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Abstract. In this paper, we develop efficient parallel algorithms for the statistical processing of large data sets. 

Namely, we parallelize the maximum likelihood method for the estimation of parameters of the mixed-stable model. 

This method is known to be very computationally demanding. Financial German DAX stock index data are used as 

empirical data in this work. Several hierarchical levels of parallelism were distinguished, analyzed and implemented 

using OpenMP and MPI library. Parallel performance tests were conducted on the IBM SP6 supercomputer. Obtained 

performance results show that implemented parallel algorithms are very efficient and scalable on distributed and shared 

memory systems. Speedups up to 800 times were obtained for 1024 parallel processes. Noticeably, our parallel 

application is able to efficiently utilize the Simultaneous multithreading (Intel Hyper-Threading) technology in modern 

processors. This research demonstrates that the application of modern parallel technologies allows a fast and accurate 

estimation of mixed-stable parameters even for large amounts of data and promotes a wider use of stable modelling for 

the statistical data processing. 

Keywords: parallel computing and algorithms; simultaneous multithreading (SMT); large data sets; high-

frequency data; mixed-stable model; financial modelling. 

 

1. Introduction 

Fast and efficient processing of huge amounts of 

diverse data is essential in our Information Age. The 

speed and accuracy of data processing is vital in 

modern economy and finance. Contemporary 

electronic commerce and trading tools provide 

economists and market analysts with large amounts of 

information. Reliable and well-timed business 

decision-making based on this information is virtually 

impossible without the application of parallel 

computing [8, 11]. 

Among the established and popular instruments in 

the statistical modelling are stable distributions. They 

are applied in such diverse areas as astronomy, 

physics, electronics, sociology, economics [19]. Since 

the second half of the 20th century a particularly 

important role they play in financial mathematics [17]. 

In our previous works we have employed stable 

distributions for the modelling of stock and foreign 

exchange markets [1, 9]. It should be noted that the 

practical application of stable distributions is 

hampered by the absence of analytical representation 

of the general probability density function. This makes 

the application of stable models computationally 

demanding. 

The most accurate method for the evaluation of 

parameters of a stable model is the maximum 

likelihood method. At the same time it is the most 

time-consuming [9]. Therefore it is often rejected [10]. 

However, in this work we will demonstrate that the 

application of modern parallel technologies makes this 

approach both precise and practical. In this research, 

we develop and expand our parallel computing 

algorithms [2] to the mixed-stable modelling of high-

frequency data. To our best knowledge, such an 

approach to statistical processing of big data was not 

used before. Albeit parallel technologies are 

intensively used with other statistical models for big 

data processing [6, 7, 20]. Financial German DAX 
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stock index data are used as empirical data in this 

work. It should by emphasized that the presented 

approach can be applied for the statistical processing 

of empirical data of diverse origins. 

The paper is organized as follows. The first part is 

the introduction. In Section 2, we present our 

modelling methodology briefly introducing stable 

distributions, maximal likelihood method and mixed-

stable model. Section 3 describes the parallelization of 

our algorithms and demonstrates its efficiency and 

scalability. Conclusions are drawn is Section 4. 

2. Stable and mixed-stable modelling 

2.1. 𝜶-stable modelling 

The 𝛼 −stable distribution depends on four para-

meters and is usually described by its characteristic 

function )(t :  
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where (0,2] , 1,1][ , 0> , R . Here  is 

the stability index,   is the skewness,   is the 

location parameter and   is the scale parameter. In 

financial modelling it is generally assumed [9] that

1> . The overview of properties of stable 

distributions can be found in [1, 19]. Noticeably, the 

probability density function of stable laws has no 

analytical representation, i.e. cannot be expressed in 

elementary functions, except for a few cases: Levy, 

Cauchy, and Gaussian distributions. 

The most accurate method for the evaluation of 

parameters of a stable model is the maximum 

likelihood method [9, 15]. The vector of stable 

parameters ),,,(=   can be estimated from 

the set of returns {Xk} by maximizing the log-

likelihood function  
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A precise and fast calculation of values p(Xk, ) of 

probability density function is a nontrivial task, see 

[9]. Obviously, it is a crucial part of the whole 

computational algorithm. In this work, the improper 

integral (3) is approximated by the definite one using 

the smart- approach and adaptively calculated using 

Gauss-Kronrod 21-point integration rule [12].  

2.2. Mixed-stable modelling 

In this research as empirical data we have used the 

high-frequency series of returns of 29 stocks from the 

DAX (Deutscher AktienindeX) German stock index. 

These series are representing intra-daily data of the 

whole year: from January 1, 2007 to December 27, 

2007; i.e. 251 days. We have aggregated the raw 

inhomogeneous intra-daily data into the equally-

spaced homogeneous intra-daily time series. The 

aggregation is done with the previous-tick 

interpolation [21]. 

Having processed yearly high-frequency series of 

returns for all 29 stocks at different time steps, we 

have obtained that almost all data series are 

asymmetric and the empirical kurtosis shows that 

density functions of those series are more peaked than 

Gaussian density functions. This implies the 

utilization of stable distributions. 

However, it should be pointed out, that these 

empirical data often exhibit the stagnation effect, i.e. 

series contain numerous zero returns. For example, at 

10-second time step yearly series of returns contain 

from 43% to 82% of zeros and the length of series 

varies from 135001 to 436143 (with zeros removed). 

To deal with this zero effect, we apply to our data the 

mixed-stable model intoduced by I. Belovas et al. [9]. 

The probability density function of a mixed-stable 

random variable is  

)(),()(1=),( xrxprxf   (4) 

where ),( xp  is the probability density function (3) 

of a  -stable distribution (1) and )(x  is the Dirac 

delta function. The coefficient (0,1)r  is the index 

of stagnation. The empirical cumulative distribution 

functions of data series with the stagnation effect 

exhibits jump at 0=x . Model (4) enables us to 

accommodate for these jumps. 

The likelihood function of the mixed-stable model 

(4) is given by  
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where {x1, x2,…, xn-k} is a non-zero returns set, 

obtained by excluding k  zero returns from the initial 
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returns set {X1, X2,…, Xn}. By optimizing the first 

factor (1 - r)n-krk, we obtain rmax = k / n. Optimization 

of the product is equivalent to the optimization of the 

likelihood function of the stable distribution of the 

non-zero returns set {x1, x2,…, xn-k}. Hence, the 

optimal vector  max is estimated with non-zero 

returns via stable log-likelihood function (2). 

To optimize the log-likelihood function, we use the 

Nelder-Mead method [14]. Although this method is 

not the fastest one, but it is robust and does not require 

any derivative (gradient, Hessian) calculation. 

3. Parallelization 

Numerical computations by the computationally 

demanding maximum likelihood method combined 

with the nontrivial numerical calculation of a stable 

probability density function are very time-consuming, 

especially when we need to handle long sets of high-

frequency data. Nowadays the common approach to 

many time-consuming computational problems is the 

application of parallel computing technologies. In our 

previous work [2], we have already shown that the 

stable modelling technique is very suitable for 

parallelization. Several hierarchical levels of 

parallelism can be distinguished and defined: 

processing of multiple data sets (MS); algorithmic 

steps of optimization method (OPT); calculation of 

values of maximum likelihood (ML) target function 

(2); calculation of integral (3) of probability density 

function (PDF). 

The coarse-grained parallelization at the MS level 

is easily implemented by a uniform distribution of 

data sets among the available parallel processes for 

independent ML optimization tasks. The MPI [13] 

implementation of this parallel algorithm showed 

almost perfect efficiency on the commodity PC cluster 

[2]. However, these results were obtained for 

artificially generated data sets of the same size. 

Moreover, all data sets were generated with the single 

set of stable parameters and different seeds. 

Obviously, working with the real data we need to deal 

with data sets of different sizes (see Section 2) and 

different computational complexities (number of 

iterations) of ML optimization. The resulting load 

balancing problems will definitely reduce the 

efficiency of parallelization and can be only partially 

overcome using heuristic scheduling algorithms for 

optimal distribution of data sets between parallel 

processes. 

Another restraint of parallelization at the MS level 

is its low degree of concurrency. The maximal number 

of parallel processes, which can be utilized, is equal to 

the number of data sets to be analyzed. In this study, it 

would be 29 parallel processes for the data sets from 

all 29 stocks and a fixed time step. It is too little for 

the current parallel computing systems, although the 

introduction of stochastic or deterministic global 

optimization can relax this limitation. And finally, 

parallelization at the MS level does not reduce the 

time of processing of a single data set, which is vital 

for the time-critical applications in the financial 

analysis. 

Therefore, in this research, we have chosen a more 

fine-grained parallelization at the ML target function 

(2) calculation level. In our previous work [2], we 

have shown that OpenMP [16] implementation of the 

parallel sum calculation is very efficient on the SMP 

(Symmetric multiprocessing) node with two Intel 

Pentium III processors. Since then we have a fully 

established era of multicore processors, that are 

currently used not only in the computing nodes of 

supercomputers, but also in the personal computers. 

The number of physical cores is constantly increasing. 

However, multicore processors are known to have 

scalability problems due to the memory bandwidth 

bottleneck [4]. For many memory intensive 

applications the efficiency and scalability of such 

parallelization are quite low [18]. 

Therefore, in this work, we have first studied the 

scalability of parallelization at the ML level using the 

OpenMP on the multicore architecture. Parallel 

performance tests were conducted on the IBM SP6 

Power6 575 computing node with 32 cores and 128 

GB of shared memory. The obtained results are shown 

in Table 3 and Figure 1. All parallel performance tests 

in this section were performed for two data sets 

obtained from one of the DAX stock’s (Allianz SE) 

real-time data. A relatively small data set ( 7385=n ) 

was obtained using the previous-tick interpolation 

with time step 1000=t  and large data set (

436143=n ) with time step 10=t . For all tests, the 

accuracy of ML optimization with the Nelder-Mead 

simplex method [14] was set to 10-6. The integral (3) 

of stable probability density function was computed 

with the accuracy 10-11. 

The OpenMP programming standard [16] allows to 

specify a scheduling method for the assignment of 

summands (2) (i.e. loop iterations) to the parallel 

processes (threads). We have found that the choice of 

the scheduling method has a significant impact on the 

performance of our parallel application. It appears that 

the static schedule with the chunk of one summand is 

better for the small data set, when the additional 

overhead of dynamic assignment does not pay off. On 

the other hand, for the large data set, the dynamic 

assignment of chunks of 100 summands produces 

better results, because it is more evenly distributing 

the workload between the parallel processes. Note that 

the calculation of each summand in (2) can be of 

different computational complexity due to adaptive 

integration of PDF integral (3). 

Further analyzing the Table 3, we see that our 

parallel algorithm scales very well up to 32 cores. 

Natural degradation of parallelization efficiency with 

the increasing number of parallel processes is even 

smaller for the large data set. Obviously, in our 

modelling algorithm, the ratio between the 

computations and data movement to and from the 

shared memory is much more favourable to the 
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Table 1. Performance and scalability of ML parallelization with the OpenMP on multicore IBM Power6 575 node. P  - number 

of processes, Tp - processing time with p  processes, Sp- speedup, Ep - efficiency 

P   1 2 4 8 16 32 64 

t  = 1000, set size n  = 7385, static schedule (1) 

Tp   80.13   43.73   21.89   10.99   5.58   2.98   2.01  

Sp   -   1.83   3.66   7.29   14.36   26.89   39.87  

Ep   -   92%   92%   91%   90%   84%   62%  

t  = 1000, set size n  = 7385, dynamic schedule (100)  

Tp   80.13   43.74   22.31   11.72   6.24   3.96   3.28  

Sp   -   1.83   3.59   6.84   12.84   20.24   24.43  

Ep   -   92%   90%   86%   80%   63%   38%  

t  = 10, set size n  = 436143, static schedule (1)  

Tp   6598.01   3518.15   1784.11   893.04   453.04   231.34   118.23  

Sp   -   1.88   3.70   7.39   14.56   28.52   55.81  

Ep   -   94%   93%   92%   91%   89%   87%  

t  = 10, set size n  = 436143, dynamic schedule (100)  

Tp   6598.01   3560.43   1733.52   868.10   435.23   218.86   111.24  

Sp   -   1.85   3.81   7.60   15.16   30.15   59.31  

Ep   -   93%   95%   95%   95%   94%   93%  
 

 

 

Figure 1. Speedup and efficiency of ML parallelization with the OpenMp on multicore IBM Power6 575 node 

 

Table 2. Performance and scalability of ML parallelization with the MPI on multicore IBM Power6 575 node. P  - number of 

processes, Tp - processing time with p  processes, Sp- speedup, Ep - efficiency 

P   1 2 4 8 16 32 64 

t  = 1000, set size n  = 7385 

Tp   80.13   40.51   20.31   10.29   5.30   2.80   1.50  

Sp   -   1.98   3.95   7.79   15.12   28.64   53.42  

Ep   -   99%   99%   97%   95%   90%   84%  

t  = 10, set size n  = 436143  

Tp   6589.13   3330.50   1657.39   826.23   418.94   210.81   120.38 

Sp   -   1.98   3.98   7.99   15.75   31.30   54.81  

Ep   -   99%   100%   100%   98%   98%   86%  
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Table 3. Performance and scalability of ML parallelization with the MPI on IBM SP6 using nodes with SMT (i.e. 64 processes 

per node). N d - number of nodes, P  - number of processes, Tp - processing time with p  processes, Sp- speedup,  

Ep - efficiency 

N d 2 3 4 6 8 12 16 

P  128 192 256 384 512 768 1024 

t  = 1000, set size n  = 7385 

Tp   0.791   0.563   0.421   0.300   0.248   0.186   0.163  

Sp   101.30   142.42   190.33   267.11   323.11   431.79   492.98  

Ep  79%  74%   74%   70%   63%   56%   48%  

t  = 10, set size n  = 436143  

Tp   60.85   40.68   28.78   19.66  15.08   10.75   8.26  

Sp   108.43   162.20   229.26   335.58   437.53   613.94   798.71  

Ep  85%  85%   90%   87%   86%   80%   78%  

 

Table 4. Performance and scalability of ML parallelization with the MPI on IBM SP6 using nodes without SMT (i.e. 32 

processes per node). N d - number of nodes, P  - number of processes, Tp - processing time with p  processes, Sp- speedup,  

Ep - efficiency 

N d 2 4 6 8 10 12 16 

P  64 128 192 256 320 384 512 

t  = 1000, set size n  = 7385 

Tp   1.388   0.728   0.516   0.382  0.332   0.273   0.223  

Sp   57.73  110.07   155.16   209.76   241.46   293.40   359.48  

Ep   90%   86%   81%   82%   76%   76%   70%  

t  = 10, set size n  = 436143  

Tp   107.05   55.42   36.50   27.86   22.29   18.80   14.03 

Sp   61.64   119.06   180.79   236.83   295.95   350.96   470.13  

Ep   96%   93%   94%   93%   93%   91%   92%  
 

 

 

Figure 2. Speedup and efficiency of ML parallelization with the MPI on IBM SP6

current multicore architectures than in modelling 

algorithms based on the numerical solution of partial 

differential equations [18]. Finally, we have used the 

IBM processor’s hardware support for the 

Simultaneous Multi-Threading (SMT), which can 

double the number of processes per core, i.e. up to 64 

processes per node. The obtained performance gains 

are as significant as one might expect from the 

doubling of the number of physical cores. Hence, the 

SMT or Intel Hyper-Threading mode in the current 

processors cannot be overseen and should be 

definitely used for running our parallel application. 

Next, to test further the scalability of chosen 

approach, we have implemented parallelization at the 
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ML level using the MPI library [13]. First, we have 

tested the MPI implementation on the same shared 

memory multicore node (IBM Power6 575) to 

compare it with the OpenMP implementation. The 

obtained performance results are shown in Table 2. 

Quite surprisingly, we see that the MPI 

implementation is slightly outperforming the 

OpenMP implementation on the shared memory 

architecture for both small and large data sets, despite 

the fact that the MPI parallelization is using static 

distribution of summands (2) between processes. 

Obviously, for our application, the IBM MPI library 

deals better with the shared memory contention than 

the IBM OpenMP compiler. 

The main advantage of the MPI implementation is 

a feasibility to use the parallel computing systems 

with the distributed memory and hence with the 

bigger number of parallel processors. Next, we have 

tested the scalability of MPI parallelization at ML 

level on the IBM SP6 supercomputer in CINECA, 

Italy. The obtained results are presented in Tables 3, 

4, and Figure 5. In Table 3, we present the results 

obtained using the SMT mode on multicore nodes, 

i.e. with 64 parallel processes per node. As we see, 

we get a speedup even for the large number of 

processes and small data set. As the number of 

summands (2) per process is reducing to less than 10, 

the efficiency is degrading due to the relative increase 

in parallelization overhead and imbalance in the 

workload. For the large data set, the efficiency is very 

good.  

In Table 4, we present the results obtained without 

the SMT mode, i.e. with 32 parallel processes per 

node using only the physical cores. Naturally, the 

obtained speedup Sp and efficiency Ep numbers are 

better than corresponding numbers in Table 3. 

Without the effect of SMT technology, these results 

better describe the scalability of our parallel 

algorithm. However, comparing the times Tp for the 

same number of used nodes, we clearly see that the 

use of SMT mode is indispensable for our application 

and it is very efficient. 

4. Conclusions 

Summarizing, we note that parallelization of our 

mixed-stable modelling algorithm at the maximum 

likelihood target function level is very efficient. 

Some of the obtained efficiency numbers are close to

100% , for example, see Table 2. This means that the 

time spent in other operations of optimization method 

is insignificant. Hence the parallelization at this level 

is fully sufficient and there is no need in the 

parallelization of algorithmic steps of optimization 

method. 

We note that our parallel algorithm is highly 

scalable. Speedups up to 800 times were obtained for 

1024 parallel processes (see Table 3). The properties 

of parallel algorithm (the ratio between calculations 

and data movement) are highly suitable not only for 

the distributed, but also for shared memory systems 

(e.g. multicore). 

Moreover, our parallel application is able to 

efficiently utilize the Simultaneous multithreading 

(Intel Hyper-Threading) technology in modern 

processors. The obtained performance gains are as 

significant as one might expect from the doubling of 

the number of physical cores. Furthermore, the 

properties of our parallel algorithm look very 

promising for the application of GPU computing [5]. 

Finally, the processing of all 29 DAX stocks 

returns series with the 10-second time step takes too 

long to be computed in a reasonable time with the 

single process (in serial mode). It takes 6403.56 

seconds with 64 processes and 442.34 seconds with 

1024 processes in Simultaneous multithreading 

mode. 

This research shows that the application of 

modern parallel technologies allows a fast and 

accurate maximum likelihood estimation of mixed-

stable parameters even for large amounts of data. 

This supports the employment of stable and mixed-

stable modelling in the statistical data processing, in 

particular in high-frequency financial data analysis. 
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