
148

ISSN 1392–124X (print), ISSN 2335–884X (online) INFORMATION TECHNOLOGY AND CONTROL, 2015, T. 44, Nr. 2

Parallel Computing for Mixed-Stable Modelling of Large Data Sets

Igoris Belovas

Vilnius University Institute of Mathematics and Informatics, Optimization Sector at Systems Analysis

Akademijos str., 4, LT-08663 Vilnius, Lithuania

e-mail: igoris.belovas@mii.vu.lt

Vadimas Starikovičius

Vilnius Gediminas Technical University, Laboratory of Parallel Computing

Sauletekio al. 11, LT-10223 Vilnius, Lithuania

e-mail: vadimas.starikovicius@vgtu.lt

 http://dx.doi.org/10.5755/j01.itc.44.2.6723

Abstract. In this paper, we develop efficient parallel algorithms for the statistical processing of large data sets.

Namely, we parallelize the maximum likelihood method for the estimation of parameters of the mixed-stable model.

This method is known to be very computationally demanding. Financial German DAX stock index data are used as

empirical data in this work. Several hierarchical levels of parallelism were distinguished, analyzed and implemented

using OpenMP and MPI library. Parallel performance tests were conducted on the IBM SP6 supercomputer. Obtained

performance results show that implemented parallel algorithms are very efficient and scalable on distributed and shared

memory systems. Speedups up to 800 times were obtained for 1024 parallel processes. Noticeably, our parallel

application is able to efficiently utilize the Simultaneous multithreading (Intel Hyper-Threading) technology in modern

processors. This research demonstrates that the application of modern parallel technologies allows a fast and accurate

estimation of mixed-stable parameters even for large amounts of data and promotes a wider use of stable modelling for

the statistical data processing.

Keywords: parallel computing and algorithms; simultaneous multithreading (SMT); large data sets; high-

frequency data; mixed-stable model; financial modelling.

1. Introduction

Fast and efficient processing of huge amounts of

diverse data is essential in our Information Age. The

speed and accuracy of data processing is vital in

modern economy and finance. Contemporary

electronic commerce and trading tools provide

economists and market analysts with large amounts of

information. Reliable and well-timed business

decision-making based on this information is virtually

impossible without the application of parallel

computing [8, 11].

Among the established and popular instruments in

the statistical modelling are stable distributions. They

are applied in such diverse areas as astronomy,

physics, electronics, sociology, economics [19]. Since

the second half of the 20th century a particularly

important role they play in financial mathematics [17].

In our previous works we have employed stable

distributions for the modelling of stock and foreign

exchange markets [1, 9]. It should be noted that the

practical application of stable distributions is

hampered by the absence of analytical representation

of the general probability density function. This makes

the application of stable models computationally

demanding.

The most accurate method for the evaluation of

parameters of a stable model is the maximum

likelihood method. At the same time it is the most

time-consuming [9]. Therefore it is often rejected [10].

However, in this work we will demonstrate that the

application of modern parallel technologies makes this

approach both precise and practical. In this research,

we develop and expand our parallel computing

algorithms [2] to the mixed-stable modelling of high-

frequency data. To our best knowledge, such an

approach to statistical processing of big data was not

used before. Albeit parallel technologies are

intensively used with other statistical models for big

data processing [6, 7, 20]. Financial German DAX

Parallel Computing for Mixed-Stable Modelling of Large Data Sets

149

stock index data are used as empirical data in this

work. It should by emphasized that the presented

approach can be applied for the statistical processing

of empirical data of diverse origins.

The paper is organized as follows. The first part is

the introduction. In Section 2, we present our

modelling methodology briefly introducing stable

distributions, maximal likelihood method and mixed-

stable model. Section 3 describes the parallelization of

our algorithms and demonstrates its efficiency and

scalability. Conclusions are drawn is Section 4.

2. Stable and mixed-stable modelling

2.1. 𝜶-stable modelling

The 𝛼 −stable distribution depends on four para-

meters and is usually described by its characteristic

function)(t :
















1=,|}|log
||

2
{1||

1,}
2

tan
||

{1||

=)(log









 



tit
t

t
it

ti
t

t
it

t

where (0,2] , 1,1][ , 0> , R . Here  is

the stability index,  is the skewness,  is the

location parameter and  is the scale parameter. In

financial modelling it is generally assumed [9] that

1> . The overview of properties of stable

distributions can be found in [1, 19]. Noticeably, the

probability density function of stable laws has no

analytical representation, i.e. cannot be expressed in

elementary functions, except for a few cases: Levy,

Cauchy, and Gaussian distributions.

The most accurate method for the evaluation of

parameters of a stable model is the maximum

likelihood method [9, 15]. The vector of stable

parameters),,,(=  can be estimated from

the set of returns {Xk} by maximizing the log-

likelihood function

),,(ln
1=

=)(
k

Xp
n

k
L (2)

where
















 


0

0

,
,,cos

1
=),(dtt

x
htexp





 


 (3)













1,=,ln

1,),(tan

=),(, 2

2











ttxt

ttxt

txh

and













1.=,ln

1,,tan

=0 2

2











A precise and fast calculation of values p(Xk,) of

probability density function is a nontrivial task, see

[9]. Obviously, it is a crucial part of the whole

computational algorithm. In this work, the improper

integral (3) is approximated by the definite one using

the smart- approach and adaptively calculated using

Gauss-Kronrod 21-point integration rule [12].

2.2. Mixed-stable modelling

In this research as empirical data we have used the

high-frequency series of returns of 29 stocks from the

DAX (Deutscher AktienindeX) German stock index.

These series are representing intra-daily data of the

whole year: from January 1, 2007 to December 27,

2007; i.e. 251 days. We have aggregated the raw

inhomogeneous intra-daily data into the equally-

spaced homogeneous intra-daily time series. The

aggregation is done with the previous-tick

interpolation [21].

Having processed yearly high-frequency series of

returns for all 29 stocks at different time steps, we

have obtained that almost all data series are

asymmetric and the empirical kurtosis shows that

density functions of those series are more peaked than

Gaussian density functions. This implies the

utilization of stable distributions.

However, it should be pointed out, that these

empirical data often exhibit the stagnation effect, i.e.

series contain numerous zero returns. For example, at

10-second time step yearly series of returns contain

from 43% to 82% of zeros and the length of series

varies from 135001 to 436143 (with zeros removed).

To deal with this zero effect, we apply to our data the

mixed-stable model intoduced by I. Belovas et al. [9].

The probability density function of a mixed-stable

random variable is

)(),()(1=),(xrxprxf  (4)

where),(xp is the probability density function (3)

of a  -stable distribution (1) and)(x is the Dirac

delta function. The coefficient (0,1)r is the index

of stagnation. The empirical cumulative distribution

functions of data series with the stagnation effect

exhibits jump at 0=x . Model (4) enables us to

accommodate for these jumps.

The likelihood function of the mixed-stable model

(4) is given by

),()(1~),(
1=




j

kn

j

kkn
xprrrl

where {x1, x2,…, xn-k} is a non-zero returns set,

obtained by excluding k zero returns from the initial

I. Belovas, V. Starikovičius

150

returns set {X1, X2,…, Xn}. By optimizing the first

factor (1 - r)n-krk, we obtain rmax = k / n. Optimization

of the product is equivalent to the optimization of the

likelihood function of the stable distribution of the

non-zero returns set {x1, x2,…, xn-k}. Hence, the

optimal vector  max is estimated with non-zero

returns via stable log-likelihood function (2).

To optimize the log-likelihood function, we use the

Nelder-Mead method [14]. Although this method is

not the fastest one, but it is robust and does not require

any derivative (gradient, Hessian) calculation.

3. Parallelization

Numerical computations by the computationally

demanding maximum likelihood method combined

with the nontrivial numerical calculation of a stable

probability density function are very time-consuming,

especially when we need to handle long sets of high-

frequency data. Nowadays the common approach to

many time-consuming computational problems is the

application of parallel computing technologies. In our

previous work [2], we have already shown that the

stable modelling technique is very suitable for

parallelization. Several hierarchical levels of

parallelism can be distinguished and defined:

processing of multiple data sets (MS); algorithmic

steps of optimization method (OPT); calculation of

values of maximum likelihood (ML) target function

(2); calculation of integral (3) of probability density

function (PDF).

The coarse-grained parallelization at the MS level

is easily implemented by a uniform distribution of

data sets among the available parallel processes for

independent ML optimization tasks. The MPI [13]

implementation of this parallel algorithm showed

almost perfect efficiency on the commodity PC cluster

[2]. However, these results were obtained for

artificially generated data sets of the same size.

Moreover, all data sets were generated with the single

set of stable parameters and different seeds.

Obviously, working with the real data we need to deal

with data sets of different sizes (see Section 2) and

different computational complexities (number of

iterations) of ML optimization. The resulting load

balancing problems will definitely reduce the

efficiency of parallelization and can be only partially

overcome using heuristic scheduling algorithms for

optimal distribution of data sets between parallel

processes.

Another restraint of parallelization at the MS level

is its low degree of concurrency. The maximal number

of parallel processes, which can be utilized, is equal to

the number of data sets to be analyzed. In this study, it

would be 29 parallel processes for the data sets from

all 29 stocks and a fixed time step. It is too little for

the current parallel computing systems, although the

introduction of stochastic or deterministic global

optimization can relax this limitation. And finally,

parallelization at the MS level does not reduce the

time of processing of a single data set, which is vital

for the time-critical applications in the financial

analysis.

Therefore, in this research, we have chosen a more

fine-grained parallelization at the ML target function

(2) calculation level. In our previous work [2], we

have shown that OpenMP [16] implementation of the

parallel sum calculation is very efficient on the SMP

(Symmetric multiprocessing) node with two Intel

Pentium III processors. Since then we have a fully

established era of multicore processors, that are

currently used not only in the computing nodes of

supercomputers, but also in the personal computers.

The number of physical cores is constantly increasing.

However, multicore processors are known to have

scalability problems due to the memory bandwidth

bottleneck [4]. For many memory intensive

applications the efficiency and scalability of such

parallelization are quite low [18].

Therefore, in this work, we have first studied the

scalability of parallelization at the ML level using the

OpenMP on the multicore architecture. Parallel

performance tests were conducted on the IBM SP6

Power6 575 computing node with 32 cores and 128

GB of shared memory. The obtained results are shown

in Table 3 and Figure 1. All parallel performance tests

in this section were performed for two data sets

obtained from one of the DAX stock’s (Allianz SE)

real-time data. A relatively small data set (7385=n)

was obtained using the previous-tick interpolation

with time step 1000=t and large data set (

436143=n) with time step 10=t . For all tests, the

accuracy of ML optimization with the Nelder-Mead

simplex method [14] was set to 10-6. The integral (3)

of stable probability density function was computed

with the accuracy 10-11.

The OpenMP programming standard [16] allows to

specify a scheduling method for the assignment of

summands (2) (i.e. loop iterations) to the parallel

processes (threads). We have found that the choice of

the scheduling method has a significant impact on the

performance of our parallel application. It appears that

the static schedule with the chunk of one summand is

better for the small data set, when the additional

overhead of dynamic assignment does not pay off. On

the other hand, for the large data set, the dynamic

assignment of chunks of 100 summands produces

better results, because it is more evenly distributing

the workload between the parallel processes. Note that

the calculation of each summand in (2) can be of

different computational complexity due to adaptive

integration of PDF integral (3).

Further analyzing the Table 3, we see that our

parallel algorithm scales very well up to 32 cores.

Natural degradation of parallelization efficiency with

the increasing number of parallel processes is even

smaller for the large data set. Obviously, in our

modelling algorithm, the ratio between the

computations and data movement to and from the

shared memory is much more favourable to the

Parallel Computing for Mixed-Stable Modelling of Large Data Sets

151

Table 1. Performance and scalability of ML parallelization with the OpenMP on multicore IBM Power6 575 node. P - number

of processes, Tp - processing time with p processes, Sp- speedup, Ep - efficiency

P 1 2 4 8 16 32 64

t = 1000, set size n = 7385, static schedule (1)

Tp 80.13 43.73 21.89 10.99 5.58 2.98 2.01

Sp - 1.83 3.66 7.29 14.36 26.89 39.87

Ep - 92% 92% 91% 90% 84% 62%

t = 1000, set size n = 7385, dynamic schedule (100)

Tp 80.13 43.74 22.31 11.72 6.24 3.96 3.28

Sp - 1.83 3.59 6.84 12.84 20.24 24.43

Ep - 92% 90% 86% 80% 63% 38%

t = 10, set size n = 436143, static schedule (1)

Tp 6598.01 3518.15 1784.11 893.04 453.04 231.34 118.23

Sp - 1.88 3.70 7.39 14.56 28.52 55.81

Ep - 94% 93% 92% 91% 89% 87%

t = 10, set size n = 436143, dynamic schedule (100)

Tp 6598.01 3560.43 1733.52 868.10 435.23 218.86 111.24

Sp - 1.85 3.81 7.60 15.16 30.15 59.31

Ep - 93% 95% 95% 95% 94% 93%

Figure 1. Speedup and efficiency of ML parallelization with the OpenMp on multicore IBM Power6 575 node

Table 2. Performance and scalability of ML parallelization with the MPI on multicore IBM Power6 575 node. P - number of

processes, Tp - processing time with p processes, Sp- speedup, Ep - efficiency

P 1 2 4 8 16 32 64

t = 1000, set size n = 7385

Tp 80.13 40.51 20.31 10.29 5.30 2.80 1.50

Sp - 1.98 3.95 7.79 15.12 28.64 53.42

Ep - 99% 99% 97% 95% 90% 84%

t = 10, set size n = 436143

Tp 6589.13 3330.50 1657.39 826.23 418.94 210.81 120.38

Sp - 1.98 3.98 7.99 15.75 31.30 54.81

Ep - 99% 100% 100% 98% 98% 86%

I. Belovas, V. Starikovičius

152

Table 3. Performance and scalability of ML parallelization with the MPI on IBM SP6 using nodes with SMT (i.e. 64 processes

per node). N d - number of nodes, P - number of processes, Tp - processing time with p processes, Sp- speedup,

Ep - efficiency

N d 2 3 4 6 8 12 16

P 128 192 256 384 512 768 1024

t = 1000, set size n = 7385

Tp 0.791 0.563 0.421 0.300 0.248 0.186 0.163

Sp 101.30 142.42 190.33 267.11 323.11 431.79 492.98

Ep 79% 74% 74% 70% 63% 56% 48%

t = 10, set size n = 436143

Tp 60.85 40.68 28.78 19.66 15.08 10.75 8.26

Sp 108.43 162.20 229.26 335.58 437.53 613.94 798.71

Ep 85% 85% 90% 87% 86% 80% 78%

Table 4. Performance and scalability of ML parallelization with the MPI on IBM SP6 using nodes without SMT (i.e. 32

processes per node). N d - number of nodes, P - number of processes, Tp - processing time with p processes, Sp- speedup,

Ep - efficiency

N d 2 4 6 8 10 12 16

P 64 128 192 256 320 384 512

t = 1000, set size n = 7385

Tp 1.388 0.728 0.516 0.382 0.332 0.273 0.223

Sp 57.73 110.07 155.16 209.76 241.46 293.40 359.48

Ep 90% 86% 81% 82% 76% 76% 70%

t = 10, set size n = 436143

Tp 107.05 55.42 36.50 27.86 22.29 18.80 14.03

Sp 61.64 119.06 180.79 236.83 295.95 350.96 470.13

Ep 96% 93% 94% 93% 93% 91% 92%

Figure 2. Speedup and efficiency of ML parallelization with the MPI on IBM SP6

current multicore architectures than in modelling

algorithms based on the numerical solution of partial

differential equations [18]. Finally, we have used the

IBM processor’s hardware support for the

Simultaneous Multi-Threading (SMT), which can

double the number of processes per core, i.e. up to 64

processes per node. The obtained performance gains

are as significant as one might expect from the

doubling of the number of physical cores. Hence, the

SMT or Intel Hyper-Threading mode in the current

processors cannot be overseen and should be

definitely used for running our parallel application.

Next, to test further the scalability of chosen

approach, we have implemented parallelization at the

Parallel Computing for Mixed-Stable Modelling of Large Data Sets

153

ML level using the MPI library [13]. First, we have

tested the MPI implementation on the same shared

memory multicore node (IBM Power6 575) to

compare it with the OpenMP implementation. The

obtained performance results are shown in Table 2.

Quite surprisingly, we see that the MPI

implementation is slightly outperforming the

OpenMP implementation on the shared memory

architecture for both small and large data sets, despite

the fact that the MPI parallelization is using static

distribution of summands (2) between processes.

Obviously, for our application, the IBM MPI library

deals better with the shared memory contention than

the IBM OpenMP compiler.

The main advantage of the MPI implementation is

a feasibility to use the parallel computing systems

with the distributed memory and hence with the

bigger number of parallel processors. Next, we have

tested the scalability of MPI parallelization at ML

level on the IBM SP6 supercomputer in CINECA,

Italy. The obtained results are presented in Tables 3,

4, and Figure 5. In Table 3, we present the results

obtained using the SMT mode on multicore nodes,

i.e. with 64 parallel processes per node. As we see,

we get a speedup even for the large number of

processes and small data set. As the number of

summands (2) per process is reducing to less than 10,

the efficiency is degrading due to the relative increase

in parallelization overhead and imbalance in the

workload. For the large data set, the efficiency is very

good.

In Table 4, we present the results obtained without

the SMT mode, i.e. with 32 parallel processes per

node using only the physical cores. Naturally, the

obtained speedup Sp and efficiency Ep numbers are

better than corresponding numbers in Table 3.

Without the effect of SMT technology, these results

better describe the scalability of our parallel

algorithm. However, comparing the times Tp for the

same number of used nodes, we clearly see that the

use of SMT mode is indispensable for our application

and it is very efficient.

4. Conclusions

Summarizing, we note that parallelization of our

mixed-stable modelling algorithm at the maximum

likelihood target function level is very efficient.

Some of the obtained efficiency numbers are close to

100% , for example, see Table 2. This means that the

time spent in other operations of optimization method

is insignificant. Hence the parallelization at this level

is fully sufficient and there is no need in the

parallelization of algorithmic steps of optimization

method.

We note that our parallel algorithm is highly

scalable. Speedups up to 800 times were obtained for

1024 parallel processes (see Table 3). The properties

of parallel algorithm (the ratio between calculations

and data movement) are highly suitable not only for

the distributed, but also for shared memory systems

(e.g. multicore).

Moreover, our parallel application is able to

efficiently utilize the Simultaneous multithreading

(Intel Hyper-Threading) technology in modern

processors. The obtained performance gains are as

significant as one might expect from the doubling of

the number of physical cores. Furthermore, the

properties of our parallel algorithm look very

promising for the application of GPU computing [5].

Finally, the processing of all 29 DAX stocks

returns series with the 10-second time step takes too

long to be computed in a reasonable time with the

single process (in serial mode). It takes 6403.56

seconds with 64 processes and 442.34 seconds with

1024 processes in Simultaneous multithreading

mode.

This research shows that the application of

modern parallel technologies allows a fast and

accurate maximum likelihood estimation of mixed-

stable parameters even for large amounts of data.

This supports the employment of stable and mixed-

stable modelling in the statistical data processing, in

particular in high-frequency financial data analysis.

Acknowledgment

The work has been performed under the Project

HPC-EUROPA2 (Project number 1020), with the

support of the European Community - under the FP7

"Research Infrastructures" Programme.

References

[1] I. Belovas, A. Kabašinskas, L. Sakalauskas. A stu-

dy of stable models of stock markets. Information

Technology and Control, 2006, Vol. 35, No. 1, 34–46.

[2] I. Belov, V. Starikovičius. Parallelization of 𝛼-stable

modelling algorithms. Mathematical Modelling and

Analysis, 2007, Vol. 12, No. 4, 409–418.

[3] J. Diamond, M. Burtscher, J. McCalpin,

K. Byoung-Do, S. Keckler, J. Browne. Evaluation

and optimization of multicore performance bottle-

necks in supercomputing applications. In: Procee-

dings of 2011 IEEE International Symposium on Per-

formance Analysis of Systems and Software (ISPASS),

2011, pp. 32–43.

[4] General-purpose computing on graphics processing

units. www.gpgpu.org.

[5] A. Grothey. Financial Applications: Parallel Portfolio

Optimization. Parallel computing. Eds. R. Trobec, M.

Vajteršic, P. Zinterhof. Springer, London, 2009,

435-469.

[6] W. Hwu. GPU Computing Gems. Elsevier, 2012

(Section 5. Computational finance).

[7] A. Igumenov, T. Petkus. Analysis of Parallel Calcu-

lations in Computer Network. Information Techno-

logy and Control, 2008, Vol. 37, No. 1, 57–62.

[8] A. Kabašinskas, S. Rachev, L. Sakalauskas,

W. Sun, I. Belovas. Alpha-stable paradigm in

financial markets. Journal of Computational Analysis

and Applications, 2009, Vol. 11, No. 3, 642–688.

I. Belovas, V. Starikovičius

154

[9] L. Kaklauskas. Fraktalinių procesų kompiuterių

tinkluose stebėsenos ir valdymo metodų tyrimas. PhD

thesis, Vilnius University Institute of Mathematics and

Informatics, 2012.

[10] G. Kappel. High Performance Computing in Finance.

On the Parallel Implementation of Pricing and Opti-

mization Models. PhD thesis, Vienna University of

Technology, 2006.

[11] A. Kronrod. Nodes and weights of quadrature

formulas. Sixteen-place tables. New York:

Consultants Bureau, 1965.

[12] Message Passing Interface Forum. MPI: A Message-

Passing Interface Standard. www.mpi-forum.org,

Version 1.1, 1995.

[13] J. Nelder, R. Mead. A simplex method for function

minimization. Computer Journal, 1965, Vol. 7,

308–313.

[14] D. Ojeda. Comparative study of stable parameter

estimators and regression with stably distributed

errors. PhD thesis, American University, 2001.

[15] OpenMP Group. www.openmp.org, 2001.

[16] S. Rachev, S. Mittnik. Stable Paretian Models in

Finance. John Wiley and Sons, New York, 2002.

[17] V. Starikovičius, R. Čiegis, O. Iliev. A parallel sol-

ver for the design of oil filters. Mathematical Mo-

delling and Analysis, 2011, Vol. 16, No. 2, 326–341.

[18] G. Samorodnitsky, M. Taqqu. Stable Non-Gaussian

Random Processes: Stochastic Models with Infinite

Variance. Chapman & Hall, New York-London,

2000.

[19] V. Surkov. Parallel Option Pricing with Fourier

Space Time-Stepping Method on Graphics Processing

Units. Parallel Computing, 2010, Vol. 36, No. 7,

372–380.

[20] W. Wasserfallen, H. Zimmermann. The behavior of

intradaily exchange rates. Journal of Banking and

Finance, 1985, Vol. 9, 55–72.

Received June 2014.

