
135

ISSN 1392–124X (print), ISSN 2335–884X (online) INFORMATION TECHNOLOGY AND CONTROL, 2015, T. 44, Nr. 2

The Experience of Implementing Model-Driven Engineering Tools

in the Process Control Domain

Giovanni Godena1,4, Tomaž Lukman2, Marjan Heričko3, Stanko Strmčnik1

1 Jožef Stefan Institute, Department of Systems and Control, Jamova 39, 1000 Ljubljana, Slovenia,

e-mail: giovanni.godena@ijs.si, stanko.strmcnik@ijs.si

2 Iteratec GmbH, Inselkammerstraße 4, 82008 München - Unterhaching, Germany,

e-mail: tomaz.lukman@iteratec.de

3 University of Maribor, Faculty of Electrical Engineering and Computer Science,

Smetanova ulica 17, 2000 Maribor, Slovenia,

e-mail: marjan.hericko@uni-mb.si

4 Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia

 http://dx.doi.org/10.5755/j01.itc.44.2.6258

Abstract. Model-driven engineering (MDE) is a software-engineering paradigm that is being introduced into a

growing number of domains. One of the most important success factors for a new MDE approach is the availability of

the appropriate tool support for it. Although the literature discusses the development of support tools, only a few reports

and analyses are available about the development of tool support for real-life modeling languages and MDE approaches.

The goal of this paper is to fill this gap through an experience report about developing a tool-suite prototype for an MDE

approach for the process control domain that is capable of supporting the development of real-life process control

software. Before the work presented in this paper an initial prototype tool suite was already developed. However, it was

not able to adequately support industry-scale projects. The paper starts with an analysis of the past development of this

already-existing laboratory prototype and then moves on to a report about the development of the industrial prototype,

which is influenced by the findings of the analysis. Then a comparison between the two prototypes is made and the

lessons learned are described, which may be useful to practitioners who attempt to develop support tools for an MDE

approach that are useful in practice. The most important lesson learned is that when developing tool support for complex

modeling languages, the traditional development approach should not be easily rejected.

Keywords: model-driven engineering, process control software, domain-specific modeling languages, ProcGraph.

1. Introduction

In the struggle to improve the engineering of

software, many concepts and technologies have been

proposed. One of them is model-driven engineering

(MDE), which advocates the systematic and disciplined

use of precise models of a system under design

throughout the software lifecycle [1]. Its primary

development entities are models that can be (semi-)

automatically transformed into refined models and

eventually into executable code [2]. MDE is a

software-engineering paradigm that has the potential to

sustainably raise the productivity, increase the software

quality [3] and reduce the complexity of software and

systems development [1]. Despite these promises there

are still only a few empirical studies relating to MDE

and its use in practice [4]. An overview of the empirical

studies in [3] has shown that these expectations were

not met by several of the investigated MDE

approaches. Nevertheless, despite the lack of strong

empirical evidence supporting the positive effects of

this paradigm, MDE approaches are being introduced

into more and more domains. The question that arises

is why some MDE approaches do not improve the

development performance. According to the literature

[3, 5, 6] one of the main reasons for this is the lack of

appropriate tool support for these approaches. Such

tools are still demanding to develop [2, 7], which is one

of the main causes of this situation. We had a similar

experience during the introduction of a MDE approach

called MAGICS (Modeling and Automatic Generation

of Industrial process Control Software) [8] that was

developed for the domain of process control software,

G. Godena, T. Lukman, M. Heričko, S. Strmčnik

136

where one of the largest problems was the development

of the tool suite, consisting of a model repository, a

model editor and a code generator. In the work

preceding the research presented in this paper, we

already developed an initial tool-suite prototype. This

enabled the development of smaller applications, which

are rarely found in practice but tend to be conceived as

examples that can be used for a proof-of-concept in the

laboratory. The development of this laboratory

prototype, which is reported in [8], proved to be

demanding and complex. As a result, this crucially

influenced the next step, i.e., the development of an

industrial prototype tool suite for MAGICS that enables

the development of real-life applications that have the

scale and complexity commonly found in practice.

The aim of this paper is to show how the experience

gained during the development of the laboratory

prototype influenced the development of an industrial

prototype of the MAGICS tool suite. An important part

of the paper is the comparison of the two prototypes and

the presentation of the lessons learned.

The main motivation for sharing our experience is

the fact that MDE practitioners are faced with the

challenge of developing practically useful tool support

for new MDE approaches and also that the literature

recognizes that developing such tool support is difficult

[7] and important [3, 5]. An additional motivation is the

scarce literature on this topic. This experience report

should be especially interesting for practitioners

dealing with not-trivial, real-life modeling languages

and the corresponding tool support. It should also be

interesting for the experts (researchers and

practitioners) from the process control domain that are

evaluating the state of the art approaches for software

engineering in this domain [9].

The next section presents the related work about

MDE and the tool support for it. Section 3 introduces

our previous work, i.e., the MAGICS approach and a

laboratory prototype tool suite for it. Section 4 analyses

the development of the laboratory prototype tool suite.

Section 5 presents the development of the industrial

prototype, which is influenced by the results of the

analysis from the previous section. Section 6 contains

the findings of our experience report, which are

articulated in a comparison between the laboratory and

the industrial prototype and the lessons learned. The

last section presents our conclusions.

2. Related work

Typically, the MDE approach relies on three main

components: modeling languages, model transfor-

mations and support software tools.

The modeling languages for software and systems

can be classified into general-purpose modelling

languages (GPMLs), which support modeling in a

variety of domains and domain-specific modelling

languages (DSMLs), which are intended for modeling

in one domain using the abstractions common to that

domain [10]. Both of these can be used in the MDE

approach, as long as they are formal. However, it is

apparent that a DSML will usually produce a more

concise and direct specification and, therefore, more

effective solutions for problems in its domain than a

GPML [11]. This means the question that should be

asked is what is the most effective method for defining

a DSML [11]? DSMLs are usually defined through a

Unified Modeling Language (UML)-based definition or

a metamodeling-based definition [12, 13]. The former

approach specializes the UML [14], which is a GPML

in itself, for a specific domain through the definition of

a UML profile. The latter approach defines the DSML

“from scratch” with the use of a metamodeling

language, e.g., the Meta-Object Facility (MOF) [15]. A

similar question arises in the area of Domain-Specific

Languages (DSLs) [16, 17], because they can be

realized as an external DSL, which corresponds to a

UML-based definition of a DSML, or as an internal

DSL, which corresponds to a metamodeling-based

definition of a DSML.

A model transformation generates one or more

target models from one or more source models, based

on a set of model-transformation rules. With model

transformations, MDE can automate many of the

complex but routine development tasks that are often

performed manually [18], such as model refactoring or

the generation of code from models.

To enable MDE in practice and fulfill its potential,

sophisticated tools must be developed that support

DSML(s) and the defined model transformations. A

survey performed among industry participants showed

that the availability of tool support is the most

influential factor in the decision about whether to adopt

a specific MDE approach [3]. Several alternatives exist

for the development of tool support for the selected

DSML. The development approach depends on the way

the DSML was defined:

 UML-based DSML. The tool support may be

provided with the use of existing modeling tools

that are parameterized by the UML profile

definition, e.g., the Papyrus UML [19]. The UML

standard is widely known and taught; therefore, an

expanding base of developers should be familiar

with this approach [11]. It demands a relatively

small effort, because the already-available UML

tooling can be used to provide the tool suite for the

DSML [12]. However, such tool suites are usually

very generic, hard to customize, and may not be

able to support the functionalities that are needed by

the users [13]. In recent years the situation seems to

be improving with UML-based MDE tools getting

more sophisticated, for example MagicDraw [20].

It currently supports the development of additional

tools, e.g., a model validator and a methodology

wizard [21] as MagicDraw plugins and concrete

syntax for DSMLs that do not only use the standard

UML shapes, e.g., a relation map diagram for

visualizing traceability in models [22]. However, as

the paper [23] reveals, the hybrid DSMLs (with

graphical and textual syntax) are not supported and

The Experience of Implementing Model-Driven Engineering Tools in the Process Control Domain

137

had to be covered by integrating MagicDraw with

an Eclipse-based editor, which is inferior to an IDE

solution.

 Metamodeling-based DSML. In general, developing

tool support for such DSMLs demands more effort

and highly specialized expertise [12]. On the other

hand, it offers more flexibility than UML-based

DSMLs. Two different development options are

available:

 Traditional development. No specialized tools

for MDE are used during the development of

the tool support. The literature [2, 24] suggests

that traditional development is demanding,

resource intensive (it may require effort ran-

ging from several person-months and up to a

couple of person-years), and inflexible for

maintenance. However, the main advantage of

traditional development is that it is not limited

by the capabilities of the used specialized tools.

Therefore, even very specific tool-suite

requirements can be realized.

 Development with metamodeling tools.

Metamodeling tools, for example, GME [25],

GMF [24], and MetaEdit+ [2], can automa-

tically generate (portions of) the needed tool

suite based on a formal definition of the DSML

and the model transformations. Consequently,

metamodeling tools have the potential to speed

up the development and reduce the required

effort and development complexity [2]. The

main disadvantage of this approach is the

relative immaturity of this technology [8].

3. Previous work

In our previous work a new MDE approach for

process control software, called MAGICS [8], was

defined. It was developed because the state of the

practice in this domain is failing to address the needs of

the market [26] and is putting too much focus on the

implementation phase, with little or no activity in the

earlier software lifecycle phases [8]. Other proposed

approaches, among which are also MDE approaches,

have not been widely adopted by industry because of

their immaturity and particularly because they do not

address important issues of the process control domain

[9]. The MAGICS approach consists of the two

development levels that are shown in Figure 1. The first

level (infrastructure engineering) is concerned with the

definition of the development process and guidelines,

the definition of a DSML, the specification of the

model transformations, and the development of a tool

suite. This tool suite makes it possible to model the

process control software and to perform the automatic

code generation for programmable logic controllers.

This tool suite can be extended with additional tools,

e.g., a model validator and a model refactoring tool.

The ProcGraph language [27] was chosen to be the

DSML used in MAGICS, because it was developed in-

house and it contains process-centric abstractions, a

sophisticated behavioral model for these abstractions,

and explicit modeling of the dependencies between

them [8]. ProcGraph has been successfully used as a

modeling (specification) language over the past 15

years in more than 20 industrial projects, ranging in size

from a couple of hundred to a couple of thousand

signals. In the second level (application engineering),

the process control software is engineered using the

results of the infrastructure level. The application-

engineering level uses the infrastructure for the

development of process control software. The infor-

mation flow from the application-engineering level to

the infrastructure-engineering level incorporates the

knowledge that is being accumulated during the

application-development process. This information can

be potentially generalized and incorporated into new

versions of the infrastructure, which would further

improve the application engineering or extend the

range (i.e., the variability) of the software that can be

engineered.

The development of the laboratory prototype tool

suite, which is also part of the previous work, is

extensively described in [8] and will be summarized in

the remainder of this paragraph, so that the rest of the

paper can be understood. The laboratory prototype

consists of a model repository, a model editor and two

code generators. The ProcGraph DSML was defined

with metamodeling; therefore, the support tools could

be either developed with metamodeling tools or the

traditional approach. We chose the metamodeling-tools

approach, because of the already-mentioned benefits

that are reported in the literature and because we

wanted the formalized language to have as many of the

original features as possible. A comprehensive expla-

nation is beyond the scope of this paper and can be

found in [8]. A systematic evaluation of the available

metamodeling tools [28] has shown that the most

suitable metamodeling tools for MAGICS were the

combination of EMF (Eclipse Modeling Framework),

GMF (Graphical Modeling Framework) and

openArchitectureWare. The model repository was

developed with the EMF, which is the central tool for

creating structural model repositories for the Eclipse

platform. GMF was selected for the development of the

graphical model editor and can generate a visual model

editor based on different models of this editor.

OpenArchitectureWare was used for the implement-

tation of the code generators, because it is a widely used

model-to-text engine that seamlessly works with EMF

metamodels.

4. An analysis of the laboratory-prototype

development

The development of the laboratory prototype was

demanding and several problems were encountered

during this process; therefore, we decided to analyze

the used development approach before starting the

development of the industrial prototype. In the analysis

G. Godena, T. Lukman, M. Heričko, S. Strmčnik

138

of the development of the laboratory prototype we

focused on three different viewpoints, i.e., the

requirements realization, the problems during the use

of the laboratory prototype and the problems occurring

during its development.

4.1. Requirements perspective

The analysis started with an overview of the

requirements and an assessment of their fulfillment. A

measurement scale from 1 to 5 was defined in order to

denote the importance of each requirement, whereby 1

represents for the lowest importance and 5 the highest

importance. The laboratory prototype did not

implement 4 of 31 defined requirements and partially

implemented 5 requirements. The results of the

assessment are shown in Table 1.

4.1.1. The requirements not or partially implemented

because of problems with GMF

Among the requirements that were partially ful-

filled, we should highlight the requirements R1.6 and

R1.7 (they enable the construction of composite depen-

dencies between the Procedural Control Entities on

different hierarchy levels) and the requirement R3.2 (it

dynamically depicts the changes of the states and

transitions on State Dependencies Diagrams). The

essence of these requirements is to establish the syn-

chronization between different ProcGraph diagram

types that contain the same graphical information,

which can be entered only in the first diagram type,

whereas in the second diagram type it represents static

information that cannot be modified, only additional

information can be superimposed. A change in the first

diagram type should then be propagated to the second

diagram type. As a concrete example let us mention a

case of two entity state diagrams and a state dependen-

cies diagram, containing the two mentioned state

diagrams (which cannot be modified there) and super-

imposed information on the state transition dependen-

cies between the two entities. For more reference on the

ProcGraph behavior model consider [8, 27]. Establi-

shing synchronization is not supported by GMF itself,

but it had to be realized by altering the GMF-generated

code, by overriding numerous methods from classes of

the GMF framework and by performing extensive

testing and debugging. Despite the effort invested in the

realization of these requirements we were not able to

implement a fully working synchronization, so that

synchronization errors occasionally occurred (mainly

with large-scale models). Because of this and because

of the lack of examples of GMF-based editors with

working synchronization, we decided that a partial

implementation would be sufficient for the laboratory

prototype. We were not able to determine whether a

proper synchronization is even achievable with GMF.

The requirement R3.5 was only partially fulfilled,

because of the synchronization problems. Similar

observations in GMF have been made in [29] during the

implementation of a DSML for elevator controllers.

This problem is common in non-orthogonal modeling

languages, i.e., those that represent the same

Figure 1. A scheme of the MAGICS approach [8]

A
p

p
li
c

a
ti

o
n

e
n

g
in

e
e

ri
n

g

In
fr

a
s

tr
u

c
tu

re

e
n

g
in

e
e

ri
n

g

Model

transformations

definition

DSML

development

Software tool suite engineering

Code generator

#2 development

Code generator

#1 development

Model editor

development

Model repository

development

Model

repository

Process control software engineering

Model

editor

Code

gen. #1

Process

control

software

Code

gen. #2

Model

transformation

rules

DSML

definition

Application-

specific

knowledge

Application

requirements

Process definition,

guidelines etc.

Development

process definition

The Experience of Implementing Model-Driven Engineering Tools in the Process Control Domain

139

Table 1. Overview of the requirements fulfillment for the laboratory prototype

Requirement (id and short description)

Require-

ments

group

Impor-

tance

Fulfilled in

laboratory

prototype

R0.1 - The entire model is persisted in one file

0. General

5 Yes

R0.2 - The model must be exportable in an XML (XMI) file that is readable by EMF 5 Yes

R0.3 - Verification of the completeness and well-formedness of the model 3 Yes

R0.4 - All the model elements can be viewed through a tree 2 Yes

R1.1 - Modeling of Entity Diagrams

1. Procedural

Control

Entities

diagram

5 Yes

R1.2 - Dynamic composite dependencies 4 Yes

R1.3 - Non elementary Procedural Control Entity explodes into a sub Entity Diagrams 4 Yes

R1.4 - Elementary Procedural Control Entity explodes into a State Transition Diagram 5 Yes

R1.5 - Composite dependency explodes into a State Dependencies Diagram 5 Yes

R1.6 - Composite dependencies connect Procedural Control Entities on different

hierarchy levels
4 Partially

R1.7 - References to Procedural Control Entities from different hierarchy levels 4 Partially

R1.8 - Procedural Control Entities variables 1 Yes

R2.1 - Modeling of State Transition Diagrams

2. State

Transition

diagram

5 Yes

R2.2 - Two types of state transitions 5 Yes

R2.3 - Visual composition of states on one diagram 4 Yes

R2.4 - Transitions between elementary- and super-states 5 Yes

R2.5 – Super-states can overlap 3 No

R2.6 - States and transitions have specific action sequences 5 Yes

R3.1 - Modeling of State Dependencies Diagrams

3. State

Dependencies

diagram

5 Yes

R3.2 - Show the State Transition Diagrams of the two relevant Procedural Control

Entities
5 Partially

R3.3 - Two types of dependencies 5 Yes

R3.4 - Dependencies sink into state transitions 4 Yes

R3.5 - The source and destination of a dependency are not part of the same Procedural

Control Entity
5 Partially

R4.1 - The domain constraints are enforced during modeling

4. All

diagrams

3 Yes

R4.2 - All relationships can have annotations 3 Yes

R4.3.1 - Conformance to the look and feel of general graphical editors 3 Partially

R4.3.2 - Deletions and alterations of non-empty elements need explicit approval from

the user
3 Yes

R4.3.3 - Overlapping of nodes must be prevented 1 No

R4.3.4 - Relations must avoid nodes 1 No

R5.1 - Basic text editor 5. Action

sequences

5 Yes

R5.2 - Syntax aware editor for Structured Text 3 No

information in different diagrams. This is also the case

in UML. This problem was also discussed by Grundy,

et al. [30].

Another important unfulfilled requirement is R2.5,

which addresses the overlapping super-states. Even

after an extensive experimentation (with a great deal of

coding) and an unsuccessful search for similar already-

implemented solutions we were still unable to fulfill

this requirement with GMF.

Here, it is very important to mention that in order to

exclude problems that could be related to our incom-

petence we have contacted one of the developers of

GMF and also independent consulting companies to

help us address the flaws in GMF. Unfortunately, this

approach has also not led to a solution.

4.1.2. The requirements not or partially implemented

for other reasons

The requirement R4.3.1 was only partially fulfilled,

because no more resources were available for its ful-

fillment, since they were spent on the more important

requirements. However, we are convinced that this

requirement could have been fulfilled if more resources

were available. The next unfulfilled requirement was

R5.2, which considers advanced editing with the

textual Structured Text language. The reason for this

was also the lack of resources, since they were already

spent on requirements with a higher business value. The

implementation of such an editor is achievable, espe-

cially because several specialized tools for this purpose

are available in the scope of the Eclipse Modeling

Framework project. The requirements R4.3.3 and

G. Godena, T. Lukman, M. Heričko, S. Strmčnik

140

R4.3.4 were also left out, because of their low business

value and the lack of resources.

4.2. Usability perspective

The next step of the analysis was an assessment of

the laboratory prototype support tools from the end

users’ perspective. Despite the fact that non-functional

requirements were not explicitly specified, it is clear

that the users have a minimum set of expectations that

should be met. These regard foremost the quality of the

software, which according to Sommerville [31] can be

considered as one of the subsets of non-functional

requirements. The risk exists that if the tools do not

fulfill the expectations of the users regarding the non-

functional requirements, they will be considered as

useless [31]. Testing has shown that the laboratory

prototype has the following weaknesses from the end

users’ perspective:

 Lack of reliability, which was manifested through

instability. During the use of the laboratory proto-

type, on average two errors per hour occurred (the

actual occurrence rate depends on the complexity of

the model). Occasionally, errors occurred that

caused the termination of the editor and the loss of

unsaved work. We were not able to solve these

problems, despite many attempts. Among the

causes for these problems were the problems related

to the synchronization between the diagrams.

 Relatively low efficiency, which is a consequence

of the slow editor. When editing large-scale models,

a shortage of memory occasionally occurred (note

that the editor was tested on average computers).

4.3. Development perspective

The last part of the analysis concerned the develop-

ment process of the laboratory prototype, which turned

out to be both demanding and difficult. Most of the

experienced problems were a consequence of the GMF

framework shortcomings. Consequently, these prob-

lems could not be solved, if the same development

approach were to be used in the future. In other words,

the development of an industrial prototype with this

approach would be similarly demanding and complex

as the laboratory prototype development and dependent

on the flaws of the GMF framework. With such a deve-

lopment approach it is hard to use established software-

engineering development processes. This is a general

problem with MDE approaches and especially with the

GMF framework [3]. Consequently, we had to use a

custom development process, which is very dependent

on the capabilities of GMF and is therefore relatively

inefficient.

4.4. Decision about further development

On the basis of the findings mentioned above we

assessed that the encountered problems would

negatively influence the development of the industrial

prototype. As a result we decided not to develop it with

evolutionary prototyping (i.e., based on the laboratory

prototype and with the same development approach).

More specifically, the model editor turned out to be the

most problematic component of the support tools. The

two other components (the model repository and the

code generator) were considered as good enough.

Consequently, we decided to develop the model editor

in the industrial prototype with a new development

approach, taking into account the experience and good

results of the previous development approach.

5. The development of the industrial prototype

In this section we first describe a systematic way of

determining the development approach for the

industrial prototype and then describe the actual

development with this methodology.

5.1. The development methodology

The evaluation of the existing metamodeling tools

(reported in [28]) showed that the most suitable tool for

the development of a ProcGraph model editor is GMF.

This means that the other metamodeling tools are even

less appropriate for the purpose of developing the

industrial prototype tool suite. The only alternative is

thus the use of the traditional development approach.

The already-mentioned weaknesses of such an

approach can be mitigated with the use of MDE theory

and the experience we gained during the development

of the laboratory prototype. Traditional development of

the model editor also has some advantages, such as a

smaller dependence on the used tooling and the use of

existing and proven development processes and

technologies. With a consideration of all the mentioned

factors it is possible to conceive a flexible development

approach with which a model editor can be developed

and still be responsive in case the ProcGraph language

or the requirements evolve. For the development of the

whole industrial prototype tool suite a hybrid

development approach was used, where the editor was

realized with a traditional approach and the other

components, which were realized before with

metamodeling tools, were reused.

Based on the experience gained during the

development of the laboratory prototype and on

findings from the literature [16], which claim that

traditional development demands much more effort

than metamodeling tool-based development, we

decided to acquire more human resources. We included

an external partner, i.e., a software-engineering

company. Because of our domain knowledge, expe-

riences from past development and the strong influence

on the development process, we defined the require-

ments and the specifications. The high-level design and

testing were made jointly with the partner. The

implementation was mainly carried out by the external

partner.

During the determination of the development

methodology the most important decisions were related

The Experience of Implementing Model-Driven Engineering Tools in the Process Control Domain

141

to the requirements, the development process and the

implementation platform.

The requirements remained the same as those for

the laboratory prototype. We only added the require-

ment that the new editor must be integrated with the

existing model repository. The requirements were used

to determine the development process and the deve-

lopment platform.

The development of the industrial prototype tool

suite had the characteristics of the majority of projects

that are suitable to be carried out with agile processes

[32, 33]: small criticality, involvement of a smaller

number of experienced developers and high volatility

of the requirements. The project is not suitable for con-

ventional development processes, especially waterfall

development, which is based on extensive planning,

strict regulation and extensive documentation, which

are not suitable for a small team. The specific agile

development process that was used was Scrum [34]. It

was chosen because it is one of the most widespread

agile processes [35, 36] and because it is suitable for

small development teams that want to deliver working

software in small development cycles [37].

Because metamodeling tools were not suitable for

achieving several of the defined requirements in the

laboratory prototype, we decided to use a more general

and more mature technology for the development of the

industrial prototype. During the determination of the

development methodology we focused on generally

accepted platforms, which are used with suitable third-

generation programming languages. Basically, we were

choosing between the .NET framework and the Eclipse

platform. Despite the fact that the laboratory prototype

was based on Eclipse, we decided not to use Eclipse

and Java because of:

 Negative experience (lack of documentation and

inability to realize overlapping super-states) with

the libraries for graphical elements in Eclipse (GEF

and Draw2D).

 Estimates and guarantees of the external partner that

we will risk less with .NET.

 Slightly more expensive development hours for

Java.

The key advantage of the .NET framework and the

C# programming language is its maturity, its good

documentation and an abundance of libraries, frame-

works and tools, primarily commercial ones, which are

well tested and documented. Another advantage is the

broad use of .NET in industry, which is important in the

case that the development of a commercial tool suite is

taken over by one of our industrial partners.

Figure 2. A screenshot from the developed industrial prototype

G. Godena, T. Lukman, M. Heričko, S. Strmčnik

142

5.2. The development

In this subsection we describe the results of the

development of the industrial prototype tool suite,

which is shown in Figure 2. We will discuss the

requirements as well as the integration of the tool suite

and the high-level architecture (with the emphasis on

the model editor).

5.2.1. Requirements

For the development of the industrial prototype the

same set of requirements as for the laboratory pro-

totype was used (see Table 1). Only one requirement

was added. It was labeled as R0.5, and defined with

the following short description: ”The ProcGraph

model must be saved in an XMI file, which can be

imported into the EMF-based model repository”. The

highest importance level (5) was assigned to this

requirement.

The most important fact related to the requirements

is that out of the 32 requirements 30 were fulfilled. The

2 unfulfilled requirements (R4.3.3 and R4.3.4) were

intentionally left out, because it turned out that they

are irrelevant for the users of the tool suite.

5.2.2. Integration of the support tools

During the integration of the new model editor

with the existing components we used the integration

on the model level, i.e., we used the standard XMI

format, which is intended for model exchange.

Another goal was integration at the runtime level,

which means that the code generator can be invoked

from within the model editor. In this way the tool suite

would become a real integrated development environ-

ment (IDE). This kind of integration was challenging

because the new model editor was based on the .NET

platform, which means that the already-existing model

repository and the code generator are essentially

running on the Eclipse platform. We found that there

is a subset of the EMF and openArchitectureWare that

can be used in stand-alone Java applications and is not

directly dependent on the Eclipse platform. In C# it is

possible to run a Java program so that a new system

process is run in which the Java Virtual Machine is

called, so that a certain Java program and its input

parameters are specified. In our case we called two

Java programs from the C# code. The first one

imported the XMI model, which was created by the

model editor, into the model repository, and the second

one ran the code generator, which created the

generated code. It was created in the folder that was

defined in the input parameter.

The metamodels defined in the EMF framework

cannot be used in .NET applications. A negative

consequence of this is that the same metamodel has to

be created in two different places, as well as a

connection between them, over which we can transfer

models from the model editor in .NET to the model

repository in EMF. All three components have to be

manually maintained in order to guarantee the consis-

tency. The connection was realized over an automatic

XMI serialization. In practice this turned out to be a

smaller problem than anticipated. The advantage of

the new development method of the model editor was

a smaller influence on the metamodel of the DSML,

since it did not put constraints on the structure of the

metamodel. This was not the case with the GMF,

because of its implementation and the way of gene-

rating the editors. Consequently, the implementation

metamodel, which is used in the model repository and

in the model editor, is the same as the general meta-

model of the ProcGraph language.

5.2.3. Architecture

An important element that enables a flexible and

efficient development of the model editor is the

software architecture. During the definition of the

software architecture of the ProcGraph model editor

we wanted to build on the good ideas of the GMF

framework, from which the most outstanding is the

separation of the development into different models

that define different viewpoints of the editor. Based on

this we decided that the architecture must contain parts

that cover the abstract syntax (i.e., metamodel), the

concrete syntax, the syntactic mapping, the tools for

the diagram manipulation and the graphical controls of

the application.

During the development we wanted to take

advantage of the newer and, at the same time, well

tested and powerful features of the .NET framework.

Therefore, we decided to develop the editor as an

application based on the WPF (Windows Presentation

Foundation) technology. WPF is a subsystem of the

.NET framework (introduced in version 3.0), which

represents an alternative to the Windows Forms

technology and is intended for Rich Client Applica-

tions [37]. The architecture of the industrial prototype

of the model editor is specified in Figure 3 and consists

of four basic assemblies:

 ProcGraph.Model contains the classes that

represent the metamodel of the ProcGraph

language. This assembly also defines the

syntactical mapping of the DSML.

 ProcGraph.Editor is a graphical user interface that

is realized as a WPF application and uses the

ProcGraph.Infrastructure.

 ProcGraph.Infrastructure contains a set of

controls for the visual elements (among others,

also the concrete syntax) that are created based on

the contents of the ProcGraph.Model assembly.

 ProcGraph.Shared contains the functionality that

is shared among the other assemblies.

The Experience of Implementing Model-Driven Engineering Tools in the Process Control Domain

143

Figure 3. High-level architecture of the industrial prototype of the model editor

6. The findings

In order to study the effects of the systematically

chosen new development methodology for the indus-

trial prototype, we carried out a comparison of the

development of both prototypes. Based on this

comparison, our experience and a literature overview

we also drew a set of lessons learned.

6.1. A comparison of the prototypes

The comparison was carried out from three

different perspectives, i.e., the requirements ful-

fillment perspective, the usability perspective and the

development process perspective.

6.1.1. Requirements perspective

From the requirements point of view the ful-

fillment of the functional requirements was signi-

ficantly more successful in the industrial prototype.

We managed to realize the key requirements that were

not realized in the laboratory prototype, because of

which the development with GMF was discontinued.

It turned out that with the .NET framework and the

WPF subsystem the diagram synchronization was

successfully implemented. This was not accom-

plishable with the GMF framework, because of its

complex and limited synchronization infrastructure.

We also succeeded in implementing the overlapping

super-states (R2.5), which was a very demanding task.

The large quantity of relevant examples found on the

World Wide Web, which showed the use of WPF for

similar purposes, was very helpful. The large user base

of the WPF subsystem as well as its extensive

documentation were also important for implementing

the overlapping super-states requirement.

6.1.2. Usability perspective

The industrial prototype tool suite has been used in

laboratory experiments and for re-engineering

software in previous industrial projects. From the non-

functional requirements perspective, the industrial

prototype is superior in the areas of stability,

responsiveness, usability, understandability, and user-

interface intuitiveness. The main reason for the first

two is the use of .NET instead of GMF and the Eclipse

platform. The use of Scrum contributed to the

remaining improvements, since intermediate versions

of the prototype were delivered faster and showed

more often to the users; therefore, their feedback was

received faster and could be more easily reflected in

the prototype. The end users, who were included in the

testing, gave testimonials that they would be interested

in using the industrial prototype in practice. The only

drawback of the industrial prototype is its inability to

show multiple diagrams of the edited ProcGraph

model at the same time. This was possible in the

laboratory prototype. In the industrial prototype this

feature is missing, because the WPF subsystem does

not support the correct rendering of two or more

diagrams. However, this has not turned out to be

problematic, because the users did not evaluate this as

annoying or even so critical that the industrial

prototype would be deemed as less useful.

6.1.3. Development process perspective

The development process of the industrial proto-

type was more manageable and less demanding than

the laboratory-prototype development approach. This

was because it was not necessary to integrate auto-

matically generated and manually written code and

carry out a complex and partially manual process of

regenerating the editor, even for the slightest change

of the editor models, as was the case with GMF. It was

also possible to use automatic unit testing, the positive

effects of which are generally known. The agile Scrum

method, which was used instead of a proprietary

development method, based on the GMF framework,

also had a positive influence on the manageability of

the development. The implementation of ProcGraph’s

ProcGraph.Model

ProcGraph.Infrastructure

ProcGraph.Editor

ProcGraph.Shared

G. Godena, T. Lukman, M. Heričko, S. Strmčnik

144

concrete syntax and the editing behavior were easier

with the use of .NET and WPF than with the use of

Eclipse and the GEF and Draw2D frameworks. Also,

in general, the .NET framework turned out to be more

mature and better documented.

6.2. Lessons learned

The analysis of the laboratory prototype develop-

ment showed that the GMF framework was not the

most suitable option for the realization of the

ProcGraph model editor. We found that it is immature,

complex, demanding to learn and incapable of ful-

filling some important requirements. It has a number

of constraints and problems and is not supported by a

proper development process. Our experience can be

generalized into the recommendation that the use of

GMF should be discouraged for the development of a

model editor for an arbitrary DSML with the following

properties:

 It consists of different diagrams that need to be

synchronized.

 It has diagrams that can contain overlapping super-

elements. The overlapping areas contain shared

sub-elements. In other words, these are diagrams

in which the sub-elements can be contained in two

or more immediate super-elements. An example of

such diagrams is Venn diagrams. The topic of

overlapping Statecharts was also discussed by

Harel and Kahana [38].

Based on our experience from the development of

the tool suite for the MAGICS methodology, we can

claim that metamodeling tools are still a relatively

immature technology, primarily the metamodeling

tools, which are intended for the automatic generation

of editors for visual or hybrid models. On the other

hand, it has become clear that the theory of metamo-

deling, with which we defined the abstract syntax of

the DSML and automatic model repository generation

based on this formalism, is mature. This is at least the

case with the EMF framework, which turned out to be

a very suitable tool. Another mature technology is the

development of code generators based on code

templates, in our case the openArchitectureWare

framework. This and similar tools are based on an

extensive experience gained in the field of language

generators (e.g., ANTLR [39]),) and therefore work

very well in practice.

Our experience cannot be directly generalized,

because the ProcGraph language has a specific

concrete syntax and we had some very specific

requirements. This language could be classified as a

complex DSML. Although the literature occasionally

uses the term complex DSML (e.g., [7, 40, 41]), there

is a lack of definition. We propose that one of the

criteria to classify a DSML as a complex one is that

with it models can be built that consist of a hierarchy

of diagrams, which are instances of more than one

diagram type. In general, the examples of DSMLs that

are usually shown in the literature about metamodeling

tools are usually simple, real-life languages (e.g., a

language for the domain of elevator controllers [29], a

simplified Goal-oriented Requirement Language [42],

and a language for risk analysis [43]) or artificial toy

languages (e.g., a Simple Component-connector Lan-

guage [44], a language for social networks [45], and

the J2EE configuration language [46]). With such

languages most metamodeling tools are sufficient

during the task of model-editor generation. Most of

these tools, however, are not able to sufficiently

support the generation of model editors for complex

DSMLs, which shows the immaturity of this techno-

logy. In relation to these issues several interesting

possibilities for future research arise, e.g., complex

DSMLs could be studied, their features generalized

and solutions proposed about how to support these

features in specific metamodeling tools. Such research

is beyond the scope of this paper; however, it would

surely help the practitioners who are developing

proprietary support tools for an arbitrary model-driven

process based on a complex DSML.

Because of the immaturity and the lack of capabi-

lities of the metamodeling tools it is recommended to

consider the use of a traditional development approach

to tool support development for MDE approaches. We

recommend that the practitioners do this, especially if

they are dealing with the development of a model

editor for a complex DSML. The other support tools

can still be realized with metamodeling tools, so that

the development of the entire tooling then becomes a

hybrid development. In the case that a traditional

development approach is used, one has to carefully

think about the flexibility and the separation of

different parts of the DSML, as we have done during

the definition of the architecture of the ProcGraph

model editor. A few similar findings have been made

in the area of debuggers [47] and test engines [48, 49];

therefore, this claim may be generalized to support

tools for complex DSMLs.

Our recommendation is to base the decision

between the development with metamodeling tools

and traditional development also on the cost of the

professional developers. This aspect is not discussed

in the literature, but it is very relevant in practice. As

an illustration, let us convey our experience. After the

development of the laboratory prototype we contacted

professional consultants/developers for the GMF

framework, which we wanted to use as external

partners, because of the described problems and

unfulfilled requirements. The intention was to use

them in the development of the industrial prototype. It

turned out that there is a relatively small number of

such developers worldwide. We were able to find only

two companies that develop with GMF and some other

MDE tools. From these two companies we obtained

the data about the costs of the services they offer. It

turned out that the developer hour for GMF-based

development is roughly 10 times more expensive that

for the development with C#, .NET and WPF. This

means that the productivity with the GMF framework

The Experience of Implementing Model-Driven Engineering Tools in the Process Control Domain

145

should be 10 times higher than the one with the .NET

framework, of course under the assumption that in all

other regards the two approaches are equivalent in

fulfilling the requirements. Despite some reports [24,

50, 51] about productivity increases with the use of the

GMF framework, we did not find any sources that

would contain quantitative data to support this. In the

broader context, i.e., MDE paradigm Sprinkle, et al.

[10] reported that in three different studies with the use

of MDE a 3–10 times higher productivity was

achieved. Another source [3] reports that the increase

in the productivity is significantly smaller with the

introduction of the MDE concept. Our experience also

shows that the increase is strongly hindered by

increasing the complexity of the used DSML and that

the increase in the productivity by a factor of 10 with

the use of GMF for complex DSMLs is very unlikely.

This means that the traditional development of the

model editor for complex DMSL is probably at least

equally expensive as the development with GMF, and

perhaps even cheaper. In our case we also had to take

into account the higher cost of a distributed

development with a company e.g., from Germany or

the USA. Therefore, traditional development (with the

.NET framework) was clearly a better alternative and

was selected for the development of the industrial

prototype of the model editor.

7. Conclusion

This experience report describes the “rocky road”

to an industrial prototype tool that should support a

MDE approach in the process control domain. This

was especially demanding for the model editing part,

because of the complexity of some language elements

of the used graphical modeling language ProcGraph.

On the basis of an analysis of the past development, in

which a laboratory prototype had already been deve-

loped, we decided not to use the metamodeling tools

for the development of the model editor, which at the

beginning seemed to be a natural direction. Instead, we

decided to use a mature development technology

(.NET framework) and an agile development process

(Scrum). Without this decision it is very doubtful that

the industrial prototype tool could even have been

developed (i.e., key requirements would remain

unfulfilled). The comparison of the laboratory and

industrial prototype development showed that the

selected development methodology substantially

facilitated the development of the industrial prototype.

Compared to the previous development effort a

significant increase in the amount of implemented

requirements and tool-suite reliability and usability

was achieved.

Based on our experience we learned several

lessons that might be useful to other MDE practi-

tioners, especially the ones that provide support for

complex modeling languages. One of the most impor-

tant lessons is that for the development of model

editors the traditional development approach should

not be easily rejected, especially when a visual or

hybrid (i.e., visual and textual) model editor is needed.

However, these findings are different from the

majority of the reports in the literature and the

common expectation of the MDE community, which

means that this discrepancy should be investigated

further in future research.

Acknowledgment

The support of the Slovenian Research Agency

(ARRS) is gratefully acknowledged.

References

[1] D. C. Schmidt. Model-Driven Engineering. IEEE

Computer, 2006, Vol. 39, No. 2, 25-31.

[2] S. Kelly, J.-P. Tolvanen. Domain-Specific Modeling.

John Wiley & Sons, 2008.

[3] P. Mohagheghi, V. Dehlen. Where Is the Proof?-A

Review of Experiences from Applying MDE in

Industry. In: European Conference on Model Driven

Architecture: Foundations and Applications

(ECMDA-FA'08), Berlin, Germany, 2008, pp. 432-

443.

[4] J. Hutchinson, J. Whittle, M. Rouncefield,

S. Kristofferson. Empirical assessment of MDE in

industry. In: 33rd International Conference on

Software Engineering (ICSE'11), Waikiki, Honolulu,

USA, 2011, pp. 471-480.

[5] P. Mohagheghi, W. Gilani, A. Stefanescu, M. A.

Fernandez. An empirical study of the state of the

practice and acceptance of model-driven engineering

in four industrial cases. Empirical Software

Engineering, 2013, Vol. 18, No. 1, 89-116.

[6] J. Gray, K. Fisher, C. Consel, G. Karsai,

M. Mernik, J.-P. Tolvanen. DSLs: the good, the bad,

and the ugly. OOPSLA Companion '08. ACM, 2008,

pp. 791-794.

[7] O. Semeráth, Á. Horváth, D. Varró. Validation of

Derived Features and Well-Formedness Constraints in

DSLs. Model-Driven Engineering Languages and

Systems. Springer, 2013, pp. 538-554.

[8] T. Lukman, G. Godena, J. Gray, M. Heričko,

S. Strmčnik. Model-driven engineering of process

control software – beyond device-centric abstractions.

Control Engineering Practice, 2013, Vol. 21, No. 8,

1078-1096.

[9] M. Colla, T. Leidi, M. Semo. Design and implemen-

tation of industrial automation control systems: A

survey. In: IEEE International Conference on

Industrial Informatics (INDIN'09), Cardiff, UK, 2009,

pp. 570-575.

[10] J. Sprinkle, M. Mernik, J.-P. Tolvanen, D. Spinellis.

What Kinds of Nails Need a Domain-Specific

Hammer? IEEE Software, 2009, Vol. 26, No. 4, 15-18.

[11] B. Selic. The Less Well Known UML. Formal

Methods for Model-Driven Engineering. Springer,

Berlin Heidelberg, Germany, 2012, pp. 1-20.

[12] F. Noyrit, S. Gérard, B. Selic. FacadeMetamodel:

Masking UML. Model Driven Engineering Languages

and Systems. Springer, 2012, pp. 20-35.

[13] O. Avila-Garcıa, A. E. Garcıa. Providing MOF-ba-

sed Domain-Specific Languages with UML Notation.

G. Godena, T. Lukman, M. Heričko, S. Strmčnik

146

In: 4th Workshop on Development of Model-Driven

Software, San Sebastian, Spain, 2008, pp. 11-20.

[14] Object Management Group. UML Superstructure

Specification Version 2.4.1., 2011.

[15] Object Management Group. Meta Object Facility:

MOF Core specification, Version 2.0. 2006.

[16] M. Mernik, J. Heering, A. M. Sloane. When and how

to develop domain-specific languages. ACM Compu-

ting Surveys, 2005, Vol. 37, No. 4, 316-344.

[17] M. Fowler, R. Parsons. Domain-specific languages.

Addison-Wesley Professional, 2010.

[18] S. Sendall, W. Kozaczynski. Model transformation:

the heart and soul of model-driven software develop-

ment. IEEE Software, 2003, Vol. 20, No. 5, 42-45.

[19] S. Gérard. Papyrus UML. Accessed on 07.01.2014,

http://www.papyrusuml.org/.

[20] D. Neuendorf. Review of MagicDraw UML® 11.5

Professional Edition. Journal of Object Technology,

2006, Vol. 5, No. 7, 115-118.

[21] R. Vitiutinas, D. Silingas, L. Telksnys. Model-

Driven Plug-in Development for UML Based

Modeling Systems. Information Technology and

Control, 2011, Vol. 40, No. 3, 191-201.

[22] S. Pavalkis, L. Nemuraitė, R. Butkienė. Derived

Properties: A User Friendly Approach To Improving

Model Traceability. Information Technology and

Control, 2013, Vol. 42, No. 1, 48-60.

[23] T. Skersys, R. Butleris, K. Kapocius, T. Vileiniskis.

An Approach for Extracting Business Vocabularies

from Business Process Models. Information

Technology and Control, 2013, Vol. 42, No. 2, 178-

190.

[24] R. C. Gronback. Eclipse Modeling Project: A

Domain-Specific Language (DSL) Toolkit. Addison-

Wesley Professional, 2009.

[25] Á. Lédeczi, Á. Bakay, M. Maróti, P. Völgyesi,

G. Nordstrom, J. Sprinkle, G. Karsai. Composing

Domain-Specific Design Environments. IEEE

Computer, 2001, Vol. 34, No. 11, 44-51.

[26] M. Maurmaier. Leveraging model-driven develop-

ment for automation systems development. In: IEEE

International Conference on Emerging Technologies

and Factory Automation (ETFA'08), Hamburg,

Germany, 2008, pp. 733-737.

[27] G. Godena. ProcGraph: a procedure-oriented graphi-

cal notation for process-control software specification.

Control Engineering Practice, 2004, Vol. 12, No. 1,

99-111.

[28] T. Lukman, M. Mernik. Model-driven engineering

and its introduction with metamodeling tools. In:

International PhD Workshop on Systems and

Control'08, Izola, Slovenia, 2008, pp. 1-6.

[29] C. Wienands, M. Golm. Anatomy of a Visual

Domain-Specific Language Project in an Industrial

Context. In: 12th International Conference on Model

Driven Engineering Languages and Systems

(MODELS'09), Denver, USA, 2009, pp. 453-467.

[30] J. Grundy, J. Hosking, W. B. Mugridge. Inconsis-

tency management for multiple-view software develo-

pment environments. IEEE Transactions on Software

Engineering, 2002, Vol. 24, No. 11, 960-981.

[31] I. Sommerville. Software Engineering. Addison

Wesley Publishing Company, 2006.

[32] B. Boehm, R. Turner. Balancing Agility and

Discipline: A Guide for the Perplexed. Addison-Wesley

Professional, 2003.

[33] V. Vinekar, C. L. Huntley. Agility versus Maturity:

Is There Really a Trade-Off? IEEE Computer, 2010,

Vol. 43, No. 5, 87-89.

[34] K. Schwaber. Scrum development process. In:

OOPSLA Business Object Design and Implementation

Workshop, Austin, USA, 1995, pp. 10-19.

[35] N. B. Moe, T. Dingsøyr. Scrum and Team Effectiv-

eness: Theory and Practice. Agile Processes in Soft-

ware Engineering and Extreme Programming. Sprin-

ger, Berlin Heidelberg, Germany, 2008, pp. 11-20.

[36] E. Hossain, M. A. Babar, P. Hye-young. Using

Scrum in Global Software Development: A Systematic

Literature Review. In: 4th IEEE International

Conference on Global Software Engineering

(ICGSE'09), Limerick, Ireland, 2009, pp. 175-184.

[37] L. Rising, N. S. Janoff. The Scrum software

development process for small teams. IEEE Software,

2000, Vol. 17, No. 4, 26-32.

[38] D. Harel, C. Kahana. On statecharts with over-

lapping. ACM Transactions on Software Engineering

and Methodology, 1992, Vol. 1, No. 4, 399-421.

[39] T. Parr. The Definitive ANTLR Reference: Building

Domain-Specific Languages. Pragmatic Bookshelf,

2007.

[40] B. Bryant, J. Gray, M. Mernik, P. Clarke,

R. France, G. Karsai. Challenges and directions in

formalizing the semantics of modeling languages.

Computer Science and Information Systems, 2011,

Vol. 8, No. 2, 225-253.

[41] J. Johannes, M. A. Fernández. Adding abstraction

and reuse to a network modelling tool using the

Reuseware composition framework. Modelling

Foundations and Applications. Springer, 2010,

pp. 132-143.

[42] D. Amyot, H. Farah, J.-F. Roy. Evaluation of

Development Tools for Domain-Specific Modeling

Languages. System Analysis and Modeling: Language

Profiles. Springer, Berlin Heidelberg, Germany, 2006,

pp. 183-197.

[43] F. Seehusen, K. Stølen. An evaluation of the graphical

modeling framework (GMF) based on the develop-

ment of the CORAS tool. Theory and Practice of Mo-

del Transformations. Springer, 2011, pp. 152-166.

[44] D. S. Kolovos, L. M. Rose, S. B. Abid, R. F. Paige,

F. A. C. Polack, G. Botterweck. Taming EMF and

GMF Using Model Transformation. Model Driven

Engineering Languages and Systems. Springer, Berlin

Heidelberg, Germany, 2010, pp. 211-225.

[45] J. de Sousa Saraiva, A. Rodrigues da Silva.

Evaluation of mde tools from a metamodeling

perspective. Journal of Database Management, 2008,

Vol. 19, No. 4, 21-46.

[46] S. Temate, L. Broto, A. Tchana, D. Hagimont. A

High Level Approach for Generating Model's

Graphical Editors. In: 2011 Eighth International

Conference on Information Technology: New

Generations (ITNG), Las Vegas, USA, 2011, pp. 743-

749.

[47] T. Kosar, M. Mernik, J. Gray, T. Kos. Debugging

measurement systems using a domain-specific

modeling language. Computers in Industry, 2014,

Vol. 65, No. 4, 622-635.

The Experience of Implementing Model-Driven Engineering Tools in the Process Control Domain

147

[48] T. Kos, T. Kosar, J. Knez, M. Mernik. From DCOM

interfaces to domain-specific modeling language: A

case study on the Sequencer. Computer Science and

Information Systems, 2011, Vol. 8, No. 2, 361-378.

[49] T. Kos, T. Kosar, M. Mernik. Development of data

acquisition systems by using a domain-specific

modeling language. Computers in Industry, 2012,

Vol. 63, No. 3, 181-192.

[50] T. Buchmann, A. Dotor, B. Westfechtel. Model

driven development of graphical tools: Fujaba meets

GMF. In: International Conference on Software and

Data Technologies (ICSOFT'2007), Barcelona, Spain,

2007, pp. 425-430.

[51] A. Evans, M. A. Fernández, P. Mohagheghi. Expe-

riences of Developing a Network Modeling Tool Using

the Eclipse Environment. In: 5th European Conference

on Model Driven Architecture - Foundations and

Applications (ECMDA-FA'09), Enschede, The

Netherlands, 2009, pp. 301-312.

Received January 2014.

