The algorithm written for this purpose is given in 

Fig. 7. After “RouteInformation” array is created, 

“XmlCreater” class is created and “RouteInformation” 

and “PointInformation” arrays are sent to its 

constructer. 

Pattern net models can be produced using the data, 

which are stored inside Route Information and Point 

Information arrays. In an attempt to create pattern net 

models, first models are divided into blocks and each 

pattern net model contains an initialize block and the 

remaining blocks are associated with a component in a 

certain state.  

The algorithm that produces track circuit models is 

given in Fig. 8. This figure is associated with Fig. 9, 

which contains track circuit pattern net model. The 

algorithm first selects an entrance point and creates 

pattern net model for this entrance by first initializing. 

Initializing is basically creating initial places, which are 

found in all route models, at the beginning of the 

algorithm. This process is shown in Fig. 9 as part A. 

Later each route that starts from that entrance is found 

and, for each point inside that route, a pattern net block 

is created. Part B in Fig. 9 represents a pattern net block 

for a point, which should be connected to the normal 

part of the previous point. Part D in Fig. 9 represents a 

pattern net block for a point, which should be connected 

to the reverse part of the previous point. Once all points 

are processed, the algorithm will reach an exit and for 

this exit another block will be placed on the respected 

pattern net model. Part C in Fig. 9 represents a pattern 

net block for an exit, which should be connected to the 

normal part of the previous point. Part C in Fig. 9 

represents a pattern net block for an exit, which should 

be connected to the reverse part of the previous point. 

 
 

Algorithm Track Circuit Model 

1: int PreviousPoint=null 

2: string PlacedPoints[]=null 

3:   for(i є RouteInformation[i,]) //i as respected route 

4:        PreviousPoint=null 

5:       PlacedPoints[]=null 

6:         for(j є RouteInformation[,j]) // j as components on the respective route 

7:               if new route equals true then 

8:                  doinitilization() // see Figure9 Part A 

9:              endif 

10:             if RouteInformation[i,j] equal to a point then 

11:                   for(k є PlacedPoints[]) 

12:                       if PlacedPoints[k] equals to RouteInformation[i,j] then 

13:                                  PreviousPoint= RouteInformation[i,j] 

14:                             break 

15:                             else 

16:                                 add point to PlacedPoints[] 

17:                            if point is on normal then 

18:                                      place point on track circuit model // see Figure9 Part B 

19:                                     PreviousPoint = RouteInformation[i,j] 

20:                                else 

21:                                      place point on track circuit model // see Figure9 Part D 

22:                                     PreviousPoint = RouteInformation[i,j] 

23:                            endif 

24:                       endif 

25:                 endfor 

26:            endif 

27:            if RouteInformation[i,j] equal to an exit then 

28:                if PreviousPoint is on normal then 

29:                      place exit on the track circuit // see Figure9 Part C 

30:                else 

31:                      place exit on the track circuit // see Figure9 Part E 

32:                endif 

33:                break 

34:            endif 

35:      endfor 

36:  endfor 

Figure 8. Algorithm that creates track circuit model
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Figure 9. Sample pattern net blocks of track circuit models 

Algorithm Route Model 

1: int PreviousPoint=null 

2:  for(i є RouteInformation[i,]) //i as respected route 

3:     doinitilization() //see figure11 part A 

4:       for(j є RouteInformation[j,]) //j as components on the respected route 

5:           for(k є RouteInformation[k,]) 

6:                 for(m є RouteInformation[m,]) 

7:                      if RouteInformation[i,j] equal RouteInformation[k,m] then 

8:                         Place route as inhibitor on route model//see figure11 part B 

9:                      endif 

10:               endfor 

11:          endfor 

12:           if RouteInformation[i,j] equal to a point then 

13:               if point is on normal then 

14:                  place point on route model //see figure11 part C 

15:                  PreviousPoint = RouteInformation[i,j] 

16:               else 

17:                  place point on routemodel //see figure11 part D 

18:                  PreviousPoint = RouteInformation[i,j] 

19:          endif 

20:           if RouteInformation[i,j] equal to an exit then 

21:               place signal on route model //see figure11 part E 

22:              break 

23:          endif 

24:     endfor 

25: endfor 

Figure 10. Algorithm that creates route models

The algorithm that produces Route models is given 

in Fig. 10. This figure is associated with Fig. 11 which 

contains route pattern net model. The algorithm starts 

by selecting route from “RouteInformation” and 

creates a pattern net model for this route by first 

initializing as mentioned above. This process is shown 

in Fig. 11 as Part A. The algorithm searches for routes 

that have common components with the selected route 

and adds them to the model as an inhibitor as shown 

in Fig. 11 Part B. After, for each point on this selected 

route, a block pattern net model is produced and an 

inhibitor is added to the model to prevent the route  
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Figure 11. Sample pattern net blocks of route models 

Algorithm Signal Model 

1: bool reverse=false 

2: String ConnectedPoint=null 

3: for(i є signals[i]) 

4:      for(j є RouteInformation[j]) 

5:          if signals[i] equals RouteInformation[j,-] then 

6:             doinitialize() // See Figure13 Part A 

7:               for(k є routeinformation[,k]) 

8:                  If (RouteInformation[j,k] equals the first point then 

9:                     ConnectedPoint= RouteInformation[j,k] 

10:                     Add connectedPoint to Signal Model // See Figure13 Part B 

11:                   endif 

12:                   if RouteInformation[j,k] point on reverse then 

13:                    reverse=true 

14:                  endif 

15:              endfor 

16:              if reverse equals true then 

17:                      add route on signal model // See Figure13 Part D 

18:                      reverse=false 

19:                   else 

20:                      add route on signal model // See Figure13 Part C 

21:              endif 

22:         endif 

23:     endfor 

24: endfor 

Figure 12. Algorithm that creates signal models

from opening. Part C in Fig. 11 represents a pattern net 

block for a point which is normal position. Part D in 

Fig. 11 represents a pattern net block for a point which 

is in diverging position. Once all points are processed, 

the algorithm will need to enable the appropriate 

signal as shown in Fig. 11 Part E. 

The algorithm that produces Signal models is 

given in Fig. 12. This figure is associated with Fig. 13 

which contains a signal representation pattern net 

model. The algorithm starts by searching “RouteInfor-

mation” to find only the signals that are used to reduce 

complexity. Once a signal is found, an initialization 

block is produced as shown in Fig. 13 Part A. After all 

routes in “RouteInformation” that use the respected 

signal are searched for a reverse point. If there is no 

reverse point on the route, it is added to the model as 

an enabler for the green signal as shown in Fig. 13 Part 

C. Otherwise the route is added as an enabler for signal 

yellow as shown in Fig. 13 Part D. Once the point right 

after the signal is no longer busy, the signal should go 

back to red, so the respected point should be added as 

shown in Fig. 13 Part B. 

4. Automatic Generation of Formal Models of 

Bastabya Station   

Bastabya Station on T4 Topkapı-Habibler line 

operated by Istanbul Transportation Co. was chosen as 

a model. The station has five points, five signals and 

ten track circuits. Sets to represent the following items 

at Bastabya Station, whose topology is shown in Fig. 

14, were defined: five points  𝑃 = {𝑝1, 𝑝2, 𝑝3, 𝑝4,   
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Figure 13. Sample pattern net blocks of signal models 
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Figure 14. The topology of Bastabya station 
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Figure 15. Timed-arc Petri net model of the route  r1  
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𝑝5} , ten track circuits 𝑇𝐶 = {𝑇𝐶𝐴, 𝑇𝐶𝐵, 𝑇𝐶𝐶, 𝑇𝐶𝐷,
𝑇𝐶𝐸, 𝑇𝐶𝑀1, 𝑇𝐶𝑀2, 𝑇𝐶𝑀3, 𝑇𝐶𝑀4, 𝑇𝐶𝑀5, } , first 

of five indicating the entering and departing of the 

station and the last five indicating the occupancy of the 

points as well as five signals 𝑆 = {𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5}. 

The entrances of the station are identified as 𝑇𝐸 =
{𝐴, 𝐶, 𝐸}according to the operation of the station by 

Istanbul Transportation Co. 

The routes identified can be opened for the trains on 

the condition that the track circuits are not occupied and 

the train proceeding on the second route to be opened 

should not be facing the train proceeding on the first 

route. Based on this, separate TAPN models were 

generated for each route through the developed 

software tool. As an example, the route r1TAPN model, 

which is generated for a train proceeding on CD route, 

can be seen in Fig. 15. 

Based on the model generated, route r1  can be 

opened provided that TCC  and TCD  track circuits are 

unoccupied [PART A] and the relevant points (Point1 

and Point2) are not occupied [PART C], either.  In 

addition, any of the routes, which can be in conflict 

with r1, should be opened; they should not be locked 

[PART B]. The points (Point1_N and Point2_N) on the 

route are placed in appropriate position in the right 

order once the route is chosen [PART C]. As a next step, 

signal 1 is enabled and green notification is transmitted 

[PART E]. At that point the train starts moving. Any 

route, which might clash with the route of the train, 

from C (the entrance point of the train into the station) 

to D (where the train leaves the station) is not allowed 

to be opened. The same situation applies for all the 

other routes. A new route can be opened on the 

condition that the track circuits on that route are 

unoccupied and the points are not occupied, either. It is 

also required that any other route has not been opened. 

Table 3 represents the points, their relevant positions 

based on the routes to be opened, and which track 

circuits are controlled according to the generated 

models.   

Table 3. Track circuits, points and point positions by route 

Entrance 

into the 

station 

Route 
Controlled Point 

and its Position 

Track Circuit 

Controlled 

C 

r1 (CD) P1_N, P2_N 
TCC, TCD 

TCM1, TCM2 

r2 (CA) 
P1_N, P2_R 

P4_R, P5_N 

TCC, TCA 

TCM1, TCM2 

TCM4, TCM5 

r3 (CE) 
P1_N, P2_R 

P4_R, P5_R 

TCC, TCE 

TCM1, TCM2 

TCM4, TCM5 

A 

r4 (AB) 
P3_N, P4_N 

P5_N 

TCA, TCB 

TCM3, TCM4 

TCM5 

r5 (AC) 
P1_N, P2_R 

P4_R, P5_N 

TCA, TCC 

TCM1, TCM2 

TCM4, TCM5 

E 

r6 (EB) 
P3_N, P4_N 

P5_R 

TCE, TCB 

TCM3, TCM4 

TCM5 

r7 (EC) 
P1_N, P2_R 

P4_R, P5_R 

TCE, TCA 

TCM1, TCM2 

TCM4, TCM5 
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Figure 16. Track circuit timed-arc Petri net model for trains entering the station from C side 
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Track circuits working based on the occupancy 

principle, constantly provide the feed on where the 

trains are. This is a condition required for a safe 

journey. The set TCx = {TCA, TCC, TCE}  denotes the 

track circuit set occupied by the trains during their 

entrance into the Bastabya station whereas the set 

TCy = {TCA, TCB, TCC, TCD, TCE}  depicts the track 

circuit set occupied by the trains while they are leaving 

the station. With  x, y = {A, B, C, D, E} and 𝑥 ≠ 𝑦, it is 

assumed that the train remains at the station as long as 

it does not pass from a second track circuit based on the 

route opened after it passes a track circuit. The 

automatic generated track circuit TAPN model, which 

indicates the actions of the trains entering the station 

from C side, can be seen in Fig. 16. Similarly, TAPN 

models for trains entering the station from A and E were 

also generated by the software tool.  

As specified in the previous section and based on 

the model generated, the trains entering the station from 

C can leave the station from D, A or E depending on the 

route to be chosen. The train occupies the TCC track 

circuit initially. Then, it proceeds on the route opened, 

occupying one of the track circuits, which are TCD, 

TCA or TCE, and leaves the station.     

5. Verification of Automatic Generated Formal 

Models for Point Automation System  

It is of great importance to verify and prove that the 

automatic generated models for point automation 

system fulfill the identified safety requirements so that 

a safe journey can be ensured on railway systems. The 

safety requirements necessary for point automation 

system were identified in our previous study [5]. These 

safety requirements are added to the automatically 

generated models by the software tool. Thus, there is no 

need to write any query after the generation of the 

models. To verify the accuracy of the safety 

requirements (SR) identified in the point automation 

system, TAPAAL editor was used. The editor allows 

modeling, simulation and verification of the systems 

through TAPN. The verification of the identified safety 

requirements was made automatically as (EF, EG, AF, 

AG) was written on the CTL formulation, which is a 

subcategory of temporal logic. Thus, it is possible to 

determine whether the formulation verifies the 

generated model or not as a result of the verification 

procedure. All queries are checked via TAPAAL 

Discrete Verification method based on the Breadth First 

search order in state space. As the coverability tree is 

too large, it is not given in the study. 

Safety requirements (safety requirement-SR), 

which are added to the automatically generated models 

by the software tool, can be listed as follows: 

SR1: The point should either be in its normal 

position or in diverging position as it cannot remain in 

the same position concurrently.  

SR1 is written in CTL formulation as 

𝐴𝐺¬(𝑃𝑜𝑖𝑛𝑡𝑘_𝑁 ≥ 1 ∧ 𝑃𝑜𝑖𝑛𝑡𝑘_𝑅 ≥ 1). Table 4 

represents the verification results and time for SR1. 

Table 4. Verification results and time for SR1  

Query Result Verification time 

Point1_SR1 Satisfied 0.166 s 

Point2_SR1 Satisfied 0.163 s 

Point3_SR1 Satisfied 0.163 s 

Point4_SR1 Satisfied 0.165 s 

Point5_SR1 Satisfied 0.165 s 

 

SR2: For a point to be locked, the point should 

either be in its normal position or in diverging position. 

SR2 is written in CTL formulation as 

𝐴𝐺¬(𝑃𝑘_𝐸𝑛𝑎𝑏𝑙𝑒 = 0 ∧ (𝑃𝑜𝑖𝑛𝑡𝑘_𝑁 ≥ 1 ∧
𝑃𝑜𝑖𝑛𝑡𝑘_𝑅 ≥ 1)). Table 5 represents the verification 

results and time for SR2. 

Table 5.Verification results and time for SR2 

Query Result Verification time 

Point1_SR2 Satisfied 0.164 s 

Point2_SR2 Satisfied 0.165 s 

Point3_SR2 Satisfied 0.166 s 

Point4_SR2 Satisfied 0.165 s 

Point5_SR2 Satisfied 0.169 s 

 

SR3: The point should not be moving while the 

train occupies any point, which means while the train is 

on its way over the point, it should not get any point 

engine command or move.    

SR3 is written in CTL formulation as 

𝐴𝐺¬(𝑇𝐶𝑀𝑘 ≥ 1 ∧ (𝑃𝑘 . 𝑁𝑡𝑜𝑅 ≥ 1 ∨ 𝑃𝑘 . 𝑅𝑡𝑜𝑁 ≥ 1)). 

Table 6 represents the verification results and time for 

SR3. 

Table 6.Verification results and time for SR3 

Query Result Verification time 

Point1_SR3 Satisfied 0.166 s 

Point2_SR3 Satisfied 0.167 s 

Point3_SR3 Satisfied 0.166 s 

Point4_SR3 Satisfied 0.170 s 

Point5_SR3 Satisfied 0.165 s 

 

SR4: Signal should be locked into green, yellow 

and red light, referring to normal direction, siding 

direction and stopping direction, respectively. The train 

should start moving when the signal notifies 

proceeding direction, and the signal should give red 

notification again once the train occupies the first track 

circuit.  

SR4 includes two different requirements to be 

written in the CTL formulation. They are written as 

𝐴𝐺(𝑆𝑖𝑔𝑛𝑎𝑙1_𝑔𝑟𝑒𝑒𝑛 ≥ 1 ∨ 𝑆𝑖𝑔𝑛𝑎𝑙1_𝑦𝑒𝑙𝑙𝑜𝑤 ≥ 1 ∨
𝑆𝑖𝑔𝑛𝑎𝑙1_𝑟𝑒𝑑 ≥ 1))  and 𝐴𝐺¬(𝑆𝑖𝑔𝑛𝑎𝑙1_𝑔𝑟𝑒𝑒𝑛 ≥ 1 ∧
(𝑅𝐶𝑀1 ≥ 1  ∧ 𝑅𝐶𝑀2 ≥ 1)).  
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SR5: When the route selected is locked and opened, 

the points on the route should also be locked in the 

relevant position and there should be no proceeding 

until the route is free.  

SR5 also includes two different requirements to be 

written in the CTL formulation. They are written as  
𝐴𝐺¬(𝑅𝑜𝑢𝑡𝑒1𝑙𝑜𝑐𝑘𝑒𝑑 ≥ 1 ∧ (𝑃𝑜𝑖𝑛𝑡1_𝑅 ≥ 1  ∨
𝑃𝑜𝑖𝑛𝑡2_𝑅 ≥ 1))  and 𝐸𝐹(𝑅𝑜𝑢𝑡𝑒1𝑙𝑜𝑐𝑘𝑒𝑑 ≥ 1 ∧
(𝑃𝑜𝑖𝑛𝑡1_𝑁 ≥ 1  ∧ 𝑃𝑜𝑖𝑛𝑡2_𝑁 ≥ 1)).  

SR6: Points should firstly be locked based on the 

route chosen. Then, relevant signal notification should 

be given when the route is locked. 

SR6 is written in CTL formulation as 

𝐴𝐺¬(𝑅𝑜𝑢𝑡𝑒1𝑙𝑜𝑐𝑘𝑒𝑑 = 0 ∧ 𝑆𝑖𝑔𝑛𝑎𝑙1_𝑔𝑟𝑒𝑒𝑛 ≥ 1). 

Table 7 represents the verification results and time for 

SR4, SR5 and SR6. 

Table 7.Verification results and time for SR4, SR5 and SR6 

Query Result Verification time 

Signal1_SR4_1 Satisfied 0.166 s 

Signal1_SR4_2 Satisfied 0.167 s 

RouteCD_SR5_1 Satisfied 0.166 s 

RouteCD_SR5_2 Satisfied 0.170 s 

RouteCD_SR6_1 Satisfied 0.170 s 

RouteCD_SR6_2 Satisfied 0.165 s 

6. Conclusion 

A software tool, which can be used for automatic 

TAPN model generation from the station topology and 

verification of the generated models for point 

automation system, was successfully developed. TAPN 

models of Bastabya station, operated by Istanbul 

Transportation Co. in Turkey, were formed 

automatically by using the developed software tool 

based on CENELEC EN 50128. Additionally, it was 

verified and proven through temporal logic, one of the 

formal methods recommended by CENELEC EN 

50128 standard, that the generated TAPN models 

fulfilled the identified safety requirements. The tool 

was tried for different stations on M1 Aksaray-Airport 

metro line, operated by Istanbul Transportation Co. and 

successful models were obtained. The TAPN models, 

which are generated for these stations, were also 

verified. As a result, the information, which is shown in 

Table 8, was obtained. 

It was concluded that the tool significantly reduced 

the modeling faults caused by human factor and 

improved the efficiency in the generation of the models. 

Moreover, reliability and safety of the whole system 

increases thanks to automatic generation of the system 

models. Our future work will focus on the development 

of a process to generate the discussed models 

automatically from the programming codes, which are 

written in STL format in Programmable Logic 

controller. 

 

Table 8. Results of model generation and verification for different stations 

Station Number of 
Application 

Runtime 
Verification 

 Points Tracks Entrances queries Second(s) Mb Second(s) 

Aksaray 2 2 4 48 0.724 84 6.662 

Davutpaşa 2 2 2 34 0.654 48 3.525 

Esenler 1 2 2 26 0.642 33 2.819 

Otogar 4 3 4 78 1.007 428 615.815 

Bahçelievler 2 2 4 48 0.755 150 22.2 

System Info 

Intel Core I7-2630QM Cpu @2,00 Ghz x64 

6 Gb Ram 

Windows 8 64-Bit  

Verification tool  Tapaal 3.00 
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