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1. Introduction 

Assume that 𝑋1, … , 𝑋𝑛  are real-valued random 

variables (r.v.s) with corresponding distributions 

𝐹1, … , 𝐹𝑛 . Denote 𝑆𝑛: = 𝑋1 +⋯+ 𝑋𝑛  and 𝑆(𝑛): =

max{𝑆1, … , 𝑆𝑛} . Motivated by the paper of Li and 

Tang [1] (see also [2]), the aim of this note is to 

investigate the equivalence among the quantities 

P(𝑆𝑛 > 𝑥) , P(max{𝑋1, … , 𝑋𝑛} > 𝑥) , P(𝑆(𝑛) > 𝑥)  and 

∑𝑛𝑘=1 P(𝑋𝑘 > 𝑥) under some dependence assumption 

on 𝑋1, … , 𝑋𝑛  with nonidentical distributions. 

Comparing with previous results (see, e.g., [3], [4], 

[5], [6], [7], [8], [9]), we aim to restrict some 

conditions to the (heavy-tailed) distribution of 𝑋(𝑛): =

max(𝑋1, … , 𝑋𝑛) . The assumption that the r.v.s 

𝑋1, … , 𝑋𝑛  are nonidentically distributed is important 

for insurance mathematics, because the result can be 

applied to some risk models with insurance and 

financial risks. Namely, set 𝑋𝑘 = 𝜃𝑘𝜉𝑘, where 𝜉𝑘, 𝑘 =
1,… , 𝑛 , are real-valued r.v.s, which represent the 

successive net losses for an insurance company, or can 

be understood as the total claim amount minus the 

total premium income within year 𝑘 , and 𝜃𝑘 ,  

1 ≤ 𝑘 ≤ 𝑛, are nonnegative r.v.s which stand for the 

discount factor from year 𝑘 to year 0. In such a model, 

the r.v.s 𝜉𝑘  and 𝜃𝑘  are called the insurance risk and 
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financial risk, respectively (see Section 2), and 

P(𝑆(𝑛) > 𝑥)  =: 𝜓(𝑥, 𝑛) represents the finite-time ruin 

probability by year 𝑛 with initial capital 𝑥 > 0. The 

obtained below asymptotic relations are important not 

only from the theoretical point of view, but also they 

can be used in practice as a numerical tool allowing to 

approximate the ruin probability 𝜓(𝑥, 𝑛)  by the tail 

distribution of the maximal random variable 𝑋(𝑛) . A 

small Monte-Carlo simulation study in Section 3 

illustrates this approximation. 

Throughout the paper all limit relationships hold 

for 𝑥  tending to ∞. For two positive functions 𝑎(𝑥) 
and 𝑏(𝑥), we write 𝑎(𝑥)~𝑏(𝑥) if lim𝑎(𝑥)/𝑏(𝑥) = 1; 

write 𝑎(𝑥) ≲ 𝑏(𝑥)  if limsup𝑎(𝑥)/𝑏(𝑥) ≤ 1 ; write 

𝑎(𝑥) ≳ 𝑏(𝑥)  if lim inf 𝑎(𝑥)/𝑏(𝑥) ≥ 1  and write 

𝑎(𝑥) = 𝑜(𝑏(𝑥)) if lim𝑎(𝑥)/𝑏(𝑥) = 0. 

Recall some important classes of heavy-tailed 

distributions used in the paper. A d.f. 𝐹 = 1 − 𝐹  is 

said to belong to the class dominatedly varying-tailed 

distributions, denoted by 𝒟, if limsup𝐹(𝑦𝑥)/𝐹(𝑥) <
∞ for any 0 < 𝑦 < 1. A slightly smaller class is the 

consistently varying-tailed distribution class, denoted 

by 𝒞 . A d.f. 𝐹  is said to belong to the class 𝒞 , if 

lim𝑦↗1lim sup𝑥→∞𝐹(𝑦𝑥)/𝐹(𝑥) = 1. A d.f. 𝐹 belongs 

to the class of long-tailed distributions, denoted by ℒ, 

if lim𝐹(𝑥 + 𝑦)/𝐹(𝑥) = 1  for any 𝑦 ∈ ℝ . The 

following proper inclusion relationship between the 

forementioned classes holds:  

𝒞 ⊂ ℒ ∩ 𝒟 ⊂ ℒ. 

For more details on heavy-tailed distributions, see 

[10]. 

Furthermore, for a d.f. 𝐹 , denote its upper 

Matuszewska index by  

𝐽𝐹
+: = − lim

𝑦→∞

log 𝐹∗(𝑦)

log 𝑦
 

with 𝐹∗(𝑦): = lim inf
𝐹(𝑦𝑥)

𝐹(𝑥)
 for 𝑦 > 1. 

Another important parameter is 𝐿𝐹 : =

lim𝑦↘1𝐹∗(𝑦). The following assertions are equivalent: 

(i) 𝐹 ∈ 𝒟; (ii) 𝐿𝐹 > 0; (iii) 𝐽𝐹
+ < ∞. It also holds that 

𝐹 ∈ 𝒞 if and only if 𝐿𝐹 = 1. For more details, see [11] 

(Chapter 2.1). 

Next, we recall some concepts of negative depen-

dence, which were introduced by [12] and [13]. R.v.s 

𝑌1, … , 𝑌𝑛  are said to be upper negatively dependent 

(UND) if, for all 𝑥1, … , 𝑥𝑛,  

P(⋂𝑛𝑘=1 {𝑌𝑘 > 𝑥𝑘}) ≤ ∏
𝑛
𝑘=1 P(𝑌𝑘 > 𝑥𝑘). (1) 

Similarly, r.v.s 𝑌1, … , 𝑌𝑛  are said to be lower 

negatively dependent (LND) if, for all 𝑥1, … , 𝑥𝑛,  

P(⋂𝑛𝑘=1 {𝑌𝑘 ≤ 𝑥𝑘})   ≤   ∏
𝑛
𝑘=1 P(𝑌𝑘 ≤ 𝑥𝑘). (2) 

R.v.s 𝑌1, … , 𝑌𝑛 are said to be negatively dependent 

(ND) if both (1) and (2) hold for all 𝑥1, … , 𝑥𝑛 . 

𝑌1, … , 𝑌𝑛  are pairwise negatively dependent (or 

negatively quadrant dependent, according to [14]), if  

P(𝑌𝑖 > 𝑥𝑖 , 𝑌𝑗 > 𝑥𝑗) ≤ P(𝑌𝑖 > 𝑥𝑖)P(𝑌𝑗 > 𝑥𝑗) (3) 

for all 𝑥𝑖 , 𝑥𝑗 ∈ ℝ , 𝑖 ≠ 𝑗 , 𝑖, 𝑗 ∈ {1, … , 𝑛} . It can be 

shown that (3) is equivalent to  

P(𝑌𝑖 ≤ 𝑥𝑖 , 𝑌𝑗 ≤ 𝑥𝑗)   ≤   P(𝑌𝑖 ≤ 𝑥𝑖)P(𝑌𝑗 ≤ 𝑥𝑗) 

for all 𝑥𝑖 , 𝑥𝑗 ∈ ℝ , 𝑖 ≠ 𝑗 , 𝑖, 𝑗 ∈ {1, … , 𝑛} . Clearly, for 

any pairwise ND variables 𝑌1, … , 𝑌𝑛 we have that  

P(max{𝑌1, … , 𝑌𝑛} > 𝑥) 

≥ ∑𝑛𝑘=1 P(𝑌𝑘 > 𝑥)(1 − ∑
𝑛
𝑗=1 P(𝑌𝑗 > 𝑥)). (4) 

Denote the distribution of max{𝑋1, … , 𝑋𝑛} by 𝐺𝑛 , 

𝑇𝑛: = 𝑋1
+ +⋯+ 𝑋𝑛

+ and 𝑥+: = max{𝑥, 0}. 

Proposition 1. Let 𝑋1, … , 𝑋𝑛  be pairwise ND real-

valued r.v.s with corresponding distributions 𝐹1, … , 𝐹𝑛. 

If 𝐺𝑛 ∈ 𝒟, then  

P(𝑆(𝑛) > 𝑥)   ≤   P(𝑇𝑛 > 𝑥) ≲
1

𝐿𝐺𝑛
 𝐺𝑛(𝑥). (5) 

Furthermore, if 𝐺𝑛 ∈ ℒ ∩ 𝒟, then  

P(𝑆(𝑛) > 𝑥)   ≤   P(𝑇𝑛 > 𝑥) ≲ 𝐺𝑛(𝑥). 

Proof. 𝐺𝑛 ∈ 𝒟 implies that ∑𝑛𝑘=1 𝐹𝑘(𝑥) > 0 for all 𝑥 

and, using (4),  

𝐺𝑛(𝑥)  ~  ∑
𝑛
𝑘=1 𝐹𝑘(𝑥). (6) 

For any 0 < 𝑣 < 1 and 𝑥 > 0 write  

P(𝑇𝑛 > 𝑥) ≤ P(⋃

𝑛

𝑘=1

{𝑋𝑘
+ > (1 − 𝑣)𝑥}) 

+  P (𝑇𝑛 > 𝑥,⋂

𝑛

𝑘=1

{𝑋𝑘
+ ≤ (1 − 𝑣)𝑥}) 

≤∑

𝑛

𝑘=1

𝐹𝑘((1 − 𝑣)𝑥) 

+  P(𝑇𝑛 > 𝑥,⋃

𝑛

𝑖=1

{𝑋𝑖
+ > 𝑥/𝑛}, 

⋂

𝑛

𝑘=1

{𝑋𝑘
+ ≤ (1 − 𝑣)𝑥}) 

=: 𝐼1(𝑥) + 𝐼2(𝑥). 

We have that 𝐼1(𝑥) ≲ 𝐿𝐺𝑛
−1𝐺𝑛(𝑥) , because, by  

𝐺𝑛 ∈ 𝒟,  

lim sup
𝐼1(𝑥)

𝐿𝐺𝑛
−1𝐺𝑛(𝑥)

 

≤ lim sup
𝐼1(𝑥)

𝐺𝑛((1 − 𝑣)𝑥)
 lim sup

𝐺𝑛((1 − 𝑣)𝑥)

𝐿𝐺𝑛
−1𝐺𝑛(𝑥)

 

for any 0 < 𝑣 < 1. As for 𝐼2(𝑥), we have  

𝐼2(𝑥) 
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≤∑

𝑛

𝑖=1

P(𝑇𝑛 > 𝑥, 𝑋𝑖
+ >

𝑥

𝑛
,⋂

𝑛

𝑘=1

{𝑋𝑘
+ ≤ (1 − 𝑣)𝑥}) 

≤∑

𝑛

𝑖=1

P (𝑇𝑛 − 𝑋𝑖
+ > 𝑣𝑥, 𝑋𝑖

+ >
𝑥

𝑛
) 

≤∑

𝑛

𝑖=1

P(⋃

𝑗≠𝑖

{𝑋𝑗
+ >

𝑣𝑥

𝑛 − 1
} , 𝑋𝑖

+ >
𝑥

𝑛
) 

≤∑

𝑛

𝑖=1

∑

𝑗≠𝑖

P (𝑋𝑗
+ >

𝑣𝑥

𝑛 − 1
, 𝑋𝑖

+ >
𝑥

𝑛
) 

≤∑

𝑛

𝑖=1

∑

𝑗≠𝑖

𝐹𝑗 (
𝑣𝑥

𝑛 − 1
)𝐹𝑖 (

𝑥

𝑛
), 

where in the last step we used that 𝑋1
+, … , 𝑋𝑛

+  are 

pairwise ND. Hence, by (6) and 𝐺𝑛 ∈ 𝒟, we obtain  

𝐼2(𝑥) ≲ 𝐺𝑛 (
𝑣𝑥

𝑛 − 1
)𝐺𝑛 (

𝑥

𝑛
) = 𝑜 (𝐺𝑛(𝑥)). 

If 𝐺𝑛 ∈ ℒ ∩ 𝒟 , then substitute 𝑣𝑥  in the above 

proof with ℓ(𝑥) , where ℓ(𝑥)  is a positive function 

satisfying ℓ(𝑥) → ∞, ℓ(𝑥) = 𝑜(𝑥), and  

𝐺𝑛(𝑥 − ℓ(𝑥)) ~  𝐺𝑛(𝑥) (7) 

by 𝐺𝑛 ∈ ℒ  (see [8], [15]). In this case, the estimate  

for 𝐼2(𝑥)  remains the same, i.e. 𝐼2(𝑥) = 𝑜(𝐺𝑛(𝑥)) , 

whereas for 𝐼1(𝑥), due to (7), it holds 𝐼1(𝑥) ≲ 𝐺𝑛(𝑥). 
 ∎  

In the case where the left-tail is asymptotically 

dominated by the right-tail, the lower bound can be 

obtained as well. 

Proposition 2. Let 𝑋1, … , 𝑋𝑛 be pairwise ND r.v.s. (i) 

If 𝐺𝑛 ∈ 𝒟  and 𝐹𝑖(−𝑥) = 𝑜(𝐹𝑖(𝑥))  for 𝑖 = 1,… , 𝑛 , 

then  

P(𝑆(𝑛) > 𝑥)   ≥   P(𝑆𝑛 > 𝑥)  ≳  𝐿𝐺𝑛𝐺𝑛(𝑥). (8) 

(ii) If 𝐺𝑛 ∈ 𝒞 and 𝐹𝑖(−𝑥) = 𝑜(𝐹𝑖(𝑥)) for 𝑖 = 1,… , 𝑛, 

then  

P(𝑆(𝑛) > 𝑥)   ≥   P(𝑆𝑛 > 𝑥) ≳ 𝐺𝑛(𝑥). (9) 

(iii) If 𝐺𝑛 ∈ ℒ ∩ 𝒟  and 𝐹𝑖(𝐴) = 0  for some finite  

𝐴 < 0, 𝑖 = 1,… , 𝑛, then relations in (9) hold.  

Proof. (i) For any 𝑣 > 0  

P(𝑆𝑛 > 𝑥) 

≥ P(𝑆𝑛 > 𝑥,⋃

𝑛

𝑘=1

{𝑋𝑘 > (1 + 𝑣)𝑥}) 

≥∑

𝑛

𝑘=1

P(𝑆𝑛 > 𝑥, 𝑋𝑘 > (1 + 𝑣)𝑥) 

− ∑

1≤𝑖<𝑗≤𝑛

P(𝑆𝑛 > 𝑥, 𝑋𝑖 > (1 + 𝑣)𝑥, 𝑋𝑗 > (1 + 𝑣)𝑥) 

=: 𝐼3(𝑥) − 𝐼4(𝑥). 

Here, since 𝑋1, … , 𝑋𝑛 are pairwise ND, we obtain  

𝐼4(𝑥) ≤ ∑

1≤𝑖<𝑗≤𝑛

P(𝑋𝑖 > 𝑥, 𝑋𝑗 > 𝑥) 

≤ (∑

𝑛

𝑖=1

P(𝑋𝑖 > 𝑥))

2

= 𝑜 (𝐺𝑛(𝑥)) 

according to (6). 

As for 𝐼3(𝑥), we have  

𝐼3(𝑥) 

≥∑

𝑛

𝑘=1

P(𝑆𝑛 − 𝑋𝑘 > −𝑣𝑥, 𝑋𝑘 > (1 + 𝑣)𝑥) 

≥∑

𝑛

𝑘=1

(P(𝑆𝑛 − 𝑋𝑘 > −𝑣𝑥) + 𝐹𝑘((1 + 𝑣)𝑥) − 1) 

≥∑

𝑛

𝑘=1

𝐹𝑘((1 + 𝑣)𝑥) −∑

𝑛

𝑘=1

P(𝑆𝑛 − 𝑋𝑘 ≤ −𝑣𝑥) 

=: 𝐼31(𝑥) − 𝐼32(𝑥). 

Here, 𝐼31(𝑥) ≳ 𝐿𝐺𝑛𝐺𝑛(𝑥). For term 𝐼32(𝑥) we have  

𝐼32(𝑥) = ∑

𝑛

𝑘=1

P(∑

𝑛

𝑖=1
𝑖≠𝑘

(−𝑋𝑖) ≥ 𝑣𝑥) 

≤∑

𝑛

𝑘=1

P

(

 ⋃

𝑛

𝑖=1
𝑖≠𝑘

{−𝑋𝑖 ≥
𝑣

𝑛 − 1
𝑥}

)

  

≤ 𝑛∑

𝑛

𝑖=1

𝐹𝑖 (−
𝑣

𝑛 − 1
 𝑥) 

= 𝑜(1)∑

𝑛

𝑖=1

𝐹𝑖 (
𝑣

𝑛 − 1
 𝑥) 

~𝑜(1)𝐺𝑛 (
𝑣

𝑛 − 1
 𝑥) 

= 𝑜(𝐺𝑛(𝑥)) 

by 𝐺𝑛 ∈ 𝒟.  

(ii) Use 𝐿𝐺𝑛 = 1.  

(iii) Again, replacing 𝑣𝑥 in the proof of assertion (i) by 

the function ℓ(𝑥)  given in (7), we have 𝐼31(𝑥) ≳

𝐺𝑛(𝑥), 𝐼4(𝑥) = 𝑜(𝐺𝑛(𝑥)), and  
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𝐼32(𝑥) = ∑

𝑛

𝑘=1

P

(

 
 
∑

𝑛

𝑖=1
𝑖≠𝑘

(−𝑋𝑖) ≥ ℓ(𝑥)

)

 
 

 

≤∑

𝑛

𝑘=1

P(⋃

𝑛

𝑖=1
𝑖≠𝑘

{−𝑋𝑖 ≥
ℓ(𝑥)

𝑛 − 1
}) 

≤ 𝑛∑

𝑛

𝑖=1

𝐹𝑖 (−
ℓ(𝑥)

𝑛 − 1
) = 0 

for large 𝑥  by the assumption of proposition. This 

ends the proof. ∎  

Using Proposition 1 and Proposition 1 (iii), we 

obtain: 

Corollary 1. Let 𝑋1, … , 𝑋𝑛  be nonnegative pairwise 

ND r.v.s. If 𝐺𝑛 ∈ ℒ ∩ 𝒟, then  

P(𝑆(𝑛) > 𝑥)   =   P(𝑆𝑛 > 𝑥)  ~  𝐺𝑛(𝑥). 

Remark 1. Note that class 𝒟  is closed under max 
operation, i.e. if 𝐹𝑘 ∈ 𝒟 for all 𝑘 = 1,… , 𝑛, then 𝐺𝑛 ∈
𝒟  (the inverse statement obviously does not hold). 

Moreover, the constant 𝐿𝐺𝑛  appearing in Propositions 

1 and 1 can be estimated from below as follows:  

𝐿𝐺𝑛 ≥ (∑
𝑛
𝑘=1

1

𝐿𝐹𝑘
)
−1

> 0, (10) 

where 𝐿𝐹𝑘: = lim𝑦↘1lim inf
𝐹𝑘(𝑥𝑦)

𝐹𝑘(𝑥)
. To show this, for 

any 𝑦 > 0 write  

𝐺𝑛(𝑥𝑦)

𝐺𝑛(𝑥)
=
P(⋃𝑛𝑘=1 {𝑋𝑘 > 𝑥𝑦})

P(⋃𝑛𝑘=1 {𝑋𝑘 > 𝑥})
 

≤∑

𝑛

𝑘=1

P(𝑋𝑘 > 𝑥𝑦)

P(𝑋𝑘 > 𝑥)
, 

which implies  

1

𝐿𝐺𝑛
= lim
𝑦↗1
 lim sup

𝐺𝑛(𝑥𝑦)

𝐺𝑛(𝑥)
 

≤∑

𝑛

𝑘=1

lim 
𝑦↗1

lim sup
𝐹𝑘(𝑥𝑦)

𝐹𝑘(𝑥)
 

=∑

𝑛

𝑘=1

1

𝐿𝐹𝑘
< ∞, 

or (10). Hence, 𝐿𝐺𝑛 > 0 , which is equivalent to  

𝐺𝑛 ∈ 𝒟.  

Remark 2. The statement of Corollary 1 holds if 𝐹𝑘 ∈
𝒞  for 𝑘 = 1,… , 𝑛  and r.v.s 𝑋1, … , 𝑋𝑛  are nonnegative 

pairwise ND. To see that 𝐺𝑛 ∈ 𝒞, note that for any 𝑥, 𝑦 

it holds  

𝐺𝑛(𝑥𝑦)

𝐺𝑛(𝑥)
 

=
P(⋃𝑛𝑘=1 {𝑋𝑘 > 𝑥𝑦})

P(⋃𝑛𝑘=1 {𝑋𝑘 > 𝑥})
 

≥
∑𝑛𝑘=1 𝐹𝑘(𝑥𝑦) − ∑1≤𝑖<𝑗≤𝑛 P(𝑋𝑖 > 𝑥𝑦, 𝑋𝑗 > 𝑥𝑦)

∑𝑛𝑘=1 𝐹𝑘(𝑥)
 

≥ min
1≤𝑘≤𝑛

{
𝐹𝑘(𝑥𝑦)

𝐹𝑘(𝑥)
} −

∑1≤𝑖<𝑗≤𝑛 𝐹𝑖(𝑥𝑦)𝐹𝑗(𝑥𝑦)

∑𝑛𝑘=1 𝐹𝑘(𝑥)
 

by pairwise ND property. Hence,  

1 ≥ lim 
𝑦↘1

lim inf
𝐺𝑛(𝑥𝑦)

𝐺𝑛(𝑥)
 

≥ lim
𝑦↘1

lim 𝑖𝑛𝑓 𝑚𝑖𝑛
1≤𝑘≤𝑛

{
𝐹𝑘(𝑥𝑦)

𝐹𝑘(𝑥)
} 

−lim
𝑦↘1
 lim sup∑

𝑛

𝑗=1

𝐹𝑗(𝑥𝑦) 

≥ min
1≤𝑘≤𝑛

{lim
𝑦↘1

lim inf
𝐹𝑘(𝑥𝑦)

𝐹𝑘(𝑥)
}  =  1. 

2. The Model with Financial and Insurance 

Risk 

In this section we consider the model with 

financial and insurance risk, mentioned in Section 1, 

i.e. we study the question when the conditions of the 

propositions above are satisfied for the 𝑋𝑘 = 𝜃𝑘𝜉𝑘 . 

Lemma 2 below gives a simple condition for 𝑋1, … , 𝑋𝑛 

to be upper or lower negatively dependent. 

Lemma 1  Assume that 𝜉1, … , 𝜉𝑛  are independent, 

almost surely positive r.v.s, 𝜃1, … , 𝜃𝑛  are 

UND (LND, pairwise ND) r.v.s, 

independent of {𝜉1, … , 𝜉𝑛} . Then 

𝜃1𝜉1, … , 𝜃𝑛𝜉𝑛  are UND (LND, pairwise 

ND, respectively).  

Proof. Assume that 𝜃1, … , 𝜃𝑛 are UND r.v.s. Then  

P(𝜃1𝜉1 > 𝑥1, … , 𝜃𝑛𝜉𝑛 > 𝑥𝑛) 

= ∫
(0,∞)

…∫
(0,∞)

P (𝜃1 >
𝑥1
𝑦1
, … , 𝜃𝑛 >

𝑥𝑛
𝑦𝑛
) 

d𝐹𝜉1(𝑦1) … d𝐹𝜉𝑛(𝑦𝑛) 

≤ ∫
(0,∞)

…∫
(0,∞)

P (𝜃1 >
𝑥1
𝑦1
)…P (𝜃𝑛 >

𝑥𝑛
𝑦𝑛
) 

d𝐹𝜉1(𝑦1) … d𝐹𝜉𝑛(𝑦𝑛) 

= P(𝜃1𝜉1 > 𝑥1) …P(𝜃𝑛𝜉𝑛 > 𝑥𝑛). 

The cases of LND and pairwise ND are analogous. 

 ∎  

We obtain the following proposition. 
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Proposition 3. Assume that 𝜉1, … , 𝜉𝑛 are independent, 

almost surely positive r.v.s from 𝒟. Assume also that 

𝜃1, … , 𝜃𝑛  are pairwise ND r.v.s, independent of 

𝜉1, … , 𝜉𝑛 , such that 𝑃(𝜃𝑖 ∈ [𝑎, 𝑏]) = 1  for all 𝑖 =
1,… , 𝑛 and some 0 < 𝑎 ≤ 𝑏 < ∞. Then relations (5) 

and (8) hold.  

Proof. Note that the conditions of the proposition 

imply  

𝐺𝑛(𝑥) = P(max{𝜃1𝜉1, … , 𝜃𝑛𝜉𝑛} ≤ 𝑥) ∈ 𝒟, (11) 

since, by Remark 1, P(max{𝜉1, … , 𝜉𝑛} ≤ 𝑥) ∈ 𝒟  and 

hence  

lim sup
P(max{𝜃1𝜉1, … , 𝜃𝑛𝜉𝑛} > 𝑥𝑦)

P(max{𝜃1𝜉1, … , 𝜃𝑛𝜉𝑛} > 𝑥)
 

≤ lim sup
P(𝑏 max{𝜉1, … , 𝜉𝑛} > 𝑥𝑦)

P(𝑎 max{𝜉1, … , 𝜉𝑛} > 𝑥)
 

= lim sup
P(max{𝜉1, … , 𝜉𝑛} > 𝑥𝑦𝑎/𝑏)

P(max{𝜉1, … , 𝜉𝑛} > 𝑥)
  <   ∞. 

It remains to apply Lemma 2 and Propositions 1–1. ∎  

Finally note that, in the case 𝐻𝑘(𝑥): = P(𝜉𝑘 ≤
𝑥) ∈ 𝒟  and P(𝜃𝑘 ∈ [𝑎, 𝑏]) = 1 , the constant 𝐿𝐹𝑘  

appearing in (10) can be estimated by the constants 

defined through the function 𝐻𝑘∗(𝑦) =

lim inf
P(𝜉𝑘>𝑥𝑦)

P(𝜉𝑘>𝑥)
, 𝑦 ≥ 1. It is easy to see that  

𝐿𝐹𝑘   ≥   lim𝑦↘1
𝐻𝑘∗(𝑦)𝐻𝑘∗ (

𝑏

𝑎
). 

3. Numerical Simulations 

In this section we perform some numerical 

simulations in order to check the accuracy of the 

asymptotic relations obtained in Corollary 1. We 

compare the tail probabilities P(𝑆𝑛 > 𝑥)  and 𝐺𝑛(𝑥) 
for several values of 𝑥 , assuming that r.v.s 𝑋𝑘  are 

distributed according to the common Pareto law with 

parameters 𝜅, 𝛽 > 0:  

𝐹(𝑥; 𝜅, 𝛽) = 1 − (
𝜅

𝜅+𝑥
)
𝛽

,    𝑥 ≥ 0, (12) 

which belongs to the class 𝒞 ⊂ ℒ ∩ 𝒟. We assume that 

{(𝑋2𝑘−1, 𝑋2𝑘), 𝑘 ≥ 1} are independent replications of 

(𝑋1, 𝑋2) with the joint distribution  

𝐹𝑋1,𝑋2(𝑥, 𝑦) = max{𝛼𝐹(𝑥)𝐹(𝑦) 

+  (1 − 𝛼)(𝐹(𝑥) + 𝐹(𝑦) − 1), 0}, (13) 

with parameter 𝛼 ∈ (0,1)  (see eq. (4.2.7) in [16]). 

Since P(𝑋1 > 𝑥, 𝑋2 > 𝑦) ≤ 𝛼𝐹(𝑥)𝐹(𝑦)  for all 𝑥, 𝑦 , 

𝑋1  and 𝑋2  are ND r.v.s. Hence, by construction, 

𝑋1, … , 𝑋𝑛  (𝑛  – even) are nonnegative pairwise ND 

r.v.s. Moreover, according to Remark 1, 𝐺𝑛 ∈ 𝒞. 

For our simulations we choose parameters 𝜅 = 1, 

𝛽 = 2  and 𝛼 = 0.5 . We set 𝑛 = 10  and 𝑥 = 100,
500, 1000, 2000. The procedure of the computation 

of P(𝑆𝑛 > 𝑥) and 𝐺𝑛(𝑥) in Corollary 1 consists of the 

following steps: 

Step 1. Assign a value for the variable 𝑥 and set 𝑚 =
𝑘 = 0; 

Step 2. Generate the dependent r.v.s 𝑋1, … , 𝑋𝑛  from 

(12) and (13); 

Step 3. Calculate the sum value and the maximal 

value of 𝑋1, … , 𝑋𝑛 : 𝑆𝑛 = ∑
𝑛
𝑖=1 𝑋𝑖  and 𝑋(𝑛) =

max{𝑋1, … , 𝑋𝑛}; 

Step 4. Compare the two values 𝑆𝑛 and 𝑋(𝑛) with 𝑥: if 

𝑆𝑛 > 𝑥 , then 𝑚 = 𝑚+ 1 , and if 𝑋(𝑛) > 𝑥 , 

then 𝑘 = 𝑘 + 1; 

Step 5. Repeat step 2 through step 4, 𝑁 = 2 × 106 

times; 

Step 6. Calculate the estimates of the two tail 

probabilities P(𝑆𝑛 > 𝑥)  and 𝐺𝑛(𝑥)  as, 

respectively, 𝑚/𝑁 and 𝑘/𝑁. 

For specific values of 𝑥, the simulated values of 

P(𝑆𝑛 > 𝑥) and 𝐺𝑛(𝑥) are presented in Table 1 below. 

It can be found from the table, that, the larger 𝑥 

becomes, the smaller the difference between the 

simulated values of P(𝑆𝑛 > 𝑥)  and 𝐺𝑛(𝑥)  is. There-

fore, the approximate relationship in Corollary 1 is 

reasonable.  

Table 1. Comparison between the empirical values of 

P(𝑆𝑛 > 𝑥) and 𝐺𝑛(𝑥) 

𝒙 𝐏(𝑺𝒏 > 𝒙) 𝑮𝒏(𝒙) 

100 0.002060 0.001524 

500 0.000125 0.000118 

1000 0.000013 0.000013 

2000 0.000004 0.000004 

 

Acknowledgement 

We are grateful to the anonymous referee for 

his/her helpful comments and suggestions. We also 

thank Jonas Šiaulys for several valuable remarks. 

References 

[1] J. Li, Q. Tang. A note on max-sum equivalence. 

Statistics and Probability Letters, 2010, Vol. 80, Issue 

23-24, 1720–1723. 

[2] D. Cheng, Y. Wang. Asymptotic behavior of the ratio 

of tail probabilities of sum and maximum of 

independent random variables. Lithuanian Mathema-

tical Journal, 2012, Vol. 52, 29–39. 

[3] V. P. Chistyakov. A theorem on sums of independent, 

positive random variables and its applications to 

branching processes. Theory of Probability and its 

Applications, 1964, Vol. 9, No. 4, 640–648. 



Y. Yang, R. Leipus, L. Dindienė 

220 

[4] J. L. Geluk, C. G. De Vries. Weighted sums of subex-

ponential random variables and asymptotic dependence 

between returns on reinsurance equities. Insurance: 

Mathematics and Economics, 2006, Vol. 38, 39–56. 

[5] J. Geluk, K. W. Ng. Tail behavior of negatively 

associated heavy-tailed sums. Journal of Applied 

Probability, 2006, Vol. 43, No. 2, 587–593. 

[6] B. Ko, Q. Tang. Sums of dependent nonnegative 

random variables with subexponential tails. Journal of 

Applied Probability, 2008, Vol. 45, No. 1, 85–94. 

[7] Q. Tang. Insensivity to negative dependence of 

asymptotic tail probabilities of sums and maxima of 

sums. Stochastic Analysis and Applications, 2008, 

Vol. 26, No. 3, 435–450. 

[8] J. Geluk, Q. Tang. Asymptotic tail probabilities of 

sums of dependent subexponential random variables. 

Journal of Theoretical Probability, 2009, Vol. 22, 

871–882. 

[9] Y. Yang, K. Wang, R. Leipus, J. Šiaulys. Tail 

behavior of sums and maxima of sums of dependent 

subexponential random variables. Acta Applicandae  

Mathematicae, 2011, Vol. 114, No. 3, 219–231. 

[10] P. Embrechts, C. Klüppelberg, T. Mikosch. Mo-

delling Extremal Events for Insurance and Finance. 

Springer, New York, 1997. 

[11] N. H. Bingham, C. M. Goldie, J. L. Teugels. Regular 

Variation. Cambridge University Press, Cambridge, 

1987. 

[12] N. Ebrahimi, M. Ghosh. Multivariate negative depen-

dence. Communications in Statistics – Theory and 

Methods, 1981, Vol. A10, No. 4, 307–337. 

[13] H. W. Block, T. H. Savits, M. Shaked. Some con-

cepts of negative dependence. Annals of Probability, 

1982, Vol. 10, No. 3, 765–772. 

[14] E. L. Lehmann. Some concepts of dependence. 

Annals of Mathematical Statistics, 1966, Vol. 37, 

No. 5, 1137–1153. 

[15] S. Foss, D. Korshunov, S. Zachary. Convolutions of 

long-tailed and subexponential distributions. Journal 

of Applied Probability, 2009, Vol. 46, No. 3, 756–767. 

[16] R. B. Nelsen. An Introduction to Copulas. Springer, 

New York, 2006. 

Received June 2014. 

 

 

 

 


