
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2011, Vol.40, No.3

MODEL-DRIVEN PLUG-IN DEVELOPMENT FOR UML BASED
MODELING SYSTEMS

Ruslanas Vitiutinas, Darius Silingas, Laimutis Telksnys

Faculty of Informatics, Vytautas Magnus University,
Vileikos str. 8-409, Kaunas, Lithuania

e-mail:darius.silingas@nomagic.com, ruslanas.vitiutinas@nomagic.com, telksnys@ktl.mii.lt

Abstract. UML is the main modeling language used in model-driven development (MDD). In many cases, UML-
based modeling systems need to be extended by plug-ins to support different modeling approaches. This paper
proposes a conceptual framework for model-driven development of plug-ins, which enables reuse of UML modeling
capabilities for defining executable plug-in models. This approach suggests that UML-based modeling system should
provide for their users a set of extension profiles that make up Application Modeling Interface (AMI), which is MDD
alternative to Application Programming Interface (API). The paper describes three cases of AMI – model validation,
methodology wizards, and model patterns – and sample plug-in models based on them. The presented samples are
implemented in MagicDraw, which is one of the most popular UML-based modeling systems worldwide. The paper
also discusses the benefits and drawbacks of the proposed approach and its further research directions.

Keywords: Model-driven plug-in development, UML, MagicDraw, Application Modeling Interface, model
validation, model patterns.

1. Introduction

The plug and play architecture is a well-known
approach to building integrated devices that are exten-
dible with plug-in components supporting defined
interfaces. This approach has been successfully adop-
ted in software industry. Many software products
provide open API (Application Programming Inter-
face), which allows its users to implement custom
plug-ins adding missing capabilities to the product
functionality. In some cases, the open API offers only
small set of possibilities, and in other cases the pro-
ducts have a core platform with rich open API for
adding plug-ins. The latter approach has been success-
fully implemented in Eclipse platform [6] and was one
of the main reasons why it quickly became the most
popular toolkit for software developers [18]. For those
systems that have a very large and non-homogenous
user base, it is extremely important to provide exten-
sion mechanisms so that the users can implement
capabilities for their specific needs themselves. Such
extension mechanisms are very important in modeling
systems, because modeling approaches vary a lot bet-
ween organizations and there are little standardization
in modeling methods – instead standardization bodies
focus on languages like Unified Modeling Language
(UML), Business Process Model and Notation
(BPMN), System Modeling Language (SysML) and
others that are independent of particular modeling

approach or application domain. As a consequence,
modelers applying these languages typically have to
tailor the modeling systems to support their modeling
approach and extend the languages for their domain
needs. Taking into consideration a huge and non-ho-
mogenous modelers base, the ease of developing these
extensions are critical not only to success of modeling
system products but also to the success of MDD
paradigm itself – any good initiative can fail if there
are no proper tools in practice.

In 2003, Object Management Group (OMG) intro-
duced the Model Driven Architecture (MDA) ini-
tiative, which promoted using modeling as the main
means for producing executable software [33]. At that
time, Unified Modeling Language (UML) was already
considered to be de facto standard in software mo-
deling and it has maintained this position until now.
Many commercial and open source modeling systems
using UML as the built-in metamodel have been de-
veloped. The most popular modeling systems such as
MagicDraw, IBM Rational Software Architect, Enter-
prise Architect and others provide open Application
Programming Interface (API) enabling users to create
plug-ins for addressing their custom needs. A large
number of such plug-ins have been created for prac-
tical or research purposes. However, API defines prog-
ramming, not modeling interface. From the perspec-
tive of MDA, vendors of the modeling systems should
practice the well-known “eat your own dog food”

191

http://dx.doi.org/10.5755/j01.itc.40.3.627

R. Vitiutinas, D. Silingas, L. Telksnys

principle [21] and promote modeling instead of prog-
ramming as the means for extending the capabilities of
the modeling systems itself. Such an approach to ex-
tending modeling systems is very natural from mo-
delers’ viewpoint – they know modeling language that
is supported by the modeling system and have mo-
deling skills but they might not know particular
programming language like Java, C++ or other in
which open API is provided. In case of extending
modeling system via open API, it is typical to assign
this job to a special team, which has proper prog-
ramming skills. While such an approach works, it puts
a barrier for a modeler, who wants to extend and
customize the environment quickly according to his
needs and possibly to experiment with several alter-
natives. The possibility to extend the modeling system
via modeling would remove such barriers and enable
modelers to create easily more productive modeling
environments, which in turn would enable more pro-
ductive MDD efforts using the customized environ-
ment. To enable model-driven plug-in development, it
is necessary to provide an open modeling interface
which we propose to call Application Modeling
Interface (AMI). This interface would provide a set of
model elements that the users can use for modeling
their plug-ins. The plug-in model can then be loaded
into modeling environment in order to enable custom
features.

The paper goal is to introduce a conceptual frame-
work for model-driven plug-in development of UML
modeling systems. However, further AMI applications
need to be implemented in UML based modeling
systems in order to enable modelers to apply model-
driven plug-in development.

In the next sections, we will review related works,
present conceptual framework for model-driven plug-
in development, and analyze three applications of
AMI that have been implemented in MagicDraw
modeling system and sample model-driven plug-ins
built using them.

2. Related Works

In this section, we will discuss the works related to
the topic of the paper. This paper introduces a novel
approach, which to our knowledge was not concisely
analyzed and described previously. However, it builds
on the top of existing approaches of model driven
development and extending systems via plug-in archi-
tecture and combines these two approaches to enable
model-driven plug-in development for UML based
modeling systems in particular.

Custom extensions of software applications are
typically implemented as plug-ins, which architecture
pattern is described by Fowler [13]. Some software
systems are delivered as platforms with minimal func-
tionality and most features are added by plug-ins
developed based on that platform. Using plug-in
architecture, existing applications can be extended
without base modification to support new file formats,

customer devices, or processing abilities [30]. The
foundations of plug-in architecture were described in
detail by Marquardt [30], who identified the major
concepts of plug-in architecture and the relations
among them. The state of the art of plug-in architec-
ture implementation in software might be seen in
Eclipse platform [6]. Eclipse plug-in implementation
structure consists of a plug-in implementation library
and plug-in contract defined as plugin.xml file. The
plug-in implementation logic and its contract defini-
tion are essential for model-driven plug-ins architec-
ture as well.

Model-driven development (MDD) is a software
engineering approach consisting of the application of
models and model technologies seeking to raise the
level of abstraction at which developers create and
evolve software, with the goal of both simplifying
(making easier) and formalizing (standardizing, so that
automation is possible) the various activities and tasks
that comprise the software life cycle [20].

Current research shows that the model-driven
development is successfully applied in context of
various architectures, implementation platforms and
software development processes. MDD has been used
in mobile application development for specifying and
generating user interface components and navigation
schemas [10, 8], for developing interactive dynamic
web applications [4, 5,15], for developing generic gra-
phical user interface [31], automated user interface
[43, 44] and system behavior testing [2]. MDD is
successfully applied for developing service-oriented
systems [47], embedded systems [34], distributed sys-
tems [1] and real-time systems [24] as well. Moreover,
there are already applications of MDD where models
are used as configuration of model-based software
system extensions. Metamodels are widely used for
configuring domain specific engines and environ-
ments such as model visual or textual editors [11, 27,
37, 38, 42]. For instance, automatic text completion
feature in text editors of openarchitectureware [9]
provides elements and their properties as described in
EMF based metamodels [39]. The modeling environ-
ment of MetaEdit+ modeling system also follows the
modeler defined language definition stored as a
metamodel and automatically provides modeler with
full modeling functionality: diagramming editors,
browsers, and code generators [42].

Metamodels are also successfully used for speci-
fying interfaces for model interchange among diffe-
rent modeling systems. The input and output data type
of so called model bridges or model buses is elegantly
configured by metamodels [1, 3, 7, 22, 23]. There are
also successful cases when models are used to define
model transformation data and transformation algo-
rithm of modeling systems. Willink has proposed
UMLX, a language for graphically specifying trans-
formations [46]. The researchers from University of
Paderborn have developed Fujaba Tool Suite, which
can be used for specifying model transformation flow
using transformation graph chart [45]. Although

192

Model-Driven Plug-in Development for UML Based Modeling Systems

193

Fujaba specification is not UML compliant, there is a
successful Fujaba approach implementation using
UML Activity diagram and AndroMDA code gene-
ration framework [35]. In this case, plug-in behavior is
modeled using UML model and AndroMDA is used to
generate plug-in executable code for specific UML
modeling system.

UML-based modeling systems provide wide range
of capabilities out-of-the-box in order to support
different application domains and modeling approa-
ches. However, typical modeler usually needs only a
subset of capabilities provided by UML-based mo-
deling systems. Moreover, modeler’s required domain
or modeling methods might not be supported by
UML-based modeling systems at all. The vendors of
UML-based modeling systems have solved these
issues by providing capabilities customization and ex-
tension mechanisms for tailoring UML-based mode-
ling system for modeler specific needs.

Nowadays, the most popular UML-based mode-
ling systems such as IBM Rational Software Architect
[26], MagicDraw [29], and Enterprise Architect [40]
might be customized and extended using plug-ins
based on system provided Application Programming
Interfaces (API). However, UML modeling systems

already successfully use models for their capabilities
customization and extension. For instance, model
patterns in IBM Rational Software Architect are de-
fined using UML Collaboration elements, DSL engine
of MagicDraw is configured by stereotyped UML
classes, custom diagrams and their toolbars might be
modeled as metaclass with attributes in Enterprise
Architect. However, in most cases these UML-based
modeling systems use models as a part of the
functionality and are not considered as the main me-
chanism for capabilities extension or customization.
The main mechanism for capabilities extension or
customization in UML-based modeling systems is still
a plug-in development based on system API.

3. Conceptual Framework for Model Driven
Plug-in Development

In Figure 1, we define major concepts that are used
in model-driven plug-in development and their rela-
tionships in order to establish a common vocabulary
for the further use. This vocabulary can be treated as a
conceptual metamodel that will be instantiated by
different concrete applications.

Figure 1. A conceptual metamodel for model-driven plug-in development in UML-based modeling systems

UML-based modeling system is a modeling envi-
ronment, such as MagicDraw, IBM Rational Software
Architect, and Enterprise Architect, which provides
standard UML modeling capabilities. In order to
support model-driven plug-in development, it needs to
provide public access to a set of extension profiles that
make up its Application Modeling Interface (AMI).
Each extension profile should define a certain custo-
mization/extension point that is important for mode-
lers, e.g. model validation rules, model transfor-
mation, model patterns, etc. The extension profile
should be implemented using standard UML profiling
capabilities (profiles, stereotypes, data types) that
provide a necessary base for domain-specific language
(DSL) definition [36]. A specific UML-based mo-
deling system like MagicDraw may provide features
for virtual transformation of UML profiles into first-

class DSLs including important elements such as
plug-in model completeness / correctness validation
rules and custom diagrams enabling easier modeling
[38]. When an extension profile is available as a part
of AMI, a modeler can define plug-in models for spe-
cific modeling needs based on extension profiles.
These plug-in models need to be executed by the
UML-based modeling system. For achieving this, it
should not only provide AMI realized as a set of
extension profiles, but also provide a set of AMI
enablers – plug-in model interpreters, one for each
extension profile. In contrast to extension profiles that
need to be directly used by the user, the plug-in model
interpreters can be private internal features of UML-
based modeling system. It is not necessary that all the
available plug-in models are enabled at a particular
time. Thus each plug-in model interpreter should keep

R. Vitiutinas, D. Silingas, L. Telksnys

track of which plug-in models are enabled / loaded.
Plug-in model interpreters should be implemented
using the programming technologies used by the
UML-based modeling system such as Java, C++ or
.Net. In case an extensive open API is available, such
plug-in model interpreters can be implemented as
traditional code-driven plug-ins either by system ven-
dors or users. Otherwise, they can be implemented as
internal system features provided by system vendors.
As plug-in model interpreter implementation is code-
driven and dependent on a particular UML-based
modeling system implementation technology and ar-
chitecture, it is of no interest for further analysis in
this paper. The extension profiles and plug-in models
are defined based on standard UML capabilities, thus
they are of interest in this paper.

In the next section, we will present three cases of
model-driven plug-in development in UML-based
modeling system MagicDraw focusing on extension
profile and plug-in model definitions and illustrations
how extension is enabled.

4. Model Driven Plug-in Development
Applications in MagicDraw

In order to demonstrate the feasibility of the pro-
posed conceptual framework, we have implemented in
MagicDraw three cases of model-driven plug-in deve-
lopment capabilities: 1) model validation, providing
capability to define custom rules for checking user
model validation for completeness and correctness; 2)
methodology wizard, providing capability to define
custom step by step guidance for model content crea-
tion in form of wizard; 3) model patterns, enabling
specification of model patterns and transformation for
applying them in user models. These applications are
very pragmatic (they are heavily used by MagicDraw
users) and also rather different from each other. There-
fore, they should serve as a good illustration of the
proposed approach. In Figure 2, we present object
diagram depicting these applications. We will focus on
analysis of the object in the gray area, i.e. sample ap-
plications of model-driven plug-in development
framework, as the upper part is product-specific and is
out of scope of this paper.

Figure 2. Sample applications of conceptual framework for model-driven plug-in development in UML-based

modeling system MagicDraw

4.1. Model Validation

UML modeling systems typically enforce the rules
defined in UML metamodel. However, the models can
be incomplete or inconsistent according to rules that
need to be followed in specific modeling methods. As
UML is method-independent language, the UML
modeling systems do not enforce those method-depen-
dent rules, which are not standardized and vary
between many different methods. Therefore it is ne-
cessary to allow users to define their own model vali-
dation rules.

Model validation rules might be assembled into
suites that can be used to validate a model or some
part of it. The validation suite may be active, which
enables immediate validation while user is modeling.
Each validation rule must define comprehensive mes-
sage for explaining invalid situations. The severity of
non-conformance may differ between validation rules.

4.1.1. Extension Profile for Model Validation

Validation rules are typically modeled as const-
raints in UML. The proposed extension profile for
model validation capability extension modeling is

194

Model-Driven Plug-in Development for UML Based Modeling Systems

depicted in Figure 3. It extends Package and Con-
straint elements for specifying validation suites and
rules in the model. Validation rules are modeled as a

UML Constraint with «ValidationRule» stereotype
applied.

Figure 3. Proposed extension profile for validation rules capability extension modeling

Validation rule reuses Constraint properties name,
constrainedElement, and specification. Validation rule
constrainedElement property specifies model element
for which this rule is applicable. When a UML meta-
class is specified as a constrained element, the valida-
tion rule applies to all the UML elements that are
instances of this metaclass. When a stereotype is spe-
cified as a constrained element, a validation rule
applies to all the model elements that have this stereo-
type applied. When a classifier is specified as a const-
rained element, a validation rule applies to all the
instance specifications of that classifier.

Validation rule specification property is used for
specifying validation rule implementation expression.
The expression might be written in Java [17] or in
Object Constraint Language (OCL) [32].

The stereotype «ValidationRule» provides additio-
nal tag definitions abbreviation, errorMessage and
implementation. The abbreviation tag is be used for
specifying short name of the validation rule for grou-
ping and filtering rules using validation user interface.
The tag errorMessage defines the textual error mes-
sage, which is displayed when invalid model element
is found. The error message should explain the invalid
situation and provide tips for solving it. The imp-
lementation tag is optional and used for specifying the
Java class, which is used for validation rule imp-
lementation.

Validation rules might be composed into validation
suites represented as packages with «ValidationSuite»
or «ActiveValidationSuite» stereotype applied. Vali-
dation rules in simple validation suite are executed
manually by the modeler on demand, however vali-
dation rules in active validation suite are executed
automatically by the modeling system according to the
model changes.

MagicDraw UML modeling system provides an
Model Validation Interpreter (see Figure 2), which
collects modeler created validation suites with valida-

tion rules from the models, parses their specifications
and applies them for model elements validation.
4.1.2. Sample of Model Validation AMI Plug-in

Model

Application of Validation Rules AMI Plug-in
sample consists of the validation rule implementation
for identifying “black hole” action in Activity dia-
grams. “Black hole” action is an action, which has no
outgoing control flow relationships. Such an action
does not specify the next action and stops the control
flow at a dead-lock.

An OCL expression for checking if there is a
control flow going out from an action is very simple:

context Action inv BlackHoleAction:

 self.outgoing->size() > 0

The validation rule for “black hole” action is modeled
as a constraint with «ValidationRule» stereotype ap-
plied and it is composed into a package Activity
Completeness which represent the validation suite
with stereotype «ValidationSuite» applied.

The OCL expression for checking action’s out-
going flows is specified in Constraint Specification
property. The validation rule severity and error mes-
sage are specified in additional properties added as
tags of «ValidationRule» stereotype. When all of these
properties are specified, modeler can validate his
activities model according to the validation suite. A
detection of a “black hole” action, which violates
specified validation rule is depicted in Figure 4.

4.2. Methodology Wizards

Usually UML models are constructed visually
drawing the elements in diagrams in an iterative
manner. However, novice modelers often prefer to
create model content using step-by-step wizard, which
guides their modeling actions according a specific
modeling methodology.

195

R. Vitiutinas, D. Silingas, L. Telksnys

Figure 4. A detected invalid model element – a “black hole” action

4.2.1. Extension Profile for Methodology Wizard

The AMI for Model Based Methodology Wizards
provides the capability for preparing step-by-step
modeling wizards in model driven way. Modeler may
prepare required wizard by modeling it using special
type of activity, which stereotyped actions represent
the steps of the wizard.

The proposed extension profile for AMI plug-ins
of methodology wizards modeling is shown in Figure

5. It provides four stereotypes for specifying possible
wizard steps: for specifying root element name step
(«SpecifyNameStep»), providing element description
step («ProvideDescriptionStep»), capture and relate
elements steps («CaptureElementStep» and «Relate-
ElementStep»). The stereotype «Wizard» specifies the
activity itself, which represents the methodology
wizard.

Figure 5. Proposed extension profile for Methodology Wizard capability extension modeling

Each step type requires additional information for
specifying how to enable user’s input and how the mo-
del should be constructed regarding given user’s input.
This information is modeled using step stereotype
tags. Wizard step stereotypes contain tags for speci-
fying various step configuration properties and model
element types available during the particular step.

4.2.2. Sample of Methodology Wizard AMI Plug-
in Model

The following sample represents the implemen-
tation of the Methodology wizard AMI plug-in for
step-by-step Use Case model creation. The Use Case
model creation process consists of modeling system
actors, use cases, and the relationships among them.
The sample AMI plug-in model of methodology
wizard for Use Case model creation and the graphical

196

Model-Driven Plug-in Development for UML Based Modeling Systems

wizard enabled by the methodology wizards model
interpreter are presented in Figure 6.

The sample wizard contains seven steps modeled
as stereotyped activity actions. The order of wizard

steps is modeled by control flow between actions. The
first and the last steps are specified by the initial and
final nodes.

Figure 6. The Activity of the wizard for Use Case model creation and a screenshot of enabled wizard in action

4.3. Model Patterns

UML modeling systems provide implementation
for various Java, JUnit, CORBA IDL, and XML
Schema design patterns. A pattern may be applied on
the target classifier for adding predefined classes and
relationships between them. It may also visualize the
created elements in the target diagram. The patterns
functionality in UML modeling systems are typically
implemented as a separate plug-in based on modeling
system API. User may create new patterns and edit
existing ones by using modeling system API. It is
desirable to transform the current code-based ap-
proach for creating custom model patterns into a
model-based one. Patterns structure, description and
required model elements may be defined in a model.

There are many cases of model based pattern
definitions already [28, 19, 14]. Most of them propose
to use metamodels for pattern definitions [12, 25].
However, meta-modeling is an advanced technique
and is not convenient for regular users as it does not
represent concrete pattern elements but the metadata
of its types. Another flexible approach for patterns
definition modeling is based on UML collaboration
element usage [41. Collaboration element represents a
pattern itself, while collaboration role types represent
the elements involved into the pattern. However,
collaborations roles are limited by UML and might be
used to represent classifiers only. For instance, UML

packages cannot be presented in pattern using collabo-
rations. The proposed AMI solution for model-based
pattern definitions is defined using stereotypes and is
not limited as collaboration based patterns. It also uses
concrete elements of the model and does not require
any meta-modeling skills. Moreover, it provides a
diagram for pattern elements representation and visual
layout specification. The elements layout presented in
pattern diagram specifies the layout of pattern
elements in target diagram where pattern is applied.

4.3.1. Extension Profile for Model Patterns
The proposed extension profile for AMI pattern

plug-ins modeling is presented in Figure 7.

Figure 7. AMI Profile for Pattern modeling

197

R. Vitiutinas, D. Silingas, L. Telksnys

The pattern is modeled as a UML package with
«Pattern» stereotype applied. Pattern package is used
to keep elements that should be created in the model
after applying pattern. The «Target» stereotype speci-
fies the element on which pattern should be applied.
The layout of the pattern elements next to the target
element is defined in the diagram with «PatternDia-
gram» stereotype applied. The pattern textual descrip-
tion is modeled as a comment of a pattern package.

4.3.2. Sample of Model Patterns AMI Plug-in
Model

The AMI pattern model for Adapter pattern [16] is
displayed in Figure 8. Adapter pattern classes, their
relationships and visual layout are modeled in class
diagram with «PatternDiagram» applied.

Figure 8. Adapter pattern implemented as AMI plug-in

Figure 9. Adapter pattern business logic

The implementation of pattern business logic is
modeled using activity diagram specified by the
«Transformation» stereotype. The activity represents
the pattern business logic as the flow of opaque
actions. The body of opaque action contains
executable code that actually implements the business

logic of the pattern. The business logic of Adapter
pattern is displayed in Figure .

The Adapter pattern business logic is described by
two opaque actions. The first action selects all opera-
tions from the target class and pass them to the next
action that actually copies selected operation to the
Adapter class. The interpreter of pattern AMI plug-in
interprets the pattern model and enables graphical user
interface of the Pattern wizard (see Figure 10) for se-
lecting and applying pattern.

Pattern description text presented in Pattern Wi-
zard window is modeled using Comment element of
pattern package. Pattern category tree in Pattern Wi-
zard window reflects the structure of the pattern pa-
ckage and its parent packages in the model. Further
steps of pattern wizard might be modeled as the ac-
tions of the transformation activity similar to the
Methodology Wizards AMI described in previous
Methodology Wizards section.

Figure 10. Pattern Application Wizard enabled by the interpreter with modeled Adapter pattern

198

Model-Driven Plug-in Development for UML Based Modeling Systems

5. Benefits and Drawbacks of Model-Driven
Plug-in Development in UML-Based
Modeling Systems

The proposed model-driven plug-ins development
approach based on AMI might be compared to the
plug-ins development using traditional programming
using API. Since the AMI is a higher model-based
abstraction of API, its benefits and drawbacks natu-
rally come out of model-driven development practices
described by Hailpern and Tarr [20].

The plug-in development using AMI should raise
the abstraction of development tasks to the modeling
level that enables modelers to extend modeling system
without programming skills. Moreover, modelers may
develop AMI plug-ins by modeling them in modeler-
friendly environment of UML-based modeling system
without a need to prepare and learn integrated deve-
lopment environments for specific programming
languages.

While experimenting with sample applications of
model-driven plug-in development in MagicDraw, we
have measured and compared time required for
developing the same functionality plug-ins using AMI
and API based approaches. The same AMI and API
based versions of model validation and model pattern
plug-ins were developed in MagicDraw modeling sys-
tem. At this particular set of plug-ins developed in
MagicDraw, the time required for AMI based plug-ins
development was shorter by ~60% comparing to time
required to develop similar API based plug-in. How-
ever, from this simple observation we cannot claim
that the productivity of developing AMI based plug-
ins should be so high because there are many factors,
such as complexity of UML-based modeling system
API, modeling and programming skills, modeling en-
vironment usability, plug-ins debugging, and later
plug-in maintenance, which can influence the results
and should be taken into account in case of scientific
comparison that aims to provide objective measures.
The comparison of plug-ins development time men-
tioned here only indicates a faster development of
particular plug-ins in model-driven way within a spe-
cific context of particular developers (authors of the
paper), particular UML-based modeling system (Ma-
gicDraw), and particular integrated development
environment (Eclipse). Statistical research experi-
ments still need to be performed in order to get robust
improvement estimates.

While model-driven plug-in development has mul-
tiple benefits they do not come for free – it also
creates a few drawbacks, such as:

 The exposed extension profiles enable defining
plug-in models in a higher abstraction level com-
pared to code based plug-ins, which makes it
easier to develop but limits the flexibility and
possible extension variations;

 Runtime interpretation of plug-in models is typi-
cally slower compared to executing binary code-

driven plug-ins. However, this issue might be
solved by replacing plug-in model interpreter with
code generator, which would generate executable
plug-in code out of the plug-in model as proposed
by Schippers et. al [35];

 Due to limitations of state-of-the-art UML-based
modeling systems, it is more difficult to debug
plug-in models compared to traditional code-
driven plug-ins, which limits capabilities for buil-
ding and maintaining complex plug-in models;

 Changing an extension profile requires changing
plug-in model interpreters, thus each change in
extension profile involves both modeling and
programming technologies.

While the mentioned drawbacks are not critical
and should not be show-stoppers for adopting this
approach, it is important to take into consideration that
the overall maturity of modeling practices and skills is
much lower compared to programming and some
disappointments about the proposed approach may
come from abuse of modeling and UML in particular
when designing extension profiles and creating plug-
in models based on them.

It is also worth mentioning that model-driven plug-
in development is already heavily used by MagicDraw
R&D team, which applies it for implementing new
product capabilities, and MagicDraw consultants and
solution architects, who implement custom modeling
solutions according to the custom needs of Magic-
Draw customers. This indicates that this approach is
very pragmatic and is appreciated by the vendor itself.

6. Conclusions

The paper presented a novel approach to develo-
ping plug-ins in UML-based modeling systems taking
into use model-driven development paradigm. The
conceptual framework for practicing this approach
was presented and illustrated by three different cases
that were implemented in MagicDraw modeling sys-
tem. From the work presented, we can draw the
following conclusions:

 Model-driven development has significant advan-
tages compared to traditional programming when
applied to developing plug-ins for UML based
modeling systems:
o It enables modelers to develop custom cap-

abilities applying their UML modeling
skills and does not require knowledge,
skills and tools for programming in lan-
guages like Java or C++;

o It enables shorter plug-in development
cycle because plug-in models can be built
and directly interpreted inside the same
UML modeling system as opposed to code
based plug-ins that are typically developed
in different development environments and
require reboot of UML modeling system in
order to enable the new functionality.

199

R. Vitiutinas, D. Silingas, L. Telksnys

 Analysis of related works reveals that model-dri-
ven development is successfully applied in many
domains, but the state of the art UML based mo-
deling systems provide traditional plug-in deve-
lopment capabilities that are based on program-
ming and support only fragments of model-driven
approach;

 In order to enable model-driven plug-in develop-
ment, UML modeling systems need to provide
UML-based alternative to Application Program-
ming Interface (API), which we propose to call
Application Modeling Interface (AMI). AMI
should be exposed as a set of extension profiles
that provide capabilities for developing plug-in
models that can be executed by internal plug-in
model interpreters;

 Sample AMI implementations for supporting cus-
tom model validation, methodology wizards, and
model patterns plug-ins demonstrate that this ap-
proach is feasible;

 While there are a number of practical arguments
why model-driven approach for plug-in develop-
ment in UML modeling systems is beneficial, a
further research needs to be conducted in order to
get statistical evidence on productivity improve-
ments comparing it to a traditional programming-
based approach.

In the future, we plan to expand AMI usage in
MagicDraw for other extension cases, and conduct
additional research to get a more detailed comparison
of model-driven vs. code-driven plug-in development.
Also, it is necessary to investigate how the same
approach could be adopted in other UML-based
systems as well as in other types of software systems.

References

 [1] J.P.A. Almeida. Model-Driven Design of Distributed
Applications. CTIT Ph.D.-Thesis Series, No. 06-85,
Telematica Institute Fundamental Research Series,
No. 018, 2006.

 [2] D. Barisas, E. Bareiša. A Software Testing Approach
Based on Behavioral UML Models. Information Tech-
nology And Control, Kaunas, Technologija, 2009, Vol.
38, No. 2, 119–124.

[3] X. Blanc, M.-P. Gervais, P. Sriplakich. Model Bus.
Towards the Interoperability of Modelling Tools. Pro-
ceeding of the European workshop on Model Driven
Architecture: Foundations and Applications (MDAFA’
2004), June 2004, Linköping University, Sweden, se-
lected for : Lecture Notes in Computer Science
(LNCS) «Model Driven Architecture: Revised Selec-
ted. Papers», Vol. 3599/2005, Springer. 17-32.

 [4] M. Brambilla, S. Ceri, F.M. Facca, I. Celino, D. Ce-
rizza, E.D. Valle. Model-driven design and develop-
ment of semantic Web service applications. ACM
Trans. Internet Technol. Vol. 8, No. 1, 2007, Article 3.

 [5] S. Ceri, F. Daniel, M. Matera, F.M. Facca. Model-
driven development of context-aware Web applica-
tions. ACM Trans. Internet Technol. Vol. 7, No. 1,
2007, Article 2.

 [6] E. Clayberg, D. Rubel. Eclipse Plug-ins. Third Edi-
tion. Massachusetts. Addison Wesley Professional.
2009.

 [7] K. Duddy, A. Gerber, K. Raymond. Eclipse Model-
ling Framework (EMF) import/export from MOF/JMI.
Technical report, CRC for Enterprise Distributed Sys-
tems Technology (DSTC), 2003.

 [8] J. Dunkel, R. Bruns. Model-Driven Architecture for
Mobile Applications. Proceedings of the 10th Inter-
national Conference on Business Information Systems
(BIS), Vol. 4439/2007, 2007, 464–477.

 [9] S. Efftinge, P. Friese, A. Haase, C. Kadura, B.
Kolb, D. Moroff, K. Thoms, and M. Völter. Open-
ArchitectureWare User Guide, Version 4.3, 2008.

[10] J. Eisenstein, J. Vanderdonckt, A. Puerta. Applying
model-based techniques to the development of UIs for
mobile computers. Proceedings of the 6th interna-
tional Conference on intelligent User interfaces. IUI
'01, ACM, New York, NY, 2001, 69–76.

[11] K. Ehrig, C. Ermel, S. Hänsgen, G. Taentzer. Gene-
ration of visual editors as eclipse plug-ins. Procee-
dings of the 20th IEEE/ACM international Conference
on Automated Software Engineering, ASE '05. ACM,
New York, NY, 2005, 134–143.

[12] M. Elaasar, L. C. Briand, Y. Labiche. A Metamo-
deling Approach to Pattern Specification. In MoDELS,
Vol. 4199/2006 of Lecture Notes in Computer Science,
2006, 484–498.

[13] M. Fowler. Patterns of Enterprise Application Archi-
tecture. Addison-Wesley, 2003.

[14] R.B. France, D.-K. Kim, S. Ghosh, E. Song. A
UML-Based Pattern Specification Technique. IEEE
Trans. Software Eng., Vol. 30, No. 3, 2004, 193–206.

[15] P. Fraternali, P. Paolini. Model-driven development
of Web applications: the AutoWeb system. ACM
Trans. Inf. Syst. Vol. 18, No. 4, 2000, 323–382.

[16] E. Gamma, R. Helm, R. Johnson, J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[17] J. Gosling, B. Joy, G.L. Steele. The Java™ Language
Specification. Addison-Wesley, 1996.

[18] G. Goth. Beware the March of this IDE: Eclipse is
overshadowing other tool technologies. IEEE Soft-
ware, Vol. 22, No. 4, 2005, 108–111.

[19] A.L. Guennec, G. Sunye, J. Jezequel. Precise
Modeling of Design Patterns. Proceedings of the 3rd
International Conference on the Unified Modeling
Language (UML), 2000, 482–496.

[20] B. Hailpern, P. Tarr. Model-driven development: the
good, the bad, and the ugly. IBM Syst. J. Vol. 45, No.
3, 2006, 451– 461.

[21] W. Harrison. Eating Your Own Dog Food. IEEE
Software, Vol. 23, No. 3, 2006, 5–7.

[22] C. Hein, T. Ritter, M. Wagner. Model-driven tool
integration with modelbus. Workshop Future Trends
of Model-Driven Development, 2009.

[23] H. Kern, S. Kuhne. Model Interchange between
ARIS and Eclipse EMF. 7th OOPSLA Workshop on
Domain-Specific Modeling at OOPSLA 2007, 2007.

[24] M.U. Khan, K. Geihs, F. Gutbrodt, P. Gohner, R.
Trauter. Model-driven development of real-time sys-
tems with UML 2.0 and C. Model-Based Development
of Computer-Based Systems and Model-Based Metho-

200

Model-Driven Plug-in Development for UML Based Modeling Systems

201

dologies for Pervasive and Embedded Software, MBD/
MOMPES 2006, Intl. Workshop, 2006, 10–42.

[25] D.-K. Kim, R. France, S. Ghosh, E. Song. A UML-
Based Metamodeling Language to Specify Design
Patterns. Proceedings of the 2nd Workshop in Soft-
ware Model Engineering. San Francisco, USA, 2003.

[26] M. Kunal. Introducing IBM Rational Software
Architect. http://www-128.ibm.com/developerworks/
rational/library/05/kunal/, 15 February 2005.

[27] I. Kurtev, J. Bézivin, F. Jouault, and P. Valduriez.
Model-based DSL frameworks. Companion to the 21st
ACM SIGPLAN symposium on Object-oriented prog-
ramming systems, languages, and applications
(OOPSLA '06), ACM, New York, NY, USA, 2006, 602–
616.

[28] A. Lauder, S. Kent. Precise Visual Specification of
Design Patterns. Proceedings of the 12th European
Conference on Object-Oriented Programming, 1998,
114–136.

[29] No Magic. MagicDraw features, http://www.nomagic.
com/magicdrawuml/features.htm.

[30] K. Marquardt. Patterns for Plug-Ins. In Manolescu,
D., Voelter, M., and Noble, J. Pattern Languages of
Program Design 5, Addison-Wesley Professional,
2005, 301–317.

[31] Z. Obrenovic, D. Starcevic. Model-Driven Develop-
ment of User Interfaces: Promises and Challenges. In
Computer as a Tool, 2005, EUROCON. The Interna-
tional Conference on. 2, 2005, 1259–1262.

[32] OMG. Object Constraint Language, Version 2.2.
http://www.omg.org/spec/OCL/2.2/, 2010.

[33] OMG. MDA Guide Version 1.0.1, http://www.omg.
org/docs/omg/03-06-01.pdf, 2003.

[34] E. Riccobene, P. Scandurra, A. Rosti, S. Bocchio.
A Model-driven Design Environment for Embedded
Systems. Proceedings of the 43rd annual Design
Automation Conference, 2006, 915–918.

[35] H. Schippers, P. Van Gorp, D. Janssens. Leveraging
UML Profiles to generate Plugins from Visual Model
Transformations. Electronic Notes in Theoretical
Computer Science, Vol. 127, No. 3, 2005, 5–16.

[36] B. Selic. A Systematic Approach to Domain-Specific
Language Design Using UML. 10th IEEE Interna-
tional Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC'07), 2007,
2–9.

[37] S. Sen, B. Baudry, H. Vangheluwe. Domain-specific
model editors with model completion. Models in
Software Engineering, Springer, 2008, 259–270.

[38] D. Silingas, R. Vitiutinas, A. Armonas, L. Nemu-
raite. Domain-Specific Modeling Environment Based
on UML Profiles. In: Targamadze, A., Butleris, R.,
Butkiene, R. (eds.), Information Technologies‘2009,
Kaunas 2009, 167–177.

[39] D. Steinberg, F. Budinsky, M. Paternostro, and E.
Merks. EMF: Eclipse Modeling Framework, Second
Edition. Addison-Wesley Professional, Longman, Ams-
terdam, 2009.

[40] Sparx Systems. Enterprise Architect 8 Reviewer’s
Guide. 2010, http://www.sparxsystems.com/down-
loads/ whitepapers/EAReviewersGuide.pdf.

[41] G. Sunyé, A.L. Guennec, J-M. Jézéquel. Design
Patterns Application in UML. Proceedings of the 14th
European Conference on Object-Oriented Program-
ming, 2000, 44–62.

[42] J. P. Tolvanen, M. Rossi. MetaEdit+: defining and
using domain-specific modeling languages and code
generators. In: Companion of the 18th annual ACM
SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications (OOPSLA
2003), Anaheim, CA, USA, ACM Press, 2000, 92–93.

[43] A. Ušaniov, K. Motiejūnas. A Method for Automated
Testing of Software Interface. Information Technology
and Control, Kaunas, Technologija, 2011, Vol. 40, No.
2, 99–109.

[44] M. Vieira, J. Leduc, B. Hasling, R. Subramanyan,
J. Kazmeier. Automation of GUI testing using a
model-driven approach. Proceedings of the internatio-
nal Workshop on Automation of Software Test, AST
'06, ACM, 2006, 9–14.

[45] R. Wagner. Developing Model Transformations with
Fujaba. In H. Giese and B. Westfechtel, Eds.,
Proceedings of the 4th International Fujaba Days,
Bayreuth, Germany, Technical Report, 2006, 79–82.

[46] E.D. Willink. UMLX: A graphical transformation
language for MDA. In A. Rensink (Ed.) Proceedings of
the Workshop on Model Driven Architecture: Founda-
tions and Applications, 2003, 13-24.

[47] X. Zhang. Model Driven Data Service Development.
In Networking, Sensing and Control, ICNSC, IEEE
International Conference, 2008, 1668–1673.

Received March 2011.

