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Abstract. In recent years, both academia and the industry have seen a push for converting unstructured data, most 

commonly text, into structured representations. A relatively poorly explored challenge in this area is that of domain 

template construction: for a domain, we wish to find the attributes with which texts from that domain can be 

meaningfully represented. For example, given the domain of news reports on bombing attacks, we would like to 

identify the existence of concepts like “victim” and “perpetrator”. We introduce two new methods for this task, both 

operating on semantic representations of input data and exploiting the hierarchical organization of features, something 

not explored in prior art. We evaluate on multiple datasets/domains and achieve performance at least comparable to a 

state of the art method on a set of “real world” scenarios while additionally identifying fine-grained type information 

for properties: for example, the bombing attack victim is found to be of type “defender” (policeman, guard, ...).We also 

provide the first fully documented evaluation methodology, publicly available labeled datasets and golden standard 

outputs for this research problem, supporting and facilitating future work in the area. 

Keywords: text mining; open-domain information extraction; schema induction; graph mining. 

 

1. Introduction 

One of the long-standing goals of AI is to convert 

natural language text into structured representation(s): 

from linguistic parsing to extracting entities, relations, 

tabular forms, and ultimately, expressing documents 

as a series of logic statements. Such structures provide 

meta-information, describing the role of and relations 

between individual words, sentence fragments or lar-

ger parts of texts. Therefore, structured representations 

are less ambiguous and inherently easier to search and 

navigate. 

So far, reasonably reliable methods have been de-

veloped for structuring text by annotating and identi-

fying a specific subset of information, most commonly 

named entities. We tackle a related but distinctly diffe-

rent problem that arises beforehand: suggesting the 

structure with which the text should be represented, 

the types of information that should be extracted. 

Closely related to attempts at structuring unstru-

ctured text, recent years have seen a proliferation of 

semantic methods and representations. Prominent 

examples include Google’s structured search results 

for movies, albums, people, cities and more; Face-

book’s structured search interface (e.g. “men from C 

who are friends with P1 and P2 and are older than Y 

years”); and the Wikidata project [36], a systematic 

push by Wikimedia to semanticize the semi-structured 

information in Wikipedia’s infoboxes. 

Having data that is both structured and semantic, 

i.e. represented using concepts from a knowledge 

base, further decreases ambiguity and allows for easier 

linking with other knowledge. The latter is particularly 

important when dealing with natural language: hu-

mans assume a lot of shared context (“common sen-

se”) when speaking or writing, and combining raw da-

ta with background knowledge in the form of a know-

ledge base (KB) or an ontology can help algorithms 

compensate for their lack of context [40, 16]. In view 

of these trends, part of our goal was to develop a me-

thod that produces semantic, KB-aligned outputs. 

Problem statement. We are given a set of docu-

ments from a single, relatively restricted domain, for 
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example “reports of bombing attacks”, “weather 

reports” or “biographies of renowned physicists.” The 

task is to identify, in an unsupervised manner, the 

most salient properties that can be defined for most of 

the given documents; for example, given the “bom-

bing attacks” domain, we wish to detect “attacker”, 

“the destroyed property”, “victims” etc. as properties 

that are pervasively present in those articles. We tenta-

tively define salient properties as those that would 

allow a human, if she were given only the values of 

those properties for an unseen document, to produce 

as good an abstract of the unseen document as 

possible. The properties will be described by their 

prevailing context and will be assigned a type. For 

example, the “attacker” property from the previous 

sentence might be output as 𝑝𝑒𝑟𝑠𝑜𝑛
detonate
→      bomb . 

Here, person is the type while 
detonate
→       and bomb  

provide sufficient context to determine this person is 

the attacker. Automatically assigning the label 

“attacker” to this property is beyond the scope of this 

(and related) work. We call the collection of these 

properties for a specific topic a domain template or 

topic template. 

Motivation. While the output of domain template 

construction methods contains some noise and has to 

be checked by humans, it has the potential of greatly 

reducing human involvement and effort in tasks that 

require insight into the structure of a domain.  

Semi-automatic ontology extension is one such 

use case. Existing relation extraction methods are 

sometimes used to extend the lowest, fact-based levels 

of ontologies (e.g. adding bornIn relations between 

persons and places). Templates, on the other hand, 

provide input for extending the middle level of 

ontologies: when introducing a new abstract concept 

C (e.g. “football player”) to the ontology, a topic 

template derived from documents on C can suggest 

properties and relations (e.g. “played for”, “goals 

scored”) to be associated with new instances of C in 

the ontology. 

In a similar vein, domain templates guide and con-

strain Information Extraction (IE) methods which 

have a wide variety of applications. Present-day IE 

algorithms are most often supervised in nature and de-

pend on manual creation of topic templates and trai-

ning documents with labeled slot fillers. Computer-

assisted creation of topic templates thus lowers the 

entry barrier to using IE. Not only does it provide the 

templates, a high number of labeled slot fillers is 

almost always a byproduct of automatic template 

creation. 

Another added value of templates is that they 

expose the key properties of a text type. This makes 

them potentially suitable for guiding summarization 

or other text shortening tasks by identifying text 

fragments that should be scored higher. 

In combination with information extraction me-

thods, topic templates allow us to create writing “men-

tors”, automated ways of suggesting missing content 

to be included into a document with a known topic. 

For example, if the user is posting a sales ad for a car 

(TV, house, ...) – something most people don’t do 

often – the system could remind her of information 

that is typically included in such ads but the user’s ad 

lacks. Similarly, a journalist covering a story could be 

reminded of types of information typically covered in 

related articles but not in hers. On a larger scale, we 

can imagine a system that analyzes all Wikipedia ar-

ticles from a given category, derives the template and 

identifies pages that are missing some of the 

“standard” properties (e.g. “of all German Physicist 

pages, only Max Planck’s lacks info about his 

schooling”). 

Focusing on documents from a single domain 

might seem restrictive; however, this focus emerges 

naturally. On the data side, document collections often 

already include keyword annotations or a topic catego-

rization with which we can obtain single-domain 

subcollections; alternatively, we show in Section 4.1 

how a collection of documents from a domain of 

interest can be obtained from the internet with 

minimal human involvement.  

In contrast to the so-called open information 

extraction or other approaches that identify domain 

templates from non-domain-specific text collections, 

having a clean single-domain input also allows 

methods to find richer templates, with roles that would 

otherwise get drowned in the noise much more easily 

or take enormous amounts of data to emerge statisti-

cally. Most of the related work [13, 32, 14, 28] there-

fore also assumes a single domain at a time as input.  

Contributions. The main contributions of this 

paper are as follows: 

• We are the first to integrate background know-

ledge into the task of unsupervised construction 

of domain templates and solve the task in two 

ways, both using a data representation that is 

significantly different from the norm. 

• We achieve performance at least on par with 

the state of the art and additionally produce, 

unlike the work so far, fine-grained type 

constraints for template slots. 

• Evaluation for this task is complicated, and 

there has so far been no well-documented eva-

luation methodology or sizable public datasets 

and golden standards for comparing methods. 

We provide both. 

Structure. The rest of the paper is structured as 

follows. Section 2 reviews related work. Section 3 

describes the two novel methods for creating domain 

templates, the Frequent Generalized Subgraph method 

(FGS; Section 3.2 and the Characteristic Triplet 

method (CT; Section 3.3) as well as the preprocessing 

common to both. Evaluation is described in Section 4 

and Section 5 discusses the results. We finish with 

conclusions in Section 6. 
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2. Related work 

Topic template construction is related to the more 

established field of Information Extraction (IE). How-

ever, our focus is elsewhere, on the quality of template 

slots themselves rather than the quality of slot fillers. 

In traditional IE, the topic domain is constructed 

beforehand and remains fixed. Of even more interest 

to us are therefore Open Information Extraction sys-

tems; “open” in the task name refers to the fact that 

these systems learn new relations (effectively, 

template slots) on the fly. The first such system was 

TextRunner [3, 22], which extracts sentence fragments 

of the form (entity, verb phrase, entity), for example 

(the Saints, win, the Superbowl). Balasubramanian et 

al. [2] recently described a method for clustering these 

syntactic patterns based on their co-reference 

frequency and abstracting the entities using WordNet; 

each cluster then approximates a semantic relation 

(expressed with several syntactic ones) with typed 

slots instead of entities. The focus is on commonsense 

knowledge at the web scale. 

Also prominent in the area of open information 

extraction is NELL, the Never Ending Language 

Learner [5] which has been continuously scanning the 

web for several years and is learning to discover new 

entity types and relations (with high-quality slot fillers 

as a necessary side effect), producing a “topic 

template” of common-sense knowledge. In particular, 

its Coupled Pattern Learner (CPL) component [6] 

suggests relations based on frequently co-referencing 

syntactic patterns, not unlike Balasubramanijan et al. 

above. All open IE systems are based on the same 

very rough core idea as the topic construction methods 

listed later on: finding repeating text patterns. 

The task of domain template construction itself has 

seen far less research activity. The majority of existing 

methods start by representing the documents as depen-

dency parse trees, thus abstracting away some of the 

language variability and making pattern discovery 

more feasible. The patterns found in these trees are 

often further clustered to arrive at more general, 

semantic patterns or pattern groups. In the remainder 

of this section, we describe the most closely related 

contributions in more detail. 

Several articles focus on a narrow domain and/or 

assume a large amount of domain-specific background 

knowledge. For example, Das et al. [13] analyze 

weather reports to extract patterns of the form 
[weather front type] is moving towards 

[compass direction] where they manually create 

rules (based on shallow semantic parsing roles and 

part-of-speech tags) for identifying instances of 

concepts such as compass direction and 

weather front type. Once these concepts are 

identified, they cluster verbs based on WordNet and 

then construct template patterns for each verb cluster 

independently; a pattern is every frequent subsequence 

of semantic roles within sentences involving verbs 

from the verb cluster. The idea is only partially 

transferable to the open domain; authors themselves 

point out that they rely on the formulaic language that 

is typical of weather reports. 

The method by Shinyama and Sekine [32] makes 

no assumptions about the domain but does limit itself 

to discovering named-entity slots. It tags named enti-

ties and clusters them based on their surrounding con-

text in constituency parse trees. The problem of data 

sparsity (a logical statement can be expressed with 

many natural language syntactic trees) is alleviated by 

simultaneously analyzing multiple news articles about 

a single news story – an approach also taken by our 

FGS method in Section 3.2. In the end, each domain 

slot is described by the set of its common syntactic 

contexts. 

Filatova et al. [14] use a tf-idf-like measure to 

identify the top 50 verbs for the domain and extract all 

dependency parse trees in which those verbs appear. 

The trees are then generalized: every named entity is 

replaced with its type (person, location, organization, 

number). Frequent subtree mining is used on these 

trees to identify all subtrees occurring more than a 

predetermined number of times. From the frequent 

trees, all the nodes except the verb and the slot node 

(i.e. the generalized named entity) are removed; the 

remainder represents a template slot. The approach is 

representative in spirit of most of the related work 

while also being well evaluated, which is why we 

choose to compare against it. The method is unnamed; 

because it focuses on modifiers of frequent verbs, we 

refer to it as the Frequent Verb Modifier (FVM) 

method. 

Chambers and Jurafsky [8] take a different ap-

proach: they first cluster verbs based on how closely 

together they co-occur in documents. For each cluster, 

they treat cluster verbs’ modifiers (object, subject) as 

slots and further cluster them by representing each 

verb-modifier pair (e.g. (explode, subj)) as a vector of 

other verb-modifier pairs that tend to refer to the same 

noun phrase (e.g. [(plant, obj), (injure, subj)]). Both 

rounds of clustering observe a number of additional 

constraints omitted here. The method is also capable 

of detecting topics from a mixture of documents, posi-

tioning the work close to open information extraction. 

A more recent version by Chambers [7] uses the same 

features (verb-modifier pairs) but replaces the two 

clustering rounds with a single graphical model. 

Similarly, Cheung et al. [9] suggest another gra-

phical model approach that does not need documents 

to be topic-labeled in advance and attempts to cluster 

them at runtime. They do so with a variant of a 

Hidden Markov Model (HMM). The observed state of 

the HMM is composed of the verb encountered in the 

text and its dependents (obtained from the dependency 

parse tree) along with their type (subject, object). The 

hidden state consists of the topic and the micro-level 

event (essentially a verb concept, e.g. “walking”). The 

probabilities for the hidden state are influenced by the 

previous hidden state, giving the graphical model an 

HMM-like structure. 



Constructing Domain Templates with Concept Hierarchy as Background Knowledge 

417 

The above two papers [7, 9] represent an 

interesting and promising attempt at bridging the gap 

between single-domain template construction and 

open information extraction. Unfortunately, they 

develop and test on the MUC-4 dataset, which is a 

mixture of documents from four preselected domains 

and less than 50% of non-topical (noise) documents, a 

very unlikely real-world scenario. Their performance 

at web scale or on another dataset with a high number 

of topics or high amount of noise in unknown. 

Regardless of that, we believe the MUC-4 dataset and 

the accompanying evaluation methodology to be a 

poor choice for two reasons. First, MUC-4 only 

provides 2-4 slots per template, which is too low to 

sufficiently describe a real-world scenario. Second, 

the dataset evaluates the performance of an 

Information Extraction system built on top of the 

extracted templates, not the quality of the templates 

themselves. This fails to capture the suitability of 

templates for other purposes, for example ontology 

extension or summarization. 

Finally, Qiu et al. [28] propose a method with 

more involved preprocessing. Unlike the other 

methods, which consume parse trees, this method 

operates on semantic frames coming from a Semantic 

Role Labeling (SRL) system. Within each document, 

the frames are connected into a graph based on their 

argument similarity and proximity in text. The frames 

across document graphs are clustered with an EM 

algorithm to identify clusters of frames that 

semantically likely to represent the same template 

slot(s). This approach is interesting in that it is 

markedly different from the others; sadly, there is no 

quantitative evaluation of the quality of the produced 

templates and even the qualitative evaluation 

(= sample outputs) is scarce.  

Note that almost all of the related work, like ours, 

concerns itself with newswire or similar well-written 

documents, allowing parsers to play a crucial role. For 

less structured texts, parsing is not feasible any more 

and domain-specific approaches are needed. This was 

observed for example by Michelson and Knoblock 

[24] who automatically construct a domain schema 

from craigslist ad titles, deriving for example a 

taxonomy of cars and their attributes. Their templates 

also significantly differ from all the approaches listed 

above in that they are not verb- or action-centric. 

Our proposed method is unique in that it tightly 

integrates background knowledge into the template 

construction process; all existing approaches rely 

instead on contextual similarities to cluster words or 

phrases into latent slots. None of the above methods 

explore the benefits and shortcomings of using 

semantic background knowledge. However, a 

hierarchy/ lattice of concepts, the form of background 

knowledge employed by us, was recently successfully 

used in related tasks of constructing ontologies from 

relational databases in a data-centric fashion [31] and 

semiautomatic ontology building [18]. An approach 

similar to ours has also been successfully used in a 

related and equally novel task of event prediction [29]: 

Starting with events from news titles (e.g. "Tsunami 

hit Malaysia", "Tornado struck in Indonesia"), the 

authors employed background knowledge to derive 

generic events and compute likely causality relations 

between them, e.g. a "[natural disaster] hit [Asian 

country]" event predicts a "[number] people die in 

[Asian country]" event. 

A note on terminology. The domain template 

construction task is young and has unconsolidated 

terminology. The task has so far been tackled by 

people coming from different backgrounds, using 

different names for the task itself and the concepts 

related to it. We collected the assorted terms in 

Table 1. Our terminology mostly follows that of 

Filatova. Qiu’s is influenced by the early terminology 

introduced in the 90s for Information Extraction tasks 

(where the domain templates were created by hand), 

e.g. at the Message Understanding Conference (MUC) 

[15]. Chambers’s “roles” and “role fillers” are 

normally used with Semantic Role Labeling (SRL) 

[11]; interestingly, he does not use the SRL term 

“frame” for templates. Shinyama’s naming choices are 

strongly rooted in relational databases. Cheung’s 

reflect their use of a graphical model. 

 

Table 1. Consolidation of terminology in related work. Following our terminology, the domain is what the input documents have 

in common. Properties/slots are the concepts we would like to discover. Slot filler is a specific value that can fill the slot; this is 

what algorithms have to abstract away to produce the slots. Patterns are the syntactic context of slots using which the algorithm 

identifies slots and usually also presents them to the user; their content and representation are highly algorithm-specific. The 

domain template is the collection of all patterns for a domain and is the final output of the algorithm. 

This article domain, topic slot, property slot filler pattern, triplet schema, template 

Filatova [14] domain, topic slot slot filler slot structure dom. template 

Das [13] domain slot slot value template — 

Chambers [7] domain role, slot role filler syntactic relation narrative schema 

Qiu [28] scenario salient aspect, slot sample modifier — scenario template 

Cheung [9] scenario argument (emission) caseframe frame 

Shinyama [32] — relation — basic pattern unrestricted relations 

Example bombing attack attacker John Smith bomb
kill
→ 𝑝𝑒𝑟𝑠𝑜𝑛 (all slots) 
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3. Methods for obtaining domain templates 

We present two methods for unsupervised 

construction of domain templates based on semantic 

representation of input documents. 

 

Figure 1. Pipeline sketch for both proposed algorithms. 

The text is reduced to relational triplets, and they are 

aligned (linked) to WordNet. In the last and main  

step, generalizations of these triplets are formed  

and only the promising ones are retained and  

presented as the template. 

Both methods are based on a graph-like represe-

ntation of documents and topic templates, with la-

beled nodes denoting concepts and labeled edges 

denoting relations between them. The methods follow 

the pipeline very roughly outlined in Fig. 1.  

We use the following notation in text: 

• Node  for concepts extracted directly from 

documents, e.g. “Obama”. 

• 𝑁𝑜𝑑𝑒𝑇𝑦𝑝𝑒  for generic, automatically 

inferred concepts, e.g. “person”. 

• Node1
relation
→     Node2  for relations. 

The assumptions that we make about the input 

data are as follows: 

• A collection of plain-text documents from the 

domain of interest is available. 

• The key information in input documents (and 

the desired output) can be represented with 

relational triplets (here, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡
verb
→  𝑜𝑏𝑗𝑒𝑐𝑡  

or 𝑣𝑒𝑟𝑏
dependency
→        𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 ). This assum-

ption is likely to be partially violated, which 

can be alleviated with input data redundancy. 

Both methods share the preprocessing stage in 

which said triplets are extracted from plain text. 

In the second, main part of the algorithm, the 

methods take markedly different approaches. The 

first, presented in Section 3.2, attempts to discover 

regularities in the semantic structure of the 

documents, i.e. the entities appearing as well as  

well as the relations interconnecting them. For 

example, in documents reporting on murders, we 

hope to find a recurrent complex structure like  

𝑜𝑓𝑓𝑖𝑐𝑒𝑟
apprehend
→       𝑝𝑒𝑟𝑠𝑜𝑛  

kill
→ 𝑝𝑒𝑟𝑠𝑜𝑛 

receive
→    sentence

. 

The method assumes such complex semantic 

structures are extremely unlikely to appear outside 

the context for which they are characteristic (i.e. 

murder stories) and searches for such structures in a 

manner reminiscent of frequent itemset mining. 

The second approach relaxes the assumption on 

how common these large semantic structures are and 

instead looks for individual topic-characteristic 

triplets ( 𝑜𝑓𝑓𝑖𝑐𝑒𝑟
apprehend
→       𝑝𝑒𝑟𝑠𝑜𝑛 , 𝑝𝑒𝑟𝑠𝑜𝑛  

kill
→ 𝑝𝑒𝑟𝑠𝑜𝑛  and 𝑝𝑒𝑟𝑠𝑜𝑛  

receive
→    𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒  sepa-

rately), which can be seen as a reduction in the size 

of sought-after semantic structures. As these small 

structures appear more commonly even outside the 

target domain (i.e. in non-murder documents), a 

weakly supervised approach is taken: the algorithm 

considers both in-domain and out-of-domain 

documents to learn what triplets are characteristic of 

the domain. 

In the remainder of this section, we first look at 

preprocessing common to both methods, then de-

scribe each of the two methods in detail. 

3.1. Common data preprocessing  

Methods from Sections 3.2 and 3.3 operate on the 

same form of data representation, triplets. This 

section describes how they are constructed.  

Starting with plain text, we first annotate it with 

some basic semantic and linguistic information. 

Using the ANNIE tool from the GATE framework 

[12], we first detect named entities and tag them as 

person, location or organization. We next use 

Enrycher [33] to perform coreference and pronoun 

resolution (“Mr. Obama”, “President Barack 

Obama” and “he” might all refer to the same entity 

within an article). Finally, we use the Stanford parser 

[20] to obtain dependency parses for individual 

sentences. We simplify the parse trees using the 

following steps: 

• For noun phrases, retain only the head of the 

phrase. 

• Convert passive to active voice. 

• Convert object-like relations (dobj, 

acomp, infmod, nsubjpass) to a 

simple “object” relation. 

• Convert subject-like relations (nsubj, 

agent, xsubj) to a simple “subject” 

relation. 

• Convert the prep relation to a “time”, 

“location”, or “instrument” relation or ignore 

it. The mapping is done based on ANNIE 

annotations and prepositional modifiers. 

• Lemmatize all words. 

We found the above simplifications to yield trees 

that are still sufficiently expressive but at the same 

time more semantic (e.g. normalizing away passive 

voice) and less complex, thus more likely to repeat 

across the corpus. 

The simplified parse trees are used to derive 

triplets, the basic data representation structure for 

methods described in this paper. A triplet consists of 

two concepts and a relation connecting them; we 

experimented with two types of triplets: 
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• verb–dependency–property, which captures 

the verb and its main dependents. Using this 

representation, the sentence “A violent 

tornado hit two houses in Texas.” produces 

hit
subject
→    tornado , hit

object
→   house  and 

hit
location
→     Texas . The supported 

dependency values are subject, object, time, 

location and instrument. This representation is 

used by the Characteristic Triplet (CT) method 

in Section 3.3. 

• subject–verb–object, which uses the verb itself 

as the relation. The example sentence above is 

expressed as tornado
hit
→ house  with these 

triplets. This is more compact but captures 

only information encoded with transitive 

verbs. This representation is used by the 

Frequent Generalized Subgraph (FGS) method 

in Section 3.2 which uses redundant input data 

to alleviate the problem of capturing only 

transitive verbs. 

As a last step, we align all triplets to a knowledge 

base (KB). We require a KB that a) is not domain-

specific and b) is a simple ontology, in particular, 

covers the hypernymy relations between concepts. 

After evaluating Cyc [21] and WordNet [25], we 

decided for the latter because of its more pragmatic 

structure and better mappings to natural language. 

This is also supported by e.g. Boyd-Graber and 

Fellbaum [4] who note that “WordNet has become 

the lexical database of choice for NLP”. 

For each verb and property appearing in any of 

the triplets, we try to find the corresponding KB 

concept (“synset” in WordNet terminology). We first 

remove inflection from the words using python 

NLTK (Natural Language ToolKit), then align it to 

the corresponding synset. If more than one synset 

matches, we choose the most common sense; this is a 

proven approach and a very strong baseline for word 

sense disambiguation [23]. If no synset matches, we 

create a new one on the fly, expanding our local copy 

of WordNet. If the word for which the new concept 

was created (e.g. “Obama”) was previously tagged by 

ANNIE as a person, location or organization, the new 

synset’s hypernym is set accordingly. The new 

concepts are retained between algorithm runs. 

As an alternative method of obtaining triplets, we 

also explored an approach based on Semantic Role 

Labeling (SRL) [34] which is a more natural fit for 

the task at hand than dependency parses. However, 

our conclusion was that the available language 

resources are unfortunately not yet mature enough to 

support open-domain tasks, which ours necessarily is. 

In particular, there is little training data beyond the 

few most frequent frames, and the linkage with other 

semantic resources is lacking. 

The transformation of text to ontology-aligned 

triplets brings important benefits: 

• Feature selection: only the key fragments of 

sentences are retained, following heuristics 

based on parse trees. 

• Noise reduction: lower sensitivity to 

conjugation, tenses, synonyms, etc. 

• Access to background knowledge: in our case, 

we exploit WordNet’s hypernym taxonomy. 

However, we also have to note several limita-

tions: 

• Both parsing and KB alignment introduce 

errors. Because the two steps are performed 

sequentially, their errors compound. 

• The heuristic conversion of parse trees covers 

only specific (albeit the most common) types 

of expressions. For example, in the sentence 

“93 people were killed on Monday”, 93 gets 

lost as it is only a modifier of the subject; and 

the sentence “President’s visit to China ...” 

will not yield President
visit
→  China  because 

“visit” here is not a verb. 

We provide an analysis of the errors introduced 

by the semantic representation in Section 5.4. 

Preprocessing real-world data. In principle, the 

methods can take any plain text as input. Evaluation, 

however, more realistically focuses on news data 

from the internet, a genre which is easily accessible. 

Section 4.1 describes our data acquisition and 

automatic cleartext extraction process. Together with 

the core methods in this section, they form a full 

pipeline leading from a few user-provided domain 

keywords to a domain schema for that domain. 

3.2. FrequentGeneralized Subgraph (FGS)Method 

This approach was first introduced in [34]. Here, 

we present additional details of the method and 

perform a quantitative evaluation which is missing in 

the original paper. 

The key idea of the Frequent Generalized Sub-

graph (FGS) method is as follows: first, we construct 

a semantic graph for each document, consisting of 

triplet-derived entities and relations. Then, we mine 

graphs from all on-topic documents for frequent 

subgraphs whose specializations 1  appear in suffi-

ciently many of those graphs. These generalized fre-

quent subgraphs are what the method suggests as the 

topic template. The generalized nodes (e.g. 𝑝𝑒𝑟𝑠𝑜𝑛 ) 

and edges are the template slots and the graph as a 

whole provides context that makes it possible for 

humans to interpret the node. 

In other words, the method assumes that while an 

individual triplet (e.g. 𝑝𝑒𝑟𝑠𝑜𝑛1
kill
→ 𝑝𝑒𝑟𝑠𝑜𝑛2 ) may 

be frequent across multiple topics and its frequency 

                                                           
1 “Specialization” in the sense of the hypernym taxonomy implied 

by our background knowledge base. For example, Rodney
kill
← Wiley E.

detonate
→     hand grenade  is a specialization of 

𝑝𝑒𝑟𝑠𝑜𝑛
kill
← 𝑝𝑒𝑟𝑠𝑜𝑛

detonate
→     𝑒𝑥𝑝𝑙𝑜𝑠𝑖𝑣𝑒 . 
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does not attest to its suitability for a slot pattern, a 

small subgraph consisting of k or more nodes (e.g. for 

k = 3: 𝑝𝑒𝑟𝑠𝑜𝑛2
kill
← 𝑝𝑒𝑟𝑠𝑜𝑛1

detonate
→      𝑒𝑥𝑝𝑙𝑜𝑠𝑖𝑣𝑒 ) 

will only be frequent within a certain topic (here, 

suicide bomber attacks). k, the minimum 

“interesting” size of these subgraphs, is likely domain 

dependent. In our tests with news documents on five 

topics (see Section 4.1) we found k = 3 to give 

reasonable results. 

Fig. 2 illustrates this with sample graphs from the 

“bombing attacks” domain. The graphs 𝐺1, 𝐺2 and 𝐺3 

each represent a semantic graph constructed from an 

input document. H is the generalized subgraph of all 

𝐺𝑖 and embodies a (partial) schema for the domain. In 

practice, the graphs 𝐺𝑖  are larger, there are more of 

them and the subgraph H is only required to appear in 

some of the 𝐺𝑖. 

 

Figure 2. Example of a frequent generalized subgraph H as 

it would be identified by the FGS method for input graphs 

𝐺𝑖. Each node in H has a specialization in 𝐺𝑖; e.g., 

“attacker” maps to “bomber” in 𝐺1, “attacker” in 𝐺2 

and “terrorist” in 𝐺3. This illustrative example is  

taken from the “bombing attack” domain and does  

not fully follow the WordNet hierarchy. 

In the following subsections, we first briefly 

describe how the semantic graph is constructed, then 

turn to the technique for mining frequent subgraphs 

and to its generalization required by our approach. 

3.2.1. Semantic Graph Construction 

We construct the semantic graph from triplets 

derived in Section 3.1.We consider each triplet to be 

a 2-node graph, then treat the collection of all the 

triplets as a large disconnected graph and finally 

merge (collapse, identify) the nodes with the same 

labels. 

The key simplifying assumption is that input 

documents tend to be focused in scope: we do not 

need to disambiguate entities other than by their 

labels. This is true of e.g. news articles, on which we 

evaluate. As an example, if an article mentions two 

buildings, one of which burns down and the second 

of which acted as a shelter for the fire fugitives, our 

method detects a single “building” and assigns both 

properties to it. Although having a means of 

distinguishing between the two would clearly be 

preferable, we have found this simplification not to 

cause significant issues in the newswire domain: 

entities which do need to be disambiguated are 

almost always presented with more unique names 

(“France” instead of “country” etc.). This rationale 

would have to be revised if one wanted to apply the 

approach to texts that are broader in focus. 

Combating data sparsity. This method mines 

subgraphs that are frequent across individual article 

graphs. However, article graphs tend to be small, 

each capturing only a part of the information 

conveyed in the article due to the limited recall of the 

triplet representation. In addition, even when two 

documents convey the same information, they do not 

necessarily produce overlapping subgraphs (e.g. 

Tom
drink
→   glass  vs. Tom

have
→  drink ). In fact, ex-

periments show that for newswire, documents from 

the same domain almost never share subgraphs with 

three or more nodes. 

This issue can be resolved with the use of parallel 

corpora. We thus derive each graph not from a single 

document but from the (textual) concatenation of 

multiple “parallel” documents that convey almost the 

same information, but paraphrased. As input, the FGS 

method therefore requires a document set that is 

further comprised of groups of parallel documents. 

Depending on the domain, this can be a serious 

limitation. However, for domains represented in the 

news, such data is available readily: we can exploit 

the fact that every noteworthy event is described in 

several news articles, and they form the required set 

of parallel documents. 

We conduct our experiments on newswire data 

and derive each graph from the concatenation of  

20–50 news articles from different sources that are all 

reporting on the same story. We observe this provides 

enough redundancy for subgraph patterns to occur 

across different story graphs. The number of articles 

per story that gives satisfactory results is likely 

dependent on the domain and uniformity of language 

(e.g. sports match reports are more formulaic than 

movie reviews); we tested with the above figure  

(20–50) as this is a common number of articles for 

real-world news stories, and did not experiment 

further. Details on how we acquire stories (i.e. 

clusters of articles) from a specific domain are given 

in Section 4.1. 

3.2.2. Frequent Generalized Subgraph Mining 

As described in Section 3.2, the method requires 

us to find frequent subgraph(s) of input graphs in a 
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generalized manner, taking the hypernym taxonomy 

into account. This is non-trivial. 

Formal problem statement. (Refer to Fig. 2 for 

easier understanding.) Given a set of labeled graphs 

𝑆 = {𝐺1, … , 𝐺𝑛} , a transitive antisymmetric relation 

on graph labels 𝑔𝑒𝑛𝑙(·,·) (with 𝑔𝑒𝑛𝑙(𝑙′, 𝑙) interpreted 

as “label 𝑙′  is a generalization of label 𝑙 ”) and a 

threshold 𝜃 ∈ ℕ, we wish to construct all graphs 𝐻 

that are generalized subgraphs of at least 𝜃  graphs 

from S. A graph 𝐻  is said to be a generalized 

subgraph of G if there is a mapping f of vertices 

𝑉(𝐻) onto a subset of 𝑉(𝐺) such that 𝑔𝑒𝑛𝑙(𝑣, 𝑓(𝑣)) 
holds for all 𝑣 ∈ 𝑉(𝐻), and analogously for edges. 

We are only interested in those 𝐻  that are 

maximal in size, i.e. there is no graph 𝐻∗ ⫌ 𝐻 such 

that 𝐻 generalizes 𝐻∗ and 𝐻∗ also satisfies the above 

criteria. Among those, we only seek 𝐻  that are as 

specific as possible. 

This is computationally an exceptionally hard 

problem. Even finding frequent subgraphs verbatim–

without taking possible generalizations (hypernyms) 

into account–presents a search space of subgraphs 

that grows exponentially with their size, and 

isomorphisms make even naive counting non-trivial. 

Extending the problem with generalizations as we do 

makes the search space even larger: each node in 

graphs {𝐺1, … , 𝐺𝑛} can be independently generalized 

in multiple ways2, making for yet another exponential 

growth factor. 

We alleviate the generalization problem as fol-

lows: first, we transform all input graphs by generali-

zing each input node to the third level of the WordNet 

hierarchy and each input edge to its corresponding 

root in the WordNet hierarchy (edge labels are verbs, 

which do not have a common “entity”-like root). We 

found this to yield graphs that are general enough to 

generate desirable patterns and specific enough not to 

conflate unrelated patterns. Then, we perform regular 

frequent subgraph mining on these graphs to obtain 

candidates for subgraphs 𝐻 as they are defined in the 

formal problem statement. The subgraphs obtained 

this way are typically overly generalized, so we 

specialize them back as much as possible without the 

support falling below 𝜃. The respecialization is per-

formed greedily: when multiple specializations are 

possible, which is almost always the case, we choose 

the one that has the highest support in input data. 

Regular frequent subgraph mining in itself can be 

problematic. We had three modern dedicated pro-

grams (gSpan [37], Gaston [27] and HybridTreeMi-

ner [10]) crash on our graphs with tens of thousands 

of nodes and thousands of labels (but work on 

smaller graphs), so we implemented our own solution 

based heavily on their ideas. The approach works in a 

way reminiscent of the classic a priori algorithm in 

frequent itemset mining: start with the smallest 

possible frequent graphs, i.e. those on one node, then 

                                                           
2 For example, possible generalizations of suicide_bomber  are 

𝑡𝑒𝑟𝑟𝑜𝑟𝑖𝑠𝑡 , 𝑟𝑎𝑑𝑖𝑐𝑎𝑙 , 𝑝𝑒𝑟𝑠𝑜𝑛  and 𝑒𝑛𝑡𝑖𝑡𝑦  

iteratively add more and more nodes to them, 

discarding all graphs with an overly low support at 

each iteration. The algorithm is described in more 

detail in [34], and the implementation released at 

http://mitjat.com/research/. 

3.3. Characteristic Triplet (CT) Method  

The Characteristic Triplet method is the second 

approach to constructing topic templates we propose. 

Its key idea is to find triplets which are frequent in 

documents belonging to the topic, yet infrequent in 

documents not belonging to it. Frequency is again 

considered in a generalized sense: Obama  contri-

butes to the counts of 𝑝𝑜𝑙𝑖𝑡𝑖𝑐𝑖𝑎𝑛 , 𝑝𝑒𝑟𝑠𝑜𝑛  and 

𝑒𝑛𝑡𝑖𝑡𝑦 . As with the FGS method, we are not sear-

ching for triplets that appear in the input documents 

verbatim but rather for their generalizations. For 

example, for the topic “political visits”, we are 

looking for 𝑝𝑜𝑙𝑖𝑡𝑖𝑐𝑖𝑎𝑛
visit
→  𝑐𝑜𝑢𝑛𝑡𝑟𝑦 , which likely 

does not appear in any of the input documents.  

The algorithm is based on the expectation that for 

any given topic, triplets (both the verbatim and 

generalized ones) will fit into one of the three cate-

gories below. Illustrative examples are given for the 

“diplomatic visits” domain: 

• The overly specific triplets (e.g. 

. . .
…
→ Obama ) and the irrelevant ones (e.g. 

. . .
…
→ 𝑓𝑜𝑜𝑡𝑏𝑎𝑙𝑙 𝑝𝑙𝑎𝑦𝑒𝑟 ) will have a low fre-

quency count. 

• The overly generalized triplets (e.g. 

. . .
…
→ 𝑒𝑛𝑡𝑖𝑡𝑦 ) will be frequent in on-topic 

documents but also off-topic ones. 

• The triplets that are generalized “just right” 

(e.g. . . .
…
→ 𝑝𝑜𝑙𝑖𝑡𝑖𝑐𝑖𝑎𝑛 ) will be frequent in 

on-topic documents but less frequent other-

wise; these are the ones we aim to detect. 

The remainder of this section describes the algo-

rithm based on this idea. We collect all triplets from 

input documents and all their generalizations and 

assign assign them scores that reflect the above 

intuition. The highest-scoring triplets form the topic 

template.  

3.3.1. Triplet Lattice  

The method assumes, in addition to the on-topic 

documents, a number of off-topic plain-text docu-

ments representative of the background language. 

This helps the method construct patterns that are 

general enough to be frequent only in the target 

domain, but specific enough to not be too frequent in 

the language in general. A similar idea has been 

successfully used in information extraction before: 

for example by Riloff [30] to judge the relevancy of 

extraction patterns, and by Yangarber [38] to stop the 

bootstrapping process of expanding the set of patterns 

at the right time. 
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We start by representing each document as a set 

of verb–dependency–property triplets as previously 

described in Section 3.1. Note that this is slightly 

different from the subject–verb–object triplets used in 

the FGS method; this alternative representation 

makes the method less susceptible to data sparsity in 

triplet space (see also “Combating data sparsity” in 

Section 03.2.1). 

We next construct a lattice of triplets encoun-

tered in the input documents and their generaliza-

tions. Let us denote with 𝑐′ the direct generalization 

(hypernym) of a concept 𝑐3. We initialize the lattice 

with every triplet 𝑣
𝑑
→ 𝑝  appearing verbatim in the 

input documents. Note that the points of the lattice 

are triplets which themselves are considered atomic. 

We then recursively extend the lattice by assigning to 

each triplet 𝑣
𝑑
→ 𝑝  as its parents the triplets  

𝑣′
𝑑
→ 𝑝  and 𝑣

𝑑
→ 𝑝′ , until reaching the root. See 

Fig. 3 for an illustration. Because the lattice is 

constructed using the hypernymy relation, it is a 

DAG (directed acyclic graph) and implies a partial 

order relation.  

3.3.2. Cutting the Lattice 

Each triplet 𝑡  in the lattice is assigned a 

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑐𝑜𝑢𝑛𝑡, defined as the number of times 𝑡 
or its specializations appear in on-topic documents. 

Formally, let 𝑡 ≥ 𝑡∗  denote that 𝑡  is above 𝑡∗  in the 

lattice, and let 𝑇+  and 𝑇0  denote the multiset of 

triplets in the on-topic documents and in the entire 

corpus, respectively. In 𝑇+  and 𝑇0 , each triplet is 

counted once per source document. Then we define 

the frequency count of triplet t in on-topic documents 

as  

𝑓+(𝑡) ≔ |{𝑡∗: 𝑡∗ ∈ 𝑇+, 𝑡 ≥ 𝑡∗}|. 

Analoguously, we define 𝑓0(𝑡)  as the frequency 

count of 𝑡 in the whole corpus. The value of 𝑓+(𝑡) is 

also illustrated in Fig. 3; note how the off-topic 

documents do not contribute to 𝑓+(𝑡)  and how the 

value is not necessarily the sum of values in 𝑡 ’s 

children.  

Additionally, we assign a score to each triplet t in 

the lattice. The score 𝑠(𝑡) is tf-idf inspired: 

𝑠(𝑡) ≔  𝑓+(𝑡) ⋅ 𝑙𝑜𝑔
|𝑇0|

𝑓0(𝑡)
  

Intuitively, the first factor favors more generali-

zed triplets (as their frequency in on-topic documents 

is by definition higher than the frequency of highly 

specialized triplets) while the second factor assigns a 

lower score to triplets that overly generalized and 

appear frequently even in off-topic documents.  

                                                           
3 A small fraction (1.7%) of entities in WordNet have multiple 

hypernyms. In this case, we use only the first hypernym, which is 

the more significant and, according to [17], by far the most 
relevant in 85% of the cases. 

The scores 𝑠(𝑡) form the basis for selecting the 

triplets that will form the topic template. In Fig. 3, the 

triplet destroy
obj
→ 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔  and its two parent 

triplets have the highest 𝑓+(⋅) . However, destroy
obj
→ 𝑎𝑟𝑡𝑖𝑓𝑎𝑐𝑡  has a lower score than the other two 

since it also appears in the two non-topical 

documents.  

3.3.3. Triplet Respecialization  

We now take the 1000 top-scoring triplets as 

initial candidates for the final template. The cut-off of 

1000 is conservative and was determined empirically; 

we observed that the relevant triplets typically have a 

much higher ranking. Next, we perform postpro-

cessing to discard some of these candidate triplets for 

one of two reasons. 

First, some frequent triplets are simply 

characteristic of the domain and always appear in the 

same form, e.g. ground
subj
←  shake  for the domain 

of earthquake reports. Triplets that do not have 

multiple specializations in the input documents 

cannot possibly represent topic slots and are thus 

removed.  

Second, based on our analysis of the test data, 

more than 90% of the high-scoring triplets are 

redundant and should be removed as well. As an 

example, consider Fig. 3 and assume unmake is the 

direct hypernym of destroy and disassemble in 

WordNet. Then, if even a single 𝑑𝑖𝑠𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒
obj
→ building  were (possibly erroneously) detected in 

the on-topic documents, 𝑢𝑛𝑚𝑎𝑘𝑒
obj
→ building  

would have a higher score than 𝑑𝑒𝑠𝑡𝑟𝑜𝑦
obj
→ building  even though 𝑢𝑛𝑚𝑎𝑘𝑒  “earned” most 

of its score through 𝑑𝑒𝑠𝑡𝑟𝑜𝑦 . More generally, when 

we climb the lattice the score is monotonically non-

decreasing as long as we don’t encounter triplets that 

have specializations occurring in off-topic 

documents. 

As a special case of the redundancy problem, 

observe that for any positively scored triplet 𝑡 and its 

every generalization 𝑡′  with no other descendants 

appearing in the input text, we have 𝑠(𝑡′) = 𝑠(𝑡). For 

example, in Fig. 3, there are no documents, either on– 

or off-topic, that contain a specialization of 

𝑢𝑛𝑚𝑎𝑘𝑒
obj
→ building  other than through 𝑑𝑒𝑠𝑡𝑟𝑜𝑦

obj
→ building . Therefore, the two triplets have the 

same score even though the more specialized version 

is clearly preferable as output. 

We correct for these effects by discarding all 

triplets t which have one or more children t∗ such 

that 𝑠(𝑡∗) > 0.80𝑠(𝑡). Here, 0.80 is a parameter that 

we fixed with a grid search. It is fairly robust; values 

in the range from 0.75 to 0.90 all gave comparable



Constructing Domain Templates with Concept Hierarchy as Background Knowledge 

423 

 

Figure 3. An example of a triplet lattice as constructed by the Characteristic Triplet (CT) method. Each box shows a triplet  

and its frequency 𝑓+ in the on-topic documents. Here, the topic is “bombing attack”. Each grey box represents a triplet that 

appears verbatim in an on-topic (X) or off-topic (m) input document. Grey boxes also contain the sentence that gives raise  

to the triplet. Arrows point from less generalized to more generalized triplets. The thick-bordered box represents the triplet  

with the highest score that gets selected for the template. The scores are related to the frequency f+ but not shown here;  

see Section 3.3 for discussion.

results. In Fig. 3, the triplet unmake
obj
→ 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔  

is discarded in favor of destroy
obj
→ 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔  since 

it has the same score.  

At the end of this pruning process, the remaining 

triplets are output as the template.  

3.3.4. Frequent Generalized Subgraph (FGS) vs 

Characteristic Triplet (CT) Method 

Note that like the FGS method described in the 

previous section, the CT method operates in the space 

of triplets. However, it makes several notable impro-

vements:  

• CT does not treat each topic in isolation but 

rather in relation to the background corpus 

distribution.  

• By operating on structurally less complex 

units (triplets instead of subgraphs), CT does 

not require clusters of tightly related docu-

ments as input (see “Combating data sparsity” 

in Section 3.2.1).  

• Due to not having to perform complex fre-

quent subgraph mining, the CT method scales 

considerably better. Its time complexity is 

linear in the size of the input data.  

• FGS expects a high level of regularity in the 

data to detect patterns, an expectation that 

often goes unfulfilled. CT is more flexible 

(and can therefore detect a higher number of 

patterns, as the evaluation later on also 

shows).  

4. Evaluation  

Evaluation of domain templates is not straight-

forward4, to the point that many related articles only 

evaluate qualitatively (i.e. show a selected part of the 

output) or evaluate other aspects of their methods.  

We evaluate on five newswire domains, com-

paring three methods: our FGS and CT, and a state of 

the art baseline. Section 4.1 describes the data and 

Section 4.2 details the methodology for evaluating 

this research problem.  

We choose to adopt the evaluation method by 

Filatova [14] rather than the one by Chambers [7] and 

Qiu [9] based on MUC-4 data. As outlined in 

Section 2 (Related Work), we believe the latter to 

have several deficiencies. Most notably, it judges the 

quality of templates indirectly, through the lens of 

Information Extraction, while we evaluate the 

templates directly. It should still be noted that our 

evaluation only reflects the performance on a limited 

set of “real world” scenarios.  

                                                           
4  A related article [28] notes, "While [template creation] is a 

difficult problem, its evaluation is arguably more difficult due to 
the dearth of suitable resources." 



M. Trampuš, D. Mladenić 

424 

4.1. Datasets 

We evaluated the algorithms on five domains/ 

topics, each captured by a set of news articles. We 

give the datasets single-word names:  

• airplane - Reports of aircraft crashes.  

• bomb - Reports of terrorist attacks (often by 

suicide bombers).  

• earthquake - Reports of past earthquakes.  

• sentence - Reports of sentencings passed in a 

court of law.  

• visit - Reports of diplomatic visits by 

politicians.  

We chose the topics based on what is covered by 

the media and based on the choices made by [14], the 

work we compare with. They evaluate on four do-

mains: airplane crashes, terrorist attacks, earthquakes, 

and presidential elections. However, for the presiden-

tial elections domain they discover it is ill-defined 

and a poorly suited for evaluation.  

Obtaining documents for a domain. We mentio-

ned in the introduction that for domains that are 

reasonably well-represented in online news, we can 

obtain on-topic documents with minimal user input. 

Here, we briefly outline our process, although this is 

just one of the possible sources of common-topic 

document collections and not the focus of this work.  

We assume the availability of a news collection, 

for example one obtained by crawling RSS feeds. We 

can then perform a simple query on the dataset with 

domain-related keywords–which are the only requi-

red user input. The results of such a naive search will 

be noisy: some matching documents will contain the 

query words by chance, unless the query is very ela-

borate; and at the same time, relevant documents may 

not match the exact query keywords. Our solution to 

this problem was to first create clusters of articles 

reporting on the same event, then retrieve clusters in 

which more than 25% percent of the articles match 

the query. This produced very clean results: even 

with no trial-and-error with the queries, more than 

90% of the resulting articles were on the topic we had 

in mind when choosing the query. 

There is ample existing work on clustering text 

streams and even news data streams in particular. The 

quality tends to be high because algorithms can hea-

vily exploit the time component and effectively only 

cluster a day’s or so worth of events. In our evalua-

tion data, we used clusters as provided by Google 

News–a historical artifact of our past experiments. 

However, we later also found a reimplementation of 

[1] to give clusters that are indistinguishable in 

quality from Google’s for the purpose of this data 

collection task.  

Alternatively, one can obtain on-topic documents 

by directly querying a search engine and trust them to 

pick relevant documents; this was done for example 

by Chambers et al. [8]. This approach is even simpler 

and requires no offline data or clustering, but comes 

with obvious caveats regarding reproducibility and 

the amount of accessible data; we did not use it in our 

work.  

Evaluation data. For the evaluation in this paper, 

we obtained on-topic documents using the method 

outlined above. Specifically, we queried a one-year 

crawl (August 2012 to July 2013) of Google News 

with the following expressions: 

• airplane: (helicopter ∨ airplane) ∧ crash  

• bomb: bomb ∧ attack  

• sentence: judge ∧ court ∧ sentence  

• earthquake: earthquake ∧ magnitude  

• visit: (president ∨  minister ∨  diplomat) ∧ 

(meeting ∨ summit)  

Those were the first queries we tried—we judge 

them to produce articles that are a good represent-

tation of the topics as defined above. Tweaking the 

queries might produce more favorable end results in 

evaluation.  

The full data crawl consists of 4 million articles 

clustered into 80 000 stories. The queries yielded 

more than 1000 results each; however, we only 

needed and used a random subset of 300 articles per 

topic for the evaluation.  

In addition, we kept a random set of 4000 articles 

from the full dataset; those represent the background 

distribution (for the CT method) and are with 

relatively high probability not on-topic for any of our 

topics.  

The downloaded articles were converted from 

HTML to plain text using the method presented in 

[35].  

We provide our entire dataset online (see 

Appendix A).  

4.2. Evaluation Methodology  

What constitutes a good domain template? We 

characterize them as follows:  

• A template should be predictive of expected 

document content within a domain. In other 

words, it should reflect the types of informa-

tion humans expect to see in documents on 

that topic.  

• A template should be representative of the 

domain, i.e. largely independent of the speci-

fic training data and not overfit to single 

aspects of it. 

The first property, in particular, is hard to evalua-

te, and there is no established methodology. We are 

therefore devoting an entire section to proposing one.  

To maximize reproducibility of results, we need 

to create a golden standard, i.e. the “ideal” template 

for every domain we wish to evaluate on. There are 

two problems associated with creating a golden 

standard:  

• Golden standards are noisy. Like the better-

known problem of summarization, our pro-

blem is inherently weakly defined; the notion 

of the “best” template differs from human to 
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human. In our case, the problem is even more 

pronounced because it turns out people do not 

easily understand what a template/schema is.  

• Comparing with the golden standard. 
Because of the expressivity of natural lan-

guage, it is possible to obtain an output that is 

lexically and syntactically largely different 

from the golden standard, but semantically 

closely related5. This is again a problem faced 

when evaluating summaryzation algorithms.  

4.2.1. Creating the Golden Standard  

We combat the first problem listed above by dis-

guising our task: we ask evaluators to have a look at 

some domain documents and then pose 10 questions 

that they believe would best help them summarize a 

new, unseen document from the domain if they got 

answers to them. This idea is largely due to Filatova 

[14].  

We used the TaskRabbit6 platform to recruit eva-

luators. The workers were not required to be domain 

experts, i.e. they had common-sense understanding of 

the domains only. They were native English speakers 

and were not in any way affiliated with the research. 

For use on potential new domains, we made available 

the exact phrasing (which proved to be very import-

ant and took refining) of the instructions given to 

workers; see Appendix A. We used three workers for 

each task.  

Finally, we revised and aggregated the questions 

ourselves. About a quarter of questions was discarded 

because they did not follow instructions. They tended 

to fall into two categories: 1) questions obviously re-

ferring to a single article instead of the topic in gene-

ral and 2) metadata questions, e.g. “Who is repor-

ting?”, “Where was the article published?” etc. Wi-

thin the remaining questions, we identified synony-

mous ones and retained the top 10 questions based on 

the number of times they were asked by our evalua-

tors. Ties were broken by an unaffiliated friendly co-

lleague in the hallway. These remaining golden ques-

tions form the golden standard. Table 2 lists the most 

popular questions for the “bombing attack” domain. 

Table 2. Sample golden questions for the “bombing attack” 

domain 

Sample golden questions 

Who was killed? 

Who was injured? 

Which organization is suspected / admitted responsibility? 

Where did the event happen? 

Who was the bomb intended for? 

 

                                                           
5 or example X was shot and X took a hit. 
6  http://taskrabbit.com; it differs from typical crowdsourcing 

platforms in that the tasks are larger and the involvement with 
workers more personal. 

 

Figure 4. A sample CrowdFlower task/unit. Evaluators 

judge if a triple (here 𝑝𝑒𝑟𝑠𝑜𝑛
get
→ sentence)  

corresponds to a golden question. 

A golden standard in the form of natural-language 

questions has another advantage: it does not impose a 

representation or format on the algorithm output. 

This potentially allows a greater number of algo-

rithms to be compared against each other, especially 

with the domain schema construction problem where 

the community has not yet converged on a single 

schema representation. 

4.2.2. Comparing Against the Golden Standard 

The downside of our golden standard is that we 

can not reliably automatically determine to what 

degree a proposed template matches it.  

We therefore evaluate manually, using the Crowd- 

Flower7 (CF) crowdsourcing platform. We present the 

workers with a form that allows them to mark, for 

each output triplet, the golden question for which the 

triplet entails the answer. They can also mark that the 

triplet answers no questions. In CF terms, one such 

triplet-questions pair is called a unit. An example is 

provided in Fig. 4.  

We use two mechanisms to ensure the output 

from CF is of high quality. First, we use their built-in 

mechanism of “gold units” (unrelated to our “golden 

standard”): we provide the expected worker 

responses to five clear-cut units, and workers that do 

not to get them right are excluded from further 

evaluation. Additionally, we filter out workers that 

have a CF-internal trustworthiness score below 0.80. 

Each unit is answered by five workers.  

Finally, precision is computed as the percentage 

of output triplets that answer some golden question. 

Recall is computed as the percentage of golden 

questions answered by at least one output triplet.  

4.2.3. Gauging Generalizability  

As mentioned at the beginning of Section 4.2, we 

also wish to verify that the templates are not 

overfitted to the training corpus; this is of particular 

concern with our approach that qualifies template 

slots with detailed type information. A slot might 

                                                           
7  http://crowdflower.com/; a reseller for Mechanical Turk and 

other, smaller crowdsourcing platforms 
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look reasonable at the outset, e.g. earthquake
hit
→ 𝑐𝑎𝑝𝑖𝑡𝑎𝑙  captures the location of an earthquake, 

but in reality earthquakes do not only hit capital cities 

and 𝑐𝑖𝑡𝑦  is preferred to 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 .  

As this property is not of central importance, we 

measure it automatically by proxy. For each topic, we 

take at most 80% of topical documents and use them 

to construct the topic template. For the remaining 

held-out set of documents, we verify how many of 

their triplets can be aligned to (i.e., are specializations 

of) the template triplets. We are careful to make the 

training-vs-test cut so that no news story is split 

between the two sets, ensuring that matches observed 

in the held-out set are due to topic-specific, not 

storyspecific pattern triplets. This metric does not 

generalize to other datasets, but as we only aim to 

compare our own methods, this simple approach 

suffices.  

5. Results and Discussion  

5.1. Template Quality 

This subsection describes results pertaining to the 

evaluation described in Section 4.2.2, Comparing 

against the golden standard. We compare ourselves 

with FVM [14], a state of the art method that is 

representative of a large group of related methods. 

The method is summarized in Section 2, Related 

work.  

As described, we evaluated on a set of five 

scenarios; we cannot guarantee performance on an 

arbitrary scenario or use case. However, the test 

scenarios were chosen in advance and by virtue of 

them being common topics of real-world news 

reports, so they are likely a reasonable approximate 

indicator of achievable performance for tasks that 

involve structuring events from news data.  

The only metric reported in the FVM paper is 

recall (i.e. percentage of answered golden questions) 

at 20 “patterns”, which are comparable to our triplets 

(see Table 4 for examples of both). The metric makes 

good sense: the generated templates are primarily 

intended for humans and a useful algorithm should 

discover as many relevant template slots as possible. 

At the same time, reviewing 20 candidate slots seems 

like a reasonable burden for a knowledge worker. We 

evaluate according to the same metric and give 

results in Table 3.  

It is clear from the table that FGS generates 

relatively poor templates relative to the other two 

algorithms. However, CT and FVM are roughly 

comparable. Both methods are consistently able to 

cover about a half of golden questions with the 

automatically generated templates, with our method 

achieving a higher absolute score in two of the 

domains. 

Table 3. Recall@20, i.e. the percentage of golden questions 

answered by top-20 template triplets. Comparison with 

state of the art (FVM) on their three domains and 

evaluation on two new ones. 

Domain FVM FGS CT 

airplane 0.53 0.24 0.48 

bomb 0.52 0.26 0.66 

earthquake 0.38 — 0.59 

visit — 0.15 0.48 

sentence — 0.15 0.44 

 

FVM authors did not evaluate on the visit and 

sentence domains. For the earthquake domain, 

the FGS method failed to discover any frequent 

subgraphs and thus produce a template. The cause 

seems to be a dispersed domain: articles report on 

earthquakes mostly in the context of related events 

(tsunamis, slides, rescue efforts, fundraisers etc.), so 

document graphs are quite different, share no large 

substructures and FGS fails.  

We made a best-effort attempt to test in a setup 

comparable to that in the FVM paper; it was however 

not identical, and we therefore abstain from making 

strong claims about CT’s performance relative to 

FVM beyond observing that it appears at least 

comparable on the chosen domains. In particular, the 

FVM authors give the descriptions of the evaluated 

domains, but not the golden questions or the actual 

inputs documents, which were we reconstructed as 

detailed in Section 4. They extract templates from 

several hundred documents per topic; the exact 

number is not given, and we use 300 per topic. As a 

final detail, when preparing golden questions, the 

FVM authors do not merge individual worker’s 

questions into a single golden set and instead 

measure performance against each worker’s “golden” 

questions. The differences in measured performance 

across workers are however low, in the 5% range, so 

we use the average for the purpose of our 

comparison.  

For our own methods, FGS and CT, we also 

provide precision and recall curves in Fig. 5. The 

figure further confirms that CT is preferred over 

FGS. Note also the different number of patterns 

extracted by each of the methods, i.e. the length of 

the 𝑥 -axis: our assumptions when designing FGS 

were too strong; few subgraphs repeat across 

semantic graphs of different input articles, and only 

few patterns emerge. For CT, the number of extracted 

patterns varies. We were unable to find any 

quantitative property of the data for different domains 

which explains the variance. Qualitatively, the 

domains with more patterns simply have more varied 

reports. Differences in domains are to be expected; 

they are the primary reason to test on several domains 

in the first place.  
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(a) FGS airplane (b) FGS bomb (c) FGS sentence (d) FGS visit 

 

(e) CT airplane (f) CT bomb (g) CT sentence (h) CT visit 

Figure 5. Precision and recall of template triplets as measured by the golden standard 

 

The irregular shapes of the precision curves show 

there is room for improvement in triplet ranking; 

whenever a high-quality topic triplet is ranked lower 

than a low-quality one, this causes an increase in the 

average precision and thus an upwards slope, while 

the precision curve of an ideally ranked set of 

template triplets would be monotonically decreasing. 

This discrepancy is particularly noticeable for the 

FGS method where a triplet “score” for the purposes 

of this plot is simply its frequency in input graphs, 

making for a poor ranking. The jagged lines are also 

the reason we chose an unorthodox but (in this case) 

more legible format for the precision-recall graphs. 

However, the overall precision is good, showing that 

our templates can facilitate manual domain schema 

construction.  

Sample outputs. In Table 4, we show a sample 

of patterns produced by the three algorithms for the 

bomb domain. The italic text denotes template slots.  

Note the highly detailed, automatically extracted 

slot types 8  in the output of our methods, which 

exploit background knowledge, compared to the 

output of FVM which operates on raw text and only 

abstracts away named entities (presumably with 

number, date, person, location and organization). 

Using a general purpose taxonomy like WordNet also 

allows us to identify slot fillers that are not named 

                                                           
8  Sometimes, statistics reveal more than we might expect – in 

determining that the location of a bombing attack is usually of type 

Asian_country, the CT method unknowingly makes a sad but true 
political commentary. 

entities (hotel, mosque, policeman, ...), unlike the 

great majority of related work.  

Reducing redundancy in the output set of 

triplets. Triplets as returned by existing methods are 

still not purely semantic: a fact can still be expressed 

with multiple triplets which are, as far as the ontolo-

gy is concerned, unrelated (ex: be_after
obj
→ 𝑝𝑒𝑟𝑠𝑜𝑛  

and target
obj
→ 𝑝𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙 ). We tried to make the 

results easier to interpret by clustering the pattern 

triplets post hoc. Two pattern triplets are considered 

more similar if their slots are more often filled with 

the same filler in the same story. Multiple similarity 

measures deriving from this intuition were tried, but 

none yielded satisfactory results, most likely due to 

data sparsity and the underconstrained nature of the 

problem. For example, enter
obj
→ 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔  and 

destroy
obj
→ 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔  were clustered by these 

methods because both triplets appear almost 

exclusively in articles related to bombing attacks, 

where they obviously strongly correlate. Given a 

much higher number of random non-bombing 

documents, the number of disconnected occurrences 

of enter
obj
→ 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔  and destroy

obj
→ 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔  

would likely increase, possibly making the proposed 

approach effective. However, Yates et al. [39] report 

only 35% recall in identifying synonymous relations 

despite this being the primary goal of their paper; this 

proves that the problem is hard. 



M. Trampuš, D. Mladenić 

428 

Table 4. Sample output from all three methods for the 

bomb domain. Template slots are shown in italics, Ex 

shows automatically extracted example values for the slot. 

All labels are taken directly from WordNet. 

Frequent Verb Modifier (FVM) 
 

killed (number) (NNS people) 

(person) killed 

(NN suicide) killed 
 

Characteristic Triplet (CT) 
 

kill
object
→    𝑑𝑒𝑓𝑒𝑛𝑑𝑒𝑟/𝑔𝑢𝑎𝑟𝑑𝑖𝑎𝑛  

Ex: guard, constable, policeman 

kill
object
→    𝑖𝑛𝑡𝑒𝑔𝑒𝑟/𝑤ℎ𝑜𝑙𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 

Ex: 10, twelve, 15 

target/aim
object
→    𝑓𝑜𝑟𝑐𝑒/𝑝𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙 

Ex: police, military_personell 

damage
object
→    𝑜𝑏𝑗𝑒𝑐𝑡 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 

Ex: car, truck, airplane 

destroy/destruct
object
→    𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔/𝑒𝑑𝑖𝑓𝑖𝑐𝑒 

Ex: hotel, building, mosque 

kill
location
→     𝐴𝑠𝑖𝑎𝑛_𝑐𝑜𝑢𝑛𝑡𝑟𝑦 

Ex: Afghanistan, Pakistan, Iraq 

kill
object
→    𝑐𝑖𝑡𝑦/𝑚𝑒𝑡𝑟𝑜𝑝𝑜𝑙𝑖𝑠 

Ex: Beyrut, Kandahar, Bari 

collar/nail (=  arrest)
time
→  𝑤𝑒𝑒𝑘𝑑𝑎𝑦 

Ex: Monday, Tuesday 

𝑎𝑡𝑡𝑎𝑐𝑘/𝑜𝑛𝑠𝑙𝑎𝑢𝑔ℎ𝑡 
subject
←    come/come_up 

Ex: bombing, attack, foray/raid 
 

Freq. Generalized Subgraph (FGS) 
 

bomber –  kill –  𝑝𝑒𝑟𝑠𝑜𝑛/𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 

Ex: worshipper, policeman, civilian, person 

bomb –  kill –  𝑖𝑛𝑡𝑒𝑔𝑒𝑟/𝑤ℎ𝑜𝑙𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 

Ex: 10, one, two 

𝑝𝑒𝑟𝑠𝑜𝑛/𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 –  claim –  duty/responsibility 

Ex: leader, commandant 

bomber –  strike –  𝑠𝑡𝑎𝑡𝑖𝑜𝑛 

Ex: police_station, terminal 

𝑝𝑒𝑟𝑠𝑜𝑛/𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 –  explode/detonate –  explosive 

Ex: man, soldier, militant 

 

5.2. Alignment with Unseen Documents  

This subsection gives the results of evaluation 

from Section 4.2.3, comparing the FGS in CT outputs 

in terms of how well they generalize to unseen data. 

The previous section shows that CT produces 

templates that human evaluators score as being more 

meaningful for their respective topics. However, this 

does not necessarily reveal much about how well the 

patterns represent the topics on the syntactic level. 

Do CT triplets also apply better to a held-out set of 

documents? Table 5 lists the AUC metric for a simple 

topical classifier: a document’s score for domain 𝑑 is 

defined as the sum of scores of template triplets that 

can be found in 𝑑. The classifier classifies into the 

domain with the highest score. Please note that we 

are not suggesting CT or FGS should be actually used 

for classification; their performance at this task is 

measured only to see which of the two produces a 

template that generalizes better to unseen data.  

CT strongly outperforms FGS in this scenario as 

well. Analysis shows that this is mostly a direct 

consequence of the low number of patterns that FGS 

is able to suggest; its template is thus too restricted 

and relatively unlikely to fit unseen documents.  

Although not relevant to relative comparison of 

CT’s and FGS’s performance, the variation in 

performance across domains is notable. The 

differences are expected; some domains are simply 

more dissimilar to the other domains and inherently 

easier to distinguish. 

Table 5. Domain classification AUC in one-vs-all scenario. 

Domain FGS CT 

airplane 0.69 0.83 

bomb 0.67 0.71 

earthquake 0.50 0.78 

sentence 0.73 0.91 

visit 0.52 0.82 

 

5.3. Robustness to Noise 

Obtaining a dataset with only on-topic documents 

might not be easily feasible for a given domain. In 

particular, if the corpus is obtained using automated 

methods and/or heuristics, the data may be noisy. For 

the CT algorithm, we measured how noise impacts 

the performance of the algorithm.  

Starting with the dataset used in the first 

experiment, we kept gradually adding random off-

topic articles (i.e. noise) to the set of documents the 

algorithm believed to be on-topic, and measured how 

the recall@20 metric changes. The results are given 

in Fig. 6. The recall shown in the figure is averaged 

across topics; the variance was small.  

We can observe a very high degree of robustness 

to noise. When the input collection of supposedly 

ontopic documents consists of 50% noise (which 

corresponds 300 documents in the graph), the impact 

on recall is still negligible. Only when the noisy 

documents significantly outnumber the true on-topic 

ones does performance decay. The reason for this 

behavior is that in the algorithm, the main contributor 

towards the score of a generalized triplet is its 

frequency. By adding noise, the frequency of the 

previously highscoring triplets does not decrease, 

whereas the triplets in the noisy part of the corpus do 

not have a coherent topic and are unlikely to produce 
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Figure 6. Robustness of the CT algorithm to noise. Graph 

shows the recall@20 as the original set of 300 on-topic 

documents is gradually tainted with additional random off-

topic documents. The x axis is logarithmic. 

a high-frequency pattern.  

When enough noise is introduced, spurious high-

frequency triplets do however get detected and 

suggested as patterns. They are typically highly 

generalized to accommodate the wide range of noisy 

inputs, for example 𝑝𝑒𝑟𝑠𝑜𝑛
subj
←  𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒  (with 

perceive being a generalization of feel, suffer, see, 

hear, etc.).  

5.4. Data Representation Error Analysis 

Our data representation of choice—WordNet-

aligned triplets—links the data to background 

knowledge and greatly simplifies its structure, 

making the two methods proposed in this paper 

feasible. However, to arrive at this representation, we 

make some strong assumptions. We next analyze how 

much error they introduce.  

Triplet extraction. The triplet extraction process 

relies on an external dependency parser and a set of 

heuristics. We evaluated the quality of the extracted 

triplets from a representative text sample. We ma-

nually created a golden set of triplets for 50 senten-

ces, each picked at random from a different (also 

random) online news article from our dataset. The 

sentences contain a total of 129 verbs involved in 210 

triplets. For the task of correctly identifying triplet 

constituents (verbs, subjects, locations, ...) along with 

their dependency type, we measured an 𝐹1  score of 

78% (micro-averaged).  

WordNet alignment. On the same set of 129 

verbs and 210 modifiers, we also measured the per-

formance of the “most common sense” word sense 

disambiguation heuristic. The measured accuracy was 

76%. This is consistent with the 70–75% result repor-

ted in the literature [26, 19] for all-words word sense 

disambiguation with the same heuristic. (We only dis-

ambiguate noun and verb phrase headwords, which is 

likely somewhat easier.)  

Note that even an incorrectly disambiguated word 

might still produce desired results. For verbs, the 

hypernym hierarchy is flat and the final patterns often 

contain verbs as they appeared in the text, without 

further generalizing them. When the pattern is finally 

presented to the user, it is semantically incorrect (as it 

is linked to the wrong WordNet concept) but looks 

correct, which might suffice depending on the use 

case. For nouns, the different senses of a word are 

sometimes very related and share the same 

hypernym: for example, car.n.01 (an automobile) 

and car.n.02 (a railway car) are both 

specializations of wheeled_vehicle. When a 

triplet involving the word car gets generalized during 

the template creation process, it does not matter any 

more whether it was initially disambiguated to the 

correct sense.  

There are also cases where disambiguation goes 

critically wrong. For example, in the bomb domain, a 

relatively high-scoring pattern was vehicle
subj
←  kill , 

largely the consequence of the word bomber being 

consistently incorrectly disambiguated as a bombing 

aircraft.  

Sentence structure assumptions. One of the 

most limiting assumptions of the algorithm is that all 

extraction-worthy information is presented in sen-

tences as a direct semantic dependents of the verb. 

Although this assumption is clearly too strong, it very 

usefully constrains the search space and has been 

adopted, possibly with minor variations, by the 

majority of related work. How much error does it 

introduce?  

We reviewed the golden questions for which the 

CT algorithm was unable to find a corresponding 

pattern, and performed an informal analysis: for each 

question, we skimmed over several news articles to 

determine if it would be possible to answer the 

question with more expressive patterns. 

1. 58% of missed golden questions probably 

could be captured by relaxing the structural 

assumptions. The answers to these questions 

are mostly given as noun modifiers or as in-

direct objects with an appropriate modifier. 

Examples of missed questions: (earthquake) 

What was the magnitude? Typical 

constructs: “the 5.5-magnitude quake ...”, 

“had a magnitude of 6.1”. (sentence) What 

crime was the criminal charged with? 

Typical constucts: “sentenced for mans-

laughter”, “guilty of knowingly participating 

in drug trafficking”. 

2. 42% of missed golden questions probably 

could not be captured even with elaborate 

patterns. The corresponding information 

tends to be expressed in oblique ways that 

require either coreference resolution (a very 

hard problem in natural language process-

ing) or even deeper reasoning/inference.  

Examples of missed questions: (visit) How 

many countries were visited? This would re-

quire the algorithm to note that the number 

of mentioned countries varies and is some-
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how relevant. (airplane) Who bears respon-

sibility for the crash? Many times, the infor-

mation is not available; when it is, it is often 

given in a roundabout way: “a technical 

error was not to blame” (implying the pilot’s 

fault), “an engine exploded” (implying it 

caused the crash). 

This breakdown is largely anecdotal, but still 

gives a rough idea of the types of remaining challen-

ges. We are particularly interested in expanding our 

triplet representation with preposition-bound indirect 

objects.  

Illustrative error examples. Finally, in Table 4, 

we have intentionally included triplets that illustrate 

the limitations which any semantics-based (here, 

WordNet-based) approach likely has to face. First, 

the parsing of text into concepts and relations during 

preprocessing introduces errors that propagate 

through the pipeline. For example, “kill 
object
→   𝑐𝑖𝑡𝑦/

𝑚𝑒𝑡𝑟𝑜𝑝𝑜𝑙𝑖𝑠” from CT output is technically wrong – 

city is the location of the killing, not its object. 

Second, the hypernym/hyponym distinctions in 

WordNet are sometimes very subtle, causing 

variation in content across documents to appear 

larger than it is. This causes, for example, the CT 

method to detect a slot attack with sample slot fillers 

bombing, attack and raid, between which people 

likely do not care to distinguish.  

Third, while it certainly helps that WordNet col-

lapses synonyms, sometimes the choice of the repre-

sentative lemma for the synonym group (synset) is 

unusual or misleading. For example, the verb col-

lar/nail in one of the CT triplets corresponds to the 

synset (WordNet concept) that also means “to arrest”. 

Ideally, our algorithm should track the fact that this is 

the synset lemma that appeared in the text most often 

and use this lemma for display purposes.  

6. Conclusions 

In this work, we applied the “relational triplet” 

data representation to the task of unsupervised do-

main template construction for the first time, de-

signing and implementing two novel methods. Both 

search the space of relational triplets to construct 

those that are not overly generic yet have strong sup-

port in the in-domain documents. 

We evaluated on five domains and, using the CT 

method, achieved results that are at least comparable 

with current state of the art on a pre-selected set of 

domains in terms of quality while also providing 

much finer-grained type information about the 

template slots. While we cannot guarantee the usabi-

lity of our method beyond the tested scenarios or in 

downstream use-cases, it seems likely that our me-

thod should do reasonably well at least on news data, 

since the test domains were chosen to be typical news 

events. The CT method has a linear time complexity 

and was shown to be highly robust to noise in the 

input data. 

The presented methods are the first to approach 

the problem of domain template construction using 

background knowledge and explore its utility. We 

described the benefits and pitfalls of using the corres-

ponding data representation and analyzed the ensuing 

errors.  

Future work on this task and comparison of me-

thods is facilitated by the detailed evaluation metho-

dology and datasets with golden standards that we 

released.  
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Appendix A - Datasets  

All the data used for evaluation is available online 

at http://mitjat.com/research/. The 

package includes the following:  

• Metadata (title, url, topic/domain) of all input 

documents used in our algorithms; see 

Section 4.1. 2000 nontopical and 5000 topical 

documents across 5 topics. Cleartext is 

available from the authors by request due to 

copyright concerns.  

• A sample TaskRabbit instructions page (see 

Section 4.2.1; for reproducing the golden 

standard or expanding to new topics)  

• The output of TaskRabbit workers and the ac-

tual golden questions used in our evaluation.  

• A sample CrowdFlower task and instructions 

(see Section 4.2.2; for evaluating new algo-

rithms)  

• A README.txt describing the contents in 

more detail. 
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