
155 

ISSN 1392–124X (print), ISSN 2335–884X (online) INFORMATION TECHNOLOGY AND CONTROL, 2015, T. 44, Nr. 2 

Action Classification in Action Ontology Building Using Robot-Specific Texts 

Irena Markievicz1, Jurgita Kapočiūtė-Dzikienė1, Minija Tamošiūnaitė2,  

Daiva Vitkutė-Adžgauskienė1 

1 Vytautas Magnus University, Faculty of Informatics,  

Vileikos str. 8, LT- 44404 Kaunas, Lithuania 

e-mail: irena.markievicz@gmail.com 

2 The University of Göttingen, Bernstein Center for Computational Neuroscience, 

Friedrich-Hund Platz 1, 37077 Göttingen, Germany 

  http://dx.doi.org/10.5755/j01.itc.44.2.7322 

Abstract. Instructions written in human-language cause no perception problems for humans, but become a 

challenge when translating them into robot executable format. This complex translation process covers different 

phases, including instruction completion by adding obligatory information that is not explicitly given in human-

oriented instructions. Robot action ontology is a common source of such additional information, and it is normally 

structured around a limited number of verbs, denoting robot specific action categories, each of them characterized by a 

certain action environment. Semi-manual action ontology building procedures are normally based on domain-specific 

human-language text mining, and one of the problems to be solved is the assignment of action categories for the 

obtained verbs. Verbs in English language are very polysemous, therefore action category, referring to different robot 

capabilities, can be determined only after comprehensive analysis of the verb’s context. The task we solve is 

formulated as the text classification task, where action categories are treated as classes, and appropriate verb context – 

as classification instances. Since all classes are clearly defined, supervised machine learning paradigm is the best 

selection to tackle this problem.  

We experimentally investigated different context window widths; directions (context on the right, left, both sides 

of analyzed verb); and feature types (symbolic, lexical, morphological, aggregated). All statements were proved after 

exploration of two different datasets. The fact that all obtained results are above random and majority baselines allow 

us to claim that the proposed method can be used for predicting action categories. The best obtained results were 

achieved with Support Vector Machine method using window width of only 25 symbols on the right and bag-of-words 

as features. This exceeded random and majority baselines by more than 37% reaching 60% of accuracy. 

Keywords: verb sense disambiguation, verb context classification, supervised machine learning. 

 

1. Introduction 

“Start conveyor. Pick-up a rotor cap from conveyor 

and place it on fixture mounted on robot platform. 

Pick-up until fixture is full or conveyor is empty. Stop 

conveyor.” – a factual piece of text extracted from the 

instruction sheet (or manual). It does not cause any 

perception problems for humans, but becomes a 

challenge when translating into a robot executable 

format. A robot able to “understand” and utilize 

human-language instructions has to be equipped with 

a number of different capabilities. Firstly, a vision 

function should help to recognize and locate relevant 

objects such as “conveyor”, “rotor cap”, “fixture” or 

“robot platform” in the environment; physical abilities 

–in particular, movements of hand, grabbing, lifting or 

putting– to perform different actions. Besides, robot 

has to perform reasoning: e.g. solve anaphora 

resolutions problems (by replacing pronouns with 

appropriate nouns where needed: e.g. “it”  “rotor 

cap”); transform complex actions into the chain of 

simple executable ones (e.g. “pick-up”  “hand move 

to object”, “grab”, “lift”); to understand how exactly 

each simple action has to be performed (because 

“pen”, “cup”, “balloon” or “rotor cap” should be 

grabbed with the different power and finger positions). 

Moreover, some actions require additional tools (e.g. 

“cut an apple” action requires a “knife” which is not 

directly mentioned in the instruction) or decoding of 

hidden meaning about their repetitiveness (e.g. “slice 

and apple”, “dice an apple” are repetitive actions, but 

the number of repetitions is not known in advance). 

Last-mentioned ones can be performed only if have 
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necessary links to world-knowledge in terms of 

ontologies and databases.  

Indeed the process from robot “reading an 

instruction” to robot “executing an instruction” must 

pass many different phases and each of those phases 

requires deeper research analysis. In this research we 

focus on one of those phases, namely on instruction 

completion by adding action-specific information that 

is not explicitly given in human-oriented instructions. 

Automation of the robot instruction completion phase 

is often related to the use of specific action ontology, 

describing active environment for possible robot 

actions [20], [11]. A robot action is normally 

structured around a limited number of action 

categories, and each action verb that is included in the 

ontology has to be associated with an appropriate 

action category. Domain-specific texts Semi-manual 

action ontology building procedures are normally 

based on domain-specific human-language text 

mining, and one of the problems to be solved is the 

assignment of action categories for the obtained verbs. 

In this research we focus on determining the action 

category for action verbs, obtained in the process of 

domain-specific text mining. The problem is that 

verbs are highly polysemous in the English language, 

e.g. “hold on” in “hold on tightly” means “to grasp”, 

but in “hold on a minute” – “to wait”; “mix up” in 

“mix up tenses” means “confuse”, but in “mix up two 

kinds of nuts in a bowl” – “to blend”, etc. Since our 

robot can perform actions only aware of their 

categories (5 action categories used in the research 

were: handling action, hand-only action, null action, 

pick-and-place action, unrecognized action), 

disambiguation problem can be considered as action 

categorization problem. Therefore, due to our previous 

examples “hold on” could be either attached to pick-

and-place or null action; “mix up” - either to 

unrecognized or handling action. As we can notice 

from these examples the context surrounding each 

verb is crucial for determining its action category. 

Consequentially, from Computational Linguistics 

perspective our solving task can be formulated as text 

classification task where classes are action categories 

and classification instances – the context around the 

analyzed verb.  

2. Related work 

The task that we solve in our paper is very 

specific, formulated within the frame of the project 

ACAT 1 ; therefore we could not find any research 

works tackling exactly the same problem as we do. 

However, the task that we attempting to solve in this 

paper can be discussed from two different 

perspectives: i.e. text classification (task of assigning 

                                                           
1 The goal of the ACAT project is to provide machines (robots) with 

this type of tacit information and to generate internal knowledge 

about individual task by way of creating and storing all required 

action information into so-called “Action Categories” 
(http://www.acat-project.eu/). 

predefined categories to unknown text documents) and 

verb sense disambiguation (task of assigning a sense 

to a verb given its context).  

Both text classification and verb sense 

disambiguation tasks can be solved using two different 

approaches – i.e. rule-based and machine learning. 

Rule-based methods require human-experts for 

manual construction of appropriate patterns (i.e. rules) 

capable to take text classification or verb sense 

disambiguation decisions. Unfortunately rule-based 

methods not only require a lot of human work, but 

also are hardly adjustable to the new domains or 

applications. Due to this reason machine learning 

gained a lot of interest and remained the dominant 

paradigm till nowadays. Machine learning does not 

require manual construction of rules, because rules 

(defined as a model) are built automatically by 

observing and generalizing the characteristics of a 

given text.  

Since all categories (action categories in our case) 

are known in advance; moreover, instances belonging 

to those categories will also be available, the area of 

possible machine learning methods can be narrowed 

down focusing on the supervised machine learning 

techniques only (for a review see [13]). One of the 

earliest comparative works on text classification using 

supervised machine learning methods revealed that 

Support Vector Machines (SVM) and k-Nearest 

Neighbor (k-NN) are top-notch classifiers, compared 

to Decision Trees (DT) or Naïve Bayes (NB) [8]. 

Dumais et al. [5] also demonstrated the superiority of 

SVM over DT and NB. Later SVM method was 

chosen by many researchers even without any 

consideration and became the most popular technique 

for classifying the texts not only for English, but for 

many other languages. Despite the domination of 

SVM, Bayesian methods maintained their popularity 

and are often selected as the baselines. It is necessary 

to mention that NB with a multinomial model (NBM) 

is more often selected instead of a simple NB with 

Bernoulli model, because NBM performs obviously 

better on the larger feature sets [14]. Moreover, some 

researchers report that NBM can even outperform 

popular SVM [16].  

However not only the machine learning method 

itself, but the feature type is the most crucial problem 

in every text classification task. The most common 

approach for English remains simple bag-of-words 

(set of words) interpretation, which is also very 

accurate (e.g. demonstrated by Pang et al. [17]) that 

can even outperform other more sophisticated feature 

types based on token or character n-grams, lemmas, 

stems, etc. For the detailed description of text 

classification methods see [18], for the recent works 

[12]. Text classification was heavily researched on 

English in the past; current trends more focus on the 

morphologically complex or resource-scarce 

languages.  

Verb sense disambiguation based on the supervised 

machine learning approaches is a very similar task to 

http://www.acat-project.eu/
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the text (topic, sentiment) classification; the main 

difference is in the interpretation of classification 

instances and in the used feature types. Instead of 

entire text, only snippets of it, –in particular, 

sentences, verb with its context, verb with its 

modifiers, etc. – are extracted and analyzed. Besides, 

instead of only lexical, morphological or symbolic 

features (which are typical in the text classification 

tasks), different types of semantic features are often 

exploited (e.g. generalized features using three types 

of word representations [9], Dynamic Dependency 

Neighbors, where for a given noun, verbs are retrieved 

taking that noun as an object form the dependency-

parsed corpus [4], etc.). Besides, such feature types as 

bag-of-synsets (set of synonyms) based on external 

resources (e.g WordNet [6]), or left/right-word 

features, memorizing words position next to the verb 

in the text (e.g. [22]) are also often included.   

Our task by its nature is a bit closer to text 

classification. Consequentially, this work will be our 

first attempt at finding a good method for classifying 

verbs by their context into action categories. 

3. Action ontology in robotic 

The concept of action is described in many fields 

of computer science – it can be introduced as a part of 

knowledge-based system, lexical (e.g. WordNet, 

VerbNet) or ontological (OpenCyc, SUMO) resource. 

It can be classified into lexical aspectual classes: 

activity, state, accomplishment and achievement [19]. 

Actions can be interpreted as functions, which 

transform one environment state into another 

environment state. Preconditions and effects restrict 

the change of initial and final states. While action 

changes a feature-value of an object and the value of a 

role or relation, the two general forms of action 

concept can be defined: change-feature-value and 

change-role-value [10]. In this case, we can define an 

action environment as a set of action objects in a 

certain state, which can be described by properties 

(e.g. size, weight, material, location in the certain 

reference system) and relation between action object 

(roles of objects).  

Each robot has a limited number of actions it can 

execute. The action ontology should be based on those 

actions and it should add related actions and action 

environment information in the process of ontology 

growing. Our action ontology for robotic scenarios has 

a predefined structure (Fig. 1), which is based on an 

assumption that all robotic actions can be divided into 

several sequential steps. When presenting the 

sequence of these steps, the same action primitives are 

always used: no-act, locate, grasp, pick up and put 

down.  

Fig. 1 presents the conceptual model of a text-

based ontology used in our robotic experiments. The 

presented action ontology model assigns an 

appropriate action synset for each action as well as 

action details required for execution that can be 

obtained from textual sources. The action synset 

contains verbs, having the same sense.  

Each action can be parameterized with modifiers, 

which can affect action execution speed (e.g. wash 

slowly, wash quickly), method (e.g. wash carefully, 

wash safely), repeating sequence (e.g. wash once, 

wash twice, wash repeatedly, wash again) or the 

sequence of steps (e.g. wash first, wash then). This 

information is included as action properties. Each 

action class has the following set of environment 

elements: objects, tools, time span, location, object 

materials, etc. (Fig. 1).  

By choosing different robot action scenarios, we 

have described several action categories, which can be 

used in action ontology: null-actions, homing actions, 

hand-only actions, handling actions, tools actions, 

tools actions with movement and pick and place 

actions. 

Null-action category contains actions suspending 

robot processes until some other robot or non-robot 

process completes. This action class is associated with 

the processes execution time, described by time units 

(e.g. wait for 10 minutes), by abstract definition of the 

process completion (e.g. wait till centrifugation 

completes) or the state of involved action objects (e.g. 

wait until incubator is dry). Null-actions always 

contain just one primitive no-act.  

Homing class contains actions for moving the 

robot to a predefined home position. This class is 

relevant to the movement trajectory class, which 

describes movement of robot arm/hand or a whole 

robot. 

Hand-only category includes actions that are 

executed with robot arm/hand and single target object 

(e.g. press the button, open centrifuge). The primitive 

steps of this category are: locate target object, act at 

target.  

The difference between hand-only and handling 

actions is related with the action object position – if a 

hand-only action affects target object just by touching 

it, a handling action involves source object, which has 

to be taken by a robot hand (e.g. shake the tube) for 

some period of time. Handling action primitives are: 

locate source object, pick up object, act, put down 

object. 

Actions with primary tools (e.g. stir with a spoon) 

are categorized into the tool actions category. The 

description of such actions contains common verb and 

tool objects (e.g. wash with a sponge) and specific 

tool-oriented verbs (e.g. screw (with screwdriver), 

hammer (with hammer)). Tool action primitives are: 

locate tool, pick up tool, locate target object, act at 

target object, remove and put down tool. 

The action category Tools with movement includes 

actions with transmissions, gears or motors (e.g. mix 

with mixer). Primitives of this action class are: locate 

tool, pick up tool, locate target object, act on source 

with motor, remove and put down tools. 

Handling and tools (+ with movement) actions are 

grouped into the pick and place action category. It 
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Figure 1. The conceptual model of an action ontology 

Table 1. Action categories with the corresponding verbs (numbers in brackets indicate the frequencies of corresponding word 

appearance in the corpus) 

Action category Verbs (frequency of appearance in the corpus) 

handling action invert (88), mix (782), shake (244), stir (779) 

hand-only action close (265), open (403), press (112), pull (202), turn (866) 

null action stay (175), wait (371) 

pick-and-place 

action 
insert (372), pick (191), place (1,437), put (849) 

unrecognized 

action 

affect (1,021), afford (877), allow (2,098), appear (806), apply (796), associate (731), base (1,175), be 

(109,501), become (1,369), begin (710), bind (1,055), calculate (846), call (1,735), carry (780), cause 

(1,517), change (973), come (1,271), compare (932), consider (1,023), contain (3,179), continue (677), create 

(938), depend (872), describe (1,139), determine (1,966), develop (1,839), do (8,736), dry (701), explain 

(741), extract (688), find (3,234), follow (2,397), form (2,439), generate (709), get (2,182), give (3,632), go 

(1,334), grow (1,328), have (18,983), heat (715), help (1,346), hold (813), identify (1,271), improve (701), 

include (3,005), increase (1,597), indicate (841), involve (1,688), keep (1,140), know (2,927), lead (1,548), 

learn (881), leave (925), look (1,054), make (5,842), mean (706), measure (1,302), mix (782), need (2,271), 

observe (1,033), obtain (1,828), occur (1,503), perform (1,271), place (1,437), prepare (1,444), produce 

(2,736), provide (2,386), put (849), react (938), read (787), record (918), reduce (1,432), relate (743), remain 

(883), remove (1,715), report (886), require (2,033), result (1,114), run (907), say (688), see (2,656), set 

(910), show (2,730), start (1,321), study (805), take (2,720), test (855), think (917), treat (753), try (914), turn 

(866), understand (821), use (14,356), want (900), work (1,754), write (990) 

 

contains variants of putting and pushing action objects 

together (e.g. put down, insert, put together, put on 

top). It is also relevant to the movement trajectory 

class. Action category primitives: locate source object, 

pick up object, locate target object, put down source 

object at target.  
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While defining tools actions and tools actions with 

movement can be easily done based on action object 

recognition, it is necessary to involve action 

classification algorithms for associating actions into 

the remaining predefined other action categories. In 

our experiments, we used only these actions 

categories, which do not include tools specification 

and cannot be recognized with particular tool-based 

patterns recognition. All relevant results describe these 

action categories: handling actions, hand-only actions, 

null actions, pick and place actions and unrecognized 

actions (see Table 1). 

4. Dataset for action classification 

A domain-specific corpus containing chemical 

laboratory texts was used for our experiments. The 

corpus texts describe chemistry laboratory 

experiments, basic rules, instruments and techniques. 

The texts that were crawled from the Internet, were 

subject to boilerplate removal (undesired content, such 

as HTML tags, scripts, styles advertisements, etc., 

removed) and filtering (corpus contains only texts, 

longer than 1600 symbols). The overall size of this 

experimental chemistry lab corpus (further referred to 

as the CHEMLAB corpus) is 3,821,073 running 

words. Collected texts were morphological annotated 

and lemmatized using Stanford University NLP tools 

for English language (http://nlp.stan-

ford.edu/software/). The dataset for action 

classification experiment consists of 100 most 

frequent actions of the CHEMLAB corpus. 

The fact that entire corpus contains 5,079 different 

lemmatized verbs where almost 36% (i.e. 1,825 

words) appeared only once (such as platinize or 

favorise) led us to a decision not to analyze the verbs 

themselves, but better to zoom into their context. 111 

most frequent verbs2, which tend to be monosemous, 

were selected for the further experiments and were 

manually labeled with one of 5 action categories (see 

Table 1). 

After labeling with the action categories, the pure 

context (not cleaned, not lemmatized) around each of 

these verbs (in Table 1) was extracted; the verb itself 

was eliminated, thus forming a new text document. 

The arbitrary selected primary window width for the 

context extraction was 200 symbols (including 

whitespaces) to both sides of the analyzed verb. The 

context window could be slightly increased so that the 

word at the left-most or right-most edge would be 

totally covered and included.  

As we can see from Table 1, unrecognized action 

category is strongly dominated over the rest ones. To 

avoid the distortion of results, our dataset was 

balanced by randomly selecting 1,500 text documents 

for each action category (except for null action 

category, because only 546 cases were found in the 

                                                           
2 Phrasal verbs were not considered.  

entire corpus). See Table 2 for more detailed statistics 

about the created dataset. 

Table 2. Number of text documents, tokens and distinct to-

kens in lowercase; average number of tokens in text docu-

ment for each of the action categories in the created dataset 

Action  

category 

Docu-

ments 
Tokens 

Distinct 

tokens 

(in LC) 

Avg. of 

tokens in 

doc. 

handling  1,500 109,046 7,085 72.7 

hand-only  1,500 106,850 9,663 71.2 

null  546 38,581 5,362 70.7 

pick-and-place  1,500 108,462 9,167 72.3 

unrecognized  1,500 101,778 12,496 67.9 

ALL 6,546 464,717 20,294 71.0 

 

5. Methodology 

5.1. Formal description of the task 

The mathematical formulation of the verb context 

classification task, that we are attempting to solve, is 

given below.  

Let dD be a text document, belonging to a 

document space D. Each document contains verb 

context except verb itself, whose action category has 

to be determined.  

Let C be a finite set of classes (action categories): 

C={c1, c2, …, cN}. (1)  

In our case 2 < N=5 << , thus we have multi-

class classification problem.  

Let DL be a training set, containing instances I – 

i.e. document feature vectors d (where d corresponds 

to document d) with their appropriate class labels: 

I=d, c. We selected only the verbs which tend to be 

monosemous, thus we have single-labeled instances 

only: i.e. the text document d cannot be attached to 

more than one class c.  

Let function   be a classification function mapp-

ing text documents to classes,  : D  C. Function  
determines the logic how d is labeled with c. 

Let  denote a method which given training DL as 

the input, can return a learned classification function  
(defined as a model) as the output:  

(DL).  (2) 

5.2. Experimental setup 

The main purpose of this research is to prove expe-

rimentally that verbs can be effectively classified into 

action categories by their context. The classification 

results will be considered reasonable, if achieved 

accuracy will outperform random (
i

icP 2)( ) and 

majority ( ))(max( icP ) baselines (P(ci) is the 
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Table 3. Feature type groups and feature types (with their description) used in our experiments 

Feature group Feature type Description 

Symbolic Document-level 

character n-gram 

(chrn) 

Succession of n characters including spaces and punctuation marks. We investigated 

sliding window of n  [3; 7]. E.g. if n=5 phrase “verb context” would be split into 

“verb_”, “erb_c”, “rb_co”, “b_con”, “_cont”, “conte”, “ontex”, “ntext”.  

Lexical Bag-of-words (bow) N-grams (interpolation of n from 1 up to 3) based on word tokens. E.g. if n=1 “verb 

context classification” would be transformed into single words “verb”, “context”, 

“classification”; if n=2 it would be transformed into singe words plus pairs of words 

“verb context”, “context classification”; if n=3 it would be transformed into single, 

pairs of words plus triplets of words “verb context classification”.  

Lemmas (lem) N-grams (interpolation of n from 1 up to 3) based on word lemmas. All texts were 

lemmatized beforehand. Lemmatization transformed words into their main form, 

does not changing part-of-speech tag, e.g. “better”  “good”, etc.  

Stems (stem) N-grams (interpolation of n from 1 up to 3) based on word stems. All texts were 

stemmed beforehand. Stemming reduced inflected words to their stem: e.g. 

“friendly”  “friend”, etc. 

Morphological Part-of-speech tags 

(pos) 

N-grams (interpolation of n from 1 up to 3) based on part-of-speech tags. All texts 

were part-of-speech tagged beforehand. For part-of-speech tagging, as well as for 

lemmatization and stemming Stanford parser ([3]) was used.  

Aggregated: 

Lexical + 

Morphological 

Lemmas + part-of-

speech tags (lempos) 

Stems + part-of-speech 

tags (stempos) 

Bag-of-words + part-

of-speech tags 

(bowpos) 

N-grams (interpolation of n from 1 up to 3) based on aggregated features which 

involved concatenated lexical and syntactic information. E.g. “filtration_NN” is an 

example of lempos feature, where “filtration” is a word lemma and “NN” is a part-

of-speech tag for determining singular nouns. 

 

probability of class ci). For the dataset described in 

Section 3 calculated random baseline is 0.2170 and 

majority baseline is 0.2291.  

Besides we wanted to determine how the results 

are affected by the different window widths and 

directions. Therefore we experimentally investigated 

context window widths of 15, 20, 25, 50, 100 and 200 

symbols and directions of context to the both/left/right 

side(s) of the verb.   

Since an appropriately selected feature type is the 

keystone of any text classification method, we 

investigated 26 different feature types (see the 

summary in Table 3) to find out which one gives the 

best results.  

Before starting the experiments, we formulated 

two hypotheses. 

Our first hypothesis states that a context on the 

right of the verb should be more informative, because, 

typically, in the instructions verbs go in the imperative 

mood, e.g. “do something”, “do something with”, etc. 

The laconic instruction language and rigid word-order 

in the English sentences allows us to expect 

reasonable narrow windows (covering 3-5 words) to 

be much more effective compared to the longer ones.  

Our second hypothesis states that English language 

should benefit the most from the lexical features, but 

we still do not expect stemming and lemmatization to 

give much boost in accuracy: English language is not 

very highly inflective; moreover, inflections contain 

some extra information which also might be 

important.  

5.3. Classification methods 

We attempt to find a method  which could create 

the model  the best approximating  (see Section 4.1, 

formula (2)). For this reason, two supervised machine 

learning approaches– in particular, Naïve Bayes 

Multinomial (NBM) [2] and Support Vector Machine 

(SVM) [1] – were selected and experimentally 

investigated.  

NBM method is often selected for the text 

classification tasks mostly due its simplicity: Naïve 

Bayes assumption about the feature independence 

allows parameters of each feature to be learned 

separately. This method performs especially well 

when the number of features having equal significance 

is large; is very fast and does not require huge data 

storage resources.  Besides, this Bayesian method is 

often selected as the baseline approach. 

SVM was selected because it is the most popular 

technique for text classification, which can effectively 

cope with high dimensional feature spaces (e.g. 

20,294 word features in our dataset (see Table 2)); 

sparseness of the feature vectors (e.g. among 20,294, 

each instance would have only ~3.1 non-zero word 

feature values); and instances do not sharing any 

common features (common for short texts, e.g. 

average length of instance in our dataset is ~71.0 

words). Besides, SVM does not perform aggressive 

feature selection which may result in a loss of 

information.  

In our experiments we used NBM and SMO for 

SVM implementations in WEKA ([7]) machine 

learning toolkit, version 3.6. All parameters were set 
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to their default values, except for SVM: the 

parameters of SVM were tuned, giving the best results 

with the polynomial kernel.  

6. Results 

Our initial experiments involved investigation of 

different window widths (15, 20, 25, 50, 100, and 200, 

still including words on the edge) and directions 

(both/left/right) (see Fig. 2 for results with NBM and 

Fig. 3 for results with SVM) using the bag-of-words 

(bow) as the feature type. All experiments were 

performed with 10-fold cross-validation [21]). For the 

results evaluation we used accuracy and micro/macro 

F-score metrics.  

 

Figure 2. Results obtained with NBM method: X axis 

represents different window widths, Y axis – obtained 

accuracy. The best results where obtained with the right 

context of 25 symbols 

 

Figure 3. Results obtained with SVM method: X axis 

represents different window widths, Y axis – obtained 

accuracy. The best results where obtained with the right 

context of 25 symbols 

To investigate the influence of the feature types, 

we kept window width and direction parameters 

stable. However, instead of investigating the best, we 

investigated three derived datasets: the best obtained 

with the context to the both sides (Both-15: window 

width = 15 and direction = both), with the context on 

the left (Left-200: window width = 200 and 

direction = left) and on the right (Right-25: window 

width = 25 and direction = right) contexts. For detai-

led statistics about derived datasets see Table 4. For 

the classification results with NBM see Table 5; with 

SVM see Table 6. 

Table 4. Total number of instances, tokens, distinct tokens 

(in lowercase), lemmas, stems; and average number of 

tokens in instances in our derived datasets 

Derived dataset Both-15 Left-200 Right-25 

Numb. of instances 6,546 6,546 6,546 

Numb. of tokens 42,798 232,778 33,107 

Numb. of distinct 

tokens (in LC) 
6,509 15,25 5,669 

Numb. of distinct 

lemmas 
5,781 13,004 5,092 

Numb. of distinct 

stems 
5,491 11,942 4,841 

Avg. numb. of 

tokens in inst. 
 5.6  35.6  5.1 

 

7. Discussion 

Due to the fact that all obtained results were above 

random and majority baselines, we can state that the 

proposed method is effective and can be used to 

determine action categories from the verb context.  

In line with the dataset described in Section 3, we 

also built a very small one, containing only 500 

instances for each action category (the dataset was 

composed using the same principles as the first one). 

We performed the same control experiments with this 

small dataset as with the larger one. It was done to 

ascertain if the findings generalize over both datasets, 

meaning that they are not accidental. 

Thus, despite the size of the dataset, our first 

hypothesis was confirmed: i.e. the context on the right 

was the most informative and gave the biggest boost 

in accuracy compared to the context on the left or 

lying in both directions (see Fig.  1 and Fig. 2). The 

assumption that the best results should be obtained 

with a relatively small window was confirmed as well: 

the best results were obtained with 25 symbols (~5 

words) only using bag-of-words as features. Besides, 

SVM gave much better results with smaller window 

widths and was capable to outperform NBM.  

In our further experiments we investigated the 

effectiveness of the token feature types. Overall, the 

best n seems to be equal to 1, n=2 often slightly boosts 

the accuracy, but n=3 – usually degrades the 

performance. We performed McNemar test [15] to see 

if the differences are statistically significant. Despite 

the fact that differences are not statistically significant 

between different lexical feature types, bag-of-words 

can be considered as marginally the best feature type. 

Hence, our assumption that English language does not 

benefit from lemmatization or stemming was 

confirmed as well. Not surprisingly, part-of-speech 

tags give the overall worst classification results, and, 

correspondingly, do not help to solve disambiguation 

problems.
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Table 5. Accuracy, micro and macro average F-scores for all derived datasets obtained with NBM. Number next to the feature 

type indicates n of n-gram. The best results with each evaluation metric are underlined 

 
 

Both-15 Left-200 Right-25 

Feature type 

group 
Feature type Acc. MicroF MacroF Acc. MicroF MacroF Acc. MicroF MacroF 

Symbolic chr3 0.5370 0.5370 0.5140 0.4607 0.4530 0.4316 0.5478 0.5480 0.5236 

chr4 0.5280 0.5280 0.5062 0.4577 0.4500 0.4286 0.5267 0.5280 0.5070 

chr5 0.5134 0.5130 0.4920 0.4458 0.4370 0.4150 0.5121 0.5120 0.4932 

chr6 0.4795 0.4760 0.4570 0.4323 0.4240 0.4020 0.4843 0.4830 0.4638 

chr7 0.4464 0.4410 0.4226 0.4248 0.4150 0.3892 0.4387 0.4340 0.4134 

Lexical bow 0.5706 0.5610 0.5186 0.4743 0.4640 0.4406 0.5796 0.5690 0.5286 

bow2 0.5701 0.5670 0.5372 0.4684 0.4560 0.4318 0.5657 0.5600 0.5270 

bow3 0.5686 0.5650 0.5352 0.4670 0.4540 0.4300 0.5661 0.5600 0.5256 

lem 0.5724 0.5650 0.5294 0.4760 0.4660 0.4448 0.5747 0.5650 0.5242 

lem2 0.5735 0.5700 0.5418 0.4681 0.4570 0.4342 0.5733 0.5690 0.5392 

lem3 0.5666 0.5630 0.5362 0.4653 0.4540 0.4320 0.5648 0.5610 0.5294 

stem 0.5755 0.5680 0.5328 0.4846 0.4750 0.4536 0.5823 0.5730 0.5314 

stem2 0.5695 0.5660 0.5400 0.4737 0.4630 0.4400 0.5680 0.5640 0.5346 

stem3 0.5697 0.5670 0.5394 0.4711 0.4610 0.4386 0.5695 0.5650 0.5340 

Morpho- 

logical 

pos 0.3488 0.3340 0.2912 0.3385 0.3140 0.2738 0.3837 0.3600 0.3142 

pos2 0.3989 0.3870 0.3438 0.3665 0.3520 0.3192 0.4193 0.4000 0.3530 

pos3 0.4148 0.4100 0.3794 0.3702 0.3620 0.3384 0.4276 0.4150 0.3792 

Aggregated: 

Lexical + 

Morphological 

lempos 0.5503 0.5420 0.5044 0.4630 0.4540 0.4322 0.5732 0.5620 0.5196 

lempos2 0.5516 0.5490 0.5190 0.4575 0.4470 0.4228 0.5548 0.5500 0.5176 

lempos3 0.5455 0.5420 0.5106 0.4534 0.4430 0.4190 0.5558 0.5510 0.5172 

stempos 0.5500 0.5410 0.5022 0.4639 0.4540 0.4330 0.5724 0.5610 0.5190 

stempos2 0.5443 0.5410 0.5124 0.4595 0.4490 0.4260 0.5559 0.5510 0.5182 

stempos3 0.5434 0.5400 0.5092 0.4546 0.4450 0.4214 0.5530 0.5480 0.5150 

bowpos 0.5536 0.5460 0.5076 0.4678 0.4580 0.4382 0.5687 0.5570 0.5154 

bowpos2 0.5432 0.5400 0.5106 0.4551 0.4450 0.4230 0.5519 0.5470 0.5136 

bowpos3 0.5428 0.5400 0.5088 0.4490 0.4390 0.4160 0.5501 0.5450 0.5116 

Random baseline 0.2170 

Majority baseline 0.2291 

 

The context around e.g. “turned into” in “liquid 

turned into gold” and “robot turned into conveyor” 

has absolutely the same part-of-speech tags and it is a 

bit confusing. For this reason, lexical features used in 

concatenation with part-of-speech tags give slightly 

worse results compared with the lexical features used 

alone. Character n-grams represent the second worst 

feature type. All these findings allow us to conclude 

that words alone in the form as they appear in the text 

are the most informative for solving verb 

disambiguation problem from the text context.  

8. Conclusions and future work 

We have formulated and experimentally con-

firmed two hypotheses:  

 The context on the right of the verb is the most 

informative for determining its action category. 

The most informative context is in a window of 

25 symbols.  

 The most accurate feature type is bag-of-words 

interpretation, thus lemmatization or stemming 

does not give obvious improvements in accuracy.  

The best results are obtained with SVM method 

using bag-of-words as features. The results boost 

random and majority baselines more than 37% and 

achieve 60% of accuracy.  

The obtained results are promising and motivate 

us to continue on trying to increase classification 

accuracy even more. These solutions could probably 

be found after comprehensive error analysis. Besides, 

we are planning to expand the set of verbs by 

including phrasal verbs and not binding to the 

monosemous words only. But this will definitely 

require manually annotated data. 
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Table 6. Accuracy, micro and macro average F-scores for all derived datasets obtained with SVM 

 
 

Both-15 Left-200 Right-25 

Feature type group Feature type Acc. MicroF MacroF Acc. MicroF MacroF Acc. MicroF MacroF 

Symbolic chr3 0.5371 0.5350 0.5010 0.4216 0.4180 0.3904 0.5548 0.5520 0.5190 

chr4 0.5254 0.5230 0.4932 0.4247 0.4210 0.3936 0.5445 0.5420 0.5102 

chr5 0.5168 0.5140 0.4852 0.4227 0.4180 0.3938 0.5394 0.5360 0.5072 

chr6 0.5058 0.5020 0.4738 0.4227 0.4180 0.3866 0.5180 0.5130 0.4808 

chr7 0.4659 0.4610 0.4376 0.4134 0.4080 0.3778 0.4924 0.4850 0.4580 

Lexical bow 0.5874 0.5840 0.5540 0.4426 0.4370 0.4070 0.6065 0.6020 0.5646 

bow2 0.5862 0.5830 0.5486 0.4522 0.4470 0.4204 0.5990 0.5950 0.5584 

bow3 0.5886 0.5860 0.5506 0.4497 0.4450 0.4188 0.5985 0.5950 0.5582 

lem 0.5784 0.5750 0.5430 0.4513 0.4450 0.4152 0.5920 0.5890 0.5522 

lem2 0.5840 0.5800 0.5440 0.4407 0.4360 0.4078 0.5991 0.5950 0.5580 

lem3 0.5807 0.5770 0.5422 0.4444 0.4400 0.4118 0.5943 0.5900 0.5544 

stem 0.5752 0.5720 0.5422 0.4606 0.4550 0.4248 0.5976 0.5950 0.5592 

stem2 0.5826 0.5790 0.5448 0.4496 0.4450 0.4170 0.5998 0.5960 0.5604 

stem3 0.5805 0.5770 0.5434 0.4546 0.4500 0.4202 0.5988 0.5950 0.5586 

Morphological pos 0.3734 0.3550 0.3098 0.3642 0.3440 0.3006 0.4102 0.3890 0.3392 

pos2 0.4305 0.4200 0.3810 0.3702 0.3630 0.3292 0.4545 0.4390 0.3952 

pos3 0.4290 0.4240 0.3918 0.3636 0.3590 0.3294 0.4543 0.4430 0.4026 

Aggregated: 

Lexical + 

Morphological 

lempos 0.5720 0.5680 0.5372 0.4384 0.4330 0.4044 0.5984 0.5940 0.5582 

lempos2 0.5697 0.5670 0.5322 0.4421 0.4360 0.4056 0.5877 0.5830 0.5458 

lempos3 0.5691 0.5650 0.5316 0.4424 0.4370 0.4078 0.5837 0.5790 0.5420 

stempos 0.5698 0.5660 0.5344 0.4352 0.4300 0.4002 0.5973 0.5930 0.5568 

stempos2 0.5735 0.5700 0.5364 0.4447 0.4390 0.4078 0.5836 0.5790 0.5426 

stempos3 0.5703 0.5660 0.5324 0.4482 0.4430 0.4128 0.5800 0.5750 0.5378 

bowpos 0.5720 0.5690 0.5366 0.4418 0.4360 0.4060 0.6037 0.5990 0.5616 

bowpos2 0.5684 0.5650 0.5310 0.4455 0.4400 0.4094 0.5836 0.5790 0.5436 

bowpos3 0.5691 0.5650 0.5306 0.4481 0.4430 0.4122 0.5796 0.5740 0.5370 

Random baseline 0.2170 

Majority baseline 0.2291 
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