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Abstract. Model-driven engineering (MDE) is a software-engineering paradigm that is being introduced into a 

growing number of domains. One of the most important success factors for a new MDE approach is the availability of 

the appropriate tool support for it. Although the literature discusses the development of support tools, only a few reports 

and analyses are available about the development of tool support for real-life modeling languages and MDE approaches. 

The goal of this paper is to fill this gap through an experience report about developing a tool-suite prototype for an MDE 

approach for the process control domain that is capable of supporting the development of real-life process control 

software. Before the work presented in this paper an initial prototype tool suite was already developed. However, it was 

not able to adequately support industry-scale projects. The paper starts with an analysis of the past development of this 

already-existing laboratory prototype and then moves on to a report about the development of the industrial prototype, 

which is influenced by the findings of the analysis. Then a comparison between the two prototypes is made and the 

lessons learned are described, which may be useful to practitioners who attempt to develop support tools for an MDE 

approach that are useful in practice. The most important lesson learned is that when developing tool support for complex 

modeling languages, the traditional development approach should not be easily rejected. 

Keywords: model-driven engineering, process control software, domain-specific modeling languages, ProcGraph. 

 

1. Introduction 

In the struggle to improve the engineering of 

software, many concepts and technologies have been 

proposed. One of them is model-driven engineering 

(MDE), which advocates the systematic and disciplined 

use of precise models of a system under design 

throughout the software lifecycle [1]. Its primary 

development entities are models that can be (semi-) 

automatically transformed into refined models and 

eventually into executable code [2]. MDE is a 

software-engineering paradigm that has the potential to 

sustainably raise the productivity, increase the software 

quality [3] and reduce the complexity of software and 

systems development [1]. Despite these promises there 

are still only a few empirical studies relating to MDE 

and its use in practice [4]. An overview of the empirical 

studies in [3] has shown that these expectations were 

not met by several of the investigated MDE 

approaches. Nevertheless, despite the lack of strong 

empirical evidence supporting the positive effects of 

this paradigm, MDE approaches are being introduced 

into more and more domains. The question that arises 

is why some MDE approaches do not improve the 

development performance. According to the literature 

[3, 5, 6] one of the main reasons for this is the lack of 

appropriate tool support for these approaches. Such 

tools are still demanding to develop [2, 7], which is one 

of the main causes of this situation. We had a similar 

experience during the introduction of a MDE approach 

called MAGICS (Modeling and Automatic Generation 

of Industrial process Control Software) [8] that was 

developed for the domain of process control software, 
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where one of the largest problems was the development 

of the tool suite, consisting of a model repository, a 

model editor and a code generator. In the work 

preceding the research presented in this paper, we 

already developed an initial tool-suite prototype. This 

enabled the development of smaller applications, which 

are rarely found in practice but tend to be conceived as 

examples that can be used for a proof-of-concept in the 

laboratory. The development of this laboratory 

prototype, which is reported in [8], proved to be 

demanding and complex. As a result, this crucially 

influenced the next step, i.e., the development of an 

industrial prototype tool suite for MAGICS that enables 

the development of real-life applications that have the 

scale and complexity commonly found in practice.  

The aim of this paper is to show how the experience 

gained during the development of the laboratory 

prototype influenced the development of an industrial 

prototype of the MAGICS tool suite. An important part 

of the paper is the comparison of the two prototypes and 

the presentation of the lessons learned.  

The main motivation for sharing our experience is 

the fact that MDE practitioners are faced with the 

challenge of developing practically useful tool support 

for new MDE approaches and also that the literature 

recognizes that developing such tool support is difficult 

[7] and important [3, 5]. An additional motivation is the 

scarce literature on this topic. This experience report 

should be especially interesting for practitioners 

dealing with not-trivial, real-life modeling languages 

and the corresponding tool support. It should also be 

interesting for the experts (researchers and 

practitioners) from the process control domain that are 

evaluating the state of the art approaches for software 

engineering in this domain [9]. 

The next section presents the related work about 

MDE and the tool support for it. Section 3 introduces 

our previous work, i.e., the MAGICS approach and a 

laboratory prototype tool suite for it. Section 4 analyses 

the development of the laboratory prototype tool suite. 

Section 5 presents the development of the industrial 

prototype, which is influenced by the results of the 

analysis from the previous section. Section 6 contains 

the findings of our experience report, which are 

articulated in a comparison between the laboratory and 

the industrial prototype and the lessons learned. The 

last section presents our conclusions. 

2. Related work  

Typically, the MDE approach relies on three main 

components: modeling languages, model transfor-

mations and support software tools. 

The modeling languages for software and systems 

can be classified into general-purpose modelling 

languages (GPMLs), which support modeling in a 

variety of domains and domain-specific modelling 

languages (DSMLs), which are intended for modeling 

in one domain using the abstractions common to that 

domain [10]. Both of these can be used in the MDE 

approach, as long as they are formal. However, it is 

apparent that a DSML will usually produce a more 

concise and direct specification and, therefore, more 

effective solutions for problems in its domain than a 

GPML [11]. This means the question that should be 

asked is what is the most effective method for defining 

a DSML [11]? DSMLs are usually defined through a 

Unified Modeling Language (UML)-based definition or 

a metamodeling-based definition [12, 13]. The former 

approach specializes the UML [14], which is a GPML 

in itself, for a specific domain through the definition of 

a UML profile. The latter approach defines the DSML 

“from scratch” with the use of a metamodeling 

language, e.g., the Meta-Object Facility (MOF) [15]. A 

similar question arises in the area of Domain-Specific 

Languages (DSLs) [16, 17], because they can be 

realized as an external DSL, which corresponds to a 

UML-based definition of a DSML, or as an internal 

DSL, which corresponds to a metamodeling-based 

definition of a DSML. 

A model transformation generates one or more 

target models from one or more source models, based 

on a set of model-transformation rules. With model 

transformations, MDE can automate many of the 

complex but routine development tasks that are often 

performed manually [18], such as model refactoring or 

the generation of code from models. 

To enable MDE in practice and fulfill its potential, 

sophisticated tools must be developed that support 

DSML(s) and the defined model transformations. A 

survey performed among industry participants showed 

that the availability of tool support is the most 

influential factor in the decision about whether to adopt 

a specific MDE approach [3]. Several alternatives exist 

for the development of tool support for the selected 

DSML. The development approach depends on the way 

the DSML was defined: 

 UML-based DSML. The tool support may be 

provided with the use of existing modeling tools 

that are parameterized by the UML profile 

definition, e.g., the Papyrus UML [19]. The UML 

standard is widely known and taught; therefore, an 

expanding base of developers should be familiar 

with this approach [11]. It demands a relatively 

small effort, because the already-available UML 

tooling can be used to provide the tool suite for the 

DSML [12]. However, such tool suites are usually 

very generic, hard to customize, and may not be 

able to support the functionalities that are needed by 

the users [13]. In recent years the situation seems to 

be improving with UML-based MDE tools getting 

more sophisticated, for example MagicDraw [20]. 

It currently supports the development of additional 

tools, e.g., a model validator and a methodology 

wizard [21] as MagicDraw plugins and concrete 

syntax for DSMLs that do not only use the standard 

UML shapes, e.g., a relation map diagram for 

visualizing traceability in models [22]. However, as 

the paper [23] reveals, the hybrid DSMLs (with 

graphical and textual syntax) are not supported and 
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had to be covered by integrating MagicDraw with 

an Eclipse-based editor, which is inferior to an IDE 

solution. 

 Metamodeling-based DSML. In general, developing 

tool support for such DSMLs demands more effort 

and highly specialized expertise [12]. On the other 

hand, it offers more flexibility than UML-based 

DSMLs. Two different development options are 

available: 

 Traditional development. No specialized tools 

for MDE are used during the development of 

the tool support. The literature [2, 24] suggests 

that traditional development is demanding, 

resource intensive (it may require effort ran-

ging from several person-months and up to a 

couple of person-years), and inflexible for 

maintenance. However, the main advantage of 

traditional development is that it is not limited 

by the capabilities of the used specialized tools. 

Therefore, even very specific tool-suite 

requirements can be realized. 

 Development with metamodeling tools. 

Metamodeling tools, for example, GME [25], 

GMF [24], and MetaEdit+ [2], can automa-

tically generate (portions of) the needed tool 

suite based on a formal definition of the DSML 

and the model transformations. Consequently, 

metamodeling tools have the potential to speed 

up the development and reduce the required 

effort and development complexity [2]. The 

main disadvantage of this approach is the 

relative immaturity of this technology [8]. 

3. Previous work 

In our previous work a new MDE approach for 

process control software, called MAGICS [8], was 

defined. It was developed because the state of the 

practice in this domain is failing to address the needs of 

the market [26] and is putting too much focus on the 

implementation phase, with little or no activity in the 

earlier software lifecycle phases [8]. Other proposed 

approaches, among which are also MDE approaches, 

have not been widely adopted by industry because of 

their immaturity and particularly because they do not 

address important issues of the process control domain 

[9]. The MAGICS approach consists of the two 

development levels that are shown in Figure 1. The first 

level (infrastructure engineering) is concerned with the 

definition of the development process and guidelines, 

the definition of a DSML, the specification of the 

model transformations, and the development of a tool 

suite. This tool suite makes it possible to model the 

process control software and to perform the automatic 

code generation for programmable logic controllers. 

This tool suite can be extended with additional tools, 

e.g., a model validator and a model refactoring tool. 

The ProcGraph language [27] was chosen to be the 

DSML used in MAGICS, because it was developed in-

house and it contains process-centric abstractions, a 

sophisticated behavioral model for these abstractions, 

and explicit modeling of the dependencies between 

them [8]. ProcGraph has been successfully used as a 

modeling (specification) language over the past 15 

years in more than 20 industrial projects, ranging in size 

from a couple of hundred to a couple of thousand 

signals. In the second level (application engineering), 

the process control software is engineered using the 

results of the infrastructure level. The application-

engineering level uses the infrastructure for the 

development of process control software. The infor-

mation flow from the application-engineering level to 

the infrastructure-engineering level incorporates the 

knowledge that is being accumulated during the 

application-development process. This information can 

be potentially generalized and incorporated into new 

versions of the infrastructure, which would further 

improve the application engineering or extend the 

range (i.e., the variability) of the software that can be 

engineered.  

The development of the laboratory prototype tool 

suite, which is also part of the previous work, is 

extensively described in [8] and will be summarized in 

the remainder of this paragraph, so that the rest of the 

paper can be understood. The laboratory prototype 

consists of a model repository, a model editor and two 

code generators. The ProcGraph DSML was defined 

with metamodeling; therefore, the support tools could 

be either developed with metamodeling tools or the 

traditional approach. We chose the metamodeling-tools 

approach, because of the already-mentioned benefits 

that are reported in the literature and because we 

wanted the formalized language to have as many of the 

original features as possible. A comprehensive expla-

nation is beyond the scope of this paper and can be 

found in [8]. A systematic evaluation of the available 

metamodeling tools [28] has shown that the most 

suitable metamodeling tools for MAGICS were the 

combination of EMF (Eclipse Modeling Framework), 

GMF (Graphical Modeling Framework) and 

openArchitectureWare. The model repository was 

developed with the EMF, which is the central tool for 

creating structural model repositories for the Eclipse 

platform. GMF was selected for the development of the 

graphical model editor and can generate a visual model 

editor based on different models of this editor. 

OpenArchitectureWare was used for the implement-

tation of the code generators, because it is a widely used 

model-to-text engine that seamlessly works with EMF 

metamodels. 

4. An analysis of the laboratory-prototype 

development 

The development of the laboratory prototype was 

demanding and several problems were encountered 

during this process; therefore, we decided to analyze 

the used development approach before starting the 

development of the industrial prototype. In the analysis 
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of the development of the laboratory prototype we 

focused on three different viewpoints, i.e., the 

requirements realization, the problems during the use 

of the laboratory prototype and the problems occurring 

during its development. 

4.1. Requirements perspective  

The analysis started with an overview of the 

requirements and an assessment of their fulfillment. A 

measurement scale from 1 to 5 was defined in order to 

denote the importance of each requirement, whereby 1 

represents for the lowest importance and 5 the highest 

importance. The laboratory prototype did not 

implement 4 of 31 defined requirements and partially 

implemented 5 requirements. The results of the 

assessment are shown in Table 1. 

4.1.1. The requirements not or partially implemented 

because of problems with GMF 

Among the requirements that were partially ful-

filled, we should highlight the requirements R1.6 and 

R1.7 (they enable the construction of composite depen-

dencies between the Procedural Control Entities on 

different hierarchy levels) and the requirement R3.2 (it 

dynamically depicts the changes of the states and 

transitions on State Dependencies Diagrams). The 

essence of these requirements is to establish the syn-

chronization between different ProcGraph diagram 

types that contain the same graphical information, 

which can be entered only in the first diagram type, 

whereas in the second diagram type it represents static 

information that cannot be modified, only additional 

information can be superimposed. A change in the first 

diagram type should then be propagated to the second 

diagram type. As a concrete example let us mention a 

case of two entity state diagrams and a state dependen-

cies diagram, containing the two mentioned state 

diagrams (which cannot be modified there) and super-

imposed information on the state transition dependen-

cies between the two entities. For more reference on the 

ProcGraph behavior model consider [8, 27]. Establi-

shing synchronization is not supported by GMF itself, 

but it had to be realized by altering the GMF-generated 

code, by overriding numerous methods from classes of 

the GMF framework and by performing extensive 

testing and debugging. Despite the effort invested in the 

realization of these requirements we were not able to 

implement a fully working synchronization, so that 

synchronization errors occasionally occurred (mainly 

with large-scale models). Because of this and because 

of the lack of examples of GMF-based editors with 

working synchronization, we decided that a partial 

implementation would be sufficient for the laboratory 

prototype. We were not able to determine whether a 

proper synchronization is even achievable with GMF. 

The requirement R3.5 was only partially fulfilled, 

because of the synchronization problems. Similar 

observations in GMF have been made in [29] during the 

implementation of a DSML for elevator controllers. 

This problem is common in non-orthogonal modeling 

languages, i.e., those that represent the same 

 

Figure 1. A scheme of the MAGICS approach [8] 
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Table 1. Overview of the requirements fulfillment for the laboratory prototype 

Requirement (id and short description) 

Require-

ments  

group 

Impor-

tance 

Fulfilled in 

laboratory 

prototype 

R0.1 - The entire model is persisted in one file 

0. General 

5 Yes 

R0.2 - The model must be exportable in an XML (XMI) file that is readable by EMF 5 Yes 

R0.3 - Verification of the completeness and well-formedness of the model 3 Yes 

R0.4 - All the model elements can be viewed through a tree 2 Yes 

R1.1 - Modeling of Entity Diagrams 

1. Procedural 

Control 

Entities 

diagram 

5 Yes 

R1.2 - Dynamic composite dependencies 4 Yes 

R1.3 - Non elementary Procedural Control Entity explodes into a sub Entity Diagrams 4 Yes 

R1.4 - Elementary Procedural Control Entity explodes into a State Transition Diagram 5 Yes 

R1.5 - Composite dependency explodes into a State Dependencies Diagram 5 Yes 

R1.6 - Composite dependencies connect Procedural Control Entities on different 

hierarchy levels 
4 Partially 

R1.7 - References to Procedural Control Entities from different hierarchy levels 4 Partially 

R1.8 - Procedural Control Entities variables 1 Yes 

R2.1 - Modeling of State Transition Diagrams 

2. State 

Transition 

diagram 

5 Yes 

R2.2 - Two types of state transitions 5 Yes 

R2.3 - Visual composition of states on one diagram 4 Yes 

R2.4 - Transitions between elementary- and super-states 5 Yes 

R2.5 – Super-states can overlap 3 No 

R2.6 - States and transitions have specific action sequences 5 Yes 

R3.1 - Modeling of State Dependencies Diagrams 

3. State 

Dependencies 

diagram 

5 Yes 

R3.2 - Show the State Transition Diagrams of the two relevant Procedural Control 

Entities 
5 Partially 

R3.3 - Two types of dependencies 5 Yes 

R3.4 - Dependencies sink into state transitions 4 Yes 

R3.5 - The source and destination of a dependency are not part of the same Procedural 

Control Entity 
5 Partially 

R4.1 - The domain constraints are enforced during modeling 

4. All 

diagrams 

3 Yes 

R4.2 - All relationships can have annotations 3 Yes 

R4.3.1 - Conformance to the look and feel of general graphical editors 3 Partially 

R4.3.2 - Deletions and alterations of non-empty elements need explicit approval from 

the user 
3 Yes 

R4.3.3 - Overlapping of nodes must be prevented 1 No 

R4.3.4 - Relations must avoid nodes 1 No 

R5.1 - Basic text editor 5. Action 

sequences 

5 Yes 

R5.2 - Syntax aware editor for Structured Text 3 No 

 

information in different diagrams. This is also the case 

in UML. This problem was also discussed by Grundy, 

et al. [30]. 

Another important unfulfilled requirement is R2.5, 

which addresses the overlapping super-states. Even 

after an extensive experimentation (with a great deal of 

coding) and an unsuccessful search for similar already-

implemented solutions we were still unable to fulfill 

this requirement with GMF.  

Here, it is very important to mention that in order to 

exclude problems that could be related to our incom-

petence we have contacted one of the developers of 

GMF and also independent consulting companies to 

help us address the flaws in GMF. Unfortunately, this 

approach has also not led to a solution. 

4.1.2. The requirements not or partially implemented 

for other reasons 

The requirement R4.3.1 was only partially fulfilled, 

because no more resources were available for its ful-

fillment, since they were spent on the more important 

requirements. However, we are convinced that this 

requirement could have been fulfilled if more resources 

were available. The next unfulfilled requirement was 

R5.2, which considers advanced editing with the 

textual Structured Text language. The reason for this 

was also the lack of resources, since they were already 

spent on requirements with a higher business value. The 

implementation of such an editor is achievable, espe-

cially because several specialized tools for this purpose 

are available in the scope of the Eclipse Modeling 

Framework project. The requirements R4.3.3 and 
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R4.3.4 were also left out, because of their low business 

value and the lack of resources. 

4.2. Usability perspective 

The next step of the analysis was an assessment of 

the laboratory prototype support tools from the end 

users’ perspective. Despite the fact that non-functional 

requirements were not explicitly specified, it is clear 

that the users have a minimum set of expectations that 

should be met. These regard foremost the quality of the 

software, which according to Sommerville [31] can be 

considered as one of the subsets of non-functional 

requirements. The risk exists that if the tools do not 

fulfill the expectations of the users regarding the non-

functional requirements, they will be considered as 

useless [31]. Testing has shown that the laboratory 

prototype has the following weaknesses from the end 

users’ perspective: 

 Lack of reliability, which was manifested through 

instability. During the use of the laboratory proto-

type, on average two errors per hour occurred (the 

actual occurrence rate depends on the complexity of 

the model). Occasionally, errors occurred that 

caused the termination of the editor and the loss of 

unsaved work. We were not able to solve these 

problems, despite many attempts. Among the 

causes for these problems were the problems related 

to the synchronization between the diagrams. 

 Relatively low efficiency, which is a consequence 

of the slow editor. When editing large-scale models, 

a shortage of memory occasionally occurred (note 

that the editor was tested on average computers). 

4.3. Development perspective 

The last part of the analysis concerned the develop-

ment process of the laboratory prototype, which turned 

out to be both demanding and difficult. Most of the 

experienced problems were a consequence of the GMF 

framework shortcomings. Consequently, these prob-

lems could not be solved, if the same development 

approach were to be used in the future. In other words, 

the development of an industrial prototype with this 

approach would be similarly demanding and complex 

as the laboratory prototype development and dependent 

on the flaws of the GMF framework. With such a deve-

lopment approach it is hard to use established software-

engineering development processes. This is a general 

problem with MDE approaches and especially with the 

GMF framework [3]. Consequently, we had to use a 

custom development process, which is very dependent 

on the capabilities of GMF and is therefore relatively 

inefficient.  

4.4. Decision about further development 

On the basis of the findings mentioned above we 

assessed that the encountered problems would 

negatively influence the development of the industrial 

prototype. As a result we decided not to develop it with 

evolutionary prototyping (i.e., based on the laboratory 

prototype and with the same development approach). 

More specifically, the model editor turned out to be the 

most problematic component of the support tools. The 

two other components (the model repository and the 

code generator) were considered as good enough. 

Consequently, we decided to develop the model editor 

in the industrial prototype with a new development 

approach, taking into account the experience and good 

results of the previous development approach.  

5. The development of the industrial prototype 

In this section we first describe a systematic way of 

determining the development approach for the 

industrial prototype and then describe the actual 

development with this methodology. 

5.1. The development methodology 

The evaluation of the existing metamodeling tools 

(reported in [28]) showed that the most suitable tool for 

the development of a ProcGraph model editor is GMF. 

This means that the other metamodeling tools are even 

less appropriate for the purpose of developing the 

industrial prototype tool suite. The only alternative is 

thus the use of the traditional development approach. 

The already-mentioned weaknesses of such an 

approach can be mitigated with the use of MDE theory 

and the experience we gained during the development 

of the laboratory prototype. Traditional development of 

the model editor also has some advantages, such as a 

smaller dependence on the used tooling and the use of 

existing and proven development processes and 

technologies. With a consideration of all the mentioned 

factors it is possible to conceive a flexible development 

approach with which a model editor can be developed 

and still be responsive in case the ProcGraph language 

or the requirements evolve. For the development of the 

whole industrial prototype tool suite a hybrid 

development approach was used, where the editor was 

realized with a traditional approach and the other 

components, which were realized before with 

metamodeling tools, were reused. 

Based on the experience gained during the 

development of the laboratory prototype and on 

findings from the literature [16], which claim that 

traditional development demands much more effort 

than metamodeling tool-based development, we 

decided to acquire more human resources. We included 

an external partner, i.e., a software-engineering 

company. Because of our domain knowledge, expe-

riences from past development and the strong influence 

on the development process, we defined the require-

ments and the specifications. The high-level design and 

testing were made jointly with the partner. The 

implementation was mainly carried out by the external 

partner. 

During the determination of the development 

methodology the most important decisions were related 
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to the requirements, the development process and the 

implementation platform. 

The requirements remained the same as those for 

the laboratory prototype. We only added the require-

ment that the new editor must be integrated with the 

existing model repository. The requirements were used 

to determine the development process and the deve-

lopment platform. 

The development of the industrial prototype tool 

suite had the characteristics of the majority of projects 

that are suitable to be carried out with agile processes 

[32, 33]: small criticality, involvement of a smaller 

number of experienced developers and high volatility 

of the requirements. The project is not suitable for con-

ventional development processes, especially waterfall 

development, which is based on extensive planning, 

strict regulation and extensive documentation, which 

are not suitable for a small team. The specific agile 

development process that was used was Scrum [34]. It 

was chosen because it is one of the most widespread 

agile processes [35, 36] and because it is suitable for 

small development teams that want to deliver working 

software in small development cycles [37].  

Because metamodeling tools were not suitable for 

achieving several of the defined requirements in the 

laboratory prototype, we decided to use a more general 

and more mature technology for the development of the 

industrial prototype. During the determination of the 

development methodology we focused on generally 

accepted platforms, which are used with suitable third-

generation programming languages. Basically, we were 

choosing between the .NET framework and the Eclipse 

platform. Despite the fact that the laboratory prototype 

was based on Eclipse, we decided not to use Eclipse 

and Java because of: 

 Negative experience (lack of documentation and 

inability to realize overlapping super-states) with 

the libraries for graphical elements in Eclipse (GEF 

and Draw2D). 

 Estimates and guarantees of the external partner that 

we will risk less with .NET. 

 Slightly more expensive development hours for 

Java. 

The key advantage of the .NET framework and the 

C# programming language is its maturity, its good 

documentation and an abundance of libraries, frame-

works and tools, primarily commercial ones, which are 

well tested and documented. Another advantage is the 

broad use of .NET in industry, which is important in the 

case that the development of a commercial tool suite is 

taken over by one of our industrial partners.
 

 

Figure 2. A screenshot from the developed industrial prototype 
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5.2. The development 

In this subsection we describe the results of the 

development of the industrial prototype tool suite, 

which is shown in Figure 2. We will discuss the 

requirements as well as the integration of the tool suite 

and the high-level architecture (with the emphasis on 

the model editor). 

5.2.1. Requirements 

For the development of the industrial prototype the 

same set of requirements as for the laboratory pro-

totype was used (see Table 1). Only one requirement 

was added. It was labeled as R0.5, and defined with 

the following short description: ”The ProcGraph 

model must be saved in an XMI file, which can be 

imported into the EMF-based model repository”. The 

highest importance level (5) was assigned to this 

requirement.  

The most important fact related to the requirements 

is that out of the 32 requirements 30 were fulfilled. The 

2 unfulfilled requirements (R4.3.3 and R4.3.4) were 

intentionally left out, because it turned out that they 

are irrelevant for the users of the tool suite. 

5.2.2. Integration of the support tools 

During the integration of the new model editor 

with the existing components we used the integration 

on the model level, i.e., we used the standard XMI 

format, which is intended for model exchange. 

Another goal was integration at the runtime level, 

which means that the code generator can be invoked 

from within the model editor. In this way the tool suite 

would become a real integrated development environ-

ment (IDE). This kind of integration was challenging 

because the new model editor was based on the .NET 

platform, which means that the already-existing model 

repository and the code generator are essentially 

running on the Eclipse platform. We found that there 

is a subset of the EMF and openArchitectureWare that 

can be used in stand-alone Java applications and is not 

directly dependent on the Eclipse platform. In C# it is 

possible to run a Java program so that a new system 

process is run in which the Java Virtual Machine is 

called, so that a certain Java program and its input 

parameters are specified. In our case we called two 

Java programs from the C# code. The first one 

imported the XMI model, which was created by the 

model editor, into the model repository, and the second 

one ran the code generator, which created the 

generated code. It was created in the folder that was 

defined in the input parameter. 

The metamodels defined in the EMF framework 

cannot be used in .NET applications. A negative 

consequence of this is that the same metamodel has to 

be created in two different places, as well as a 

connection between them, over which we can transfer 

models from the model editor in .NET to the model 

repository in EMF. All three components have to be 

manually maintained in order to guarantee the consis-

tency. The connection was realized over an automatic 

XMI serialization. In practice this turned out to be a 

smaller problem than anticipated. The advantage of 

the new development method of the model editor was 

a smaller influence on the metamodel of the DSML, 

since it did not put constraints on the structure of the 

metamodel. This was not the case with the GMF, 

because of its implementation and the way of gene-

rating the editors. Consequently, the implementation 

metamodel, which is used in the model repository and 

in the model editor, is the same as the general meta-

model of the ProcGraph language. 

5.2.3. Architecture 

An important element that enables a flexible and 

efficient development of the model editor is the 

software architecture. During the definition of the 

software architecture of the ProcGraph model editor 

we wanted to build on the good ideas of the GMF 

framework, from which the most outstanding is the 

separation of the development into different models 

that define different viewpoints of the editor. Based on 

this we decided that the architecture must contain parts 

that cover the abstract syntax (i.e., metamodel), the 

concrete syntax, the syntactic mapping, the tools for 

the diagram manipulation and the graphical controls of 

the application. 

During the development we wanted to take 

advantage of the newer and, at the same time, well 

tested and powerful features of the .NET framework. 

Therefore, we decided to develop the editor as an 

application based on the WPF (Windows Presentation 

Foundation) technology. WPF is a subsystem of the 

.NET framework (introduced in version 3.0), which 

represents an alternative to the Windows Forms 

technology and is intended for Rich Client Applica-

tions [37]. The architecture of the industrial prototype 

of the model editor is specified in Figure 3 and consists 

of four basic assemblies: 

 ProcGraph.Model contains the classes that 

represent the metamodel of the ProcGraph 

language. This assembly also defines the 

syntactical mapping of the DSML. 

 ProcGraph.Editor is a graphical user interface that 

is realized as a WPF application and uses the 

ProcGraph.Infrastructure. 

 ProcGraph.Infrastructure contains a set of 

controls for the visual elements (among others, 

also the concrete syntax) that are created based on 

the contents of the ProcGraph.Model assembly. 

 ProcGraph.Shared contains the functionality that 

is shared among the other assemblies.
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Figure 3. High-level architecture of the industrial prototype of the model editor

6. The findings 

In order to study the effects of the systematically 

chosen new development methodology for the indus-

trial prototype, we carried out a comparison of the 

development of both prototypes. Based on this 

comparison, our experience and a literature overview 

we also drew a set of lessons learned.  

6.1. A comparison of the prototypes 

The comparison was carried out from three 

different perspectives, i.e., the requirements ful-

fillment perspective, the usability perspective and the 

development process perspective. 

6.1.1. Requirements perspective  

From the requirements point of view the ful-

fillment of the functional requirements was signi-

ficantly more successful in the industrial prototype. 

We managed to realize the key requirements that were 

not realized in the laboratory prototype, because of 

which the development with GMF was discontinued. 

It turned out that with the .NET framework and the 

WPF subsystem the diagram synchronization was 

successfully implemented. This was not accom-

plishable with the GMF framework, because of its 

complex and limited synchronization infrastructure. 

We also succeeded in implementing the overlapping 

super-states (R2.5), which was a very demanding task. 

The large quantity of relevant examples found on the 

World Wide Web, which showed the use of WPF for 

similar purposes, was very helpful. The large user base 

of the WPF subsystem as well as its extensive 

documentation were also important for implementing 

the overlapping super-states requirement. 

6.1.2. Usability perspective 

The industrial prototype tool suite has been used in 

laboratory experiments and for re-engineering 

software in previous industrial projects. From the non-

functional requirements perspective, the industrial 

prototype is superior in the areas of stability, 

responsiveness, usability, understandability, and user-

interface intuitiveness. The main reason for the first 

two is the use of .NET instead of GMF and the Eclipse 

platform. The use of Scrum contributed to the 

remaining improvements, since intermediate versions 

of the prototype were delivered faster and showed 

more often to the users; therefore, their feedback was 

received faster and could be more easily reflected in 

the prototype. The end users, who were included in the 

testing, gave testimonials that they would be interested 

in using the industrial prototype in practice. The only 

drawback of the industrial prototype is its inability to 

show multiple diagrams of the edited ProcGraph 

model at the same time. This was possible in the 

laboratory prototype. In the industrial prototype this 

feature is missing, because the WPF subsystem does 

not support the correct rendering of two or more 

diagrams. However, this has not turned out to be 

problematic, because the users did not evaluate this as 

annoying or even so critical that the industrial 

prototype would be deemed as less useful. 

6.1.3. Development process perspective 

The development process of the industrial proto-

type was more manageable and less demanding than 

the laboratory-prototype development approach. This 

was because it was not necessary to integrate auto-

matically generated and manually written code and 

carry out a complex and partially manual process of 

regenerating the editor, even for the slightest change 

of the editor models, as was the case with GMF. It was 

also possible to use automatic unit testing, the positive 

effects of which are generally known. The agile Scrum 

method, which was used instead of a proprietary 

development method, based on the GMF framework, 

also had a positive influence on the manageability of 

the development. The implementation of ProcGraph’s 

ProcGraph.Model 

ProcGraph.Infrastructure 

ProcGraph.Editor 

ProcGraph.Shared 
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concrete syntax and the editing behavior were easier 

with the use of .NET and WPF than with the use of 

Eclipse and the GEF and Draw2D frameworks. Also, 

in general, the .NET framework turned out to be more 

mature and better documented.  

6.2. Lessons learned 

The analysis of the laboratory prototype develop-

ment showed that the GMF framework was not the 

most suitable option for the realization of the 

ProcGraph model editor. We found that it is immature, 

complex, demanding to learn and incapable of ful-

filling some important requirements. It has a number 

of constraints and problems and is not supported by a 

proper development process. Our experience can be 

generalized into the recommendation that the use of 

GMF should be discouraged for the development of a 

model editor for an arbitrary DSML with the following 

properties: 

 It consists of different diagrams that need to be 

synchronized. 

 It has diagrams that can contain overlapping super-

elements. The overlapping areas contain shared 

sub-elements. In other words, these are diagrams 

in which the sub-elements can be contained in two 

or more immediate super-elements. An example of 

such diagrams is Venn diagrams. The topic of 

overlapping Statecharts was also discussed by 

Harel and Kahana [38].  

Based on our experience from the development of 

the tool suite for the MAGICS methodology, we can 

claim that metamodeling tools are still a relatively 

immature technology, primarily the metamodeling 

tools, which are intended for the automatic generation 

of editors for visual or hybrid models. On the other 

hand, it has become clear that the theory of metamo-

deling, with which we defined the abstract syntax of 

the DSML and automatic model repository generation 

based on this formalism, is mature. This is at least the 

case with the EMF framework, which turned out to be 

a very suitable tool. Another mature technology is the 

development of code generators based on code 

templates, in our case the openArchitectureWare 

framework. This and similar tools are based on an 

extensive experience gained in the field of language 

generators (e.g., ANTLR [39]),) and therefore work 

very well in practice. 

Our experience cannot be directly generalized, 

because the ProcGraph language has a specific 

concrete syntax and we had some very specific 

requirements. This language could be classified as a 

complex DSML. Although the literature occasionally 

uses the term complex DSML (e.g., [7, 40, 41]), there 

is a lack of definition. We propose that one of the 

criteria to classify a DSML as a complex one is that 

with it models can be built that consist of a hierarchy 

of diagrams, which are instances of more than one 

diagram type. In general, the examples of DSMLs that 

are usually shown in the literature about metamodeling 

tools are usually simple, real-life languages (e.g., a 

language for the domain of elevator controllers [29], a 

simplified Goal-oriented Requirement Language [42], 

and a language for risk analysis [43]) or artificial toy 

languages (e.g., a Simple Component-connector Lan-

guage [44], a language for social networks [45], and 

the J2EE configuration language [46]). With such 

languages most metamodeling tools are sufficient 

during the task of model-editor generation. Most of 

these tools, however, are not able to sufficiently 

support the generation of model editors for complex 

DSMLs, which shows the immaturity of this techno-

logy. In relation to these issues several interesting 

possibilities for future research arise, e.g., complex 

DSMLs could be studied, their features generalized 

and solutions proposed about how to support these 

features in specific metamodeling tools. Such research 

is beyond the scope of this paper; however, it would 

surely help the practitioners who are developing 

proprietary support tools for an arbitrary model-driven 

process based on a complex DSML. 

Because of the immaturity and the lack of capabi-

lities of the metamodeling tools it is recommended to 

consider the use of a traditional development approach 

to tool support development for MDE approaches. We 

recommend that the practitioners do this, especially if 

they are dealing with the development of a model 

editor for a complex DSML. The other support tools 

can still be realized with metamodeling tools, so that 

the development of the entire tooling then becomes a 

hybrid development. In the case that a traditional 

development approach is used, one has to carefully 

think about the flexibility and the separation of 

different parts of the DSML, as we have done during 

the definition of the architecture of the ProcGraph 

model editor. A few similar findings have been made 

in the area of debuggers [47] and test engines [48, 49]; 

therefore, this claim may be generalized to support 

tools for complex DSMLs. 

Our recommendation is to base the decision 

between the development with metamodeling tools 

and traditional development also on the cost of the 

professional developers. This aspect is not discussed 

in the literature, but it is very relevant in practice. As 

an illustration, let us convey our experience. After the 

development of the laboratory prototype we contacted 

professional consultants/developers for the GMF 

framework, which we wanted to use as external 

partners, because of the described problems and 

unfulfilled requirements. The intention was to use 

them in the development of the industrial prototype. It 

turned out that there is a relatively small number of 

such developers worldwide. We were able to find only 

two companies that develop with GMF and some other 

MDE tools. From these two companies we obtained 

the data about the costs of the services they offer. It 

turned out that the developer hour for GMF-based 

development is roughly 10 times more expensive that 

for the development with C#, .NET and WPF. This 

means that the productivity with the GMF framework 
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should be 10 times higher than the one with the .NET 

framework, of course under the assumption that in all 

other regards the two approaches are equivalent in 

fulfilling the requirements. Despite some reports [24, 

50, 51] about productivity increases with the use of the 

GMF framework, we did not find any sources that 

would contain quantitative data to support this. In the 

broader context, i.e., MDE paradigm Sprinkle, et al. 

[10] reported that in three different studies with the use 

of MDE a 3–10 times higher productivity was 

achieved. Another source [3] reports that the increase 

in the productivity is significantly smaller with the 

introduction of the MDE concept. Our experience also 

shows that the increase is strongly hindered by 

increasing the complexity of the used DSML and that 

the increase in the productivity by a factor of 10 with 

the use of GMF for complex DSMLs is very unlikely. 

This means that the traditional development of the 

model editor for complex DMSL is probably at least 

equally expensive as the development with GMF, and 

perhaps even cheaper. In our case we also had to take 

into account the higher cost of a distributed 

development with a company e.g., from Germany or 

the USA. Therefore, traditional development (with the 

.NET framework) was clearly a better alternative and 

was selected for the development of the industrial 

prototype of the model editor. 

7. Conclusion 

This experience report describes the “rocky road” 

to an industrial prototype tool that should support a 

MDE approach in the process control domain. This 

was especially demanding for the model editing part, 

because of the complexity of some language elements 

of the used graphical modeling language ProcGraph. 

On the basis of an analysis of the past development, in 

which a laboratory prototype had already been deve-

loped, we decided not to use the metamodeling tools 

for the development of the model editor, which at the 

beginning seemed to be a natural direction. Instead, we 

decided to use a mature development technology 

(.NET framework) and an agile development process 

(Scrum). Without this decision it is very doubtful that 

the industrial prototype tool could even have been 

developed (i.e., key requirements would remain 

unfulfilled). The comparison of the laboratory and 

industrial prototype development showed that the 

selected development methodology substantially 

facilitated the development of the industrial prototype. 

Compared to the previous development effort a 

significant increase in the amount of implemented 

requirements and tool-suite reliability and usability 

was achieved. 

Based on our experience we learned several 

lessons that might be useful to other MDE practi-

tioners, especially the ones that provide support for 

complex modeling languages. One of the most impor-

tant lessons is that for the development of model 

editors the traditional development approach should 

not be easily rejected, especially when a visual or 

hybrid (i.e., visual and textual) model editor is needed. 

However, these findings are different from the 

majority of the reports in the literature and the 

common expectation of the MDE community, which 

means that this discrepancy should be investigated 

further in future research.  
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