
414

ISSN 1392–124X (print), ISSN 2335–884X (online) INFORMATION TECHNOLOGY AND CONTROL, 2014, T. 43, Nr. 4

Constructing Domain Templates

with Concept Hierarchy as Background Knowledge

Mitja Trampuš

Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

e-mail: mitja.trampus@ijs.si

Dunja Mladenić

Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

e-mail: dunja.mladenic@ijs.si

 http://dx.doi.org/10.5755/j01.itc.43.4.6899

Abstract. In recent years, both academia and the industry have seen a push for converting unstructured data, most

commonly text, into structured representations. A relatively poorly explored challenge in this area is that of domain

template construction: for a domain, we wish to find the attributes with which texts from that domain can be

meaningfully represented. For example, given the domain of news reports on bombing attacks, we would like to

identify the existence of concepts like “victim” and “perpetrator”. We introduce two new methods for this task, both

operating on semantic representations of input data and exploiting the hierarchical organization of features, something

not explored in prior art. We evaluate on multiple datasets/domains and achieve performance at least comparable to a

state of the art method on a set of “real world” scenarios while additionally identifying fine-grained type information

for properties: for example, the bombing attack victim is found to be of type “defender” (policeman, guard, ...).We also

provide the first fully documented evaluation methodology, publicly available labeled datasets and golden standard

outputs for this research problem, supporting and facilitating future work in the area.

Keywords: text mining; open-domain information extraction; schema induction; graph mining.

1. Introduction

One of the long-standing goals of AI is to convert

natural language text into structured representation(s):

from linguistic parsing to extracting entities, relations,

tabular forms, and ultimately, expressing documents

as a series of logic statements. Such structures provide

meta-information, describing the role of and relations

between individual words, sentence fragments or lar-

ger parts of texts. Therefore, structured representations

are less ambiguous and inherently easier to search and

navigate.

So far, reasonably reliable methods have been de-

veloped for structuring text by annotating and identi-

fying a specific subset of information, most commonly

named entities. We tackle a related but distinctly diffe-

rent problem that arises beforehand: suggesting the

structure with which the text should be represented,

the types of information that should be extracted.

Closely related to attempts at structuring unstru-

ctured text, recent years have seen a proliferation of

semantic methods and representations. Prominent

examples include Google’s structured search results

for movies, albums, people, cities and more; Face-

book’s structured search interface (e.g. “men from C

who are friends with P1 and P2 and are older than Y

years”); and the Wikidata project [36], a systematic

push by Wikimedia to semanticize the semi-structured

information in Wikipedia’s infoboxes.

Having data that is both structured and semantic,

i.e. represented using concepts from a knowledge

base, further decreases ambiguity and allows for easier

linking with other knowledge. The latter is particularly

important when dealing with natural language: hu-

mans assume a lot of shared context (“common sen-

se”) when speaking or writing, and combining raw da-

ta with background knowledge in the form of a know-

ledge base (KB) or an ontology can help algorithms

compensate for their lack of context [40, 16]. In view

of these trends, part of our goal was to develop a me-

thod that produces semantic, KB-aligned outputs.

Problem statement. We are given a set of docu-

ments from a single, relatively restricted domain, for

Constructing Domain Templates with Concept Hierarchy as Background Knowledge

415

example “reports of bombing attacks”, “weather

reports” or “biographies of renowned physicists.” The

task is to identify, in an unsupervised manner, the

most salient properties that can be defined for most of

the given documents; for example, given the “bom-

bing attacks” domain, we wish to detect “attacker”,

“the destroyed property”, “victims” etc. as properties

that are pervasively present in those articles. We tenta-

tively define salient properties as those that would

allow a human, if she were given only the values of

those properties for an unseen document, to produce

as good an abstract of the unseen document as

possible. The properties will be described by their

prevailing context and will be assigned a type. For

example, the “attacker” property from the previous

sentence might be output as 𝑝𝑒𝑟𝑠𝑜𝑛
detonate
→ bomb .

Here, person is the type while
detonate
→ and bomb

provide sufficient context to determine this person is

the attacker. Automatically assigning the label

“attacker” to this property is beyond the scope of this

(and related) work. We call the collection of these

properties for a specific topic a domain template or

topic template.

Motivation. While the output of domain template

construction methods contains some noise and has to

be checked by humans, it has the potential of greatly

reducing human involvement and effort in tasks that

require insight into the structure of a domain.

Semi-automatic ontology extension is one such

use case. Existing relation extraction methods are

sometimes used to extend the lowest, fact-based levels

of ontologies (e.g. adding bornIn relations between

persons and places). Templates, on the other hand,

provide input for extending the middle level of

ontologies: when introducing a new abstract concept

C (e.g. “football player”) to the ontology, a topic

template derived from documents on C can suggest

properties and relations (e.g. “played for”, “goals

scored”) to be associated with new instances of C in

the ontology.

In a similar vein, domain templates guide and con-

strain Information Extraction (IE) methods which

have a wide variety of applications. Present-day IE

algorithms are most often supervised in nature and de-

pend on manual creation of topic templates and trai-

ning documents with labeled slot fillers. Computer-

assisted creation of topic templates thus lowers the

entry barrier to using IE. Not only does it provide the

templates, a high number of labeled slot fillers is

almost always a byproduct of automatic template

creation.

Another added value of templates is that they

expose the key properties of a text type. This makes

them potentially suitable for guiding summarization

or other text shortening tasks by identifying text

fragments that should be scored higher.

In combination with information extraction me-

thods, topic templates allow us to create writing “men-

tors”, automated ways of suggesting missing content

to be included into a document with a known topic.

For example, if the user is posting a sales ad for a car

(TV, house, ...) – something most people don’t do

often – the system could remind her of information

that is typically included in such ads but the user’s ad

lacks. Similarly, a journalist covering a story could be

reminded of types of information typically covered in

related articles but not in hers. On a larger scale, we

can imagine a system that analyzes all Wikipedia ar-

ticles from a given category, derives the template and

identifies pages that are missing some of the

“standard” properties (e.g. “of all German Physicist

pages, only Max Planck’s lacks info about his

schooling”).

Focusing on documents from a single domain

might seem restrictive; however, this focus emerges

naturally. On the data side, document collections often

already include keyword annotations or a topic catego-

rization with which we can obtain single-domain

subcollections; alternatively, we show in Section 4.1

how a collection of documents from a domain of

interest can be obtained from the internet with

minimal human involvement.

In contrast to the so-called open information

extraction or other approaches that identify domain

templates from non-domain-specific text collections,

having a clean single-domain input also allows

methods to find richer templates, with roles that would

otherwise get drowned in the noise much more easily

or take enormous amounts of data to emerge statisti-

cally. Most of the related work [13, 32, 14, 28] there-

fore also assumes a single domain at a time as input.

Contributions. The main contributions of this

paper are as follows:

• We are the first to integrate background know-

ledge into the task of unsupervised construction

of domain templates and solve the task in two

ways, both using a data representation that is

significantly different from the norm.

• We achieve performance at least on par with

the state of the art and additionally produce,

unlike the work so far, fine-grained type

constraints for template slots.

• Evaluation for this task is complicated, and

there has so far been no well-documented eva-

luation methodology or sizable public datasets

and golden standards for comparing methods.

We provide both.

Structure. The rest of the paper is structured as

follows. Section 2 reviews related work. Section 3

describes the two novel methods for creating domain

templates, the Frequent Generalized Subgraph method

(FGS; Section 3.2 and the Characteristic Triplet

method (CT; Section 3.3) as well as the preprocessing

common to both. Evaluation is described in Section 4

and Section 5 discusses the results. We finish with

conclusions in Section 6.

M. Trampuš, D. Mladenić

416

2. Related work

Topic template construction is related to the more

established field of Information Extraction (IE). How-

ever, our focus is elsewhere, on the quality of template

slots themselves rather than the quality of slot fillers.

In traditional IE, the topic domain is constructed

beforehand and remains fixed. Of even more interest

to us are therefore Open Information Extraction sys-

tems; “open” in the task name refers to the fact that

these systems learn new relations (effectively,

template slots) on the fly. The first such system was

TextRunner [3, 22], which extracts sentence fragments

of the form (entity, verb phrase, entity), for example

(the Saints, win, the Superbowl). Balasubramanian et

al. [2] recently described a method for clustering these

syntactic patterns based on their co-reference

frequency and abstracting the entities using WordNet;

each cluster then approximates a semantic relation

(expressed with several syntactic ones) with typed

slots instead of entities. The focus is on commonsense

knowledge at the web scale.

Also prominent in the area of open information

extraction is NELL, the Never Ending Language

Learner [5] which has been continuously scanning the

web for several years and is learning to discover new

entity types and relations (with high-quality slot fillers

as a necessary side effect), producing a “topic

template” of common-sense knowledge. In particular,

its Coupled Pattern Learner (CPL) component [6]

suggests relations based on frequently co-referencing

syntactic patterns, not unlike Balasubramanijan et al.

above. All open IE systems are based on the same

very rough core idea as the topic construction methods

listed later on: finding repeating text patterns.

The task of domain template construction itself has

seen far less research activity. The majority of existing

methods start by representing the documents as depen-

dency parse trees, thus abstracting away some of the

language variability and making pattern discovery

more feasible. The patterns found in these trees are

often further clustered to arrive at more general,

semantic patterns or pattern groups. In the remainder

of this section, we describe the most closely related

contributions in more detail.

Several articles focus on a narrow domain and/or

assume a large amount of domain-specific background

knowledge. For example, Das et al. [13] analyze

weather reports to extract patterns of the form
[weather front type] is moving towards

[compass direction] where they manually create

rules (based on shallow semantic parsing roles and

part-of-speech tags) for identifying instances of

concepts such as compass direction and

weather front type. Once these concepts are

identified, they cluster verbs based on WordNet and

then construct template patterns for each verb cluster

independently; a pattern is every frequent subsequence

of semantic roles within sentences involving verbs

from the verb cluster. The idea is only partially

transferable to the open domain; authors themselves

point out that they rely on the formulaic language that

is typical of weather reports.

The method by Shinyama and Sekine [32] makes

no assumptions about the domain but does limit itself

to discovering named-entity slots. It tags named enti-

ties and clusters them based on their surrounding con-

text in constituency parse trees. The problem of data

sparsity (a logical statement can be expressed with

many natural language syntactic trees) is alleviated by

simultaneously analyzing multiple news articles about

a single news story – an approach also taken by our

FGS method in Section 3.2. In the end, each domain

slot is described by the set of its common syntactic

contexts.

Filatova et al. [14] use a tf-idf-like measure to

identify the top 50 verbs for the domain and extract all

dependency parse trees in which those verbs appear.

The trees are then generalized: every named entity is

replaced with its type (person, location, organization,

number). Frequent subtree mining is used on these

trees to identify all subtrees occurring more than a

predetermined number of times. From the frequent

trees, all the nodes except the verb and the slot node

(i.e. the generalized named entity) are removed; the

remainder represents a template slot. The approach is

representative in spirit of most of the related work

while also being well evaluated, which is why we

choose to compare against it. The method is unnamed;

because it focuses on modifiers of frequent verbs, we

refer to it as the Frequent Verb Modifier (FVM)

method.

Chambers and Jurafsky [8] take a different ap-

proach: they first cluster verbs based on how closely

together they co-occur in documents. For each cluster,

they treat cluster verbs’ modifiers (object, subject) as

slots and further cluster them by representing each

verb-modifier pair (e.g. (explode, subj)) as a vector of

other verb-modifier pairs that tend to refer to the same

noun phrase (e.g. [(plant, obj), (injure, subj)]). Both

rounds of clustering observe a number of additional

constraints omitted here. The method is also capable

of detecting topics from a mixture of documents, posi-

tioning the work close to open information extraction.

A more recent version by Chambers [7] uses the same

features (verb-modifier pairs) but replaces the two

clustering rounds with a single graphical model.

Similarly, Cheung et al. [9] suggest another gra-

phical model approach that does not need documents

to be topic-labeled in advance and attempts to cluster

them at runtime. They do so with a variant of a

Hidden Markov Model (HMM). The observed state of

the HMM is composed of the verb encountered in the

text and its dependents (obtained from the dependency

parse tree) along with their type (subject, object). The

hidden state consists of the topic and the micro-level

event (essentially a verb concept, e.g. “walking”). The

probabilities for the hidden state are influenced by the

previous hidden state, giving the graphical model an

HMM-like structure.

Constructing Domain Templates with Concept Hierarchy as Background Knowledge

417

The above two papers [7, 9] represent an

interesting and promising attempt at bridging the gap

between single-domain template construction and

open information extraction. Unfortunately, they

develop and test on the MUC-4 dataset, which is a

mixture of documents from four preselected domains

and less than 50% of non-topical (noise) documents, a

very unlikely real-world scenario. Their performance

at web scale or on another dataset with a high number

of topics or high amount of noise in unknown.

Regardless of that, we believe the MUC-4 dataset and

the accompanying evaluation methodology to be a

poor choice for two reasons. First, MUC-4 only

provides 2-4 slots per template, which is too low to

sufficiently describe a real-world scenario. Second,

the dataset evaluates the performance of an

Information Extraction system built on top of the

extracted templates, not the quality of the templates

themselves. This fails to capture the suitability of

templates for other purposes, for example ontology

extension or summarization.

Finally, Qiu et al. [28] propose a method with

more involved preprocessing. Unlike the other

methods, which consume parse trees, this method

operates on semantic frames coming from a Semantic

Role Labeling (SRL) system. Within each document,

the frames are connected into a graph based on their

argument similarity and proximity in text. The frames

across document graphs are clustered with an EM

algorithm to identify clusters of frames that

semantically likely to represent the same template

slot(s). This approach is interesting in that it is

markedly different from the others; sadly, there is no

quantitative evaluation of the quality of the produced

templates and even the qualitative evaluation

(= sample outputs) is scarce.

Note that almost all of the related work, like ours,

concerns itself with newswire or similar well-written

documents, allowing parsers to play a crucial role. For

less structured texts, parsing is not feasible any more

and domain-specific approaches are needed. This was

observed for example by Michelson and Knoblock

[24] who automatically construct a domain schema

from craigslist ad titles, deriving for example a

taxonomy of cars and their attributes. Their templates

also significantly differ from all the approaches listed

above in that they are not verb- or action-centric.

Our proposed method is unique in that it tightly

integrates background knowledge into the template

construction process; all existing approaches rely

instead on contextual similarities to cluster words or

phrases into latent slots. None of the above methods

explore the benefits and shortcomings of using

semantic background knowledge. However, a

hierarchy/ lattice of concepts, the form of background

knowledge employed by us, was recently successfully

used in related tasks of constructing ontologies from

relational databases in a data-centric fashion [31] and

semiautomatic ontology building [18]. An approach

similar to ours has also been successfully used in a

related and equally novel task of event prediction [29]:

Starting with events from news titles (e.g. "Tsunami

hit Malaysia", "Tornado struck in Indonesia"), the

authors employed background knowledge to derive

generic events and compute likely causality relations

between them, e.g. a "[natural disaster] hit [Asian

country]" event predicts a "[number] people die in

[Asian country]" event.

A note on terminology. The domain template

construction task is young and has unconsolidated

terminology. The task has so far been tackled by

people coming from different backgrounds, using

different names for the task itself and the concepts

related to it. We collected the assorted terms in

Table 1. Our terminology mostly follows that of

Filatova. Qiu’s is influenced by the early terminology

introduced in the 90s for Information Extraction tasks

(where the domain templates were created by hand),

e.g. at the Message Understanding Conference (MUC)

[15]. Chambers’s “roles” and “role fillers” are

normally used with Semantic Role Labeling (SRL)

[11]; interestingly, he does not use the SRL term

“frame” for templates. Shinyama’s naming choices are

strongly rooted in relational databases. Cheung’s

reflect their use of a graphical model.

Table 1. Consolidation of terminology in related work. Following our terminology, the domain is what the input documents have

in common. Properties/slots are the concepts we would like to discover. Slot filler is a specific value that can fill the slot; this is

what algorithms have to abstract away to produce the slots. Patterns are the syntactic context of slots using which the algorithm

identifies slots and usually also presents them to the user; their content and representation are highly algorithm-specific. The

domain template is the collection of all patterns for a domain and is the final output of the algorithm.

This article domain, topic slot, property slot filler pattern, triplet schema, template

Filatova [14] domain, topic slot slot filler slot structure dom. template

Das [13] domain slot slot value template —

Chambers [7] domain role, slot role filler syntactic relation narrative schema

Qiu [28] scenario salient aspect, slot sample modifier — scenario template

Cheung [9] scenario argument (emission) caseframe frame

Shinyama [32] — relation — basic pattern unrestricted relations

Example bombing attack attacker John Smith bomb
kill
→ 𝑝𝑒𝑟𝑠𝑜𝑛 (all slots)

M. Trampuš, D. Mladenić

418

3. Methods for obtaining domain templates

We present two methods for unsupervised

construction of domain templates based on semantic

representation of input documents.

Figure 1. Pipeline sketch for both proposed algorithms.

The text is reduced to relational triplets, and they are

aligned (linked) to WordNet. In the last and main

step, generalizations of these triplets are formed

and only the promising ones are retained and

presented as the template.

Both methods are based on a graph-like represe-

ntation of documents and topic templates, with la-

beled nodes denoting concepts and labeled edges

denoting relations between them. The methods follow

the pipeline very roughly outlined in Fig. 1.

We use the following notation in text:

• Node for concepts extracted directly from

documents, e.g. “Obama”.

• 𝑁𝑜𝑑𝑒𝑇𝑦𝑝𝑒 for generic, automatically

inferred concepts, e.g. “person”.

• Node1
relation
→ Node2 for relations.

The assumptions that we make about the input

data are as follows:

• A collection of plain-text documents from the

domain of interest is available.

• The key information in input documents (and

the desired output) can be represented with

relational triplets (here, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡
verb
→ 𝑜𝑏𝑗𝑒𝑐𝑡

or 𝑣𝑒𝑟𝑏
dependency
→ 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦). This assum-

ption is likely to be partially violated, which

can be alleviated with input data redundancy.

Both methods share the preprocessing stage in

which said triplets are extracted from plain text.

In the second, main part of the algorithm, the

methods take markedly different approaches. The

first, presented in Section 3.2, attempts to discover

regularities in the semantic structure of the

documents, i.e. the entities appearing as well as

well as the relations interconnecting them. For

example, in documents reporting on murders, we

hope to find a recurrent complex structure like

𝑜𝑓𝑓𝑖𝑐𝑒𝑟
apprehend
→ 𝑝𝑒𝑟𝑠𝑜𝑛

kill
→ 𝑝𝑒𝑟𝑠𝑜𝑛

receive
→ sentence

.

The method assumes such complex semantic

structures are extremely unlikely to appear outside

the context for which they are characteristic (i.e.

murder stories) and searches for such structures in a

manner reminiscent of frequent itemset mining.

The second approach relaxes the assumption on

how common these large semantic structures are and

instead looks for individual topic-characteristic

triplets (𝑜𝑓𝑓𝑖𝑐𝑒𝑟
apprehend
→ 𝑝𝑒𝑟𝑠𝑜𝑛 , 𝑝𝑒𝑟𝑠𝑜𝑛

kill
→ 𝑝𝑒𝑟𝑠𝑜𝑛 and 𝑝𝑒𝑟𝑠𝑜𝑛

receive
→ 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 sepa-

rately), which can be seen as a reduction in the size

of sought-after semantic structures. As these small

structures appear more commonly even outside the

target domain (i.e. in non-murder documents), a

weakly supervised approach is taken: the algorithm

considers both in-domain and out-of-domain

documents to learn what triplets are characteristic of

the domain.

In the remainder of this section, we first look at

preprocessing common to both methods, then de-

scribe each of the two methods in detail.

3.1. Common data preprocessing

Methods from Sections 3.2 and 3.3 operate on the

same form of data representation, triplets. This

section describes how they are constructed.

Starting with plain text, we first annotate it with

some basic semantic and linguistic information.

Using the ANNIE tool from the GATE framework

[12], we first detect named entities and tag them as

person, location or organization. We next use

Enrycher [33] to perform coreference and pronoun

resolution (“Mr. Obama”, “President Barack

Obama” and “he” might all refer to the same entity

within an article). Finally, we use the Stanford parser

[20] to obtain dependency parses for individual

sentences. We simplify the parse trees using the

following steps:

• For noun phrases, retain only the head of the

phrase.

• Convert passive to active voice.

• Convert object-like relations (dobj,

acomp, infmod, nsubjpass) to a

simple “object” relation.

• Convert subject-like relations (nsubj,

agent, xsubj) to a simple “subject”

relation.

• Convert the prep relation to a “time”,

“location”, or “instrument” relation or ignore

it. The mapping is done based on ANNIE

annotations and prepositional modifiers.

• Lemmatize all words.

We found the above simplifications to yield trees

that are still sufficiently expressive but at the same

time more semantic (e.g. normalizing away passive

voice) and less complex, thus more likely to repeat

across the corpus.

The simplified parse trees are used to derive

triplets, the basic data representation structure for

methods described in this paper. A triplet consists of

two concepts and a relation connecting them; we

experimented with two types of triplets:

Constructing Domain Templates with Concept Hierarchy as Background Knowledge

419

• verb–dependency–property, which captures

the verb and its main dependents. Using this

representation, the sentence “A violent

tornado hit two houses in Texas.” produces

hit
subject
→ tornado , hit

object
→ house and

hit
location
→ Texas . The supported

dependency values are subject, object, time,

location and instrument. This representation is

used by the Characteristic Triplet (CT) method

in Section 3.3.

• subject–verb–object, which uses the verb itself

as the relation. The example sentence above is

expressed as tornado
hit
→ house with these

triplets. This is more compact but captures

only information encoded with transitive

verbs. This representation is used by the

Frequent Generalized Subgraph (FGS) method

in Section 3.2 which uses redundant input data

to alleviate the problem of capturing only

transitive verbs.

As a last step, we align all triplets to a knowledge

base (KB). We require a KB that a) is not domain-

specific and b) is a simple ontology, in particular,

covers the hypernymy relations between concepts.

After evaluating Cyc [21] and WordNet [25], we

decided for the latter because of its more pragmatic

structure and better mappings to natural language.

This is also supported by e.g. Boyd-Graber and

Fellbaum [4] who note that “WordNet has become

the lexical database of choice for NLP”.

For each verb and property appearing in any of

the triplets, we try to find the corresponding KB

concept (“synset” in WordNet terminology). We first

remove inflection from the words using python

NLTK (Natural Language ToolKit), then align it to

the corresponding synset. If more than one synset

matches, we choose the most common sense; this is a

proven approach and a very strong baseline for word

sense disambiguation [23]. If no synset matches, we

create a new one on the fly, expanding our local copy

of WordNet. If the word for which the new concept

was created (e.g. “Obama”) was previously tagged by

ANNIE as a person, location or organization, the new

synset’s hypernym is set accordingly. The new

concepts are retained between algorithm runs.

As an alternative method of obtaining triplets, we

also explored an approach based on Semantic Role

Labeling (SRL) [34] which is a more natural fit for

the task at hand than dependency parses. However,

our conclusion was that the available language

resources are unfortunately not yet mature enough to

support open-domain tasks, which ours necessarily is.

In particular, there is little training data beyond the

few most frequent frames, and the linkage with other

semantic resources is lacking.

The transformation of text to ontology-aligned

triplets brings important benefits:

• Feature selection: only the key fragments of

sentences are retained, following heuristics

based on parse trees.

• Noise reduction: lower sensitivity to

conjugation, tenses, synonyms, etc.

• Access to background knowledge: in our case,

we exploit WordNet’s hypernym taxonomy.

However, we also have to note several limita-

tions:

• Both parsing and KB alignment introduce

errors. Because the two steps are performed

sequentially, their errors compound.

• The heuristic conversion of parse trees covers

only specific (albeit the most common) types

of expressions. For example, in the sentence

“93 people were killed on Monday”, 93 gets

lost as it is only a modifier of the subject; and

the sentence “President’s visit to China ...”

will not yield President
visit
→ China because

“visit” here is not a verb.

We provide an analysis of the errors introduced

by the semantic representation in Section 5.4.

Preprocessing real-world data. In principle, the

methods can take any plain text as input. Evaluation,

however, more realistically focuses on news data

from the internet, a genre which is easily accessible.

Section 4.1 describes our data acquisition and

automatic cleartext extraction process. Together with

the core methods in this section, they form a full

pipeline leading from a few user-provided domain

keywords to a domain schema for that domain.

3.2. FrequentGeneralized Subgraph (FGS)Method

This approach was first introduced in [34]. Here,

we present additional details of the method and

perform a quantitative evaluation which is missing in

the original paper.

The key idea of the Frequent Generalized Sub-

graph (FGS) method is as follows: first, we construct

a semantic graph for each document, consisting of

triplet-derived entities and relations. Then, we mine

graphs from all on-topic documents for frequent

subgraphs whose specializations 1 appear in suffi-

ciently many of those graphs. These generalized fre-

quent subgraphs are what the method suggests as the

topic template. The generalized nodes (e.g. 𝑝𝑒𝑟𝑠𝑜𝑛)

and edges are the template slots and the graph as a

whole provides context that makes it possible for

humans to interpret the node.

In other words, the method assumes that while an

individual triplet (e.g. 𝑝𝑒𝑟𝑠𝑜𝑛1
kill
→ 𝑝𝑒𝑟𝑠𝑜𝑛2) may

be frequent across multiple topics and its frequency

1 “Specialization” in the sense of the hypernym taxonomy implied

by our background knowledge base. For example, Rodney
kill
← Wiley E.

detonate
→ hand grenade is a specialization of

𝑝𝑒𝑟𝑠𝑜𝑛
kill
← 𝑝𝑒𝑟𝑠𝑜𝑛

detonate
→ 𝑒𝑥𝑝𝑙𝑜𝑠𝑖𝑣𝑒 .

M. Trampuš, D. Mladenić

420

does not attest to its suitability for a slot pattern, a

small subgraph consisting of k or more nodes (e.g. for

k = 3: 𝑝𝑒𝑟𝑠𝑜𝑛2
kill
← 𝑝𝑒𝑟𝑠𝑜𝑛1

detonate
→ 𝑒𝑥𝑝𝑙𝑜𝑠𝑖𝑣𝑒)

will only be frequent within a certain topic (here,

suicide bomber attacks). k, the minimum

“interesting” size of these subgraphs, is likely domain

dependent. In our tests with news documents on five

topics (see Section 4.1) we found k = 3 to give

reasonable results.

Fig. 2 illustrates this with sample graphs from the

“bombing attacks” domain. The graphs 𝐺1, 𝐺2 and 𝐺3

each represent a semantic graph constructed from an

input document. H is the generalized subgraph of all

𝐺𝑖 and embodies a (partial) schema for the domain. In

practice, the graphs 𝐺𝑖 are larger, there are more of

them and the subgraph H is only required to appear in

some of the 𝐺𝑖.

Figure 2. Example of a frequent generalized subgraph H as

it would be identified by the FGS method for input graphs

𝐺𝑖. Each node in H has a specialization in 𝐺𝑖; e.g.,

“attacker” maps to “bomber” in 𝐺1, “attacker” in 𝐺2

and “terrorist” in 𝐺3. This illustrative example is

taken from the “bombing attack” domain and does

not fully follow the WordNet hierarchy.

In the following subsections, we first briefly

describe how the semantic graph is constructed, then

turn to the technique for mining frequent subgraphs

and to its generalization required by our approach.

3.2.1. Semantic Graph Construction

We construct the semantic graph from triplets

derived in Section 3.1.We consider each triplet to be

a 2-node graph, then treat the collection of all the

triplets as a large disconnected graph and finally

merge (collapse, identify) the nodes with the same

labels.

The key simplifying assumption is that input

documents tend to be focused in scope: we do not

need to disambiguate entities other than by their

labels. This is true of e.g. news articles, on which we

evaluate. As an example, if an article mentions two

buildings, one of which burns down and the second

of which acted as a shelter for the fire fugitives, our

method detects a single “building” and assigns both

properties to it. Although having a means of

distinguishing between the two would clearly be

preferable, we have found this simplification not to

cause significant issues in the newswire domain:

entities which do need to be disambiguated are

almost always presented with more unique names

(“France” instead of “country” etc.). This rationale

would have to be revised if one wanted to apply the

approach to texts that are broader in focus.

Combating data sparsity. This method mines

subgraphs that are frequent across individual article

graphs. However, article graphs tend to be small,

each capturing only a part of the information

conveyed in the article due to the limited recall of the

triplet representation. In addition, even when two

documents convey the same information, they do not

necessarily produce overlapping subgraphs (e.g.

Tom
drink
→ glass vs. Tom

have
→ drink). In fact, ex-

periments show that for newswire, documents from

the same domain almost never share subgraphs with

three or more nodes.

This issue can be resolved with the use of parallel

corpora. We thus derive each graph not from a single

document but from the (textual) concatenation of

multiple “parallel” documents that convey almost the

same information, but paraphrased. As input, the FGS

method therefore requires a document set that is

further comprised of groups of parallel documents.

Depending on the domain, this can be a serious

limitation. However, for domains represented in the

news, such data is available readily: we can exploit

the fact that every noteworthy event is described in

several news articles, and they form the required set

of parallel documents.

We conduct our experiments on newswire data

and derive each graph from the concatenation of

20–50 news articles from different sources that are all

reporting on the same story. We observe this provides

enough redundancy for subgraph patterns to occur

across different story graphs. The number of articles

per story that gives satisfactory results is likely

dependent on the domain and uniformity of language

(e.g. sports match reports are more formulaic than

movie reviews); we tested with the above figure

(20–50) as this is a common number of articles for

real-world news stories, and did not experiment

further. Details on how we acquire stories (i.e.

clusters of articles) from a specific domain are given

in Section 4.1.

3.2.2. Frequent Generalized Subgraph Mining

As described in Section 3.2, the method requires

us to find frequent subgraph(s) of input graphs in a

Constructing Domain Templates with Concept Hierarchy as Background Knowledge

421

generalized manner, taking the hypernym taxonomy

into account. This is non-trivial.

Formal problem statement. (Refer to Fig. 2 for

easier understanding.) Given a set of labeled graphs

𝑆 = {𝐺1, … , 𝐺𝑛} , a transitive antisymmetric relation

on graph labels 𝑔𝑒𝑛𝑙(·,·) (with 𝑔𝑒𝑛𝑙(𝑙′, 𝑙) interpreted

as “label 𝑙′ is a generalization of label 𝑙 ”) and a

threshold 𝜃 ∈ ℕ, we wish to construct all graphs 𝐻

that are generalized subgraphs of at least 𝜃 graphs

from S. A graph 𝐻 is said to be a generalized

subgraph of G if there is a mapping f of vertices

𝑉(𝐻) onto a subset of 𝑉(𝐺) such that 𝑔𝑒𝑛𝑙(𝑣, 𝑓(𝑣))
holds for all 𝑣 ∈ 𝑉(𝐻), and analogously for edges.

We are only interested in those 𝐻 that are

maximal in size, i.e. there is no graph 𝐻∗ ⫌ 𝐻 such

that 𝐻 generalizes 𝐻∗ and 𝐻∗ also satisfies the above

criteria. Among those, we only seek 𝐻 that are as

specific as possible.

This is computationally an exceptionally hard

problem. Even finding frequent subgraphs verbatim–

without taking possible generalizations (hypernyms)

into account–presents a search space of subgraphs

that grows exponentially with their size, and

isomorphisms make even naive counting non-trivial.

Extending the problem with generalizations as we do

makes the search space even larger: each node in

graphs {𝐺1, … , 𝐺𝑛} can be independently generalized

in multiple ways2, making for yet another exponential

growth factor.

We alleviate the generalization problem as fol-

lows: first, we transform all input graphs by generali-

zing each input node to the third level of the WordNet

hierarchy and each input edge to its corresponding

root in the WordNet hierarchy (edge labels are verbs,

which do not have a common “entity”-like root). We

found this to yield graphs that are general enough to

generate desirable patterns and specific enough not to

conflate unrelated patterns. Then, we perform regular

frequent subgraph mining on these graphs to obtain

candidates for subgraphs 𝐻 as they are defined in the

formal problem statement. The subgraphs obtained

this way are typically overly generalized, so we

specialize them back as much as possible without the

support falling below 𝜃. The respecialization is per-

formed greedily: when multiple specializations are

possible, which is almost always the case, we choose

the one that has the highest support in input data.

Regular frequent subgraph mining in itself can be

problematic. We had three modern dedicated pro-

grams (gSpan [37], Gaston [27] and HybridTreeMi-

ner [10]) crash on our graphs with tens of thousands

of nodes and thousands of labels (but work on

smaller graphs), so we implemented our own solution

based heavily on their ideas. The approach works in a

way reminiscent of the classic a priori algorithm in

frequent itemset mining: start with the smallest

possible frequent graphs, i.e. those on one node, then

2 For example, possible generalizations of suicide_bomber are

𝑡𝑒𝑟𝑟𝑜𝑟𝑖𝑠𝑡 , 𝑟𝑎𝑑𝑖𝑐𝑎𝑙 , 𝑝𝑒𝑟𝑠𝑜𝑛 and 𝑒𝑛𝑡𝑖𝑡𝑦

iteratively add more and more nodes to them,

discarding all graphs with an overly low support at

each iteration. The algorithm is described in more

detail in [34], and the implementation released at

http://mitjat.com/research/.

3.3. Characteristic Triplet (CT) Method

The Characteristic Triplet method is the second

approach to constructing topic templates we propose.

Its key idea is to find triplets which are frequent in

documents belonging to the topic, yet infrequent in

documents not belonging to it. Frequency is again

considered in a generalized sense: Obama contri-

butes to the counts of 𝑝𝑜𝑙𝑖𝑡𝑖𝑐𝑖𝑎𝑛 , 𝑝𝑒𝑟𝑠𝑜𝑛 and

𝑒𝑛𝑡𝑖𝑡𝑦 . As with the FGS method, we are not sear-

ching for triplets that appear in the input documents

verbatim but rather for their generalizations. For

example, for the topic “political visits”, we are

looking for 𝑝𝑜𝑙𝑖𝑡𝑖𝑐𝑖𝑎𝑛
visit
→ 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 , which likely

does not appear in any of the input documents.

The algorithm is based on the expectation that for

any given topic, triplets (both the verbatim and

generalized ones) will fit into one of the three cate-

gories below. Illustrative examples are given for the

“diplomatic visits” domain:

• The overly specific triplets (e.g.

. . .
…
→ Obama) and the irrelevant ones (e.g.

. . .
…
→ 𝑓𝑜𝑜𝑡𝑏𝑎𝑙𝑙 𝑝𝑙𝑎𝑦𝑒𝑟) will have a low fre-

quency count.

• The overly generalized triplets (e.g.

. . .
…
→ 𝑒𝑛𝑡𝑖𝑡𝑦) will be frequent in on-topic

documents but also off-topic ones.

• The triplets that are generalized “just right”

(e.g. . . .
…
→ 𝑝𝑜𝑙𝑖𝑡𝑖𝑐𝑖𝑎𝑛) will be frequent in

on-topic documents but less frequent other-

wise; these are the ones we aim to detect.

The remainder of this section describes the algo-

rithm based on this idea. We collect all triplets from

input documents and all their generalizations and

assign assign them scores that reflect the above

intuition. The highest-scoring triplets form the topic

template.

3.3.1. Triplet Lattice

The method assumes, in addition to the on-topic

documents, a number of off-topic plain-text docu-

ments representative of the background language.

This helps the method construct patterns that are

general enough to be frequent only in the target

domain, but specific enough to not be too frequent in

the language in general. A similar idea has been

successfully used in information extraction before:

for example by Riloff [30] to judge the relevancy of

extraction patterns, and by Yangarber [38] to stop the

bootstrapping process of expanding the set of patterns

at the right time.

M. Trampuš, D. Mladenić

422

We start by representing each document as a set

of verb–dependency–property triplets as previously

described in Section 3.1. Note that this is slightly

different from the subject–verb–object triplets used in

the FGS method; this alternative representation

makes the method less susceptible to data sparsity in

triplet space (see also “Combating data sparsity” in

Section 03.2.1).

We next construct a lattice of triplets encoun-

tered in the input documents and their generaliza-

tions. Let us denote with 𝑐′ the direct generalization

(hypernym) of a concept 𝑐3. We initialize the lattice

with every triplet 𝑣
𝑑
→ 𝑝 appearing verbatim in the

input documents. Note that the points of the lattice

are triplets which themselves are considered atomic.

We then recursively extend the lattice by assigning to

each triplet 𝑣
𝑑
→ 𝑝 as its parents the triplets

𝑣′
𝑑
→ 𝑝 and 𝑣

𝑑
→ 𝑝′ , until reaching the root. See

Fig. 3 for an illustration. Because the lattice is

constructed using the hypernymy relation, it is a

DAG (directed acyclic graph) and implies a partial

order relation.

3.3.2. Cutting the Lattice

Each triplet 𝑡 in the lattice is assigned a

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑐𝑜𝑢𝑛𝑡, defined as the number of times 𝑡
or its specializations appear in on-topic documents.

Formally, let 𝑡 ≥ 𝑡∗ denote that 𝑡 is above 𝑡∗ in the

lattice, and let 𝑇+ and 𝑇0 denote the multiset of

triplets in the on-topic documents and in the entire

corpus, respectively. In 𝑇+ and 𝑇0 , each triplet is

counted once per source document. Then we define

the frequency count of triplet t in on-topic documents

as

𝑓+(𝑡) ≔ |{𝑡∗: 𝑡∗ ∈ 𝑇+, 𝑡 ≥ 𝑡∗}|.

Analoguously, we define 𝑓0(𝑡) as the frequency

count of 𝑡 in the whole corpus. The value of 𝑓+(𝑡) is

also illustrated in Fig. 3; note how the off-topic

documents do not contribute to 𝑓+(𝑡) and how the

value is not necessarily the sum of values in 𝑡 ’s

children.

Additionally, we assign a score to each triplet t in

the lattice. The score 𝑠(𝑡) is tf-idf inspired:

𝑠(𝑡) ≔ 𝑓+(𝑡) ⋅ 𝑙𝑜𝑔
|𝑇0|

𝑓0(𝑡)

Intuitively, the first factor favors more generali-

zed triplets (as their frequency in on-topic documents

is by definition higher than the frequency of highly

specialized triplets) while the second factor assigns a

lower score to triplets that overly generalized and

appear frequently even in off-topic documents.

3 A small fraction (1.7%) of entities in WordNet have multiple

hypernyms. In this case, we use only the first hypernym, which is

the more significant and, according to [17], by far the most
relevant in 85% of the cases.

The scores 𝑠(𝑡) form the basis for selecting the

triplets that will form the topic template. In Fig. 3, the

triplet destroy
obj
→ 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 and its two parent

triplets have the highest 𝑓+(⋅) . However, destroy
obj
→ 𝑎𝑟𝑡𝑖𝑓𝑎𝑐𝑡 has a lower score than the other two

since it also appears in the two non-topical

documents.

3.3.3. Triplet Respecialization

We now take the 1000 top-scoring triplets as

initial candidates for the final template. The cut-off of

1000 is conservative and was determined empirically;

we observed that the relevant triplets typically have a

much higher ranking. Next, we perform postpro-

cessing to discard some of these candidate triplets for

one of two reasons.

First, some frequent triplets are simply

characteristic of the domain and always appear in the

same form, e.g. ground
subj
← shake for the domain

of earthquake reports. Triplets that do not have

multiple specializations in the input documents

cannot possibly represent topic slots and are thus

removed.

Second, based on our analysis of the test data,

more than 90% of the high-scoring triplets are

redundant and should be removed as well. As an

example, consider Fig. 3 and assume unmake is the

direct hypernym of destroy and disassemble in

WordNet. Then, if even a single 𝑑𝑖𝑠𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒
obj
→ building were (possibly erroneously) detected in

the on-topic documents, 𝑢𝑛𝑚𝑎𝑘𝑒
obj
→ building

would have a higher score than 𝑑𝑒𝑠𝑡𝑟𝑜𝑦
obj
→ building even though 𝑢𝑛𝑚𝑎𝑘𝑒 “earned” most

of its score through 𝑑𝑒𝑠𝑡𝑟𝑜𝑦 . More generally, when

we climb the lattice the score is monotonically non-

decreasing as long as we don’t encounter triplets that

have specializations occurring in off-topic

documents.

As a special case of the redundancy problem,

observe that for any positively scored triplet 𝑡 and its

every generalization 𝑡′ with no other descendants

appearing in the input text, we have 𝑠(𝑡′) = 𝑠(𝑡). For

example, in Fig. 3, there are no documents, either on–

or off-topic, that contain a specialization of

𝑢𝑛𝑚𝑎𝑘𝑒
obj
→ building other than through 𝑑𝑒𝑠𝑡𝑟𝑜𝑦

obj
→ building . Therefore, the two triplets have the

same score even though the more specialized version

is clearly preferable as output.

We correct for these effects by discarding all

triplets t which have one or more children t∗ such

that 𝑠(𝑡∗) > 0.80𝑠(𝑡). Here, 0.80 is a parameter that

we fixed with a grid search. It is fairly robust; values

in the range from 0.75 to 0.90 all gave comparable

Constructing Domain Templates with Concept Hierarchy as Background Knowledge

423

Figure 3. An example of a triplet lattice as constructed by the Characteristic Triplet (CT) method. Each box shows a triplet

and its frequency 𝑓+ in the on-topic documents. Here, the topic is “bombing attack”. Each grey box represents a triplet that

appears verbatim in an on-topic (X) or off-topic (m) input document. Grey boxes also contain the sentence that gives raise

to the triplet. Arrows point from less generalized to more generalized triplets. The thick-bordered box represents the triplet

with the highest score that gets selected for the template. The scores are related to the frequency f+ but not shown here;

see Section 3.3 for discussion.

results. In Fig. 3, the triplet unmake
obj
→ 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔

is discarded in favor of destroy
obj
→ 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 since

it has the same score.

At the end of this pruning process, the remaining

triplets are output as the template.

3.3.4. Frequent Generalized Subgraph (FGS) vs

Characteristic Triplet (CT) Method

Note that like the FGS method described in the

previous section, the CT method operates in the space

of triplets. However, it makes several notable impro-

vements:

• CT does not treat each topic in isolation but

rather in relation to the background corpus

distribution.

• By operating on structurally less complex

units (triplets instead of subgraphs), CT does

not require clusters of tightly related docu-

ments as input (see “Combating data sparsity”

in Section 3.2.1).

• Due to not having to perform complex fre-

quent subgraph mining, the CT method scales

considerably better. Its time complexity is

linear in the size of the input data.

• FGS expects a high level of regularity in the

data to detect patterns, an expectation that

often goes unfulfilled. CT is more flexible

(and can therefore detect a higher number of

patterns, as the evaluation later on also

shows).

4. Evaluation

Evaluation of domain templates is not straight-

forward4, to the point that many related articles only

evaluate qualitatively (i.e. show a selected part of the

output) or evaluate other aspects of their methods.

We evaluate on five newswire domains, com-

paring three methods: our FGS and CT, and a state of

the art baseline. Section 4.1 describes the data and

Section 4.2 details the methodology for evaluating

this research problem.

We choose to adopt the evaluation method by

Filatova [14] rather than the one by Chambers [7] and

Qiu [9] based on MUC-4 data. As outlined in

Section 2 (Related Work), we believe the latter to

have several deficiencies. Most notably, it judges the

quality of templates indirectly, through the lens of

Information Extraction, while we evaluate the

templates directly. It should still be noted that our

evaluation only reflects the performance on a limited

set of “real world” scenarios.

4 A related article [28] notes, "While [template creation] is a

difficult problem, its evaluation is arguably more difficult due to
the dearth of suitable resources."

M. Trampuš, D. Mladenić

424

4.1. Datasets

We evaluated the algorithms on five domains/

topics, each captured by a set of news articles. We

give the datasets single-word names:

• airplane - Reports of aircraft crashes.

• bomb - Reports of terrorist attacks (often by

suicide bombers).

• earthquake - Reports of past earthquakes.

• sentence - Reports of sentencings passed in a

court of law.

• visit - Reports of diplomatic visits by

politicians.

We chose the topics based on what is covered by

the media and based on the choices made by [14], the

work we compare with. They evaluate on four do-

mains: airplane crashes, terrorist attacks, earthquakes,

and presidential elections. However, for the presiden-

tial elections domain they discover it is ill-defined

and a poorly suited for evaluation.

Obtaining documents for a domain. We mentio-

ned in the introduction that for domains that are

reasonably well-represented in online news, we can

obtain on-topic documents with minimal user input.

Here, we briefly outline our process, although this is

just one of the possible sources of common-topic

document collections and not the focus of this work.

We assume the availability of a news collection,

for example one obtained by crawling RSS feeds. We

can then perform a simple query on the dataset with

domain-related keywords–which are the only requi-

red user input. The results of such a naive search will

be noisy: some matching documents will contain the

query words by chance, unless the query is very ela-

borate; and at the same time, relevant documents may

not match the exact query keywords. Our solution to

this problem was to first create clusters of articles

reporting on the same event, then retrieve clusters in

which more than 25% percent of the articles match

the query. This produced very clean results: even

with no trial-and-error with the queries, more than

90% of the resulting articles were on the topic we had

in mind when choosing the query.

There is ample existing work on clustering text

streams and even news data streams in particular. The

quality tends to be high because algorithms can hea-

vily exploit the time component and effectively only

cluster a day’s or so worth of events. In our evalua-

tion data, we used clusters as provided by Google

News–a historical artifact of our past experiments.

However, we later also found a reimplementation of

[1] to give clusters that are indistinguishable in

quality from Google’s for the purpose of this data

collection task.

Alternatively, one can obtain on-topic documents

by directly querying a search engine and trust them to

pick relevant documents; this was done for example

by Chambers et al. [8]. This approach is even simpler

and requires no offline data or clustering, but comes

with obvious caveats regarding reproducibility and

the amount of accessible data; we did not use it in our

work.

Evaluation data. For the evaluation in this paper,

we obtained on-topic documents using the method

outlined above. Specifically, we queried a one-year

crawl (August 2012 to July 2013) of Google News

with the following expressions:

• airplane: (helicopter ∨ airplane) ∧ crash

• bomb: bomb ∧ attack

• sentence: judge ∧ court ∧ sentence

• earthquake: earthquake ∧ magnitude

• visit: (president ∨ minister ∨ diplomat) ∧

(meeting ∨ summit)

Those were the first queries we tried—we judge

them to produce articles that are a good represent-

tation of the topics as defined above. Tweaking the

queries might produce more favorable end results in

evaluation.

The full data crawl consists of 4 million articles

clustered into 80 000 stories. The queries yielded

more than 1000 results each; however, we only

needed and used a random subset of 300 articles per

topic for the evaluation.

In addition, we kept a random set of 4000 articles

from the full dataset; those represent the background

distribution (for the CT method) and are with

relatively high probability not on-topic for any of our

topics.

The downloaded articles were converted from

HTML to plain text using the method presented in

[35].

We provide our entire dataset online (see

Appendix A).

4.2. Evaluation Methodology

What constitutes a good domain template? We

characterize them as follows:

• A template should be predictive of expected

document content within a domain. In other

words, it should reflect the types of informa-

tion humans expect to see in documents on

that topic.

• A template should be representative of the

domain, i.e. largely independent of the speci-

fic training data and not overfit to single

aspects of it.

The first property, in particular, is hard to evalua-

te, and there is no established methodology. We are

therefore devoting an entire section to proposing one.

To maximize reproducibility of results, we need

to create a golden standard, i.e. the “ideal” template

for every domain we wish to evaluate on. There are

two problems associated with creating a golden

standard:

• Golden standards are noisy. Like the better-

known problem of summarization, our pro-

blem is inherently weakly defined; the notion

of the “best” template differs from human to

Constructing Domain Templates with Concept Hierarchy as Background Knowledge

425

human. In our case, the problem is even more

pronounced because it turns out people do not

easily understand what a template/schema is.

• Comparing with the golden standard.
Because of the expressivity of natural lan-

guage, it is possible to obtain an output that is

lexically and syntactically largely different

from the golden standard, but semantically

closely related5. This is again a problem faced

when evaluating summaryzation algorithms.

4.2.1. Creating the Golden Standard

We combat the first problem listed above by dis-

guising our task: we ask evaluators to have a look at

some domain documents and then pose 10 questions

that they believe would best help them summarize a

new, unseen document from the domain if they got

answers to them. This idea is largely due to Filatova

[14].

We used the TaskRabbit6 platform to recruit eva-

luators. The workers were not required to be domain

experts, i.e. they had common-sense understanding of

the domains only. They were native English speakers

and were not in any way affiliated with the research.

For use on potential new domains, we made available

the exact phrasing (which proved to be very import-

ant and took refining) of the instructions given to

workers; see Appendix A. We used three workers for

each task.

Finally, we revised and aggregated the questions

ourselves. About a quarter of questions was discarded

because they did not follow instructions. They tended

to fall into two categories: 1) questions obviously re-

ferring to a single article instead of the topic in gene-

ral and 2) metadata questions, e.g. “Who is repor-

ting?”, “Where was the article published?” etc. Wi-

thin the remaining questions, we identified synony-

mous ones and retained the top 10 questions based on

the number of times they were asked by our evalua-

tors. Ties were broken by an unaffiliated friendly co-

lleague in the hallway. These remaining golden ques-

tions form the golden standard. Table 2 lists the most

popular questions for the “bombing attack” domain.

Table 2. Sample golden questions for the “bombing attack”

domain

Sample golden questions

Who was killed?

Who was injured?

Which organization is suspected / admitted responsibility?

Where did the event happen?

Who was the bomb intended for?

5 or example X was shot and X took a hit.
6 http://taskrabbit.com; it differs from typical crowdsourcing

platforms in that the tasks are larger and the involvement with
workers more personal.

Figure 4. A sample CrowdFlower task/unit. Evaluators

judge if a triple (here 𝑝𝑒𝑟𝑠𝑜𝑛
get
→ sentence)

corresponds to a golden question.

A golden standard in the form of natural-language

questions has another advantage: it does not impose a

representation or format on the algorithm output.

This potentially allows a greater number of algo-

rithms to be compared against each other, especially

with the domain schema construction problem where

the community has not yet converged on a single

schema representation.

4.2.2. Comparing Against the Golden Standard

The downside of our golden standard is that we

can not reliably automatically determine to what

degree a proposed template matches it.

We therefore evaluate manually, using the Crowd-

Flower7 (CF) crowdsourcing platform. We present the

workers with a form that allows them to mark, for

each output triplet, the golden question for which the

triplet entails the answer. They can also mark that the

triplet answers no questions. In CF terms, one such

triplet-questions pair is called a unit. An example is

provided in Fig. 4.

We use two mechanisms to ensure the output

from CF is of high quality. First, we use their built-in

mechanism of “gold units” (unrelated to our “golden

standard”): we provide the expected worker

responses to five clear-cut units, and workers that do

not to get them right are excluded from further

evaluation. Additionally, we filter out workers that

have a CF-internal trustworthiness score below 0.80.

Each unit is answered by five workers.

Finally, precision is computed as the percentage

of output triplets that answer some golden question.

Recall is computed as the percentage of golden

questions answered by at least one output triplet.

4.2.3. Gauging Generalizability

As mentioned at the beginning of Section 4.2, we

also wish to verify that the templates are not

overfitted to the training corpus; this is of particular

concern with our approach that qualifies template

slots with detailed type information. A slot might

7 http://crowdflower.com/; a reseller for Mechanical Turk and

other, smaller crowdsourcing platforms

M. Trampuš, D. Mladenić

426

look reasonable at the outset, e.g. earthquake
hit
→ 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 captures the location of an earthquake,

but in reality earthquakes do not only hit capital cities

and 𝑐𝑖𝑡𝑦 is preferred to 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 .

As this property is not of central importance, we

measure it automatically by proxy. For each topic, we

take at most 80% of topical documents and use them

to construct the topic template. For the remaining

held-out set of documents, we verify how many of

their triplets can be aligned to (i.e., are specializations

of) the template triplets. We are careful to make the

training-vs-test cut so that no news story is split

between the two sets, ensuring that matches observed

in the held-out set are due to topic-specific, not

storyspecific pattern triplets. This metric does not

generalize to other datasets, but as we only aim to

compare our own methods, this simple approach

suffices.

5. Results and Discussion

5.1. Template Quality

This subsection describes results pertaining to the

evaluation described in Section 4.2.2, Comparing

against the golden standard. We compare ourselves

with FVM [14], a state of the art method that is

representative of a large group of related methods.

The method is summarized in Section 2, Related

work.

As described, we evaluated on a set of five

scenarios; we cannot guarantee performance on an

arbitrary scenario or use case. However, the test

scenarios were chosen in advance and by virtue of

them being common topics of real-world news

reports, so they are likely a reasonable approximate

indicator of achievable performance for tasks that

involve structuring events from news data.

The only metric reported in the FVM paper is

recall (i.e. percentage of answered golden questions)

at 20 “patterns”, which are comparable to our triplets

(see Table 4 for examples of both). The metric makes

good sense: the generated templates are primarily

intended for humans and a useful algorithm should

discover as many relevant template slots as possible.

At the same time, reviewing 20 candidate slots seems

like a reasonable burden for a knowledge worker. We

evaluate according to the same metric and give

results in Table 3.

It is clear from the table that FGS generates

relatively poor templates relative to the other two

algorithms. However, CT and FVM are roughly

comparable. Both methods are consistently able to

cover about a half of golden questions with the

automatically generated templates, with our method

achieving a higher absolute score in two of the

domains.

Table 3. Recall@20, i.e. the percentage of golden questions

answered by top-20 template triplets. Comparison with

state of the art (FVM) on their three domains and

evaluation on two new ones.

Domain FVM FGS CT

airplane 0.53 0.24 0.48

bomb 0.52 0.26 0.66

earthquake 0.38 — 0.59

visit — 0.15 0.48

sentence — 0.15 0.44

FVM authors did not evaluate on the visit and

sentence domains. For the earthquake domain,

the FGS method failed to discover any frequent

subgraphs and thus produce a template. The cause

seems to be a dispersed domain: articles report on

earthquakes mostly in the context of related events

(tsunamis, slides, rescue efforts, fundraisers etc.), so

document graphs are quite different, share no large

substructures and FGS fails.

We made a best-effort attempt to test in a setup

comparable to that in the FVM paper; it was however

not identical, and we therefore abstain from making

strong claims about CT’s performance relative to

FVM beyond observing that it appears at least

comparable on the chosen domains. In particular, the

FVM authors give the descriptions of the evaluated

domains, but not the golden questions or the actual

inputs documents, which were we reconstructed as

detailed in Section 4. They extract templates from

several hundred documents per topic; the exact

number is not given, and we use 300 per topic. As a

final detail, when preparing golden questions, the

FVM authors do not merge individual worker’s

questions into a single golden set and instead

measure performance against each worker’s “golden”

questions. The differences in measured performance

across workers are however low, in the 5% range, so

we use the average for the purpose of our

comparison.

For our own methods, FGS and CT, we also

provide precision and recall curves in Fig. 5. The

figure further confirms that CT is preferred over

FGS. Note also the different number of patterns

extracted by each of the methods, i.e. the length of

the 𝑥 -axis: our assumptions when designing FGS

were too strong; few subgraphs repeat across

semantic graphs of different input articles, and only

few patterns emerge. For CT, the number of extracted

patterns varies. We were unable to find any

quantitative property of the data for different domains

which explains the variance. Qualitatively, the

domains with more patterns simply have more varied

reports. Differences in domains are to be expected;

they are the primary reason to test on several domains

in the first place.

Constructing Domain Templates with Concept Hierarchy as Background Knowledge

427

(a) FGS airplane (b) FGS bomb (c) FGS sentence (d) FGS visit

(e) CT airplane (f) CT bomb (g) CT sentence (h) CT visit

Figure 5. Precision and recall of template triplets as measured by the golden standard

The irregular shapes of the precision curves show

there is room for improvement in triplet ranking;

whenever a high-quality topic triplet is ranked lower

than a low-quality one, this causes an increase in the

average precision and thus an upwards slope, while

the precision curve of an ideally ranked set of

template triplets would be monotonically decreasing.

This discrepancy is particularly noticeable for the

FGS method where a triplet “score” for the purposes

of this plot is simply its frequency in input graphs,

making for a poor ranking. The jagged lines are also

the reason we chose an unorthodox but (in this case)

more legible format for the precision-recall graphs.

However, the overall precision is good, showing that

our templates can facilitate manual domain schema

construction.

Sample outputs. In Table 4, we show a sample

of patterns produced by the three algorithms for the

bomb domain. The italic text denotes template slots.

Note the highly detailed, automatically extracted

slot types 8 in the output of our methods, which

exploit background knowledge, compared to the

output of FVM which operates on raw text and only

abstracts away named entities (presumably with

number, date, person, location and organization).

Using a general purpose taxonomy like WordNet also

allows us to identify slot fillers that are not named

8 Sometimes, statistics reveal more than we might expect – in

determining that the location of a bombing attack is usually of type

Asian_country, the CT method unknowingly makes a sad but true
political commentary.

entities (hotel, mosque, policeman, ...), unlike the

great majority of related work.

Reducing redundancy in the output set of

triplets. Triplets as returned by existing methods are

still not purely semantic: a fact can still be expressed

with multiple triplets which are, as far as the ontolo-

gy is concerned, unrelated (ex: be_after
obj
→ 𝑝𝑒𝑟𝑠𝑜𝑛

and target
obj
→ 𝑝𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙). We tried to make the

results easier to interpret by clustering the pattern

triplets post hoc. Two pattern triplets are considered

more similar if their slots are more often filled with

the same filler in the same story. Multiple similarity

measures deriving from this intuition were tried, but

none yielded satisfactory results, most likely due to

data sparsity and the underconstrained nature of the

problem. For example, enter
obj
→ 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 and

destroy
obj
→ 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 were clustered by these

methods because both triplets appear almost

exclusively in articles related to bombing attacks,

where they obviously strongly correlate. Given a

much higher number of random non-bombing

documents, the number of disconnected occurrences

of enter
obj
→ 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 and destroy

obj
→ 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔

would likely increase, possibly making the proposed

approach effective. However, Yates et al. [39] report

only 35% recall in identifying synonymous relations

despite this being the primary goal of their paper; this

proves that the problem is hard.

M. Trampuš, D. Mladenić

428

Table 4. Sample output from all three methods for the

bomb domain. Template slots are shown in italics, Ex

shows automatically extracted example values for the slot.

All labels are taken directly from WordNet.

Frequent Verb Modifier (FVM)

killed (number) (NNS people)

(person) killed

(NN suicide) killed

Characteristic Triplet (CT)

kill
object
→ 𝑑𝑒𝑓𝑒𝑛𝑑𝑒𝑟/𝑔𝑢𝑎𝑟𝑑𝑖𝑎𝑛

Ex: guard, constable, policeman

kill
object
→ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟/𝑤ℎ𝑜𝑙𝑒_𝑛𝑢𝑚𝑏𝑒𝑟

Ex: 10, twelve, 15

target/aim
object
→ 𝑓𝑜𝑟𝑐𝑒/𝑝𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙

Ex: police, military_personell

damage
object
→ 𝑜𝑏𝑗𝑒𝑐𝑡 𝑣𝑒ℎ𝑖𝑐𝑙𝑒

Ex: car, truck, airplane

destroy/destruct
object
→ 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔/𝑒𝑑𝑖𝑓𝑖𝑐𝑒

Ex: hotel, building, mosque

kill
location
→ 𝐴𝑠𝑖𝑎𝑛_𝑐𝑜𝑢𝑛𝑡𝑟𝑦

Ex: Afghanistan, Pakistan, Iraq

kill
object
→ 𝑐𝑖𝑡𝑦/𝑚𝑒𝑡𝑟𝑜𝑝𝑜𝑙𝑖𝑠

Ex: Beyrut, Kandahar, Bari

collar/nail (= arrest)
time
→ 𝑤𝑒𝑒𝑘𝑑𝑎𝑦

Ex: Monday, Tuesday

𝑎𝑡𝑡𝑎𝑐𝑘/𝑜𝑛𝑠𝑙𝑎𝑢𝑔ℎ𝑡
subject
← come/come_up

Ex: bombing, attack, foray/raid

Freq. Generalized Subgraph (FGS)

bomber – kill – 𝑝𝑒𝑟𝑠𝑜𝑛/𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙

Ex: worshipper, policeman, civilian, person

bomb – kill – 𝑖𝑛𝑡𝑒𝑔𝑒𝑟/𝑤ℎ𝑜𝑙𝑒_𝑛𝑢𝑚𝑏𝑒𝑟

Ex: 10, one, two

𝑝𝑒𝑟𝑠𝑜𝑛/𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 – claim – duty/responsibility

Ex: leader, commandant

bomber – strike – 𝑠𝑡𝑎𝑡𝑖𝑜𝑛

Ex: police_station, terminal

𝑝𝑒𝑟𝑠𝑜𝑛/𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 – explode/detonate – explosive

Ex: man, soldier, militant

5.2. Alignment with Unseen Documents

This subsection gives the results of evaluation

from Section 4.2.3, comparing the FGS in CT outputs

in terms of how well they generalize to unseen data.

The previous section shows that CT produces

templates that human evaluators score as being more

meaningful for their respective topics. However, this

does not necessarily reveal much about how well the

patterns represent the topics on the syntactic level.

Do CT triplets also apply better to a held-out set of

documents? Table 5 lists the AUC metric for a simple

topical classifier: a document’s score for domain 𝑑 is

defined as the sum of scores of template triplets that

can be found in 𝑑. The classifier classifies into the

domain with the highest score. Please note that we

are not suggesting CT or FGS should be actually used

for classification; their performance at this task is

measured only to see which of the two produces a

template that generalizes better to unseen data.

CT strongly outperforms FGS in this scenario as

well. Analysis shows that this is mostly a direct

consequence of the low number of patterns that FGS

is able to suggest; its template is thus too restricted

and relatively unlikely to fit unseen documents.

Although not relevant to relative comparison of

CT’s and FGS’s performance, the variation in

performance across domains is notable. The

differences are expected; some domains are simply

more dissimilar to the other domains and inherently

easier to distinguish.

Table 5. Domain classification AUC in one-vs-all scenario.

Domain FGS CT

airplane 0.69 0.83

bomb 0.67 0.71

earthquake 0.50 0.78

sentence 0.73 0.91

visit 0.52 0.82

5.3. Robustness to Noise

Obtaining a dataset with only on-topic documents

might not be easily feasible for a given domain. In

particular, if the corpus is obtained using automated

methods and/or heuristics, the data may be noisy. For

the CT algorithm, we measured how noise impacts

the performance of the algorithm.

Starting with the dataset used in the first

experiment, we kept gradually adding random off-

topic articles (i.e. noise) to the set of documents the

algorithm believed to be on-topic, and measured how

the recall@20 metric changes. The results are given

in Fig. 6. The recall shown in the figure is averaged

across topics; the variance was small.

We can observe a very high degree of robustness

to noise. When the input collection of supposedly

ontopic documents consists of 50% noise (which

corresponds 300 documents in the graph), the impact

on recall is still negligible. Only when the noisy

documents significantly outnumber the true on-topic

ones does performance decay. The reason for this

behavior is that in the algorithm, the main contributor

towards the score of a generalized triplet is its

frequency. By adding noise, the frequency of the

previously highscoring triplets does not decrease,

whereas the triplets in the noisy part of the corpus do

not have a coherent topic and are unlikely to produce

Constructing Domain Templates with Concept Hierarchy as Background Knowledge

429

Figure 6. Robustness of the CT algorithm to noise. Graph

shows the recall@20 as the original set of 300 on-topic

documents is gradually tainted with additional random off-

topic documents. The x axis is logarithmic.

a high-frequency pattern.

When enough noise is introduced, spurious high-

frequency triplets do however get detected and

suggested as patterns. They are typically highly

generalized to accommodate the wide range of noisy

inputs, for example 𝑝𝑒𝑟𝑠𝑜𝑛
subj
← 𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒 (with

perceive being a generalization of feel, suffer, see,

hear, etc.).

5.4. Data Representation Error Analysis

Our data representation of choice—WordNet-

aligned triplets—links the data to background

knowledge and greatly simplifies its structure,

making the two methods proposed in this paper

feasible. However, to arrive at this representation, we

make some strong assumptions. We next analyze how

much error they introduce.

Triplet extraction. The triplet extraction process

relies on an external dependency parser and a set of

heuristics. We evaluated the quality of the extracted

triplets from a representative text sample. We ma-

nually created a golden set of triplets for 50 senten-

ces, each picked at random from a different (also

random) online news article from our dataset. The

sentences contain a total of 129 verbs involved in 210

triplets. For the task of correctly identifying triplet

constituents (verbs, subjects, locations, ...) along with

their dependency type, we measured an 𝐹1 score of

78% (micro-averaged).

WordNet alignment. On the same set of 129

verbs and 210 modifiers, we also measured the per-

formance of the “most common sense” word sense

disambiguation heuristic. The measured accuracy was

76%. This is consistent with the 70–75% result repor-

ted in the literature [26, 19] for all-words word sense

disambiguation with the same heuristic. (We only dis-

ambiguate noun and verb phrase headwords, which is

likely somewhat easier.)

Note that even an incorrectly disambiguated word

might still produce desired results. For verbs, the

hypernym hierarchy is flat and the final patterns often

contain verbs as they appeared in the text, without

further generalizing them. When the pattern is finally

presented to the user, it is semantically incorrect (as it

is linked to the wrong WordNet concept) but looks

correct, which might suffice depending on the use

case. For nouns, the different senses of a word are

sometimes very related and share the same

hypernym: for example, car.n.01 (an automobile)

and car.n.02 (a railway car) are both

specializations of wheeled_vehicle. When a

triplet involving the word car gets generalized during

the template creation process, it does not matter any

more whether it was initially disambiguated to the

correct sense.

There are also cases where disambiguation goes

critically wrong. For example, in the bomb domain, a

relatively high-scoring pattern was vehicle
subj
← kill ,

largely the consequence of the word bomber being

consistently incorrectly disambiguated as a bombing

aircraft.

Sentence structure assumptions. One of the

most limiting assumptions of the algorithm is that all

extraction-worthy information is presented in sen-

tences as a direct semantic dependents of the verb.

Although this assumption is clearly too strong, it very

usefully constrains the search space and has been

adopted, possibly with minor variations, by the

majority of related work. How much error does it

introduce?

We reviewed the golden questions for which the

CT algorithm was unable to find a corresponding

pattern, and performed an informal analysis: for each

question, we skimmed over several news articles to

determine if it would be possible to answer the

question with more expressive patterns.

1. 58% of missed golden questions probably

could be captured by relaxing the structural

assumptions. The answers to these questions

are mostly given as noun modifiers or as in-

direct objects with an appropriate modifier.

Examples of missed questions: (earthquake)

What was the magnitude? Typical

constructs: “the 5.5-magnitude quake ...”,

“had a magnitude of 6.1”. (sentence) What

crime was the criminal charged with?

Typical constucts: “sentenced for mans-

laughter”, “guilty of knowingly participating

in drug trafficking”.

2. 42% of missed golden questions probably

could not be captured even with elaborate

patterns. The corresponding information

tends to be expressed in oblique ways that

require either coreference resolution (a very

hard problem in natural language process-

ing) or even deeper reasoning/inference.

Examples of missed questions: (visit) How

many countries were visited? This would re-

quire the algorithm to note that the number

of mentioned countries varies and is some-

M. Trampuš, D. Mladenić

430

how relevant. (airplane) Who bears respon-

sibility for the crash? Many times, the infor-

mation is not available; when it is, it is often

given in a roundabout way: “a technical

error was not to blame” (implying the pilot’s

fault), “an engine exploded” (implying it

caused the crash).

This breakdown is largely anecdotal, but still

gives a rough idea of the types of remaining challen-

ges. We are particularly interested in expanding our

triplet representation with preposition-bound indirect

objects.

Illustrative error examples. Finally, in Table 4,

we have intentionally included triplets that illustrate

the limitations which any semantics-based (here,

WordNet-based) approach likely has to face. First,

the parsing of text into concepts and relations during

preprocessing introduces errors that propagate

through the pipeline. For example, “kill
object
→ 𝑐𝑖𝑡𝑦/

𝑚𝑒𝑡𝑟𝑜𝑝𝑜𝑙𝑖𝑠” from CT output is technically wrong –

city is the location of the killing, not its object.

Second, the hypernym/hyponym distinctions in

WordNet are sometimes very subtle, causing

variation in content across documents to appear

larger than it is. This causes, for example, the CT

method to detect a slot attack with sample slot fillers

bombing, attack and raid, between which people

likely do not care to distinguish.

Third, while it certainly helps that WordNet col-

lapses synonyms, sometimes the choice of the repre-

sentative lemma for the synonym group (synset) is

unusual or misleading. For example, the verb col-

lar/nail in one of the CT triplets corresponds to the

synset (WordNet concept) that also means “to arrest”.

Ideally, our algorithm should track the fact that this is

the synset lemma that appeared in the text most often

and use this lemma for display purposes.

6. Conclusions

In this work, we applied the “relational triplet”

data representation to the task of unsupervised do-

main template construction for the first time, de-

signing and implementing two novel methods. Both

search the space of relational triplets to construct

those that are not overly generic yet have strong sup-

port in the in-domain documents.

We evaluated on five domains and, using the CT

method, achieved results that are at least comparable

with current state of the art on a pre-selected set of

domains in terms of quality while also providing

much finer-grained type information about the

template slots. While we cannot guarantee the usabi-

lity of our method beyond the tested scenarios or in

downstream use-cases, it seems likely that our me-

thod should do reasonably well at least on news data,

since the test domains were chosen to be typical news

events. The CT method has a linear time complexity

and was shown to be highly robust to noise in the

input data.

The presented methods are the first to approach

the problem of domain template construction using

background knowledge and explore its utility. We

described the benefits and pitfalls of using the corres-

ponding data representation and analyzed the ensuing

errors.

Future work on this task and comparison of me-

thods is facilitated by the detailed evaluation metho-

dology and datasets with golden standards that we

released.

Acknowledgments

This work was supported by the Slovenian Re-

search Agency and the European Commission under

PASCAL2 (IST-NoE-216886), ACTIVE (IST-2008-

215040), RENDER (FP7-257790) and XLIKE (FP7-

ICT-288342-STREP) and represents a part of

doctoral studies at the University of Ljubljana. The

authors would like to thank Primož Škraba for

helpful discussions, Janez Brank for his thorough

reading of the first draft, and the anonymous

reviewers for their help with improving the article.

Appendix A - Datasets

All the data used for evaluation is available online

at http://mitjat.com/research/. The

package includes the following:

• Metadata (title, url, topic/domain) of all input

documents used in our algorithms; see

Section 4.1. 2000 nontopical and 5000 topical

documents across 5 topics. Cleartext is

available from the authors by request due to

copyright concerns.

• A sample TaskRabbit instructions page (see

Section 4.2.1; for reproducing the golden

standard or expanding to new topics)

• The output of TaskRabbit workers and the ac-

tual golden questions used in our evaluation.

• A sample CrowdFlower task and instructions

(see Section 4.2.2; for evaluating new algo-

rithms)

• A README.txt describing the contents in

more detail.

References

[1] J. Azzopardi, C. Staff. Incremental Clustering of

News Reports. Algorithms, 2012, Vol. 5, No. 3,

364-378.

[2] N. Balasubramanian, S. Soderland, O. E. Mausam,

O. Etzioni. Generating Coherent Event Schemas at

Scale. In: Proceedings of the Conference on

Empirical Methods on Natural Language Processing

EMNLP’13, 2013, pp. 1721-1731.

[3] M. Banko, O. Etzioni. The tradeoffs between open

and traditional relation extraction. In: Proceedings of

Constructing Domain Templates with Concept Hierarchy as Background Knowledge

431

the Annual Meeting of the Association for Computa-

tional Linguistics ACL ’08, Citeseer, 2008, pp. 28–36.

[4] J. Boyd-Graber, C. Fellbaum. Adding dense,

weighted connections to WordNet. In: Proceedings of

the Third International WordNet Conference, 2006,

pp. 29–36.

[5] A. Carlson, J. Betteridge, B. Kisiel, B. Settles,

E. Hruschka Jr, T. Mitchell. Toward an architecture

for never-ending language learning. In: Proceedings

of the Twenty-Fourth Conference on Artificial Intelli-

gence (AAAI 2010), 2010, pp. 1306–1313.

[6] A. Carlson, J. Betteridge, R. Wang, E. Hruschka

Jr, T. Mitchell. Coupled semi-supervised learning for

information extraction. In: Proceedings of the third

ACM international conference on Web search and

data mining (WSDM), ACM, 2010, pp. 101–110.

[7] N. Chambers. Event Schema Induction with a Proba-

bilistic Entity-Driven Model. In: Proceedings of the

Conference on Empirical Methods on Natural Lan-

guage Processing EMNLP ’13, 2013, pp. 1797–1807.

[8] N. Chambers, D. Jurafsky. Template-Based Infor-

mation Extraction without the Templates. In:

Proceedings of the Annual Meeting of the Association

for Computational Linguistics ACL’11, 2011,

pp. 976–986.

[9] J. Cheung, H. Poon, L. Vanderwende. Probabilistic

frame induction. In: Proceedings of the 2013

Conference of the North American Chapter of the

Association for Computational Linguistics: Human

Language Technologies (NAACL/HLT 2013), 2013,

pp. 837–846.

[10] Y. Chi, Y. Yang, R. Muntz. HybridTreeMiner: An

efficient algorithm for mining frequent rooted trees

and free trees using canonical forms. In: Proceedings

of 16th International Conference on Scientific and

Statistical Database Management, 2004, pp. 11–20.

[11] D. Croce, C. Giannone, P. Annesi, R. Basili.
Towards Open-Domain Semantic Role Labeling. In:

Proceedings of the 48th Annual Meeting of the Asso-

ciation for Computational Linguistics, Association for

Computational Linguistics, July 2010, pp. 237–246.

[12] H. Cunningham, D. Maynard, K. Bontcheva. Text

Processing with GATE. University of Sheffield

Department of Computer Science, 2011.

[13] D. Das, M. Kumar, A. Rudnicky. Automatic Extrac-

tion of Briefing Templates. In: Proceedings of the

International Joint Conference on Natural Language

Processing IJCNLP ’06, 2008, pp. 265–272.

[14] E. Filatova, V. Hatzivassiloglou, K. McKeown. Au-

tomatic creation of domain templates. In: Proceedings

of the Annual Meeting of the Association for Compu-

tational Linguistics COLING/ACL ’06, Morristown,

NJ, USA, 2006, Association for Computational Lin-

guistics, pp. 207–214.

[15] R. Grishman, B. Sundheim. Message Understanding

Conference-6: A Brief History. In: Proceedings of the

International Conference on Computational Linguis-

tics COLING ’96, 1996, pp. 466–471.

[16] A. Hotho, S. Staab, G. Stumme. Text clustering

based on background knowledge. Tech. report, AIFB,

University of Karlsruhe, 2003.

[17] F. Hristea. Semiautomatic generation of wordnet

type synsets and clusters using class methods‒an

overview. Revue Roumaine de Linguistique, 2007,

Vol. 52, 97-133.

[18] X. Kang, D. Li, S. Wang. Research on domain onto-

logy in different granulations based on concept lattice.

Knowledge-Based Systems, 2012, Vol. 27, 152–161.

[19] A. Kilgarriff. How dominant is the commonest sense

of a word?. Text, Speech and Dialogue, 2004, LNCS

3206, 103–111.

[20] D. Klein, C. Manning. Accurate unlexicalized

parsing. In: Proceedings of the 41st Annual Meeting

on Association for Computational Linguistics,

Association for Computational Linguistics, 2003,

pp. 423–430.

[21] D. Lenat. CYC: A large-scale investment in know-

ledge infrastructure, Communications of the ACM,

1995, Vol. 38, 33-38.

[22] Mausam, M. Schmitz, R. Bart, S. Soderland,

O. Etzioni. Open language learning for information

extraction. In: Proceedings of the 2012 Joint Confe-

rence on Empirical Methods in Natural Language

Processing and Computational Natural Language

Learning, Association for Computational Linguistics,

July 2012, pp. 523–534.

[23] D. McCarthy, R. Koeling, J. Weeds, J. Carroll.
Finding predominant word senses in untagged text.

In: Proceedings of the Annual Meeting of the Associa-

tion for Computational Linguistics ACL’04, 2004,

pp. 280–287.

[24] M. Michelson, C. Knoblock. Constructing reference

sets from unstructured, ungrammatical text. Journal

of Artificial Intelligence Research, 2010, Vol. 38,

189-221.

[25] G. Miller. WordNet: a lexical database for English.

Communications of the ACM, 1995, Vol. 38, 39-41.

[26] R. Navigli. Word sense disambiguation: A survey.

ACM Computing Surveys (CSUR), 2009, Vol. 41,

10:1-10:69.

[27] S. Nijssen, J. Kok. A quickstart in frequent structure

mining can make a difference. In: Proceedings of the

tenth ACM SIGKDD international conference on

Knowledge discovery and data mining, ACM, 2004,

pp. 647–652.

[28] L. Qiu, M. Kan, T. Chua. Modeling Context in

Scenario Template Creation. In: Proceedings of the

Third International Joint Conference on Natural Lan-

guage Processing IJCNLP ’08, 2008, pp. 157–164.

[29] K. Radinsky, S. Davidovich. Learning to predict

from textual data. Journal of Artificial Intelligence

Research, 2012, Vol. 45, 641-684.

[30] E. Riloff. Automatically generating extraction pat-

terns from untagged text. In: Proceedings of the Thir-

teenth National Conference on Artificial Intelligence

AAAI ’96, 1996, pp. 1044–1049.

[31] H. A. Santoso, S.-C. Haw, Z. Abdul-Mehdi. Ontolo-

gy extraction from relational database: Concept hie-

rarchy as background knowledge. Knowledge-Based

Systems, 2011, Vol. 24, 457-464.

[32] Y. Shinyama, S. Sekine. Preemptive information

extraction using unrestricted relation discovery. In:

Proceedings of the main conference on Human Lan-

guage Technology Conference of the North American

Chapter of the Association of Computational Linguis-

tics NAACL/HLT ’06, Morristown, NJ, USA, June

2006, Association for Computational Linguistics,

pp. 304–311.

[33] T. Stajner, D. Rusu, L. Dali, B. Fortuna,

D. Mladenić, M. Grobelnik. A service oriented

M. Trampuš, D. Mladenić

432

framework for natural language text enrichment.

Informatica (Ljubljana), 2010, Vol. 34, 307-313.

[34] M. Trampuš, D. Mladenić. Approximate Subgraph

Matching for Detection of Topic Variations. In:

Proceedings of the 1st International Workshop on

Knowledge Diversity on the Web (DiversiWeb

2011) at 20th International WWW Conference,

Hyderabad, India, 2011, pp. 25–28.

[35] M. Trampuš, B. Novak. Internals of an aggregated

web news feed. In: Proceedings of the Fifteenth

International Information Science Conference IS

SiKDD 2012, 2012, pp. 431–434.

[36] D. Vrandečić. Wikidata: A new platform for collabo-

rative data collection. In: Proceedings of the 21st

International Conference Companion on World Wide

Web WWW’12, 2012, pp. 1063–1064.

[37] X. Yan, J. Han. gSpan: Graph-based substructure

pattern mining - UIUC Technical Report. Tech.

report, University of Illinois at Urbana-Champaign,

2002.

[38] R. Yangarber. Counter-training in discovery of se-

mantic patterns. In: Proceedings of the 41st Annual

Meeting on Association for Computational Linguis-

tics-ACL’03, Vol. 1, Morristown, NJ, USA, July

2003, Association for Computational Linguistics,

pp. 343–350.

[39] A. Yates, O. Etzioni. Unsupervised methods for

determining object and relation synonyms on the web.

Journal of Artificial Intelligence Research, 2009,

Vol. 34, 255-296.

[40] S. Zelikovitz, H. Hirsh. Integrating background

knowledge into nearest-Neighbor text classification.

Advances in Case-Based Reasoning, 2002, LNCS

2416, pp. 1–5.

Received April 2013.

