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Abstract. In applications of MapReduce, Terasort is one of the most successful ones, which has helped Hadoop to 

win the Sort Benchmark three times. While Terasort is known for its sorting speed on big data, its performance and 

energy consumption still can be optimized. We have analyzed the characteristics of Terasort and have identified the 

existence of idle nodes, which does not only waste energy but also loses performance. Therefore, we optimize Terasort 

through a single-task distributed algorithm and a task self-resizing algorithm to save time and reduce the energy that is 

consumed by map nodes and reduce nodes, which is caused by task schedule and waiting for input data. The algorithm 

proposed in this paper has proved to be effective in optimizing performance and energy consumption through a series of 

experiments. It can also be adapted to other applications in the MapReduce environment. 
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1. Introduction 

Two important indicators of algorithm quality are 

time complexity and space complexity. Nowadays, 

energy consumption has become a third important indi-

cator because of the non-negligible energy consumed 

by IT equipment [1]. In 2010, energy consumption of 

data centers has accounted for 1.3% of the world’s total 

electricity consumption, and is expected to increase in 

the next five years by 56% [2]. Consequently, the 

storage, time and energy consumption of algorithms 

should be properly analyzed and estimated.  

Sorting is an algorithm that puts elements of a list 

in a certain order [3]. Sorting is the most widely used 

type of algorithm across various applications. For 

example, the web correlation sorting algorithm of 

search engines can decide whether users could find the 

desired information in the page [4]. Meanwhile, sorting 

is a common task for program designers, and the choice 

of the sorting algorithm will directly affect the time, 

storage and energy consumption of applications.  

In this paper, we study on the performance and 

energy optimization of Terasort [5]. Terasort as a sor-

ting algorithm is an important application of MapRe-

duce and has become a contributor to big data appli-

cations. In 1998, Jim Gray created the Sort Benchmark, 

which defines a large data set with 100 byte data 

records. Sorting algorithms are evaluated on the time 

they use to sort the data and write to disk completely 

[6]. In 2008, Terasort won the first prize of the 1TB sort 

benchmark, taking 209 seconds, nearly 90 seconds 

faster than the previous year’s record holder. In 2009, 

with a cluster of 1460 nodes, Terasort won again by 

sorting 1TB data in 62 seconds [7]. In 2013, Terasort 

won again with a cluster of 2100 nodes, sorting 1.42TB 

of data in one minute [6].  

Terasort is successful in sorting big data, but we still 

believe that its performance and energy consumption 

can be optimized because in Terasort the performance 

is decreased and energy is wasted while some nodes are 

idle. In MapReduce, there are two main reasons for 

idleness. Firstly, in MapReduce, there are two kinds of 

tasks: map tasks (mappers for short) and reduce tasks 

(reducers for short). Although Terasort has optimized 

the data transfer between mappers and reducers to 

guarantee the parallelism of reducers, reducers do not 

start until all mappers are complete, which causes the 

idleness of nodes while reducers wait for mappers. 

Secondly, the mapper size could be reduced to ensure 

that all mappers are executed synchronously and 

reducers are started as simultaneously as possible. 

However, this will add more costs to task scheduling, 

which means sometimes nodes are idle because they are 

waiting for scheduled mappers.  

In this paper, we propose that one and only mapper 

with a proper size is scheduled at a node to ensure that 
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nodes will not wait for new tasks, and that a mapper 

can change the size of processing data dynamically to 

adjust its size by itself to ensure that all mappers 

complete simultaneously and, consequently, reducers 

do not wait on mappers any more. We focus on three 

aspects. Firstly, a mapper is allocated to a node once 

with a proper initial size by the single-task distribution 

algorithm. Secondly, a mapper is given priority on 

processing; the first is local data, then in-rack data and 

remote data. Thirdly, a self-resizing algorithm adjusts 

the size of the mappers, which are represented by the 

number of data blocks that should be processed, to 

ensure the parallelism of mappers. There are some 

challenges to implement these approaches. Firstly, we 

need to define abstractions to model the task and its 

data, the parallelism and the execution cost. Secondly, 

there are a number of combinations of the initial task 

distribution. Thus, we need to provide a method to find 

the best one efficiently. Thirdly, we need to design an 

efficient self-resizing algorithm that is self-motivated 

and decentralized to ensure the parallelism among 

nodes and that aims to reduce the resizing cost. Finally, 

we need to ensure fault tolerance if there is only one 

mapper for a node, because fault tolerance cannot be 

guaranteed by task replication and recovery. Optimiza-

tion algorithms such as Genetic Algorithms (GA), 

Particle Swarm Optimization (PSO) and Ant Colony 

Optimization (ACO) are suitable to solve this problem, 

but they are too expensive to be adopted in real-time 

task distribution and self-resizing.  

The remainder of this paper is organized as follows. 

Section 2 introduces MapReduce and Terasort and 

analyzes the disadvantages of Terasort as our moti-

vation. Section 3 proposes single-task distribution and 

self-resizing algorithms to improve the performance 

and decrease the energy consumption of Terasort, 

describes the task model and algorithms, and then gives 

a detailed example. In Section 4, the effectiveness of 

the proposed algorithms is proven by experiments. 

Section 5 introduces related work. In Section 6, conclu-

sions and future work are summarized. 

2. Background and Motivation  

In this section, firstly, we introduce the structure and 

execution process of the MapReduce framework. 

Secondly, we describe the core of Terasort and empha-

size its two technical difficulties, which make Terasort 

different from other sorting algorithms. Finally, we 

analyze the disadvantages of Terasort and put forward 

the basic ideas and steps of our proposed algorithms.  

2.1. MapReduce  

In MapReduce, the computation is moved closer to 

where the data are located. A MapReduce job is divided 

into tasks, map tasks (mappers) and reduce tasks 

(reducers). All mappers and reducers are performed on 

nodes in parallel. Both input and output of mappers and 

reducers are key-value pairs. < 𝐾𝑒𝑦𝑀
𝐼𝑛, 𝑉𝑎𝑙𝑢𝑒𝑀

𝐼𝑛 > and 

< 𝐾𝑒𝑦𝑀
𝑂𝑢𝑡 , 𝑉𝑎𝑙𝑢𝑒𝑀

𝑂𝑢𝑡 > are the input and output format 

of mappers, respectively; < 𝐾𝑒𝑦𝑅
𝐼𝑛, 𝑉𝑎𝑙𝑢𝑒𝑅

𝐼𝑛 >  and <
𝐾𝑒𝑦𝑅

𝑂𝑢𝑡 , 𝑉𝑎𝑙𝑢𝑒𝑅
𝑂𝑢𝑡 > are the input and output format of 

reducers, respectively. 𝐾𝑒𝑦𝑀
𝑂𝑢𝑡  should be implicitly 

converted to 𝐾𝑒𝑦𝑅
𝐼𝑛 , and 𝑉𝑎𝑙𝑢𝑒𝑅

𝐼𝑛  is the collection of 

𝑉𝑎𝑙𝑢𝑒𝑀
𝑂𝑢𝑡. Reducers would not start until the slowest 

mapper is complete, and the job is accomplished when 

the slowest reducer has completed. The parallelism is 

decreased if mappers (reducers) do not finish 

synchronously. 

MapReduce splits the input data set into 𝑀 subsets 

(where 𝑀 is larger than the number of nodes), and each 

subset is the input of one mapper. The mapper reads 

each record of the subset, processes it and outputs  

< 𝐾𝑒𝑦𝑀
𝑂𝑢𝑡 , 𝑉𝑎𝑙𝑢𝑒𝑀

𝑂𝑢𝑡 >  pairs as the intermediate 

result. A "split" function partitions the intermediate 

records into 𝑅 disjoint buckets by applying a hash func-

tion to 𝐾𝑒𝑦𝑀
𝑂𝑢𝑡  of each output record. Each bucket is 

written to the local disk where the mapper is executed. 

The input dataset is mapped to 𝑀 × 𝑅  intermediate 

files when the 𝑀  mappers terminate. All < 𝐾𝑒𝑦𝑀
𝑂𝑢𝑡 ,

𝑉𝑎𝑙𝑢𝑒𝑀
𝑂𝑢𝑡 > pairs with the same value of 𝐾𝑒𝑦𝑀

𝑂𝑢𝑡, let 

this be the j-th bucket, are stored in file 𝐹𝑖𝑗(1 ≤ 𝑖 ≤ 𝑀,

1 ≤ 𝑗 ≤ 𝑅). 

The second phase of a MapReduce job executes 𝑅 

reducers, where 𝑅  is typically the number of nodes. 

The input for each reducer 𝑅𝑗  consists of the files 

𝐹𝑖𝑗(1 ≤ 𝑖 ≤ 𝑀). These files are transferred over the 

network from the mappers’ local disks. Note that again 

all output records from the maps with the same hash 

value are consumed by the same reducer, regardless of 

which mapper produced the data. Each reducer 

processes or combines the records assigned to it in 

some way, and then writes records to an output file (in 

the distributed file system), which forms part of the 

computation’s final output. 

2.2. Terasort 

Terasort is an application of the MapReduce 

programming model based on the Hadoop platform. 

The core of Terasort is its map stage. As shown in 

Fig. 1, each mapper divides the data into 𝑅 data blocks, 

where all data in the i-th (𝑖 > 0) block are larger those 

that in the (𝑖 + 1)-th block. At the reduce stage, the i-th 

reducer processes (sorts) all mapper’s i-th blocks. 

Thus, the results of the i-th reducer will be larger than 

those of the (𝑖 + 1)-th one. Finally, it outputs all of the 

reducers’ results sequentially, which are the sorting 

results [5]. As shown in Fig. 1, we assume that there is 

a data set whose range of value is distributed from 1 to 

100 on average. If there are 5 reducers in the 

MapReduce cluster, then the range of Partition0 will be 

[1, 20], and so on. After all data have been partitioned, 

the data in a Partition will be sent to a specific reducer 

whose number is the same as the corresponding 

Partition. Finally, the outputs of reducers are the results 

sequentially, i.e., the range of output file 0 is [1, 20], 

while the range of output file 4 is [80-100]. Note that 
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some detailed features, which are not the emphasis of 

Terasort, are abbreviated in this paper. 

Terasort has two technical difficulties. Firstly, it 

adopts a sampling technique to determine the ranges of 

𝑅 blocks. Data sampling is performed before mappers 

start. It samples data from the input data first, then sorts 

the data, and divides them into 𝑅 blocks. After finding 

the upper and lower limits of each block (break-point), 

these break-points are stored in a distributed cache. 

Secondly, Terasort adopts tries to quickly determine 

which block a record belongs to. A ’trie’ [8,9], also 

known as digital tree or radix tree or prefix tree, is an 

ordered tree data structure that is used to store a 

dynamic set or an associative array. Tries treat a record 

as a sequence of characters, and unlike a binary search 

tree, no node in a trie stores the key associated with that 

node. Instead, its position in the tree defines the key 

with which it is associated. All descendants of a node 

have a common prefix of the sequence associated with 

that node, and the root is associated with the empty 

sequence. In tries, the time of finding a sequence does 

not depend on the number of the tree’s nodes, but rather 

the length of the sequence [5]. 

First, a Terasort mapper reads the break-points of 

each block from the distributed cache and builds a trie 

accordingly. Leaves of a trie stand for reducers. When 

data are processed, for each record, the reducer it 

belongs to can be determined by querying the trie. For 

example, if break-points are "abc", "dab" and "ddd" for 

4 blocks (reducers), the trie in Terasort is built as shown 

in Fig. 2. For a string "daz", z > b, according to the trie, 

it belongs to the 3rd block.

 

 

Figure 1. Structure of Terasort algorithm 

2.3. Motivation  

In Terasort, only when all i-th blocks of the mappers 

have been processed, the i-th reducer can start sorting. 

Therefore, if there is one mapper executing more 

quickly than others, the reducers will still have to wait 

for the other mappers, which wastes energy and 

decreases performance. To address this problem, we 

can reduce the waiting time by decreasing the size of 

the split (mapper). Assuming that the split size is 

64MB, in the worst case all mappers are waiting for the 

processing of 64MB data. In some special applications 

with simple maps or less data, small splits may improve 

parallelism, but will lead to more scheduling costs. We 

can take 1TB input data as an example. If the split size 

is 64MB, the total scheduling time is 16384, and 

suppose a single scheduling cost unit is 0.01 seconds, 

the total time waiting for the task is about 164 seconds. 

Assuming that the idle power consumption of a 

computer is 40 watt, then there is an energy waste of 

6560 joule, which should not be ignored. 

We also noticed that the time complexity of a trie 

query is O(M) (where M is the length of the sequence), 

which means that the cost of processing each record in 

a mapper is a constant related to the performance of 

node. In Terasort, every record in the mapper should be 

processed, so the cost of a mapper is linear to its data 

size. If a mapper can adjust the processing data size 

according to its current processing speed and the 

unprocessed data, it may guarantee the synchronization 

of mappers without additional centralized scheduling 

cost. Furthermore, data also no longer have to be 

divided into many splits (mappers), which can also 

save task scheduling time. Based on this idea, the task 

distribution and self-resizing algorithms in the paper 

are proposed as follows: 

 

Figure 2. Sample trie in Terasort  
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Step 1: Each node is assigned one and only mapper, 

and data are assigned to mappers fairly by single task 

distribution algorithm. 

Step 2: All mappers process their assigned data 

until one mapper is complete. 

Step 3: The fastest mapper resizes its assigned data 

block itself by snatching data from an unfinished 

mapper. The speed of processing local data is faster 

than that of processing remote data, which has to be 

considered as well. 

Step 4: Step 3 will be repeated until all the mappers 

have completed. 

The above approach avoids negative effects on per-

formance and energy consumption introduced by sche-

duling, and ensures the parallelism among mappers and 

minimizes waiting time for reducers, i.e., this approach 

optimizes Terasort in both performance and energy 

consumption. 

3. Schedule Model and Algorithm 

In this paper, Terasort is optimized by minimizing 

the time of "nodes waiting for tasks" and "reducer 

waiting for inputs". The first issue is addressed by 

single-task distribution, while the second is addressed 

by task self-resizing. In a traditional MapReduce 

cluster, a job is submitted into the job queue first and 

next divided into a number of tasks, which are then 

distributed to nodes according to a certain algorithm. 

When a task is complete in a slave node, the master 

node will distribute a new task and repeat the cycle until 

the job is complete. Each task has a fixed size and the 

distribution algorithm can guarantee that the task is 

distributed to the node which is closest to the data, 

while the parallelism of the mapper is ensured by 

assigning a smaller task size (64MB as default). Fault-

tolerance is supported through a replication mecha-

nism. Single-task distribution can minimize the schedu-

ling cost, but it is difficult to determine the task size and 

ensure task replication due to the unbalanced data 

distribution and heterogeneous nodes. The parallelism 

of mappers does not improve either if they only process 

the pre-assigned data. Thus, we adopt the task self-

resizing mechanism to solve these problems. The varia-

bles used in this section are given in Table 1. 

3.1. Model 

Firstly, we define the task model and the targets  

of resizing. Then we define the algorithms for  

single-task distribution and task self-resizing. Note  

that in this section the task mentioned refers to the  

map task. 

Definition 1. Data Block: A data block is a partition of 

the processed data in a map task. The size of a task is 

represented as the number of its blocks. Let 𝑚𝑖𝑗 be a 

map task on the j-th node of the i-th rack, and 𝐿𝑖𝑗 , 𝐺𝑖𝑗 

and 𝑅𝑖𝑗 be the number of local, in-rack (regional) and 

remote data blocks it contains, respectively. 

Table 1. Description of variables 

Iterms  Description 

𝑝  Number of racks 

𝑞  

Number of nodes in the cluster, used for 

simplifying the description. We assume 

that all racks have the same number of 

nodes 

Δ   Parallelism 

𝑛𝑖𝑗  Node j in rack i 

𝜖𝑖𝑗  Performance constant of node 𝑛𝑖𝑗 

𝑚𝑖𝑗  
Map task on 𝑛𝑖𝑗, each node executes 

only one task 

𝑡𝑖𝑗 Execution time of map task 𝑚𝑖𝑗 

𝑆𝑘 

The k-th 𝑝 × 𝑞 task matrix, which is the 

mapping plan between data blocks and 

tasks 

𝐿𝑖𝑗
𝑘  

Number of local data blocks of 𝑚𝑖𝑗 in the 

k-th task matrix 

𝐿𝑟(𝑖, 𝑗) 
Number of local data blocks of 𝑚𝑖𝑗 in 

the first task matrix, equal to 𝐿𝑖,𝑗
1  

𝐺𝑖𝑗
𝑘  

Number of in-rack data blocks of 𝑚𝑖𝑗 in 

the k-th task matrix 

𝐺𝑟(𝑖, 𝑗) 
Number of in-rack data blocks of 𝑚𝑖𝑗 in 

the first task matrix, equal to 𝐺𝑖,𝑗
1  

𝑅𝑖𝑗
𝑘  

Number of remote data blocks of 𝑚𝑖𝑗 in 

the k-th task matrix 

𝑅𝑟(𝑖, 𝑗) 
Number of remote data blocks of 𝑚𝑖𝑗 in 

the first task matrix, equal to 𝑅𝑖,𝑗
1  

𝑉𝑖 
The mean of block size in node of the i-

rack originally 

𝑉 
The mean of block size of nodes among 

racks 

𝛼 ∶ 𝛽 ∶ 𝛾 
I/O speed ratio of accessing local, in-

rack, and remote data 

 

Definition 2. Task Matrix: The task matrix 𝑆 =

[𝑠𝑖𝑗  ]𝑝×𝑞 represents the distribution of a job’s data 

block in the cluster. Each element in task matrix 𝑠𝑖𝑗  re-

presents the data size of the task on the j-th (1 ≤ 𝑗 < 𝑞) 

node of the i-th (1 ≤ 𝑖 < 𝑝 ) rack. The data size is 

represented by the number of local, in-rack and remote 

data blocks, denoted by 𝑠𝑖𝑗  =< 𝐿𝑖𝑗 , 𝐺𝑖𝑗 , 𝑅𝑖𝑗 >. 𝑠𝑖𝑗   is 

null if there is no such node in that rack. 

𝑆0 is the initial task matrix in which all 𝐺𝑖𝑗 = 𝑅𝑖𝑗 =

0 and tasks process their local data only. Take matrix 

(1) as an example. There are 4 racks and 13 nodes in 

the cluster and each task only processes its local data. 

The element 𝑠11 means that there are 5 data blocks on 

the first data node in the first rack. The fourth row 

means that there are 2 nodes in the fourth rack. 
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𝑠0 = [

< 5,0,0 > < 6,0,0 > < 7,0,0 > < 8,0,0 >
< 3,0,0 > < 4,0,0 > < 5,0,0 >     𝑛𝑢𝑙𝑙     
< 5,0,0 >
< 2,0,0 >

< 5,0,0 >
< 3,0,0 >

< 5,0,0 > < 5,0,0 >
𝑛𝑢𝑙𝑙         𝑛𝑢𝑙𝑙

] (1) 

The task matrix should be implemented as a jagged 

array because racks contain different numbers of nodes. 

To simplify the model and algorithm description, we 

assume that there are 𝑞 racks and 𝑝 nodes in each rack. 

However, our approach is also suitable for a jagged task 

matrix. 

Definition 3. Parallelism: The parallelism Δ of the map 

phase is evaluated as the total difference between the 

maximum execution time of the task and that of the 

others, meaning how long the other tasks are waiting 

for the slowest one. This can also represent the wasted 

energy. Let 𝑚𝑝𝑞 be the slowest task, then parallelism is 

defined as in equation (2), with Δ ∈ (0, 1]. 

Δ−1 = 1 +∑ (𝑡𝑝𝑞 − 𝑡𝑖𝑗)
𝑝,𝑞

𝑖=1,𝑗=1
 (2) 

Definition 4. Single-Task Distribution: Single-task 

distribution is a process of dividing a job into tasks and 

distributing tasks to the nodes after the job is submitted. 

One node has one and only one task, and all data blocks 

are assigned to tasks to ensure the maximum 

parallelism. 

If we execute Terasort with 𝑆0, the parallelism of 

the mappers is related to the data placement on nodes. 

A balanced data distribution across nodes will lead to a 

higher parallelism, while the worst situation is that the 

slowest node processes the maximum data and other 

nodes remain idle until it has completed. In big data 

environments, it is difficult to ensure parallelism 

through the pre-defined and balanced data placement. 

In single-task distribution we assume that the cluster is 

homogeneous. Thus, the performance of the map task 

is only related to the number of data blocks it processes 

and whether these blocks are local, in-rack or remote 

data blocks. 

The single-task distribution algorithm transforms 

𝑆0  to 𝑆1  on the assumption that the performance of 

each node is equal. It is easy to prove that if ∀𝑠𝑖𝑗  and 

𝑠𝑎𝑏 ∈ 𝑆, 𝛼𝐿𝑖𝑗 + 𝛽𝐺𝑖𝑗 + 𝛾𝑅𝑖𝑗 = 𝛼𝐿𝑎𝑏 + 𝛽𝐺𝑎𝑏 + 𝛾𝑅𝑎𝑏, 

then parallelism is maximal. However, the performance 

of each node varies and is unknown before it is 

executed. During the execution, to improve the 

parallelism, 𝑆1  will be transformed to 𝑆2 , 𝑆3  and 𝑆𝑘 

through the task self-resizing algorithm. The definition 

of self-resizing is given below. 

Definition 5. Task self-resizing: Task self-resizing is 

an algorithm invoked by a task when it completes 

earlier than others, in order to adjust its size dynami-

cally according to the current task matrix. The task size 

is presented as the size and location of the data that the 

task should process. 

Task self-resizing is an effective algorithm to maxi-

mize the parallelism among mappers. Each time the 

task self-resizing algorithm is invoked, 𝑆𝑘 will be tran-

sformed to 𝑆𝑘+1 correspondingly (𝑘 = 0, 1, 2, 3…). In 

every transformation, 𝐿𝑖𝑗
𝑘  , 𝐺𝑖𝑗

𝑘  , 𝑅𝑖𝑗
𝑘   are adjusted,  

and based on 𝑆𝑘 , 𝑆𝑘+1  satisfies Δ𝑘 < Δ𝑘+1  and 

∑ (𝐿𝑖𝑗
𝑘+1 + 𝐺𝑖𝑗

𝑘+1 + 𝑅𝑖𝑗
𝑘+1)

𝑝,𝑞

𝑖=1,𝑗=1
=∑ (𝐿𝑖𝑗

𝑘 +
𝑝,𝑞

𝑖=1,𝑗=1

𝐺𝑖𝑗
𝑘 + 𝑅𝑖𝑗

𝑘 ). 

The goal of self-resizing is to make the execution 

time of each task approximately equal. Therefore, we 

need to consider the regularity of the execution time of 

a task. It depends on the node’s performance, the num-

ber of data blocks, the blocks’ location and the task 

(algorithm) complexity. In addition, the node’s perfor-

mance is a constant and the data block size and location 

are adjusted by the self-resizing algorithm. The task 

complexity varies because of varying functionalities. 

The complexity of a mapper may change with the 

characteristics of input data, which results in more 

difficulty to define the execution-time function of a 

task. Fortunately, because of the specifics of Terasort, 

there is only one query of a trie in a map task, and the 

time complexity of this query depends only on the 

height of the tree, which is constant. Consequently, the 

time complexity O(M) is unchanged for any data, and 

we can define the execution time 𝑡𝑖𝑗 of task 𝑚𝑖𝑗 as 

𝑡𝑖𝑗 = ε𝑖𝑗 × (α𝐿𝑖𝑗 + β𝐺𝑖𝑗 + γ𝑅𝑖𝑗) (3) 

Equation (3) is an expression of the time consump-

tion of task 𝑚𝑖𝑗 running on 𝑛𝑖𝑗, which is the j-th node 

in the i-th rack. 𝛼 ∶ 𝛽 ∶ 𝛾 denotes the I/O speed ratio of 

accessing local, in-rack or remote data. 𝜀𝑖𝑗  is a 

performance constant defined by multiplying node 

performance and task complexity. Equation (4) defines 

𝑡𝑖 as the execution time of tasks in the i-th rack and t as 

the execution time of all tasks. 

ij

q

j
i tt

1
max


      i

p

i
tt

1
max


  (4) 

In Terasort, whether it is multiple-task distribution 

or single-task distribution, the results of the mappers 

are unchanged. Similarly, the task self-resizing does not 

cause the output errors. According to equation (4), the 

time consumption of the map phase is equal to the time 

consumption of the slowest mapper, so we can accele-

rate the slowest task and optimize both time and energy 

consumption of Terasort in the map phase. Moreover, 

in a MapReduce cluster, due to hardware and network 

problems, a task failure is treated as a normal phenome-

non. When a task fails, single-task distribution causes 

the loss of the corresponding results, requiring the 

task’s re-distribution. If the size of new task and the 

aborted one are the same, then in the most cases, the 

new task would not catch up with the other tasks 

because of its delay. Therefore, there is no guarantee of 

fault tolerance because the execution time of the map 

phase depends on the execution time of the last aborted 

and restarted task. As this is time-consuming, task 

resizing needs to be adapted to task failures. 

The resizing algorithm supports the fault tolerant 

mechanism in a low-cost way. In general, fault toleran-
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ce can be implemented by recovery or replication me-

chanisms. A traditional Terasort adopts the replication 

mechanism provided by MapReduce framework. It 

starts a larger number of redundant tasks and if there is 

one task completed, its replicates are abandoned. The 

replication mechanism is simple, but it wastes resour-

ces and affects performance. The MapReduce frame-

work cannot adopt the recovery mechanism because the 

mechanism needs set up checkpoints for each task and 

replicate the necessary intermediate results as a backup. 

For the traditional Terasort, it is equally difficult. On 

the one hand, there are too many tasks to afford setting 

a check-point one by one; on the other hand, it is also 

costly to remotely backup the task’s intermediate out-

puts which are stored locally. However, the single-task 

distribution approach makes the recovery mechanism 

possible. In Terasort, the mapper then adds to each data 

a tag with its domain and sends it to the corresponding 

reducer. The number of reducers is certain, so the 

mapper does not write intermediate results to the local 

disk, but to the remote disk of the reducer directly [5]. 

This technology has been presented in [10]. Based on 

this, we do not need to backup intermediate results, and 

what we need to record are only the data blocks which 

have been processed. When a task fails, some appro-

priate adjustments in task resizing are made to other 

running tasks, rather than starting a new task. The 

resizing algorithm is described in detail in the next 

section. 

3.2. Algorithms 

From the previous section we know that there is one 

and only one map task on each node. The size of a map 

task is the number of data blocks it should process, 

where the data blocks could be local, in-rack or remote. 

The goal of the single-task distribution and task self-

resizing algorithms is maximizing the parallelism in the 

map phase by changing the task size itself before it is 

complete. 

The single-task distribution algorithm calculates 𝑆1 

according to 𝑆0 by re-distributing data blocks to each 

task fairly. The basic idea is as follows: firstly, we 

adjust the data blocks of tasks rack-by-rack to make 

sure that tasks in the same rack are completed at the 

same time, and then we carry out the same operation 

across the racks by treating racks as tasks (nodes) in the 

same rack. 

A row of the task matrix stands for tasks running in 

the same rack. ∀𝑖 ∈ [1, 𝑝], we consider tasks from 𝑚𝑖1
0  

to 𝑚𝑖𝑞
0  . They are sorted according to their size 

increasingly. Without loss of generality, let 𝑚𝑖1
0  contain 

the fewest data blocks and 𝑚𝑖𝑞
0  contains the most data 

blocks, i.e., 𝐿𝑖1
0 = min (𝐿𝑖1

0 , 𝐿𝑖2
0 …𝐿𝑖𝑞

0 ) , 𝐿𝑖𝑞
0 =

max (𝐿𝑖1
0 , 𝐿𝑖2

0 …𝐿𝑖𝑞
0 ) and 𝑉𝑖 =

1

𝑞
∑ 𝐿𝑖1

0𝑞

𝑗=1
. If there are k 

tasks whose blocks are fewer than those of 𝑉𝑖, then 𝑚𝑖1
0  

to 𝑚𝑖𝑘
0   can be treated as a virtual task 𝑚𝑖𝑤

0  , and the 

others can be treated as a virtual task 𝑚𝑖𝑣
0   which has 

𝐿𝑖𝑤
0   and 𝐿𝑖𝑣

0   local data blocks respectively, i.e., 𝐿𝑖𝑤
0 =

∑ 𝐿𝑖𝑗
0

𝑘

𝑗=1
 , 𝐿𝑖𝑣

0 =∑ 𝐿𝑖𝑗
0

𝑞

𝑗=𝑘+1
 . Thus, the task 

distribution problem in the i-th rack can be changed to 

"how many data blocks of 𝑚𝑖𝑣
0  should be moved to 𝑚𝑖𝑤

0  

to ensure two virtual tasks can be completed 

simultaneously". Let 𝑚𝑖𝑤
0   process 𝑥  data blocks of 

𝑚𝑖𝑣
0 . Then, we obtain equation (5): 
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  (5) 

To ensure the parallelism of inner tasks in virtual 

tasks 𝑚𝑖𝑤
0   and 𝑚𝑖𝑣

0  , ∀𝑔 ∈ [1, 𝑘] 𝑚𝑖𝑔
0   gets  

𝑉𝑖−𝐿𝑖𝑔
0

∑ (𝑉𝑖−𝐿𝑖𝑗
0 )

𝑘

𝑗=1

× 𝑥  from 𝑚𝑖𝑣
0   proportionally. ∀𝑢 ∈ [𝑘 +

1, 𝑞] 𝑚𝑖𝑢
0   provides 

𝐿𝑖𝑢
0 −𝑉𝑖

∑ (𝐿𝑖𝑗
0 −𝑉𝑖)

𝑞

𝑗=𝑘+1

× 𝑥  data blocks to 

𝑚𝑖𝑤
0 . Regularly, the task order for receiving blocks is 

from 𝑚𝑖1
0   to 𝑚𝑖𝑘

0  , and the task order for providing 

blocks is from 𝑚𝑖𝑞
0   to 𝑚𝑖𝑘+1

0  . Thus, it is ensured that 

𝑚𝑖1
0  gets more blocks, 𝑚𝑖𝑞

0  gives more blocks, which is 

consistent with the actual situation. To summarize: 

𝐿𝑖𝑔
1 = 𝐿𝑟(𝑖, 𝑔)  

𝐿𝑟(𝑖, 𝑔) = {

𝐿𝑖𝑔
0                                     (𝑔 ≤ 𝑘)

𝐿𝑖𝑔
0 −

𝐿𝑖𝑔
0 −𝑉𝑖

∑ (𝐿𝑖𝑗
0 −𝑉𝑖)

𝑞

𝑗=𝑘+1

× 𝑥 (𝑔 > 𝑘)(6) 

𝐶𝑖𝑔
1 = 𝐺𝑟(𝑖, 𝑔) =

{
 
 

 
 𝑉𝑖 − 𝐿𝑖𝑔

0

∑ (𝑉𝑖 − 𝐿𝑖𝑗
0 )

𝑘

𝑗=1

(𝑔 ≤ 𝑘)

0                        (𝑔 > 𝑘)

 

𝑅𝑖𝑔
1 = 𝑅𝑟(𝑖, 𝑔) = 0 

Through equation (6), the parallelism of tasks in 

each rack is ensured, but the workload among racks  

is still unbalanced. Here, we treat tasks in the same  

rack as a virtual task, and then the problem of 

"parallelism of racks" is changed to the problem of 

"parallelism of tasks in the same rack", so that the 

operations defined in equation (6) are also suitable  

for these virtual tasks. 

The rack that has fewer local data blocks in 𝑆0 is 

assigned some local data blocks from other racks as 

remote data blocks. Let 𝑉 =
1

𝑝
∑ 𝐿𝑟(𝑖, 𝑗)

𝑝,𝑞

𝑖=1,𝑗=1
 be the 

average number of data blocks in a rack. Here, we still 

assume that there are c racks whose total data blocks 

are less than 𝑉. Then, these racks can be treated as a 

virtual task 𝑚𝑤
0   and the other racks be treated as a 

virtual task 𝑚𝑣
0 . They have 𝐿𝑤

0   and 𝐿𝑣
0   local data 

 blocks, respectively, 𝐿𝑤
0 =∑ 𝐿𝑟(𝑘, 𝑗)

𝑐,𝑞

𝑘=1,𝑗=1
 , 𝐿𝑣

0 =
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∑ 𝐿𝑟(𝑘, 𝑗)
𝑝,𝑞

𝑘=𝑐+1,𝑗=1
. By the same approach, we can 

calculate how many data blocks are assigned to a rack 

as remote blocks, and how many data blocks a task in 

the rack provide proportionally, and how many remote 

data blocks a task in the rack receive proportionally. 

The deduction is abbreviated here, and for ∀ℎ ∈ [1, 𝑝], 
∀𝑔 ∈ [1, 𝑞], 𝑆1 is given as in equation (7): 

𝐿𝑤
0 = ∑ 𝐿𝑟(𝑘, 𝑗)

𝑐,𝑞

𝑘=1,𝑗=1
, 𝐿𝑣

0 = ∑ 𝐿𝑟(𝑘, 𝑗)
𝑝,𝑞

𝑘=𝑐+1,𝑗=1
  

𝐺𝑤
0 = ∑ 𝐺𝑟(𝑘, 𝑗)

𝑐,𝑞

𝑘=1,𝑗=1
, 𝐺𝑣

0 = ∑ 𝐺𝑟(𝑘, 𝑗)
𝑝,𝑞

𝑘=𝑐+1,𝑗=1
  

𝑥 =
𝛼×(𝐿𝑣

0−𝐿𝑤
0 )+𝛽×(𝐺𝑣

0−𝐺𝑤
0 )

𝛼+𝛾
  

𝐿ℎ𝑔
1 = {

𝐿𝑟(ℎ, 𝑔)                                            (ℎ ≤ 𝑐)

𝐿𝑟(ℎ, 𝑔) −
(𝐿𝑟(ℎ,𝑔)−𝑉)×𝑥

∑ (∑ 𝐿𝑟(𝑘,𝑗)−𝑉
𝑞
𝑗=1

)
𝑝

𝑘=𝑐+1

(ℎ > 𝑐)  

𝐺ℎ𝑔
1 = 𝐺𝑟(ℎ, 𝑔)  

𝑅ℎ𝑔
1 = {

𝑉−𝐿𝑟(ℎ,𝑔)

∑ (𝑉−∑ 𝐿𝑟(𝑘,𝑗)
𝑞
𝑗=1

)
𝑐

𝑘=1

× 𝑥 (ℎ ≤ 𝑐)

0                                            (ℎ > 𝑐)

 (7) 

Single-task distribution transforms 𝑆0  to 𝑆1 , and 

then 𝑆1 is distributed to each node and referred to by 

the self-resizing algorithm. After single-task distribu-

tion, all tasks finish at the same time if the nodes are 

homogeneous. However, the nodes are normally hete-

rogeneous. To ensure parallelism, we need a self-

resizing algorithm to adjust the data blocks of the faster 

tasks. A self-resizing algorithm is invoked by the task 

itself when all its data blocks in 𝑆1  have been 

processed, and it transforms 𝑆1 to 𝑆2 by snatching one 

more data block from other tasks, and then 𝑆2  to 𝑆3 

analogously. After k times self-resizing, all tasks are 

completed at 𝑆𝑘 . The basic ideas of the selfresizing 

algorithm are the following: each task processes local 

data blocks preferentially; the faster tasks process as 

many remote data blocks as possible, or process the in-

rack data blocks if there is not a remote one available. 

The slower tasks process as many local data blocks as 

possible. With this approach, we minimize the possibi-

lity that all the other tasks wait for the slowest task to 

process the last unprocessed remote data block. 

In Terasort, the speed of a map task is unrelated to 

the data features it processes, so theoretically all tasks 

complete simultaneously, otherwise a task completes 

earlier if it is running on a higher-performance node, at 

which time this task should snatch a data block from a 

slower task. The rules of snatching are as follows: 

(1) If task i has some local data blocks which are 

assigned to other tasks in 𝑆0 , then these data blocks 

should be snatched first and processed locally; 

(2) Task i randomly snatches a remote data block 

from another in-rack task j if possible. Remote data 

blocks of task j are also remote data blocks of task i 

because tasks i and j are in the same rack. 

(3) If there is no further remote data block in the in-

rack tasks, task i randomly snatches a remote data block 

from another remote task j if possible. Here, the remote 

data block of j is from one of the tasks that are in the 

same rack as task i, i.e., it is an in-rack data block for 

task i. 

(4) If there is no further in-rack data block that has 

been assigned to out-rack tasks, task i randomly 

snatches a remote data block from another remote task 

j if possible. This data block is also a remote data block 

of task i. 

(5) If there is no task containing a remote data 

block, task i randomly snatches an in-rack data block 

from any other in-rack task. 

(6) If there is no in-rack task containing an in-rack 

data block, task i randomly snatches an in-rack data 

block from any other remote task. 

(7) If there is no remote task containing an in-rack 

data block, task i randomly snatches a local data block 

of any other in-rack task. 

(8) If there is no in-rack task containing any 

unprocessed data block, task i randomly snatches a 

local data block from any other remote task, until all 

tasks are complete. 

 

Figure 3. An example of the data processing steps in the 

map phase. There are one step of single-task distribution  

and four steps of self-resizing. The small boxes refer  

to data blocks. It can be distinguished whether a data  

block is local, in-rack or remote from its id. A shadow 

boxed (or part of box) means that the data block  

has been processed 

Fig. 3 shows how the self-resizing algorithm works. 

For simplicity, we assume that there are two racks in 

the cluster, each rack has two nodes, and the I/O speed 
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ratio of local data, in-rack data and remote data is 1:1:2. 

After the single-task distribution, the initial task matrix 

is 𝑆1, and four self-resizing steps are shown in Fig. 3. 

In Fig. 3, each row represents a task matrix of mappers 

when the proposed algorithms are executed. After the 

single-task distribution, 𝑆0 has changed to 𝑆1, block 𝑎3 

was moved to node 𝑑, while 𝑏6 and 𝑏7 were distributed 

to node 𝑎, and 𝑏5, 𝑑4 and 𝑑5 were distributed to node 

𝑐. Then, after task 𝑎 completed, the node 𝑎 found block 

𝑎3  and snatched it according to the first rule of the 

selfresizing algorithm. Before all the tasks were 

complete, each step satisfied the self-resizing 

algorithm. Noticing that tasks 𝑎 and 𝑏 were faster than 

tasks 𝑐 and 𝑑, nodes 𝑎 and 𝑏 contain more data blocks 

than nodes 𝑐 and 𝑑. 

The self-resizing algorithm ensures that the 

possibility of processing remote data blocks by faster 

asks is higher than that for slower tasks. It improves 

both the performance and parallelism of Terasort. 

4. Experiments  

We built a Hadoop MapReduce cluster with 12 

computers and compared the performance and energy 

consumption between the original Terasort and the 

optimized Terasort. Details of the testbed are shown in 

Table 2.  

Table 2. Description of the testbed 

Iterms  Description 

Node 

1 master node and 11 slave nodes. 

Homogeneous computers. Intel Core i5-

2300 2.80GHz, 8GB memory, 1TB hard 

disk, onboard video, audio and network 

card. 1000Mb network. 

Operating 

System 
CentOS 5.6, Linux 2.6.18 Kernel 

MapReduce 

Platform 
Hadoop 1.0.4 

Energy 

Consumption 

Measuring 

approach 

PowerBay power-meter 

(http://www.northmeter.com/index-

en.html), power precision ±0.01 0.1W, 

maximum 2200W, measurement frequency 

1.5-3 second. Obey specification 

GB/T17215-2003. In addition, to avoid 

accidental error, the experiments are 

performed 10 times, and the results shown 

below are the mean values. 

System 

Information 

Collecting 

Tool 

SAR 

Test cases 

Test cases with different data size run under 

the original Terasort [11] and the optimized 

Terasort, and data are randomly distributed 

on the nodes. 

Case A: 3 GB per node 

Case B: 5 GB per node 

Case C: 10 GB per node 

 

As shown in Fig. 4, the total time consumption of 

sorting the same data size by the original and optimized 

Terasort is different. The optimization effects are also 

different across the different cases. In case A, the 

optimized efficiency (the ratio between reduced value 

and original value) of time consumption and that of 

energy consumption are 6.32% and 9.42%, respec-

tively. In case B they rise to 8.62% and 13.27%, 

respectively. In case C they continuously rise to 11.96% 

and 15.90%, respectively. The optimized Terasort sorts 

faster than the original one, and also consumes less 

energy. The original Terasort also considers the 

different processing capacities of different nodes, but 

does not consider the consumption of time and energy 

during scheduling and node idleness. Consequently, the 

optimized Terasort gains better performance and energy 

efficiency. The optimization is more obvious when 

more data are involved. 

From the optimized efficiency (black line) in Fig. 4, 

we know that there is a positive linear correlation 

between the superiority of the optimized Terasort and 

the data size. This means that when sorting really big 

data sets, the optimization effect of time and energy 

consumption is more obvious. Our testbed is a 

homogeneous cluster. However, the optimization effect 

of the proposed approach is more significant in a 

heterogeneous cluster because in a heterogeneous 

cluster, the self-resizing algorithm adjusts the number 

of data blocks, while the original MapReduce adjusts 

the number of tasks (splits). Obviously, the former has 

a finer adjusting granularity.  

 

Figure 4. Comparison between time consumption and 

energy consumption of the original and optimized TeraSort 

by sorting different data sizes, and the optimized efficiency, 

which is the ratio between reduced value and original value 

http://www.northmeter.com/index-en.html
http://www.northmeter.com/index-en.html
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From Fig. 4, we can see that time consumption is 

positively related to energy consumption. It can be 

concluded that in a MapReduce Terasort, performance 

improvement is in accordance with the energy 

consumption optimization. There are two main 

opinions about the relationship between performance 

and energy consumption of a distributed application. 

On the one hand, it is generally believed that when 

more nodes are involved, jobs are executed faster while 

more energy is consumed. On the other hand, the 

waiting time is reduced so that both performance and 

energy consumption are optimized. For example, nodes 

are idle while waiting for the scheduled tasks, or the 

CPU is idle while waiting for I/O operations. These 

negatively affect both performance and energy 

efficiency. Our experiment proves the latter in Terasort. 

Moreover, the experimental results prove that the mean 

of the improved time consumption is 9%, while the 

mean of the improved energy consumption is 12%. 

Generally, multiplying time and power is energy 

consumption. Even if we assume power to be almost 

constant, the energy consumption is still optimized as a 

consequence of the reduction in time consumption 

(optimization by 9%). 

To prove that minimizing the scheduling time and 

waiting time of a reducer is the main reason of optimi-

zation, we designed two additional experiments. The 

first one logs the execution time of each mapper and 

calculates Δ (see Definition 3) of the original Terasort 

and the optimized Terasort. The parallelism Δ  of the 

optimized Terasort is 4.31 times larger than that of the 

original one in case 𝐶 , proving that the optimized 

Terasort has better parallelism. In the second experi-

ment, we executed the original Terasort and the optimi-

zed Terasort on a single node. In that situation, there is 

no reducer waiting for mappers, so the optimization is 

the result of saving the task scheduling time. 

The results shown in Fig. 5 are in accordance with 

those shown in Fig. 4. The total time taken by sorting 

the same data size under two kinds of Terasort is 

different. The optimization effects are also different 

among the different cases. In case 𝐴, due to the small 

dataset, the optimization is not significant, but for case 

𝐵, the optimized efficiency is as significant as 18.52% 

and for case 𝐶  the optimized efficiency is stable at 

19.75%. Moreover, the optimized efficiency is better 

than that in Fig. 4 because in the original Terasort, the 

node is both JobTracker and Task-Tracker, so the 

scheduling cost is much higher than that of the 

optimized Terasort. 

In conclusion, we have proven that the optimized 

Terasort reduces the time and energy consumption 

caused by the scheduling and node waiting. That is to 

say, compared with the original one, the single-task 

distribution and self-resizing algorithms improve the 

performance and reduce the energy consumption of 

Terasort. 

5. Applications  

The proposed approach can be applied not only  

in Terasort, but also in many other applications whose 

task complexity is only related to the data size, but not 

data distribution or other features. Terasort has two 

important operations, one is sampling and building the 

trie tree, the other one is marking records. Their 

performance only depends on the data mount. Besides 

Terasort, there are also many MapReduce applications 

with these characteristics. Taking Join and PageRank 

algorithms as examples, the mappers read and parse all 

inputs and send them to reducers. In general 

MapReduce applications, the data size is main effect of 

performance, but not data distribution, especially in the 

big data environment. Thus, the proposed approach has 

a wide applicability.  

The proposed approach could be applied in any 

master-slave based distributed environment, in which 

computations are moved to the data side. For example, 

in Yarn, although it divides the JobTracker into 

ApplicationMaster and ResourceMaster to decrease the 

burden of the JobTracker, the scheduling algorithm 

also causes the non-ignorable lack of performance and 

waste of energy. Improving parallelism is a general 

requirement of parallel computing. The proposed 

algorithm also contributes to the parallelism guarantee 

of other parallel computing systems. 

 

Figure 5. Time consumption of the original and the 

optimized Terasort, and the optimized efficiency. The 

environment in the experiment is a single node ’cluster’, 

which means that there is only one mapper and one reducer, 

Δ = 1, i.e., the reducer will not wait for the mapper 

6. Related Work 

Most of the work on sorting algorithm optimization 

does not focus on MapReduce. For example, Bunse et 

al. [12] use standard sorting algorithms to improve the 

energy efficiency of data sorting. Beckmann et al. [13] 

propose an approach using solid state disks to advance 

the energy efficiency of sorting algorithms. Thus, our 

approach is different from the traditional sorting 

optimization. We focus on the MapReduce framework, 

and optimize both time consumption and energy 

consumption. We believe that node waiting in Terasort 

is a weakness, and there is limited work that optimizes 
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Terasort or other MapReduce applications from this 

perspective. 

Nowadays, improving performance and reducing 

energy consumption are the two trends of MapReduce 

optimization in big data environments. Generally, there 

are two research directions, the one is performance and 

energy consumption optimization from the job and task 

perspective, and the other one is data processing 

optimization from the scheduling perspective.  

For example, He [14], Zhou [15] and Babu [16] 

focus on performance optimization. He [14] divides a 

job into several small jobs, and when one job is 

complete, all its related data are deleted in order to 

reduce the size of intermediate data saved on the local 

disk in a reasonable level. However, we would get a 

wrong order if the input is divided in the sort algorithm. 

Zhou [15] adopts a < 𝑘𝑒𝑦1, 𝑘𝑒𝑦2, 𝑣𝑎𝑙𝑢𝑒 >  triple 

instead of a < 𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒 > pair and adds a key-value 

routing strategy to improve the efficiency of 

MapReduce. However, the mapper is required to send 

the < 𝑘𝑒𝑦1, 𝑘𝑒𝑦2, 𝑣𝑎𝑙𝑢𝑒 >  triples to the JobTracker, 

which increases the burden of the master node. Babu 

[16] adjusts the MapReduce parameters to implement 

automatic optimization, but it is difficult to determine 

the highly-impact parameters with additional 

operations, which means that time and energy are 

wasted. 

Meanwhile, many papers [17-20] focus on reducing 

the energy consumption. Wirtz and Ge[17] consider 

how MapReduce efficiency changes with two runtime 

configurations: resource allocation that changes the 

number of available concurrent tasks and DVFS 

(Dynamic Voltage and Frequency Scaling) that adjusts 

the processor frequency according to the workloads. 

Wirtz [18] proposes a centric data movement approach 

and present an analytical framework with methods and 

metrics for evaluating costly built-in data movements 

in MapReduce. Chen [19] considers that interactive 

jobs operate on a small fraction of the data and, thus, 

can be served by a small pool of dedicated machines. 

The less time-sensitive jobs can run on the rest of the 

cluster in a batch fashion. Lang and Patel [20] focus on 

developing a framework for systematically considering 

various MapReduce node power-down strategies and 

their impact on the overall energy consumption and 

workload response time. However, this research 

focuses on resource allocation and task scheduling (see 

next paragraph). In our approach, we adopt a task self-

tuning strategy. We adjust the size of multiple tasks 

dynamically, which makes our approach different from 

existing work. 

Other works adjust the task execution by optimizing 

the scheduling algorithm. These works follow two main 

ideas. One is to adjust the running order of multiple 

tasks. For example, FIFO is the default scheduling 

algorithm in Hadoop MapReduce, while Facebook and 

Yahoo engineers put forward new scheduling algo-

rithms called Fair Scheduling [21] and Capacity 

Scheduling [22]. The two have been widely recognized 

and are adopted in practice. The other one is the 

optimization by task allocation, which determines 

where the task is distributed and how much resources 

should be allocated to the task. Wang [23] proposes a 

task scheduling model using an effective genetic 

algorithm with practical encoding and decoding 

methods and specially designed genetic operators. 

Yong [24] proposes a dynamic slot mechanism to save 

energy and improve performance. However, an 

experimental verification is lacking here. Zhou [25] 

proposes an energy-efficient scheduling policy, called 

green scheduling, which relaxes fairness slightly to 

create as many opportunities as possible for 

overlapping resource complementary tasks. Here, a 

quantitative analysis is also lacking. Our scheduling 

approach is different from these, as it places an 

emphasis on the task size and highlights the reduction 

of nodes waiting times, ensuring data locality and 

parallelism. Our approach is designed for Terasort and 

other applications whose tasks have fixed time- 

complexity and data-size-determined performance. 

7. Conclusions and Future work 

This paper proposes a single-task distribution and a 

task self-resizing algorithm to reduce execution time 

and energy consumption of Terasort. In contrast to 

other task scheduling approaches, we focus on 

minimizing the time of mappers waiting for a task and 

the time of reducers waiting for the mappers’ outputs. 

In the experiments, we compared our improved 

Terasort and the original one. The results show that with 

our algorithms the execution time and energy 

consumption of Terasort are reduced.  

Two conclusions can be drawn from our work. The 

first is that time and energy are wasted in M n 

MapReduce applications because of nodes waiting for 

inputs. This problem was solved by adopting coarsely 

granular tasks. The second is that the performance and 

energy consumption of MapReduce applications is 

closely related to the parallelism among nodes. 

Parallelism could have been ensured by adopting finely 

granular tasks, which is however inconsistent with the 

first issue. Thus, another, adopted option is adjusting 

the size of tasks dynamically to maximize parallelism.  

Our future work will focus on how to adapt the 

single-task distribution and task self-resizing algo-

rithms to other MapReduce applications. We will 

furthermore consider the parallelism of reducers. 
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