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Abstract. A control design for a large-scale system using LMI optimization is proposed. The control is designed in 

a way such that the LQ cost in the case of the decentralized control does not exceed a certain limit. The optimized 

quantity are the values of the control gain matrices. The methodology is useful even for finding a decomposition of the 

system, however, some expert knowledge is necessary in this case. The capabilities of the algorithm are illustrated by 

two examples. 
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1. Introduction 

Control of large-scale complex systems has gained 

great attention long time ago. This is due to its sheer 

practical importance as well as due to the many 

theoretical problems emerging from this area. First, 

algorithms for decentralized control of complex 

systems have been proposed. As an example, [1] 

proposes a decentralized control of linear systems 

minimizing a quadratic cost functional. Recently, we 

have witnessed a new interest in the decentralized 

control. This can be also granted to the fact that new 

computational methods opened up further possibilities 

for applications of new hierarchical and decentralized 

control strategies. They often require a larger amount 

of computational effort. Some recent trends are 

summarized in [2]. A series of results concerning 

decomposition of optimal control problems and 

calculus of variations can be found in [3,4]. 

A related problem is the problem of decomposition 

of large systems into subproblems. This problem has 

been solved using the graph theory in [2] and [5]. 

Theory of fixed modes [6] is another way how to 

attack this problem. Roughly speaking, fixed modes 

are modes in the closed loop that cannot be modified 

under decentralized feedback which is assumed to 

have a predefined structure. A method that allows us 

to overcome this disadvantage is presented in [6]. This 

method is based on the solution of several linear 

matrix inequalities (LMI) such that a certain objective 

function is minimized. The minimized quantity is the 

square of the elements in the feedback matrix 

corresponding to the interconnections. Hence this 

algorithm allows us to find a control that minimizes 

the amount of information exchanged during the 

control process. 

Early results about control of large-scale systems 

were obtained in the seventies. From those times, a 

large number of papers emerged treating the 

decomposition problem from various angles. We 

provide only an incomplete selection of several papers 

that were inspiring for the presented work. 

Decomposition problem using graph-theoretic 

methods have been proposed, for example the 

decomposition (see [7], further results can be found 

e.g. in [8]). In this approach, one seeks for a 

permutation of rows and columns so that the system 

matrix after this transformation has "almost" block-

diagonal structure. This means, all off-diagonal blocks 

have the norm less than ε. Decomposition of a system 

with overlapping structure using the inclusion 

principle is presented in [9]. Dynamical programming 

coupled with graph-theoretic considerations is used 

for system decomposition in [10].  

Stochastic large-scale systems are an important 

extension of large-scale systems. In this case, one has 

to investigate the effects of random noise to stability 

of interconnected systems.  

Ferreira et al. study conditions for stability 

(especially stochastic stability and noise-to-state 

stability) of interconnected stochastic systems in [11]. 

An entirely different approach is presented in [12] 

(and references therein). The authors solve the 

decomposition problem using Gröbner bases. Theory 

of the fuzzy Hinf control of large-scale systems in 

presence of nonlinearities is developed in [13]. 
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There are many applications of decomposition 

theory. Let us mention examples in biology which 

include [14,15], control of unmanned aerial vehicles is 

proposed in [16], for applications to power networks 

safety see [17]. 

Application of linear matrix inequalities was 

presented in several papers recently. A robust control 

problem involving decomposition of a system and 

finding a control for a decomposed system using 

linear matrix inequalities is solved in [18], [19] or 

[20], however, treating off-diagonal entries is different 

than in this paper. Especially, the approach adopted 

here allows finding a control even for the case when 

the interconnections do not allow using purely 

decentralized control. Recent optimization technique, 

namely the sum-of-squares, is applied for 

decomposition of large systems in [21]. This paper 

also presents an application to a biological system - a 

model of the Epidermal Growth Factor signalling 

pathway. 

So far, the algorithms to solve the decomposition 

problem were designed so as the computations could 

be done for separate subsystems. However, with the 

rise of computational power and also with advent of 

efficient algorithms, one does not need to handle the 

subsystems separately. Rather, one can deal with the 

whole system in the control design phase. One of the 

efficient algorithms is also the convex optimization 

(see [22] for details) and solving the LMIs as shown in 

[18, 21], dynamic output feedback control for large 

scale systems designed using LMIs is presented in 

[23]. One can employ algorithms that use convex 

optimization of large problems. Presenting a method 

that makes use of capabilities of the modern computer 

technology, especially handling large LMI problems, 

is one of contributions of this paper. One such 

decomposition method based on solution of a large 

convex optimization problem is presented in [24] and, 

in an extended form, in [25]. There, a cost of the 

optimal control disregarding the need for the 

decentralization was computed. Then, a decentralized 

controller was sought such that the cost caused by 

using this controller does not exceed some predefined 

bound which was selected using the cost of the 

centralized LQ-optimal control. If this control is not 

achieved, some interconnections are allowed and the 

computation is run once again. To our best knowledge, 

this approach to decentralized control has not been 

studied before. 

Instead of the LQ-optimal control, robust control is 

used. This is due to the fact that its use brings some 

other advantages. The first and most important is that 

the inaccuracies caused by neglecting some terms 

(mainly nondiagonal) can be treated as uncertainties 

and, consequently, stability of the whole control loop 

can be tested. 

The aim of the paper is to introduce another 

method for decentralized control design. This method 

is also applicable for finding of a control structure in 

the case that a fully decentralized control cannot be 

found. Another important feature is that the quadratic 

cost of the decentralized control does not exceed the 

cost of a centralized LQ control by more than a 

prescribed margin. 

The novelty of the approach adopted in this paper 

is that the values of the control gain matrix are the 

optimized quantity. The LQ cost is regarded as an 

auxiliary variable and plays the role of a constraint. 

The formulation of the LMI optimization problem is 

rather non-standard, however, it allows to easily find 

the desired control. To the author's knowledge, a 

similar approach was not used before. Also, the 

interconnections may have an arbitrary structure. 

The method is based on linear matrix inequalities 

(LMI) and makes use of the fact that solvers for 

solution of this problem are now available and work 

reliably even a large problem is solved. Hence there is 

no need to restrict the size of the computational load 

in the phase of control design. This contrasts with the 

requirement of decentralized control law as the 

centralized control might still be impossible or 

impractical to apply. 

The layout of this paper is standard. After this 

introduction, the problem is defined. After that, the 

solution of the problem using LMIs is formulated so 

that this algorithm is ready-to-use then. A set of 

examples follows together with some remarks about 

practical implementation. 

2. Algorithms 

Stabilization 

Let N be a positive integer. For each i=1,...,N we 

define positive integers ni, mi. Assume matrices Ai (ni-

dimensional), AD (n-dimensional), Bi, (dimension ni x 

mi) and BC (n x m-dimensional) are given. Here, 

n=n1+...+nM, m=m1+...mN. The interconnected system 

is given by 
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The system 

iiiii uB+xA=x  (2) 

is called the i-th subsystem.  

The interconnected system can be seen as the set 

of subsystems interconnected by the matrices AC, BC. 

In the following section, if we speak about 

subsystems, we will always think about them as parts 

of the interconnected system (1). 

Assume also the following set of symmetric 

matrices Qi and Ri, i=1,...,N is given. The matrices Qi 
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are supposed to be positive semidefinite, the matrices 

Ri are positive definite. Then, using 
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one can define the cost functional 

     dt.tRuu+tQxtxJ T
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0

 (3) 

The goal is to design a controller in the form u=Kx 

where the matrix K has a decentralized structure. 

Ideally, the nonzero elements should be placed so that 

the structure of the system given by the matrices AC, 

BC remains. This might be possible. However, in some 

cases, the matrix K should have nonzero entries on 

other positions to achieve stability. The number of 

these elements should be minimized. Another 

objective is to find the controller so that the increase 

of the cost defined by the cost functional is not large 

(a more precise explanation is given later). 

The controller design can be described now. First, 

one computes the centralized LQ controller for the 

interconnected system. The solution of the 

corresponding Riccati equation is denoted by PC. If 

the initial condition of the system (1) is x(0) then the 

optimal cost in the case of centralized LQ control is 

J=xT(0)PCx(0). In general, this cost cannot be 

achieved under the decentralized control law, 

however, our aim is to design a control such that 

)0()0()0()0( xsxxPxJ T

C

T

D   (4) 

for a given s>0. Using [26], the value of the functional 

(3) is given as J=xT(0)PDx(0) where the symmetric 

positive definite matrix PD satisfies the equation 

RKKQ
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 (5) 

provided the control is given by u(t)=Kx(t). Using the 

above considerations, the condition (4) can be 

reformulated as 

sIPP CD   (6) 

where I is the identity matrix of a suitable dimension. 

Let us turn our attention to the definition of the 

weighting matrices that allow us to choose some 

elements of the matrix K to be rendered to zero. Let 

gij>0. Using this, one can define the objective 

function. 
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Minimization of this function is described in the 

following section. 

Reference tracking 

In this case we assume that the reference is 

generated by an autonomous system, the reference 

generator. The output of this reference generator must 

coincide with the output of the system which is also to 

be defined yet. 

Let the positive integers p1,...pN be given. Assume 

the output of the i-th subsystem is given by 

.
n

RC,xC=y ii
p

iiii


  

Define also C=diag(C1,...CN). To be able to design 

a decentralized controller, the reference generator 

must be in a decentralized form itself. It is defined by 

the equation 

SqrMq=q ,  (8) 

where M=diag(M1,...MN), S=diag(S1,...SN), Mi are μi-

dimensional square matrices and Si have dimension pi 

x μi. The reference is determined by the initial 

condition q(0). 

The goal is to design matrices K, Kr having 

suitable dimensions such that the condition 

    0 trtx  

holds (for t increasing) under the control law 

 .tqK+tKxtu r)()(   

Moreover, the structure of the matrices K, Kr must 

also meet the decentralization requirements. 

The decomposition of the reference generator 

seems to be superfluous. However, to design a 

decentralized control scheme, the decentralized 

structure even in the reference generator is crucial. 

Define Ar=diag(AC,M), Br=(BC
T,0)T, Cr=(CC,-S). 

Using these definitions, one can introduce the 

augmented system 

., 

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r

x
xuBxAx rrrrr

  (9) 

Finally, define the matrix Qr by Qr=CrCr
T+aI with 

a parameter a>0 guaranteeing regularity of the matrix 

Qr. 

In the following text, one works with the system 

(9) as in the previous case. The matrices Ar, Br etc. 

play the role of matrices A, B in the previous section, 

respectively. 

3. LMI formulation of the optimization 

problem 

Note that the minimization problem is not convex 

due to the multiple of matrices PD, K in (5). The way 

how to recover the convex structure of the problem is 

presented in this section.  

The problem is reformulated using LMIs in this 

section, see [22] for more details. 
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If PD>0, then one defines QD=PD
-1 (note that QD>0 

as well). Multiplying the equation (5) by QD from both 

sides and denoting 

Y=K QD (10) 

yields 
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which can be, using the Schur complement, rewritten 

into the form 
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where 
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The inequality (6) yields 

.)( 1 sIPQ CD
 (12) 

Let us turn our attention to the objective function 

(7) whose value is to be minimized. Note that (10) 

implies that the values of kij are given as elements of 

the matrix QD
-1Y. Hence, (7) is reformulated using 

elements of the matrices QD and Y. 

The way how the variable Y was defined hints that 

absolute value of certain elements of the multiple  

QD
-1 must be minimized. However, elements of this 

expression cannot be easily extracted without breaking 

convexity of the problem. Hence the objective 

function is modified in the following way: the 

elements of the matrices Y and QD are penalized 

separately. 

To minimize the undesired terms of the matrix Y 

an objective function is defined. Minimization of this 

objective function implies minimization of these 

terms. The matrix Y is expressed as 

.YY=Y nDdD   

The decomposition of the matrix Y is carried out as 

follows: let (i,j) be such that the element kij should be 

penalized. Then (YdD)ij=0. Conversely, if kij is not 

penalized then (YnD)ij=0. 

The matrix QD is decomposed in a similar way. 

Define square (n+μ)-dimensional matrices QdD, QnD 

such that if the elements kij, kij' are not penalized then 

(QnD)ij'=0, otherwise (QdD)ij'=0 while the equality 

QD=QdD+QnD holds. The elements of the matrix QnD 

are penalized. 

Now recall that norm of a matrix is treated using 

LMIs in the following way: The absolute value of the 

maximal eigenvalue of QnD does not exceed λ if and 

only if  
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The symbol I denotes the unity matrix with a 

suitable dimension. 

To minimize the elements of the matrix YnD, one 

proceeds in a similar way. Here, one might distinguish 

how much undesirable interconnections between 

specific subsystems actually are. In a physical system, 

some interconnections might make more problems 

than others, hence one can reflect this in different 

weights when minimizing the norm of this matrix.  

Let gij> 0. If the element in the position (i,j) is to be 

minimized by the weight gij then one can define the 

matrix Jij
 by 

ijkl
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otherwise. Then one arrives at the main result of the 

paper which is formulation of the following 

optimization problem 
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together with (11) and (12). This problem is easily 

solvable using an LMI solver. 

4. Implementation details 

As described above, the algorithm is easy to 

implement. However, some care is advisable. This is 

since the values of the penalized elements in the 

matrices YnD, QnD are not precisely zero. It is thus 

required to verify stability of the control scheme. If 

stability is not achieved, the user has to decide upon 

further actions. Changing the weights might suffice, 

however, sometimes it can be necessary to allow one 

more element that corresponds to information 

interchange between different subsystems. The user 

has to decide what off-diagonal elements of the 

control matrix should be allowed. Hence, the 

decomposition is not yet fully automated and some 

expert knowledge is still a necessary ingredient. 

Finding an algorithm to make the procedure fully 

algorithmized is a task for future work. 

One issue that remains unsolved in this paper is the 

choice of the parameter s>0. Recall that this parameter 

represents a certain upper bound on the increase of the 

cost due to decentralized control (as opposed to the 

centralized LQ control). Intuitively, the control should 

be such that this increase is small, hence this 

parameter should be as small as possible. However, 

one cannot include this parameter into the set of the 

optimization variables as optimization of s would 

result in loss of convexity of the whole problem which 

is a crucial prerequisite for solvability using LMIs. 

Hence one has to deal with a fixed value of the 

parameter ε. The procedure how to change this 

parameter can be proposed as follows: 
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1. Choose an initial guess of s with a 

sufficiently large value. 

2. Solve the optimization problem. 

3. If the optimization ends successfully and the 

value of s is not small enough, decrease the 

value of the parameter. 

4. If the optimization problem is infeasible, 

increase the value of s 

5. If the value is small enough or its further 

decrease causes loss of feasibility, stop, 

otherwise go to 2). 

The value of the suitable initial guess depends on 

the specific problem so no more detailed hints 

concerning its choice can be given. Let us note that 

occurrence of parameters like s is quite common in 

LMI problems. Usually, their values must be 

determined by the error and trial method. 

5. Examples 

Example 1: stabilization of a system 

The system is defined by 

TT uuuxxxBuAxx ),(,),(, 2121   

with 

.
17.0

5.01
,

12

35.0



















 BA  

The system is unstable. One of its eigenvalues is 

equal to 2.3, the other one is -2.8. The coupling 

between both states is relatively strong. We assume 

both states are measurable, hence no need for an 

observer. Our goal is to design a control matrix K so 

that, using the control u=Kx, the optimal value of the 

cost functional 
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is not much exceeded. Here, we choose 
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The interchange of information from the state x2 

into the control u1 should be avoided. This results in 

the requirement to penalize the element K1,2. Without 

this condition, we compute the state feedback using 

the LQ-control methodology. The result is 
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The solution of the Riccati equation corresponding 

to this problem is 
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The decentralized control was found using the 

algorithm described in the previous sections. The 

objective function used for minimization of the norm 

of YnD and QnD was chosen as 

 .)(10)( 2
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The condition (6) was defined as 

I.+P<P C 0.007  

This results in the control law 
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The comparison of the results of the centralized 

and decentralized controls is shown in Fig. 1. The 

states are represented by different types of lines as 

follows: bold lines correspond to the system 

controlled by the decentralized controller while thin 

lines depict the states of the system under the 

centralized control. In both cases, solid lines represent 

the state x1 while dashed lines represent the state x2. 

The initial condition is x(0)=(1,2)T in both cases. 

Fig. 2 shows the value of the cost functional. The 

meaning of the lines (thin / bold) is the same as in the 

previous figure, moreover, the dotted line shows the 

cost given by the right-hand side of the inequality (6). 

This is in some sense a limit cost that cannot be 

exceeded. This is indeed the case. 

Now we investigate the influence of the variable ε 

ε olution. One can expect that, in case this limit is too 

tight, the absolute value of the minimized elements (in 

our case, K1,2) increases. This is since in this case the 

decentralized control cannot be found such that the 

condition (6) is satisfied. Then, the algorithm is forced 

to yield a centralized controller even if the resulting 

value of the objective function is high. This effect is 

illustrated in Fig. 3. Moreover, numerical experiments 

show that the rapid changes of the value in the left-

hand part of the graph are also partially due to high 

sensitivity of the computational algorithm on the data. 

The remedy is to use the values ε around which the 

solution remains more or less constant. This threshold 

seems to be the value ε=0.06 in our case. 

Dependence of the eigenvalue of the closed loop 

on the variable ε, shown in Fig. 4, is also noteworthy. 

The dashed lines represent the eigenvalues of the 

closed loop under the centralized feedback while the 

solid lines stand for the eigenvalues of the closed loop 

under decentralized feedback. The part for ε<0.06 

should be rather disregarded due to reasons described 

above. 

Example 2: reference tracking 

In this case we consider the same system as in the 

previous example. However, in this case, we require 

the state x1 to be a constant (defined later) while the 

state x2 should track a sine trajectory. Hence the 

reference generator is 

2.33,21 0, q=qq=q=q 
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Figure 1. States of the system 

 

Figure 3. States The entry K12 

 

Figure 5. The tracking error 

 

 

Figure 2. The cost functional 

 

Figure 4. Eigenvalues of the closed loop 

 

Figure 6. The cost functional 

Amplitude and phase are given by initial 

conditions in this reference generator. Let us define 
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Again, the aim is to design a decentralized control 

such that the performance is not much worse than the 

performance of the LQ control. In this case we require 

to minimize the information exchange from xi into uj 

unless i=j. 
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This means the objective function is defined as 
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The condition (6) was chosen as I.+P<P CD 45  

Then the decentralized control law is given by 
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Fig. 5 shows the tracking error. Fig. 6 illustrates 

the cost functional. 

6. Conclusions 

An algorithm for decomposition of a large system 

was presented. It is based on solution of a set of LMIs. 

The algorithm is easy to implement. The results were 

illustrated using simulations. 
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