
30

ISSN 1392–124X (print), ISSN 2335–884X (online) INFORMATION TECHNOLOGY AND CONTROL, 2015, T. 44, Nr. 1

Performance and Energy Optimization of the Terasort Algorithm by Task

Self-Resizing

Jie Song1, Shu Xu1, Li Zhang1, Claus Pahl3, Ge Yu2

Software College1, School of Information Science and Engineering2, Northeastern University,

No.11, Lane 3, WenHua Road, HePing District, Shenyang, Liaoning, China

Irish Centre for Cloud Computing and Commerce IC4, Dublin City University, Dublin 9, Ireland3

e-mail: songjie@mail.neu.edu.cn

 http://dx.doi.org/10.5755/j01.itc.44.1.5772

Abstract. In applications of MapReduce, Terasort is one of the most successful ones, which has helped Hadoop to

win the Sort Benchmark three times. While Terasort is known for its sorting speed on big data, its performance and

energy consumption still can be optimized. We have analyzed the characteristics of Terasort and have identified the

existence of idle nodes, which does not only waste energy but also loses performance. Therefore, we optimize Terasort

through a single-task distributed algorithm and a task self-resizing algorithm to save time and reduce the energy that is

consumed by map nodes and reduce nodes, which is caused by task schedule and waiting for input data. The algorithm

proposed in this paper has proved to be effective in optimizing performance and energy consumption through a series of

experiments. It can also be adapted to other applications in the MapReduce environment.

Keywords: Big Data; Energy Consumption; MapReduce; Terasort; Task Resizing.

1. Introduction

Two important indicators of algorithm quality are

time complexity and space complexity. Nowadays,

energy consumption has become a third important indi-

cator because of the non-negligible energy consumed

by IT equipment [1]. In 2010, energy consumption of

data centers has accounted for 1.3% of the world’s total

electricity consumption, and is expected to increase in

the next five years by 56% [2]. Consequently, the

storage, time and energy consumption of algorithms

should be properly analyzed and estimated.

Sorting is an algorithm that puts elements of a list

in a certain order [3]. Sorting is the most widely used

type of algorithm across various applications. For

example, the web correlation sorting algorithm of

search engines can decide whether users could find the

desired information in the page [4]. Meanwhile, sorting

is a common task for program designers, and the choice

of the sorting algorithm will directly affect the time,

storage and energy consumption of applications.

In this paper, we study on the performance and

energy optimization of Terasort [5]. Terasort as a sor-

ting algorithm is an important application of MapRe-

duce and has become a contributor to big data appli-

cations. In 1998, Jim Gray created the Sort Benchmark,

which defines a large data set with 100 byte data

records. Sorting algorithms are evaluated on the time

they use to sort the data and write to disk completely

[6]. In 2008, Terasort won the first prize of the 1TB sort

benchmark, taking 209 seconds, nearly 90 seconds

faster than the previous year’s record holder. In 2009,

with a cluster of 1460 nodes, Terasort won again by

sorting 1TB data in 62 seconds [7]. In 2013, Terasort

won again with a cluster of 2100 nodes, sorting 1.42TB

of data in one minute [6].

Terasort is successful in sorting big data, but we still

believe that its performance and energy consumption

can be optimized because in Terasort the performance

is decreased and energy is wasted while some nodes are

idle. In MapReduce, there are two main reasons for

idleness. Firstly, in MapReduce, there are two kinds of

tasks: map tasks (mappers for short) and reduce tasks

(reducers for short). Although Terasort has optimized

the data transfer between mappers and reducers to

guarantee the parallelism of reducers, reducers do not

start until all mappers are complete, which causes the

idleness of nodes while reducers wait for mappers.

Secondly, the mapper size could be reduced to ensure

that all mappers are executed synchronously and

reducers are started as simultaneously as possible.

However, this will add more costs to task scheduling,

which means sometimes nodes are idle because they are

waiting for scheduled mappers.

In this paper, we propose that one and only mapper

with a proper size is scheduled at a node to ensure that

Performance and Energy Optimization of the Terasort Algorithm by Task Self-Resizing

31

nodes will not wait for new tasks, and that a mapper

can change the size of processing data dynamically to

adjust its size by itself to ensure that all mappers

complete simultaneously and, consequently, reducers

do not wait on mappers any more. We focus on three

aspects. Firstly, a mapper is allocated to a node once

with a proper initial size by the single-task distribution

algorithm. Secondly, a mapper is given priority on

processing; the first is local data, then in-rack data and

remote data. Thirdly, a self-resizing algorithm adjusts

the size of the mappers, which are represented by the

number of data blocks that should be processed, to

ensure the parallelism of mappers. There are some

challenges to implement these approaches. Firstly, we

need to define abstractions to model the task and its

data, the parallelism and the execution cost. Secondly,

there are a number of combinations of the initial task

distribution. Thus, we need to provide a method to find

the best one efficiently. Thirdly, we need to design an

efficient self-resizing algorithm that is self-motivated

and decentralized to ensure the parallelism among

nodes and that aims to reduce the resizing cost. Finally,

we need to ensure fault tolerance if there is only one

mapper for a node, because fault tolerance cannot be

guaranteed by task replication and recovery. Optimiza-

tion algorithms such as Genetic Algorithms (GA),

Particle Swarm Optimization (PSO) and Ant Colony

Optimization (ACO) are suitable to solve this problem,

but they are too expensive to be adopted in real-time

task distribution and self-resizing.

The remainder of this paper is organized as follows.

Section 2 introduces MapReduce and Terasort and

analyzes the disadvantages of Terasort as our moti-

vation. Section 3 proposes single-task distribution and

self-resizing algorithms to improve the performance

and decrease the energy consumption of Terasort,

describes the task model and algorithms, and then gives

a detailed example. In Section 4, the effectiveness of

the proposed algorithms is proven by experiments.

Section 5 introduces related work. In Section 6, conclu-

sions and future work are summarized.

2. Background and Motivation

In this section, firstly, we introduce the structure and

execution process of the MapReduce framework.

Secondly, we describe the core of Terasort and empha-

size its two technical difficulties, which make Terasort

different from other sorting algorithms. Finally, we

analyze the disadvantages of Terasort and put forward

the basic ideas and steps of our proposed algorithms.

2.1. MapReduce

In MapReduce, the computation is moved closer to

where the data are located. A MapReduce job is divided

into tasks, map tasks (mappers) and reduce tasks

(reducers). All mappers and reducers are performed on

nodes in parallel. Both input and output of mappers and

reducers are key-value pairs. < 𝐾𝑒𝑦𝑀
𝐼𝑛, 𝑉𝑎𝑙𝑢𝑒𝑀

𝐼𝑛 > and

< 𝐾𝑒𝑦𝑀
𝑂𝑢𝑡 , 𝑉𝑎𝑙𝑢𝑒𝑀

𝑂𝑢𝑡 > are the input and output format

of mappers, respectively; < 𝐾𝑒𝑦𝑅
𝐼𝑛, 𝑉𝑎𝑙𝑢𝑒𝑅

𝐼𝑛 > and <
𝐾𝑒𝑦𝑅

𝑂𝑢𝑡 , 𝑉𝑎𝑙𝑢𝑒𝑅
𝑂𝑢𝑡 > are the input and output format of

reducers, respectively. 𝐾𝑒𝑦𝑀
𝑂𝑢𝑡 should be implicitly

converted to 𝐾𝑒𝑦𝑅
𝐼𝑛 , and 𝑉𝑎𝑙𝑢𝑒𝑅

𝐼𝑛 is the collection of

𝑉𝑎𝑙𝑢𝑒𝑀
𝑂𝑢𝑡. Reducers would not start until the slowest

mapper is complete, and the job is accomplished when

the slowest reducer has completed. The parallelism is

decreased if mappers (reducers) do not finish

synchronously.

MapReduce splits the input data set into 𝑀 subsets

(where 𝑀 is larger than the number of nodes), and each

subset is the input of one mapper. The mapper reads

each record of the subset, processes it and outputs

< 𝐾𝑒𝑦𝑀
𝑂𝑢𝑡 , 𝑉𝑎𝑙𝑢𝑒𝑀

𝑂𝑢𝑡 > pairs as the intermediate

result. A "split" function partitions the intermediate

records into 𝑅 disjoint buckets by applying a hash func-

tion to 𝐾𝑒𝑦𝑀
𝑂𝑢𝑡 of each output record. Each bucket is

written to the local disk where the mapper is executed.

The input dataset is mapped to 𝑀 × 𝑅 intermediate

files when the 𝑀 mappers terminate. All < 𝐾𝑒𝑦𝑀
𝑂𝑢𝑡 ,

𝑉𝑎𝑙𝑢𝑒𝑀
𝑂𝑢𝑡 > pairs with the same value of 𝐾𝑒𝑦𝑀

𝑂𝑢𝑡, let

this be the j-th bucket, are stored in file 𝐹𝑖𝑗(1 ≤ 𝑖 ≤ 𝑀,

1 ≤ 𝑗 ≤ 𝑅).

The second phase of a MapReduce job executes 𝑅

reducers, where 𝑅 is typically the number of nodes.

The input for each reducer 𝑅𝑗 consists of the files

𝐹𝑖𝑗(1 ≤ 𝑖 ≤ 𝑀). These files are transferred over the

network from the mappers’ local disks. Note that again

all output records from the maps with the same hash

value are consumed by the same reducer, regardless of

which mapper produced the data. Each reducer

processes or combines the records assigned to it in

some way, and then writes records to an output file (in

the distributed file system), which forms part of the

computation’s final output.

2.2. Terasort

Terasort is an application of the MapReduce

programming model based on the Hadoop platform.

The core of Terasort is its map stage. As shown in

Fig. 1, each mapper divides the data into 𝑅 data blocks,

where all data in the i-th (𝑖 > 0) block are larger those

that in the (𝑖 + 1)-th block. At the reduce stage, the i-th

reducer processes (sorts) all mapper’s i-th blocks.

Thus, the results of the i-th reducer will be larger than

those of the (𝑖 + 1)-th one. Finally, it outputs all of the

reducers’ results sequentially, which are the sorting

results [5]. As shown in Fig. 1, we assume that there is

a data set whose range of value is distributed from 1 to

100 on average. If there are 5 reducers in the

MapReduce cluster, then the range of Partition0 will be

[1, 20], and so on. After all data have been partitioned,

the data in a Partition will be sent to a specific reducer

whose number is the same as the corresponding

Partition. Finally, the outputs of reducers are the results

sequentially, i.e., the range of output file 0 is [1, 20],

while the range of output file 4 is [80-100]. Note that

J. Song, S. Xu, L. Zhang, C. Pahl, G. Yu

32

some detailed features, which are not the emphasis of

Terasort, are abbreviated in this paper.

Terasort has two technical difficulties. Firstly, it

adopts a sampling technique to determine the ranges of

𝑅 blocks. Data sampling is performed before mappers

start. It samples data from the input data first, then sorts

the data, and divides them into 𝑅 blocks. After finding

the upper and lower limits of each block (break-point),

these break-points are stored in a distributed cache.

Secondly, Terasort adopts tries to quickly determine

which block a record belongs to. A ’trie’ [8,9], also

known as digital tree or radix tree or prefix tree, is an

ordered tree data structure that is used to store a

dynamic set or an associative array. Tries treat a record

as a sequence of characters, and unlike a binary search

tree, no node in a trie stores the key associated with that

node. Instead, its position in the tree defines the key

with which it is associated. All descendants of a node

have a common prefix of the sequence associated with

that node, and the root is associated with the empty

sequence. In tries, the time of finding a sequence does

not depend on the number of the tree’s nodes, but rather

the length of the sequence [5].

First, a Terasort mapper reads the break-points of

each block from the distributed cache and builds a trie

accordingly. Leaves of a trie stand for reducers. When

data are processed, for each record, the reducer it

belongs to can be determined by querying the trie. For

example, if break-points are "abc", "dab" and "ddd" for

4 blocks (reducers), the trie in Terasort is built as shown

in Fig. 2. For a string "daz", z > b, according to the trie,

it belongs to the 3rd block.

Figure 1. Structure of Terasort algorithm

2.3. Motivation

In Terasort, only when all i-th blocks of the mappers

have been processed, the i-th reducer can start sorting.

Therefore, if there is one mapper executing more

quickly than others, the reducers will still have to wait

for the other mappers, which wastes energy and

decreases performance. To address this problem, we

can reduce the waiting time by decreasing the size of

the split (mapper). Assuming that the split size is

64MB, in the worst case all mappers are waiting for the

processing of 64MB data. In some special applications

with simple maps or less data, small splits may improve

parallelism, but will lead to more scheduling costs. We

can take 1TB input data as an example. If the split size

is 64MB, the total scheduling time is 16384, and

suppose a single scheduling cost unit is 0.01 seconds,

the total time waiting for the task is about 164 seconds.

Assuming that the idle power consumption of a

computer is 40 watt, then there is an energy waste of

6560 joule, which should not be ignored.

We also noticed that the time complexity of a trie

query is O(M) (where M is the length of the sequence),

which means that the cost of processing each record in

a mapper is a constant related to the performance of

node. In Terasort, every record in the mapper should be

processed, so the cost of a mapper is linear to its data

size. If a mapper can adjust the processing data size

according to its current processing speed and the

unprocessed data, it may guarantee the synchronization

of mappers without additional centralized scheduling

cost. Furthermore, data also no longer have to be

divided into many splits (mappers), which can also

save task scheduling time. Based on this idea, the task

distribution and self-resizing algorithms in the paper

are proposed as follows:

Figure 2. Sample trie in Terasort

Performance and Energy Optimization of the Terasort Algorithm by Task Self-Resizing

33

Step 1: Each node is assigned one and only mapper,

and data are assigned to mappers fairly by single task

distribution algorithm.

Step 2: All mappers process their assigned data

until one mapper is complete.

Step 3: The fastest mapper resizes its assigned data

block itself by snatching data from an unfinished

mapper. The speed of processing local data is faster

than that of processing remote data, which has to be

considered as well.

Step 4: Step 3 will be repeated until all the mappers

have completed.

The above approach avoids negative effects on per-

formance and energy consumption introduced by sche-

duling, and ensures the parallelism among mappers and

minimizes waiting time for reducers, i.e., this approach

optimizes Terasort in both performance and energy

consumption.

3. Schedule Model and Algorithm

In this paper, Terasort is optimized by minimizing

the time of "nodes waiting for tasks" and "reducer

waiting for inputs". The first issue is addressed by

single-task distribution, while the second is addressed

by task self-resizing. In a traditional MapReduce

cluster, a job is submitted into the job queue first and

next divided into a number of tasks, which are then

distributed to nodes according to a certain algorithm.

When a task is complete in a slave node, the master

node will distribute a new task and repeat the cycle until

the job is complete. Each task has a fixed size and the

distribution algorithm can guarantee that the task is

distributed to the node which is closest to the data,

while the parallelism of the mapper is ensured by

assigning a smaller task size (64MB as default). Fault-

tolerance is supported through a replication mecha-

nism. Single-task distribution can minimize the schedu-

ling cost, but it is difficult to determine the task size and

ensure task replication due to the unbalanced data

distribution and heterogeneous nodes. The parallelism

of mappers does not improve either if they only process

the pre-assigned data. Thus, we adopt the task self-

resizing mechanism to solve these problems. The varia-

bles used in this section are given in Table 1.

3.1. Model

Firstly, we define the task model and the targets

of resizing. Then we define the algorithms for

single-task distribution and task self-resizing. Note

that in this section the task mentioned refers to the

map task.

Definition 1. Data Block: A data block is a partition of

the processed data in a map task. The size of a task is

represented as the number of its blocks. Let 𝑚𝑖𝑗 be a

map task on the j-th node of the i-th rack, and 𝐿𝑖𝑗 , 𝐺𝑖𝑗

and 𝑅𝑖𝑗 be the number of local, in-rack (regional) and

remote data blocks it contains, respectively.

Table 1. Description of variables

Iterms Description

𝑝 Number of racks

𝑞

Number of nodes in the cluster, used for

simplifying the description. We assume

that all racks have the same number of

nodes

Δ Parallelism

𝑛𝑖𝑗 Node j in rack i

𝜖𝑖𝑗 Performance constant of node 𝑛𝑖𝑗

𝑚𝑖𝑗
Map task on 𝑛𝑖𝑗, each node executes

only one task

𝑡𝑖𝑗 Execution time of map task 𝑚𝑖𝑗

𝑆𝑘

The k-th 𝑝 × 𝑞 task matrix, which is the

mapping plan between data blocks and

tasks

𝐿𝑖𝑗
𝑘

Number of local data blocks of 𝑚𝑖𝑗 in the

k-th task matrix

𝐿𝑟(𝑖, 𝑗)
Number of local data blocks of 𝑚𝑖𝑗 in

the first task matrix, equal to 𝐿𝑖,𝑗
1

𝐺𝑖𝑗
𝑘

Number of in-rack data blocks of 𝑚𝑖𝑗 in

the k-th task matrix

𝐺𝑟(𝑖, 𝑗)
Number of in-rack data blocks of 𝑚𝑖𝑗 in

the first task matrix, equal to 𝐺𝑖,𝑗
1

𝑅𝑖𝑗
𝑘

Number of remote data blocks of 𝑚𝑖𝑗 in

the k-th task matrix

𝑅𝑟(𝑖, 𝑗)
Number of remote data blocks of 𝑚𝑖𝑗 in

the first task matrix, equal to 𝑅𝑖,𝑗
1

𝑉𝑖
The mean of block size in node of the i-

rack originally

𝑉
The mean of block size of nodes among

racks

𝛼 ∶ 𝛽 ∶ 𝛾
I/O speed ratio of accessing local, in-

rack, and remote data

Definition 2. Task Matrix: The task matrix 𝑆 =

[𝑠𝑖𝑗]𝑝×𝑞 represents the distribution of a job’s data

block in the cluster. Each element in task matrix 𝑠𝑖𝑗 re-

presents the data size of the task on the j-th (1 ≤ 𝑗 < 𝑞)

node of the i-th (1 ≤ 𝑖 < 𝑝) rack. The data size is

represented by the number of local, in-rack and remote

data blocks, denoted by 𝑠𝑖𝑗 =< 𝐿𝑖𝑗 , 𝐺𝑖𝑗 , 𝑅𝑖𝑗 >. 𝑠𝑖𝑗 is

null if there is no such node in that rack.

𝑆0 is the initial task matrix in which all 𝐺𝑖𝑗 = 𝑅𝑖𝑗 =

0 and tasks process their local data only. Take matrix

(1) as an example. There are 4 racks and 13 nodes in

the cluster and each task only processes its local data.

The element 𝑠11 means that there are 5 data blocks on

the first data node in the first rack. The fourth row

means that there are 2 nodes in the fourth rack.

J. Song, S. Xu, L. Zhang, C. Pahl, G. Yu

34

𝑠0 = [

< 5,0,0 > < 6,0,0 > < 7,0,0 > < 8,0,0 >
< 3,0,0 > < 4,0,0 > < 5,0,0 > 𝑛𝑢𝑙𝑙
< 5,0,0 >
< 2,0,0 >

< 5,0,0 >
< 3,0,0 >

< 5,0,0 > < 5,0,0 >
𝑛𝑢𝑙𝑙 𝑛𝑢𝑙𝑙

] (1)

The task matrix should be implemented as a jagged

array because racks contain different numbers of nodes.

To simplify the model and algorithm description, we

assume that there are 𝑞 racks and 𝑝 nodes in each rack.

However, our approach is also suitable for a jagged task

matrix.

Definition 3. Parallelism: The parallelism Δ of the map

phase is evaluated as the total difference between the

maximum execution time of the task and that of the

others, meaning how long the other tasks are waiting

for the slowest one. This can also represent the wasted

energy. Let 𝑚𝑝𝑞 be the slowest task, then parallelism is

defined as in equation (2), with Δ ∈ (0, 1].

Δ−1 = 1 +∑ (𝑡𝑝𝑞 − 𝑡𝑖𝑗)
𝑝,𝑞

𝑖=1,𝑗=1
 (2)

Definition 4. Single-Task Distribution: Single-task

distribution is a process of dividing a job into tasks and

distributing tasks to the nodes after the job is submitted.

One node has one and only one task, and all data blocks

are assigned to tasks to ensure the maximum

parallelism.

If we execute Terasort with 𝑆0, the parallelism of

the mappers is related to the data placement on nodes.

A balanced data distribution across nodes will lead to a

higher parallelism, while the worst situation is that the

slowest node processes the maximum data and other

nodes remain idle until it has completed. In big data

environments, it is difficult to ensure parallelism

through the pre-defined and balanced data placement.

In single-task distribution we assume that the cluster is

homogeneous. Thus, the performance of the map task

is only related to the number of data blocks it processes

and whether these blocks are local, in-rack or remote

data blocks.

The single-task distribution algorithm transforms

𝑆0 to 𝑆1 on the assumption that the performance of

each node is equal. It is easy to prove that if ∀𝑠𝑖𝑗 and

𝑠𝑎𝑏 ∈ 𝑆, 𝛼𝐿𝑖𝑗 + 𝛽𝐺𝑖𝑗 + 𝛾𝑅𝑖𝑗 = 𝛼𝐿𝑎𝑏 + 𝛽𝐺𝑎𝑏 + 𝛾𝑅𝑎𝑏,

then parallelism is maximal. However, the performance

of each node varies and is unknown before it is

executed. During the execution, to improve the

parallelism, 𝑆1 will be transformed to 𝑆2 , 𝑆3 and 𝑆𝑘

through the task self-resizing algorithm. The definition

of self-resizing is given below.

Definition 5. Task self-resizing: Task self-resizing is

an algorithm invoked by a task when it completes

earlier than others, in order to adjust its size dynami-

cally according to the current task matrix. The task size

is presented as the size and location of the data that the

task should process.

Task self-resizing is an effective algorithm to maxi-

mize the parallelism among mappers. Each time the

task self-resizing algorithm is invoked, 𝑆𝑘 will be tran-

sformed to 𝑆𝑘+1 correspondingly (𝑘 = 0, 1, 2, 3…). In

every transformation, 𝐿𝑖𝑗
𝑘 , 𝐺𝑖𝑗

𝑘 , 𝑅𝑖𝑗
𝑘 are adjusted,

and based on 𝑆𝑘 , 𝑆𝑘+1 satisfies Δ𝑘 < Δ𝑘+1 and

∑ (𝐿𝑖𝑗
𝑘+1 + 𝐺𝑖𝑗

𝑘+1 + 𝑅𝑖𝑗
𝑘+1)

𝑝,𝑞

𝑖=1,𝑗=1
=∑ (𝐿𝑖𝑗

𝑘 +
𝑝,𝑞

𝑖=1,𝑗=1

𝐺𝑖𝑗
𝑘 + 𝑅𝑖𝑗

𝑘).

The goal of self-resizing is to make the execution

time of each task approximately equal. Therefore, we

need to consider the regularity of the execution time of

a task. It depends on the node’s performance, the num-

ber of data blocks, the blocks’ location and the task

(algorithm) complexity. In addition, the node’s perfor-

mance is a constant and the data block size and location

are adjusted by the self-resizing algorithm. The task

complexity varies because of varying functionalities.

The complexity of a mapper may change with the

characteristics of input data, which results in more

difficulty to define the execution-time function of a

task. Fortunately, because of the specifics of Terasort,

there is only one query of a trie in a map task, and the

time complexity of this query depends only on the

height of the tree, which is constant. Consequently, the

time complexity O(M) is unchanged for any data, and

we can define the execution time 𝑡𝑖𝑗 of task 𝑚𝑖𝑗 as

𝑡𝑖𝑗 = ε𝑖𝑗 × (α𝐿𝑖𝑗 + β𝐺𝑖𝑗 + γ𝑅𝑖𝑗) (3)

Equation (3) is an expression of the time consump-

tion of task 𝑚𝑖𝑗 running on 𝑛𝑖𝑗, which is the j-th node

in the i-th rack. 𝛼 ∶ 𝛽 ∶ 𝛾 denotes the I/O speed ratio of

accessing local, in-rack or remote data. 𝜀𝑖𝑗 is a

performance constant defined by multiplying node

performance and task complexity. Equation (4) defines

𝑡𝑖 as the execution time of tasks in the i-th rack and t as

the execution time of all tasks.

ij

q

j
i tt

1
max

 i

p

i
tt

1
max

 (4)

In Terasort, whether it is multiple-task distribution

or single-task distribution, the results of the mappers

are unchanged. Similarly, the task self-resizing does not

cause the output errors. According to equation (4), the

time consumption of the map phase is equal to the time

consumption of the slowest mapper, so we can accele-

rate the slowest task and optimize both time and energy

consumption of Terasort in the map phase. Moreover,

in a MapReduce cluster, due to hardware and network

problems, a task failure is treated as a normal phenome-

non. When a task fails, single-task distribution causes

the loss of the corresponding results, requiring the

task’s re-distribution. If the size of new task and the

aborted one are the same, then in the most cases, the

new task would not catch up with the other tasks

because of its delay. Therefore, there is no guarantee of

fault tolerance because the execution time of the map

phase depends on the execution time of the last aborted

and restarted task. As this is time-consuming, task

resizing needs to be adapted to task failures.

The resizing algorithm supports the fault tolerant

mechanism in a low-cost way. In general, fault toleran-

Performance and Energy Optimization of the Terasort Algorithm by Task Self-Resizing

35

ce can be implemented by recovery or replication me-

chanisms. A traditional Terasort adopts the replication

mechanism provided by MapReduce framework. It

starts a larger number of redundant tasks and if there is

one task completed, its replicates are abandoned. The

replication mechanism is simple, but it wastes resour-

ces and affects performance. The MapReduce frame-

work cannot adopt the recovery mechanism because the

mechanism needs set up checkpoints for each task and

replicate the necessary intermediate results as a backup.

For the traditional Terasort, it is equally difficult. On

the one hand, there are too many tasks to afford setting

a check-point one by one; on the other hand, it is also

costly to remotely backup the task’s intermediate out-

puts which are stored locally. However, the single-task

distribution approach makes the recovery mechanism

possible. In Terasort, the mapper then adds to each data

a tag with its domain and sends it to the corresponding

reducer. The number of reducers is certain, so the

mapper does not write intermediate results to the local

disk, but to the remote disk of the reducer directly [5].

This technology has been presented in [10]. Based on

this, we do not need to backup intermediate results, and

what we need to record are only the data blocks which

have been processed. When a task fails, some appro-

priate adjustments in task resizing are made to other

running tasks, rather than starting a new task. The

resizing algorithm is described in detail in the next

section.

3.2. Algorithms

From the previous section we know that there is one

and only one map task on each node. The size of a map

task is the number of data blocks it should process,

where the data blocks could be local, in-rack or remote.

The goal of the single-task distribution and task self-

resizing algorithms is maximizing the parallelism in the

map phase by changing the task size itself before it is

complete.

The single-task distribution algorithm calculates 𝑆1

according to 𝑆0 by re-distributing data blocks to each

task fairly. The basic idea is as follows: firstly, we

adjust the data blocks of tasks rack-by-rack to make

sure that tasks in the same rack are completed at the

same time, and then we carry out the same operation

across the racks by treating racks as tasks (nodes) in the

same rack.

A row of the task matrix stands for tasks running in

the same rack. ∀𝑖 ∈ [1, 𝑝], we consider tasks from 𝑚𝑖1
0

to 𝑚𝑖𝑞
0 . They are sorted according to their size

increasingly. Without loss of generality, let 𝑚𝑖1
0 contain

the fewest data blocks and 𝑚𝑖𝑞
0 contains the most data

blocks, i.e., 𝐿𝑖1
0 = min (𝐿𝑖1

0 , 𝐿𝑖2
0 …𝐿𝑖𝑞

0) , 𝐿𝑖𝑞
0 =

max (𝐿𝑖1
0 , 𝐿𝑖2

0 …𝐿𝑖𝑞
0) and 𝑉𝑖 =

1

𝑞
∑ 𝐿𝑖1

0𝑞

𝑗=1
. If there are k

tasks whose blocks are fewer than those of 𝑉𝑖, then 𝑚𝑖1
0

to 𝑚𝑖𝑘
0 can be treated as a virtual task 𝑚𝑖𝑤

0 , and the

others can be treated as a virtual task 𝑚𝑖𝑣
0 which has

𝐿𝑖𝑤
0 and 𝐿𝑖𝑣

0 local data blocks respectively, i.e., 𝐿𝑖𝑤
0 =

∑ 𝐿𝑖𝑗
0

𝑘

𝑗=1
 , 𝐿𝑖𝑣

0 =∑ 𝐿𝑖𝑗
0

𝑞

𝑗=𝑘+1
 . Thus, the task

distribution problem in the i-th rack can be changed to

"how many data blocks of 𝑚𝑖𝑣
0 should be moved to 𝑚𝑖𝑤

0

to ensure two virtual tasks can be completed

simultaneously". Let 𝑚𝑖𝑤
0 process 𝑥 data blocks of

𝑚𝑖𝑣
0 . Then, we obtain equation (5):

0,
)(

)(
,

)(
0,

,

1
00

01

00
101

00

1111

101

101

iv
iwiv

iviv

iwiv
iwiwiw

iwiv

iviviwiw

iviviv

iwiwiw

G
LL

LL

LL
GLL

LL
x

GLGL

GxLL

xGLL

 (5)

To ensure the parallelism of inner tasks in virtual

tasks 𝑚𝑖𝑤
0 and 𝑚𝑖𝑣

0 , ∀𝑔 ∈ [1, 𝑘] 𝑚𝑖𝑔
0 gets

𝑉𝑖−𝐿𝑖𝑔
0

∑ (𝑉𝑖−𝐿𝑖𝑗
0)

𝑘

𝑗=1

× 𝑥 from 𝑚𝑖𝑣
0 proportionally. ∀𝑢 ∈ [𝑘 +

1, 𝑞] 𝑚𝑖𝑢
0 provides

𝐿𝑖𝑢
0 −𝑉𝑖

∑ (𝐿𝑖𝑗
0 −𝑉𝑖)

𝑞

𝑗=𝑘+1

× 𝑥 data blocks to

𝑚𝑖𝑤
0 . Regularly, the task order for receiving blocks is

from 𝑚𝑖1
0 to 𝑚𝑖𝑘

0 , and the task order for providing

blocks is from 𝑚𝑖𝑞
0 to 𝑚𝑖𝑘+1

0 . Thus, it is ensured that

𝑚𝑖1
0 gets more blocks, 𝑚𝑖𝑞

0 gives more blocks, which is

consistent with the actual situation. To summarize:

𝐿𝑖𝑔
1 = 𝐿𝑟(𝑖, 𝑔)

𝐿𝑟(𝑖, 𝑔) = {

𝐿𝑖𝑔
0 (𝑔 ≤ 𝑘)

𝐿𝑖𝑔
0 −

𝐿𝑖𝑔
0 −𝑉𝑖

∑ (𝐿𝑖𝑗
0 −𝑉𝑖)

𝑞

𝑗=𝑘+1

× 𝑥 (𝑔 > 𝑘)(6)

𝐶𝑖𝑔
1 = 𝐺𝑟(𝑖, 𝑔) =

{

 𝑉𝑖 − 𝐿𝑖𝑔

0

∑ (𝑉𝑖 − 𝐿𝑖𝑗
0)

𝑘

𝑗=1

(𝑔 ≤ 𝑘)

0 (𝑔 > 𝑘)

𝑅𝑖𝑔
1 = 𝑅𝑟(𝑖, 𝑔) = 0

Through equation (6), the parallelism of tasks in

each rack is ensured, but the workload among racks

is still unbalanced. Here, we treat tasks in the same

rack as a virtual task, and then the problem of

"parallelism of racks" is changed to the problem of

"parallelism of tasks in the same rack", so that the

operations defined in equation (6) are also suitable

for these virtual tasks.

The rack that has fewer local data blocks in 𝑆0 is

assigned some local data blocks from other racks as

remote data blocks. Let 𝑉 =
1

𝑝
∑ 𝐿𝑟(𝑖, 𝑗)

𝑝,𝑞

𝑖=1,𝑗=1
 be the

average number of data blocks in a rack. Here, we still

assume that there are c racks whose total data blocks

are less than 𝑉. Then, these racks can be treated as a

virtual task 𝑚𝑤
0 and the other racks be treated as a

virtual task 𝑚𝑣
0 . They have 𝐿𝑤

0 and 𝐿𝑣
0 local data

 blocks, respectively, 𝐿𝑤
0 =∑ 𝐿𝑟(𝑘, 𝑗)

𝑐,𝑞

𝑘=1,𝑗=1
 , 𝐿𝑣

0 =

J. Song, S. Xu, L. Zhang, C. Pahl, G. Yu

36

∑ 𝐿𝑟(𝑘, 𝑗)
𝑝,𝑞

𝑘=𝑐+1,𝑗=1
. By the same approach, we can

calculate how many data blocks are assigned to a rack

as remote blocks, and how many data blocks a task in

the rack provide proportionally, and how many remote

data blocks a task in the rack receive proportionally.

The deduction is abbreviated here, and for ∀ℎ ∈ [1, 𝑝],
∀𝑔 ∈ [1, 𝑞], 𝑆1 is given as in equation (7):

𝐿𝑤
0 = ∑ 𝐿𝑟(𝑘, 𝑗)

𝑐,𝑞

𝑘=1,𝑗=1
, 𝐿𝑣

0 = ∑ 𝐿𝑟(𝑘, 𝑗)
𝑝,𝑞

𝑘=𝑐+1,𝑗=1

𝐺𝑤
0 = ∑ 𝐺𝑟(𝑘, 𝑗)

𝑐,𝑞

𝑘=1,𝑗=1
, 𝐺𝑣

0 = ∑ 𝐺𝑟(𝑘, 𝑗)
𝑝,𝑞

𝑘=𝑐+1,𝑗=1

𝑥 =
𝛼×(𝐿𝑣

0−𝐿𝑤
0)+𝛽×(𝐺𝑣

0−𝐺𝑤
0)

𝛼+𝛾

𝐿ℎ𝑔
1 = {

𝐿𝑟(ℎ, 𝑔) (ℎ ≤ 𝑐)

𝐿𝑟(ℎ, 𝑔) −
(𝐿𝑟(ℎ,𝑔)−𝑉)×𝑥

∑ (∑ 𝐿𝑟(𝑘,𝑗)−𝑉
𝑞
𝑗=1

)
𝑝

𝑘=𝑐+1

(ℎ > 𝑐)

𝐺ℎ𝑔
1 = 𝐺𝑟(ℎ, 𝑔)

𝑅ℎ𝑔
1 = {

𝑉−𝐿𝑟(ℎ,𝑔)

∑ (𝑉−∑ 𝐿𝑟(𝑘,𝑗)
𝑞
𝑗=1

)
𝑐

𝑘=1

× 𝑥 (ℎ ≤ 𝑐)

0 (ℎ > 𝑐)

 (7)

Single-task distribution transforms 𝑆0 to 𝑆1 , and

then 𝑆1 is distributed to each node and referred to by

the self-resizing algorithm. After single-task distribu-

tion, all tasks finish at the same time if the nodes are

homogeneous. However, the nodes are normally hete-

rogeneous. To ensure parallelism, we need a self-

resizing algorithm to adjust the data blocks of the faster

tasks. A self-resizing algorithm is invoked by the task

itself when all its data blocks in 𝑆1 have been

processed, and it transforms 𝑆1 to 𝑆2 by snatching one

more data block from other tasks, and then 𝑆2 to 𝑆3

analogously. After k times self-resizing, all tasks are

completed at 𝑆𝑘 . The basic ideas of the selfresizing

algorithm are the following: each task processes local

data blocks preferentially; the faster tasks process as

many remote data blocks as possible, or process the in-

rack data blocks if there is not a remote one available.

The slower tasks process as many local data blocks as

possible. With this approach, we minimize the possibi-

lity that all the other tasks wait for the slowest task to

process the last unprocessed remote data block.

In Terasort, the speed of a map task is unrelated to

the data features it processes, so theoretically all tasks

complete simultaneously, otherwise a task completes

earlier if it is running on a higher-performance node, at

which time this task should snatch a data block from a

slower task. The rules of snatching are as follows:

(1) If task i has some local data blocks which are

assigned to other tasks in 𝑆0 , then these data blocks

should be snatched first and processed locally;

(2) Task i randomly snatches a remote data block

from another in-rack task j if possible. Remote data

blocks of task j are also remote data blocks of task i

because tasks i and j are in the same rack.

(3) If there is no further remote data block in the in-

rack tasks, task i randomly snatches a remote data block

from another remote task j if possible. Here, the remote

data block of j is from one of the tasks that are in the

same rack as task i, i.e., it is an in-rack data block for

task i.

(4) If there is no further in-rack data block that has

been assigned to out-rack tasks, task i randomly

snatches a remote data block from another remote task

j if possible. This data block is also a remote data block

of task i.

(5) If there is no task containing a remote data

block, task i randomly snatches an in-rack data block

from any other in-rack task.

(6) If there is no in-rack task containing an in-rack

data block, task i randomly snatches an in-rack data

block from any other remote task.

(7) If there is no remote task containing an in-rack

data block, task i randomly snatches a local data block

of any other in-rack task.

(8) If there is no in-rack task containing any

unprocessed data block, task i randomly snatches a

local data block from any other remote task, until all

tasks are complete.

Figure 3. An example of the data processing steps in the

map phase. There are one step of single-task distribution

and four steps of self-resizing. The small boxes refer

to data blocks. It can be distinguished whether a data

block is local, in-rack or remote from its id. A shadow

boxed (or part of box) means that the data block

has been processed

Fig. 3 shows how the self-resizing algorithm works.

For simplicity, we assume that there are two racks in

the cluster, each rack has two nodes, and the I/O speed

Performance and Energy Optimization of the Terasort Algorithm by Task Self-Resizing

37

ratio of local data, in-rack data and remote data is 1:1:2.

After the single-task distribution, the initial task matrix

is 𝑆1, and four self-resizing steps are shown in Fig. 3.

In Fig. 3, each row represents a task matrix of mappers

when the proposed algorithms are executed. After the

single-task distribution, 𝑆0 has changed to 𝑆1, block 𝑎3

was moved to node 𝑑, while 𝑏6 and 𝑏7 were distributed

to node 𝑎, and 𝑏5, 𝑑4 and 𝑑5 were distributed to node

𝑐. Then, after task 𝑎 completed, the node 𝑎 found block

𝑎3 and snatched it according to the first rule of the

selfresizing algorithm. Before all the tasks were

complete, each step satisfied the self-resizing

algorithm. Noticing that tasks 𝑎 and 𝑏 were faster than

tasks 𝑐 and 𝑑, nodes 𝑎 and 𝑏 contain more data blocks

than nodes 𝑐 and 𝑑.

The self-resizing algorithm ensures that the

possibility of processing remote data blocks by faster

asks is higher than that for slower tasks. It improves

both the performance and parallelism of Terasort.

4. Experiments

We built a Hadoop MapReduce cluster with 12

computers and compared the performance and energy

consumption between the original Terasort and the

optimized Terasort. Details of the testbed are shown in

Table 2.

Table 2. Description of the testbed

Iterms Description

Node

1 master node and 11 slave nodes.

Homogeneous computers. Intel Core i5-

2300 2.80GHz, 8GB memory, 1TB hard

disk, onboard video, audio and network

card. 1000Mb network.

Operating

System
CentOS 5.6, Linux 2.6.18 Kernel

MapReduce

Platform
Hadoop 1.0.4

Energy

Consumption

Measuring

approach

PowerBay power-meter

(http://www.northmeter.com/index-

en.html), power precision ±0.01 0.1W,

maximum 2200W, measurement frequency

1.5-3 second. Obey specification

GB/T17215-2003. In addition, to avoid

accidental error, the experiments are

performed 10 times, and the results shown

below are the mean values.

System

Information

Collecting

Tool

SAR

Test cases

Test cases with different data size run under

the original Terasort [11] and the optimized

Terasort, and data are randomly distributed

on the nodes.

Case A: 3 GB per node

Case B: 5 GB per node

Case C: 10 GB per node

As shown in Fig. 4, the total time consumption of

sorting the same data size by the original and optimized

Terasort is different. The optimization effects are also

different across the different cases. In case A, the

optimized efficiency (the ratio between reduced value

and original value) of time consumption and that of

energy consumption are 6.32% and 9.42%, respec-

tively. In case B they rise to 8.62% and 13.27%,

respectively. In case C they continuously rise to 11.96%

and 15.90%, respectively. The optimized Terasort sorts

faster than the original one, and also consumes less

energy. The original Terasort also considers the

different processing capacities of different nodes, but

does not consider the consumption of time and energy

during scheduling and node idleness. Consequently, the

optimized Terasort gains better performance and energy

efficiency. The optimization is more obvious when

more data are involved.

From the optimized efficiency (black line) in Fig. 4,

we know that there is a positive linear correlation

between the superiority of the optimized Terasort and

the data size. This means that when sorting really big

data sets, the optimization effect of time and energy

consumption is more obvious. Our testbed is a

homogeneous cluster. However, the optimization effect

of the proposed approach is more significant in a

heterogeneous cluster because in a heterogeneous

cluster, the self-resizing algorithm adjusts the number

of data blocks, while the original MapReduce adjusts

the number of tasks (splits). Obviously, the former has

a finer adjusting granularity.

Figure 4. Comparison between time consumption and

energy consumption of the original and optimized TeraSort

by sorting different data sizes, and the optimized efficiency,

which is the ratio between reduced value and original value

http://www.northmeter.com/index-en.html
http://www.northmeter.com/index-en.html

J. Song, S. Xu, L. Zhang, C. Pahl, G. Yu

38

From Fig. 4, we can see that time consumption is

positively related to energy consumption. It can be

concluded that in a MapReduce Terasort, performance

improvement is in accordance with the energy

consumption optimization. There are two main

opinions about the relationship between performance

and energy consumption of a distributed application.

On the one hand, it is generally believed that when

more nodes are involved, jobs are executed faster while

more energy is consumed. On the other hand, the

waiting time is reduced so that both performance and

energy consumption are optimized. For example, nodes

are idle while waiting for the scheduled tasks, or the

CPU is idle while waiting for I/O operations. These

negatively affect both performance and energy

efficiency. Our experiment proves the latter in Terasort.

Moreover, the experimental results prove that the mean

of the improved time consumption is 9%, while the

mean of the improved energy consumption is 12%.

Generally, multiplying time and power is energy

consumption. Even if we assume power to be almost

constant, the energy consumption is still optimized as a

consequence of the reduction in time consumption

(optimization by 9%).

To prove that minimizing the scheduling time and

waiting time of a reducer is the main reason of optimi-

zation, we designed two additional experiments. The

first one logs the execution time of each mapper and

calculates Δ (see Definition 3) of the original Terasort

and the optimized Terasort. The parallelism Δ of the

optimized Terasort is 4.31 times larger than that of the

original one in case 𝐶 , proving that the optimized

Terasort has better parallelism. In the second experi-

ment, we executed the original Terasort and the optimi-

zed Terasort on a single node. In that situation, there is

no reducer waiting for mappers, so the optimization is

the result of saving the task scheduling time.

The results shown in Fig. 5 are in accordance with

those shown in Fig. 4. The total time taken by sorting

the same data size under two kinds of Terasort is

different. The optimization effects are also different

among the different cases. In case 𝐴, due to the small

dataset, the optimization is not significant, but for case

𝐵, the optimized efficiency is as significant as 18.52%

and for case 𝐶 the optimized efficiency is stable at

19.75%. Moreover, the optimized efficiency is better

than that in Fig. 4 because in the original Terasort, the

node is both JobTracker and Task-Tracker, so the

scheduling cost is much higher than that of the

optimized Terasort.

In conclusion, we have proven that the optimized

Terasort reduces the time and energy consumption

caused by the scheduling and node waiting. That is to

say, compared with the original one, the single-task

distribution and self-resizing algorithms improve the

performance and reduce the energy consumption of

Terasort.

5. Applications

The proposed approach can be applied not only

in Terasort, but also in many other applications whose

task complexity is only related to the data size, but not

data distribution or other features. Terasort has two

important operations, one is sampling and building the

trie tree, the other one is marking records. Their

performance only depends on the data mount. Besides

Terasort, there are also many MapReduce applications

with these characteristics. Taking Join and PageRank

algorithms as examples, the mappers read and parse all

inputs and send them to reducers. In general

MapReduce applications, the data size is main effect of

performance, but not data distribution, especially in the

big data environment. Thus, the proposed approach has

a wide applicability.

The proposed approach could be applied in any

master-slave based distributed environment, in which

computations are moved to the data side. For example,

in Yarn, although it divides the JobTracker into

ApplicationMaster and ResourceMaster to decrease the

burden of the JobTracker, the scheduling algorithm

also causes the non-ignorable lack of performance and

waste of energy. Improving parallelism is a general

requirement of parallel computing. The proposed

algorithm also contributes to the parallelism guarantee

of other parallel computing systems.

Figure 5. Time consumption of the original and the

optimized Terasort, and the optimized efficiency. The

environment in the experiment is a single node ’cluster’,

which means that there is only one mapper and one reducer,

Δ = 1, i.e., the reducer will not wait for the mapper

6. Related Work

Most of the work on sorting algorithm optimization

does not focus on MapReduce. For example, Bunse et

al. [12] use standard sorting algorithms to improve the

energy efficiency of data sorting. Beckmann et al. [13]

propose an approach using solid state disks to advance

the energy efficiency of sorting algorithms. Thus, our

approach is different from the traditional sorting

optimization. We focus on the MapReduce framework,

and optimize both time consumption and energy

consumption. We believe that node waiting in Terasort

is a weakness, and there is limited work that optimizes

Performance and Energy Optimization of the Terasort Algorithm by Task Self-Resizing

39

Terasort or other MapReduce applications from this

perspective.

Nowadays, improving performance and reducing

energy consumption are the two trends of MapReduce

optimization in big data environments. Generally, there

are two research directions, the one is performance and

energy consumption optimization from the job and task

perspective, and the other one is data processing

optimization from the scheduling perspective.

For example, He [14], Zhou [15] and Babu [16]

focus on performance optimization. He [14] divides a

job into several small jobs, and when one job is

complete, all its related data are deleted in order to

reduce the size of intermediate data saved on the local

disk in a reasonable level. However, we would get a

wrong order if the input is divided in the sort algorithm.

Zhou [15] adopts a < 𝑘𝑒𝑦1, 𝑘𝑒𝑦2, 𝑣𝑎𝑙𝑢𝑒 > triple

instead of a < 𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒 > pair and adds a key-value

routing strategy to improve the efficiency of

MapReduce. However, the mapper is required to send

the < 𝑘𝑒𝑦1, 𝑘𝑒𝑦2, 𝑣𝑎𝑙𝑢𝑒 > triples to the JobTracker,

which increases the burden of the master node. Babu

[16] adjusts the MapReduce parameters to implement

automatic optimization, but it is difficult to determine

the highly-impact parameters with additional

operations, which means that time and energy are

wasted.

Meanwhile, many papers [17-20] focus on reducing

the energy consumption. Wirtz and Ge[17] consider

how MapReduce efficiency changes with two runtime

configurations: resource allocation that changes the

number of available concurrent tasks and DVFS

(Dynamic Voltage and Frequency Scaling) that adjusts

the processor frequency according to the workloads.

Wirtz [18] proposes a centric data movement approach

and present an analytical framework with methods and

metrics for evaluating costly built-in data movements

in MapReduce. Chen [19] considers that interactive

jobs operate on a small fraction of the data and, thus,

can be served by a small pool of dedicated machines.

The less time-sensitive jobs can run on the rest of the

cluster in a batch fashion. Lang and Patel [20] focus on

developing a framework for systematically considering

various MapReduce node power-down strategies and

their impact on the overall energy consumption and

workload response time. However, this research

focuses on resource allocation and task scheduling (see

next paragraph). In our approach, we adopt a task self-

tuning strategy. We adjust the size of multiple tasks

dynamically, which makes our approach different from

existing work.

Other works adjust the task execution by optimizing

the scheduling algorithm. These works follow two main

ideas. One is to adjust the running order of multiple

tasks. For example, FIFO is the default scheduling

algorithm in Hadoop MapReduce, while Facebook and

Yahoo engineers put forward new scheduling algo-

rithms called Fair Scheduling [21] and Capacity

Scheduling [22]. The two have been widely recognized

and are adopted in practice. The other one is the

optimization by task allocation, which determines

where the task is distributed and how much resources

should be allocated to the task. Wang [23] proposes a

task scheduling model using an effective genetic

algorithm with practical encoding and decoding

methods and specially designed genetic operators.

Yong [24] proposes a dynamic slot mechanism to save

energy and improve performance. However, an

experimental verification is lacking here. Zhou [25]

proposes an energy-efficient scheduling policy, called

green scheduling, which relaxes fairness slightly to

create as many opportunities as possible for

overlapping resource complementary tasks. Here, a

quantitative analysis is also lacking. Our scheduling

approach is different from these, as it places an

emphasis on the task size and highlights the reduction

of nodes waiting times, ensuring data locality and

parallelism. Our approach is designed for Terasort and

other applications whose tasks have fixed time-

complexity and data-size-determined performance.

7. Conclusions and Future work

This paper proposes a single-task distribution and a

task self-resizing algorithm to reduce execution time

and energy consumption of Terasort. In contrast to

other task scheduling approaches, we focus on

minimizing the time of mappers waiting for a task and

the time of reducers waiting for the mappers’ outputs.

In the experiments, we compared our improved

Terasort and the original one. The results show that with

our algorithms the execution time and energy

consumption of Terasort are reduced.

Two conclusions can be drawn from our work. The

first is that time and energy are wasted in M n

MapReduce applications because of nodes waiting for

inputs. This problem was solved by adopting coarsely

granular tasks. The second is that the performance and

energy consumption of MapReduce applications is

closely related to the parallelism among nodes.

Parallelism could have been ensured by adopting finely

granular tasks, which is however inconsistent with the

first issue. Thus, another, adopted option is adjusting

the size of tasks dynamically to maximize parallelism.

Our future work will focus on how to adapt the

single-task distribution and task self-resizing algo-

rithms to other MapReduce applications. We will

furthermore consider the parallelism of reducers.

Acknowledgements

This research was funded by a grant (No. 61202088,

61173028, 61433008) from the National Natural

Science Foundation of China, and a grant (No.

N110417002) from the Fundamental Research Funds

for the Central Universities of China, and a grant

(No.2013M540232) from the Research Funds of China

Postdoc, and the a grant (No.201403314) from the

Science Foundation of Liaoning Provence.

J. Song, S. Xu, L. Zhang, C. Pahl, G. Yu

40

References

[1] C. Lei, L. Luo, W. Wu. Cloud computing based cluster

energy monitoring and energy saving method study.

Computer Applications and Software, 2011, Vol. 28,

239–242.

[2] J. Koomey. Growth in data center electricity use 2005

to 2010. Technical report, Oakland, Analytics Press,

CA, 2011.

[3] V. Estivill-Castro, D. Wood. A survey of adaptive

sorting algorithms. ACM Computing Surveys, 1992,

Vol. 24, 441–476.

[4] M. Ajtai, J. Komlós, E. Szemerédi. An O(n log n)

sorting network. In: Proceedings of the 15th Annual

ACM Symposium on Theory of Computing, New York,

USA, 1983, pp. 1–9.

[5] Owen O’Malley. Terabyte sort on apache hadoop.

Technical report, Yahoo, 2008.

[6] Sort benchmark. http://sortbenchmark.org.

[7] Owen O’Malley. Winning a 60 Second Dash with a

Yellow Elephant. Technical report, Yahoo, 2009.

[8] Trie. http://en.wikipedia.org/wiki/Trie.

[9] Black, E. Paul. Trie, dictionary of Algorithms and Data

Structures. Technical report, National Institute of

Standards and Technology, USA, 2010.

[10] W. Zhang, C. Jie, Y. Wang. MapReduce programing

framework operation method based on pipeline commu-

nication. Patent, http://www.google.com/patents/CN10

1996079A.

[11] Hadoop Terasort Example. http://hadoop.apache.org/

docs/current/api/org/apache/hadoop/examples/terasort/

package-summary.html.

[12] C. Bunse, H. Höpfner, S. Roychoudhury,

E. Mansour. Energy efficient data sorting using

standard sorting algorithms. Software and Data

Technologies, 2011, Vol. 50, 247–260.

[13] A. Beckmann, U. Meyer, P. Sanders, J. Singler.
Energy-efficient sorting using solid state disks. Sustain-

able Computing: Informatics and Systems, 2011, Vol. 1,

No. 2, 151–163.

[14] R. He. The performance Optimization and Improve-

ment of MapReduce in Hadoop. Unpublished.

[15] F. Zhou. An improved MapReduce parallel programing

model. Science & Technology Association Forum,

2009, Vol. 2, 65–66.

[16] S. Babu. Towards automatic optimization of

MapReduce programs. In: Proceedings of the 1st ACM

symposium on Cloud computing, New York, USA, 2010,

pp. 137–142.

[17] T. Wirtz, R. Ge. Improving MapReduce energy effi-

ciency for computation intensive workloads. In: Pro-

ceedings of Green Computing Conference and Work-

shops, Orlando, FL, 2011, pp. 1–8.

[18] T. Wirtz, R. Ge, Z. Zong, Z. Chen. Power and energy

characteristics of MapReduce data movements. In:

Proceedings of the 1st ACM symposium on Cloud

computing, Arlington, Virginia, 2011, pp. 1–8.

[19] Y. P Chen, S. Alspaugh, D. Borthakur, R. Katz.
Energy efficiency for large-scale MapReduce work-

loads with significant interactive analysis. In: Procee-

dings of the 7th ACM European conference on Compu-

ter Systems, Bern, Switzerland, 2012, pp. 43–56.

[20] W. Lang, J. M. Patel. Energy management for Map-

Reduce clusters. In: Proceedings of the VLDB En-

dowmen, 2010, Vol. 3, pp. 129–139.

[21] M. Isard, V. Prabhakaran, J. Currey, U. Wieder,

K. Talwar, A. Goldberg. Quiney: Fair scheduling for

distribured computing clusters. In: Proceedings of the

ACM SIGOPS 22nd symposium on Operating systems

principles, Big Sky, Montana, 2009, pp. 261–276.

[22] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elme-

leegy, S. Shenker, I. Stoica. Job Scheduling for Multi-

User MapReduce Clusters. EECS Department, Univer-

sity of California, Berkeley, 2009.

[23] X. Wang, Y. Wang, H. Zhu. Energy-efficient task

scheduling model based on MapReduce for cloud com-

puting using genetic algorithm. Journal of Computers,

2012, Vol. 7, No. 12, 2962–2970.

[24] M. Yong, N. Garegrat, S. Mohan. Towards a resource

aware scheduler in hadoop. In: Proceedings of the 2009

IEEE International Conference on Web Services, Los

Angeles, CA, USA, 2009, pp. 102–109.

[25] T. Zhu, C. Shu, H. Yu. Green scheduling: A scheduling

policy for improving the energy efficiency of fair sche-

duler. In: Proceedings of the 2011 IEEE International

Conference on Parallel and Distributed Computing,

Applications and Technologies, Tainan, Taiwan, 2011,

pp. 319–326.

Received November, 2013.

http://sortbenchmark.org/
http://en.wikipedia.org/wiki/Trie
http://www.google.com/patents/CN101996079A
http://www.google.com/patents/CN101996079A
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/examples/terasort/package-summary.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/examples/terasort/package-summary.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/examples/terasort/package-summary.html

