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Abstract. An automatic technique to improve the plantar surface model via Bezier networks is presented. This 

technique generates the foot sole model via Bezier networks based on surface points, which are retrieved via line 

projection. The surface model is defined by means of network weights and the control points, which are measured via 

line position by a Bezier network. Thus, the model represents the plantar surface with high accuracy. It is because the 

model passes through by all control points of the physical surface. Furthermore, the network reduces operations and 

memory size to calculate the surface. It is because the model is implemented with less mathematical terms than the 

traditional models. Also, the calibration of vision parameters is performed via laser line to avoid external calibration, 

which determines vision parameters outside of the vision system and increases the surface representation inaccuracy. 

Additionally, the shoe-last bottom is adjusted to plantar surface model. The viability of the proposed surface modeling 

is corroborated by an evaluation based on the speed, accuracy and memory size of the traditional surface models. Thus, 

the contribution of the proposed technique is elucidated. 

Keywords: Foot sole model; laser line projection; Bezier networks. 

 

1. Introduction 

Nowadays, the foot sole data plays an important 

role in the foot care, gait characteristics and footwear 

manufacture [1], [17], [26]. Thus, computational 

models have been implemented to represent the 

plantar surface [2]. In this field, algorithms have been 

implemented to construct the plantar surface model 

[3], [7]. This model provides data to perform the 

diagnoses of the gait characteristics and the body 

functionality [28]. The standard method that 

constructs the surface model is the non-uniform 

rational B-Splines (NURBS) [19]. This method 

consumes long time and huge memory to represent the 

plantar surface. It is because the model is generated by 

a great amount of terms [25]. Moreover, this model 

does not interpolate all surface points. Also, this 

method performs the surface measurement via 

external calibration, which increases 0.3 % the surface 

representation [29]. The same criterion is corroborated 

by the models generated via B-Splines and least 

squared. Therefore, the improvement of plantar 

surface model still represents a challenge task. To 

improve the plantar surface modeling, it is necessary 

to develop a model that interpolates all surface points 

by using small memory size in short time.  

The proposed technique constructs the plantar 

surface model via Bezier networks to improve the 

accuracy, speed and memory size of the traditional 

models. The surface measurement is performed by a 

Bezier network via line projection. Also, the vision 

parameters are calibrated inside of vision system via 

laser line to avoid physical measurements of external 

calibration. Thus, the surface points are measured with 

high accuracy to build the plantar surface model. This 

model is defined via network weights, which are 

computed by an equation system to interpolate all 

control points. Thus, the plantar surface is represented 

with high accuracy. Also, this model reduces 

operations and memory size to compute the surface. It 

is because the network is implemented with less 

mathematical terms than the traditional models. 

Additionally, the shoe-last bottom is adjusted to the 

plantar surface model. The viability of this model is 

elucidated by an evaluation based on model accuracy, 

representation accuracy, operations number and 

memory size of the traditional models. The paper 

describes the surface model in Section 2, the surface 

measurement in Section 3, the calibration in Section 4, 

the plantar surface modeling in Section 5 and the 

evaluation in Section 6. 
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2. Basic theory  

The proposed Bezier network constructs the plan-

tar surface model via control points P00, P01, P02,...., 

P33, which are shown in Fig.1 as a 4x4 surface 

segment. The positions of the points are depicted by 

(u00, v00), (u00, v01), (u00, v02),...., (u33, v33), respectively. 

Thus, the surface model is constructed by the next 

network 
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For this equation, Wij are the weights and 

Bi(u)Bj(v) are the Bezier functions [16]. Thus, the 

network given in Eq.(1) generates each model by the 

next equation  

S(u, v)=(1-u)3(1-v)3W00P00  +3(1-u)2u(1-v)3 

W10P10 +,…..,+u3(1-v)3W30P30+3(1-u)3(1-v)2 (2) 

vW01P01+,…..,+ 3u3(1-v)2vW31P31 +,….., 

+ u3v3 W33P33. 

This network provides continuity in the internal 

control point via Bezier continuity [20]. The conti-

nuity in the edge points is deduced based on the 

surfaces S(u,v) and Q(u,v), which are  shown in Fig.2. 

The continuity C0 is reached when S(1,v)=Q(0,v) 

for the interval 0 v 1. Based on Eq. (2), the 

continuity C0 is deduced by the next equation of 

common edge  
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This continuity is achieved by using the last points 

of S(u,v) as the first points of Q(u,v): P30=Q00, P31= 

Q01,  P32=Q02, P33=Q03. The continuity G1 is deduced 

based on the plane tangent to the surface via 

derivatives: S(u,v)/u and Q (u,v) /u. Thus, the 

continuity G1 is described by the next equation 
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Figure 1. Surface generated via Bezier network S(u,v)  

based on control points 
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Figure 2. Connection of the surfaces S(u,v)  

and Q(u,v) via G1 
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To achieve this continuity, a Bezier function 

B(u)B(v)Fi,j is added in Eq.(2) before the edge points. 

Thus, a network of fifth degree is obtained and its 

derivatives are S(u,v)/u=5P3j -5F3j  and Q(u,v)/u 

=5F0j -5Q0j. 

To satisfy Eq.(4), the values Q0j = F3j =  F0j = P3j 

are established. This means that F3j, Q0j=P3j and F0j 

are equally spaced in straight line and S(u,v)/u = 

Q(u,v)/u. Based on these continuity parameters, the 

following  network is obtained 

S(u,v)=(1+4u)(1-u)4[(1+4v)(1-v)4P00+ 

10(1-v)3vW01
2P01+ 10(1-v)2v3W02P02+(5-4v)v4P03] + 

10(1-u)3u2[(1+4v)(1-v)4W10P10+10(1-v)3v2W11 P11+ 

10(1-v)2v3W12P12+ (5-4v)v4W13P13]+ 

10(1-u)2u3[(1+4v)(1-v)4W20P20+10(1-v)3v2W21P21+ 

10 (1-v)2v3W22P22+ (5-4v)v4W23P23]+ 

(5-4u)u4[(1+4v)(1-v)4P30+10(1-v)3v2W31P31+ 

10(1-v)2v3W32P32+(5-4v)v4P33]. (5) 

Thus, the network of Eq.(5) preserves  continuity 

G1, which is enough to connect two surfaces in a good 

manner [21]. The interpolation is obtained via weights 

Wi,j. The weights W00=W30= W03= W33=1 are initially 

established. Then, the point S(u, v)=P10 and its 

position (u10=1/3, v10=0) are replaced  in Eq.(5) to 

obtain Eq.(6). Also, S(u,v)=P20  and (u,v)=(u20=2/3, 

v20=0) are replaced in Eq.(5) to obtain  Eq.(7):  

P10= (1+4u10)(1-u10)4P00+10(1-u10)3u10
2W10P10+ 

10(1-u10)2u10
3W20P20+(5-4u10)u10

4P30, (6) 

P20= (1+4u20)(1-u20)4P00+10(1-u20)3u20
2W10P10+ 

10(1-u20)2u20
3W20P20+(5-4u20)u20

4P30. (7) 

Solving these equations, W10 and W20 are obtained. 

In the same manner, W01 and W02 are computed by 

substituting the points {(u,v)=(u01=0, v01=1/3), S(u,v) 

= P01} and {(u,v)=(u02=0, v02=2/3)  and S(u, v)=P02} in 

Eq.(5). Also, this procedure calculates W1,3, W2,3, W31 

and W32. Then, the points {(u11=1/3, v11= 1/3), 
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S(u,v)=P11}, {(u21=2/3, v21=1/3), S(u,v)=P21}, {(u12= 

1/3, v12=2/3), S(u,v)=P12} and {(u22=2/3, v22= 2/3),  

S(u, v) = P22} are substituted in Eq.(5) to obtain the 

next equation system 
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For this equation system, R11 is obtained by the 

sum of terms of the right hand of Eq.(5) except the 

terms [10(1-v11)3v11
2W11P11+10(1-v11)2v11

3W12P12] + 

[10(1-v11)3v11
2W21P21 + 10(1-v11)2v11

3W22 P2,2]. In the 

same manner, R21, R12 and R22 are obtained by 

substituting (u=u21, v=v21), (u=u12, v=v12), and (u=u22, 

v=v22), in Eq.(5), respectively. By solving Eq.(8), W11, 

W21, W12, W22 are determined. Thus, the model has 

been completed by solving a 4x4 matrix and four 2x2 

matrices. The model accuracy is elucidated by 

computing surface points via position (u, v). For 

instance, the positions (u00, v00), (u10, v10), ,....., (u33, 

v33) are substituted in the network (5) and the results 

are P00, P10,....., P33, respectively. Thus, all control 

points have been interpolated. This means that the 

network passes through by all control points. Thus, the 

Bezier network (5) provides interpolation and 

preserves continuity. The model accuracy is calculated 

by means of relative error, which is computed by 

rms(%)=rms x100/hm. Here, rms is the root mean 

squared Eq.(17) and hm is the mean of the surface Pij. 

The surface representation accuracy is given by the 

sum of model error and measurement error. Thus, the 

surface shown in Fig.2 is represented with a relative 

error of 0.0017 %. The operations to compute the 

surface S(u,v) are deduced via network (5).  For 

instance, the term (1+4v)(1-v)4W10P10   is calculated 

by one sum, one rest and seven multiplications.  Thus, 

the sixteen terms of Eq.(5) are determined by 200 

operations: 160 multiplications, 20 sums and 20 rests. 

This model is defined by the terms W00P00, 

W01P01,…..,W33P33, and the functions Bi(u)Bj(v) are the 

same for all segments. Thus, the network uses sixteen 

memory localities to save each surface model. 

Typically, the viability of a surface model is deduced 

via accuracy, speed and memory size [6], [24], [20]. 

To elucidate the viability of the Bezier network, it is 

examined based on the standard model NURBS. This 

method is described by means of the following 

expression 

33

3

3

3

3

01

3

1

3

000

3

0

3

0

3333

3

3

3

3

0101

3

1

3

00000

3

0

3

0

)()(...........

)()()()(

)()(........

)()()()(

),(

WvNuN

WvNuNWvNuN

PWvNuN

PWvNuNPWvNuN

vuS











. (9) 

For this equation, Wij are the weights and Ni 
p(u) 

Nj
q(v) are the B-spline basis functions [4]. The weights 

Wij are calculated by means of the knot vector, which 

adds points to move the surface toward the control 

points [8]. For a surface with degree (p, q), there are at 

most (p+1)x(q+1) non-zero functions to be computed 

[15]. The operations to compute a surface point by 

NURBS are deduced via Eq.(9). Each B-spline pro-

duces an expression such as Ni
3(u)=(au3+bu2+cu+d), 

which is calculated by 3 sums and 8 multiplications. 

Thus, the sixteen terms Ni
3(u)Nj

3(v)WijPij are deter-

mined by 415 operations: 111 sums and 304 multipli-

cations. This result corresponds only to the numerator 

of Eq.(9), which is bigger than the 200 operations of 

the Bezier network. The NURBS accuracy indicates 

that the model does not passes through by all control 

points [25]. The accuracy reported by this model is a 

relative rms around 0.0030% [20]. The NURBS saves 

the model by means of sixteen memory localities for 

the terms WijPij, sixteen localities for Wij, sixteen 

localities for the values u that produce Ni 
p(u) and 

sixteen localities for the values v that produce Nj
q(v). 

The above results indicate that the Bezier network 

improves the traditional surface models. For instance, 

the network improves the model accuracy. It is 

because the network passes through by all control and 

preserves continuity. Thus, the surface representation 

is achieved with a high accuracy. It is an improvement 

respect to NURBS, which do not interpolate all 

surface points. Also, the Bezier network generates the 

model in fast form by solving a 4x4 matrix and four 

2x2 matrices. In the NURBS method, the model is 

generated via knot vector, which adds points to move 

the surface toward the control points. Furthermore, the 

network computes each surface point via 200 opera-

tions. Also, the Bezier network saves each segment 

model via sixteen memory localities whereas NURBS 

uses sixty four memory localities. Thus, the proposed 

method improves the accuracy, speed and memory 

size of the traditional surface model. The optical setup 

to perform the surface measurement is described in 

Section 3. 

3. Optical setup for surface measurement 

The surface representation includes two stages: 

surface measurement and model implementation. 

Therefore, the accuracy of the plantar surface repre-

sentation is obtained by the sum of measurement error 

and model error. The surface points for the surface 

model are measured via line scanning. This procedure 

avoids external measurements to the vision system. 

Thus, the measurements (x, y, z) lead to obtain a high 

accuracy for the surface representation. It is because 

the measurement error is included in the accuracy of 

the plantar surface representation. The optical setup to 

measure the plantar surface is shown in Fig. 3. This 

arrangement includes a laser line, a CCD camera, a 

glass platform, an electromechanical device and a 

computer. In this setup, the x-axis and y-axis are loca-

ted in the glass platform, which is perpendicular to z-

axis. The geometry of line projection in x-axis is 

shown in Fig. 4(a), where f is the focal length, xc is the 

image center, L is the distance between the laser line 

and the optical axis, D is the distance from the lens to 

the glass platform and the surface is indicated by hij.  



J. Apolinar Muñoz Rodríguez 

362 

The scanning of plantar surface is performed by 

moving the laser line in x-axis via electromechanical 

device, which provides the coordinate x. The coordi-

nate y is deduced via line projection in y-axis, which is 

shown in Fig. 4(b), where the coordinate y is calcu-

lated by the equation y=(D+hij)f/(yj-yc). In this expre-

ssion is the pixel size. The vision parameters D, f, L, 

xc, yc,  are calibrated in Section 4. 

The surface z is determined via Fig.4(a) by 

hij=[fL/(xij-xc)]-D. This equation indicates that the 

surface hij is directly proportional to the line shifting 

sij, which is calculated by 
 

 

Figure 3. Optical setup to perform the scanning of foot sole 
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Figure 4. (a) Geometry of the line projection in x-axis. 

(b) Geometry of the line projection in y-axis 

sij = x0j – xij. (10) 

The line position xij is determined based on 

maximum intensity via Bezier curves [11]. To carry it 

out, a Bezier curve is built via pixel position xi and 

pixel intensity Ii by the next two equations  

x(u) =(1- u)n x0 +









1

n (1- u) n-1ux1 + 










2

n (1- u) n-2u2x2+ ……. + un xn,    0u1, (11) 

I(u) =(1- u)n I0 +









1

n (1- u) n-1uI1 

+









2

n (1- u)n-2u2I2+ ……. + un  In,  0  u 1. (12) 

By substituting the pixel position xi in Eq.(11) and 

the pixel intensity Ii in Eq.(12), a concave curve is 

obtained. Thus, the line position is computed based on 

first derivative I’(u)=0 via bisection method [9].  

Then, value u where I’(u)=0 is replaced in Eq.(11) to 

obtain the position x(u). And the position xij=x(u) is 

replaced in Eq.(10) to compute the line shifting sij.  

The surface hij is computed by a Bezier network 

[10], which is described by the next expression    





m

j

jiijij

n

i

vBuBhwvu
00

)()(),(H , (13) 

0 u 1,   0v 1.  

This equation is applied to compute the control 

points, which are used to construct the surface model. 

Therefore, the notation of Eq.(13) is different to the 

notation of Eq.(1). In this case, Bi(u) and Bj(v) are 

related with sij and yj, respectively. Thus, the line 

shifting is converted to a value u by means of the 

expression 

u= a0 +a1sij. (14) 

For this equation, the values a0 and a1 are obtained 

by solving the equations a0+a1s00=0 and a0+a1snm=1. 

The coordinate yj is converted to a value v by  

v= b0 + b1yj. (15) 

For this equation, the values b0 and b1 are obtained 

by solving the equations b0+b1y0=0 and b0+b1yn=1. 

Then, the values hij are substituted in Eq.(13) to obtain 

the next network 

H(u,v)=w00h00B0(u)B0(v)+ 

w01h01B0(u)B1(v)+,...,+w1mh1mB1(u)Bm(v)+ 

,...,+wnmhnmBn(u)Bm(v). (16) 

For this equation, the weights wij are computed by 

substituting the values (u, v) of each hij in Eq.(16) to 

obtain an equation system [22]. Here, the procedure to 

obtain Eq.(6) to Eq.(8) is applied. By solving the 

equation system, the weights wij are obtained to 

complete the network H(u, v). This network is 

applied to compute the surface from the line shown in 

Fig. 5(a). In this procedure, the line shifting sij is 

detected in each coordinate yj. Then, the values (u, v) 

of the shifting are replaced in Eq.(16) to calculate the  
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surface shown in Fig. 5(b), where the symbol "" 

represents the data measured by a coordinate measure 

machine (CMM). The measurement accuracy provi-

ded by the network (16) is determined via root mean 

squared. This rms value [23] is computed by the next 

expression  

2

1

)(
1

ii

n

i

hcho
n

rms  


, (17) 

For this equation, hoi is the surface data zij 

measured by a coordinate measure machine (CMM), 

hci is the surface data zij =H(u, v) calculated by the 

network (16) and n is the number of points zij. The 

error of the slider position is 0.0014 mm, which is 

added to Eq.(17) to obtain a rms= 0.1024 mm for the 

profile shown in Fig. 5(b). Thus, the network provides 

the measurement of plantar surface as zij = H(u, v). 

The calibration to determine the coordinate y is 

described in Section 4. 

4. Calibration of vision parameters  

The calibration of vision parameters is performed 

inside of the vision system to complete the coordinates 

(x, y, z) to construct the surface model. Thus, errors of 

external measurements to the vision system are avoi-

ded. The traditional models perform an external cali-

bration to determine the vision parameters. The exter-

nal calibration is performed outside of the vision sys-

tem via measurement of external references [12]. This 

external calibration transforms the world coordinates 
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Figure 5. (a) Laser line projected onto the plantar  

surface. (b) Surface depth computed  

by the network form the laser line 

Pw=(xw, yw, zw) to the image coordinates (Xu, Yu) by 

means of the expression Pc= RPw+t, where Pc=(xc, yc, 

zc) are the camera coordinates, R is the rotation matrix 

and t is the translation vector. This calibration is suita-

ble for a static setup. But, the calibration is not achie-

ved when the setup is modified in the vision process. 

It is due to the lack of references (xw, yw, zw) during the 

vision task. In the proposed setup, the vision parame-

ters are modified when the vision system is moved in 

z-axis. Therefore, the calibration is performed via mo-

bile setup, where the coordinate x is provided by the 

electromechanical device and the coordinate z is given 

by Eq.(16). The coordinate y=f (D+hij)/(yj-yc) is de-

termined via calibration of the parameters D, f, yc and 

. Based on Fig.6(a), the radial distortion is deduced 

via line position xij= (Xij+xij),where Xij is the distor-

ted position and xij is the distortion. Thus, the undis-

torted shifting is given by the equation sij=(X0j+x0j)-

(Xij +xij) and the distorted shifting is given by the 

equation Sij=(X0j-Xij). The distortion is deduced by the 

equation xij=(X0j-Xij) +x0j -sij = Sij-sij+x0j. In this 

case, the first line shifting is defined without distor-

tion, therefore, x0j=0, x1j=0 and s1j=S1j. Therefore, 

the undistorted shifting sij is represented based on the 

first distorted shifting S1j by means of the expression 

sij=i*S1j. Thus,  the distortion in x-axis is calculated by 

xij=i*S1j-(X0j–Xij) for i=1,2,3,…,n and j=1,2,3, …,m. 

The same procedure is performed to determine the 

distortion yj based on Fig. 6(b) via equations tj=(y0-yj) 

and Tj=(Y0-Yj). Thus, the distortion in y-axis is com-

puted via equation yj = j*T1-(Y0–Yj). The image plane 

of the camera is placed parallel to the glass platform 

shown in Fig. 3. To corroborate that the image plane is 

parallel to the glass window in x-axis, the projection ki 

of Fig. 6(a) is calculated. This projection is computed 

by the next expression 

f

hsxx

f

hxx
k

ijijcjijcij

i

])[()( 0 






. (18) 

For this equation, f, xc, are constants and hij is 

computed via xij. Thus, the expression ki given by 

Eq.(18) is a function of first order and the derivative 

dk/ds is a constant. To corroborate that the image pla-

ne is parallel to the glass platform in y-axis, the pro-

jection qj of Fig. 6(b) is calculated. This projection is 

computed based on tj=(y0-yc)-(yj-yc) by means of 

the next expression 

f

htyy

f

hyy
q

ijjcijcj

j

])[()( 0 





 . (19) 

For this equation yc, y0 are constants and Eq.(19) is 

a function of first order. Therefore, the derivative 

dq/dt is a constant. Thus, the image plane is parallel to 

glass platform when the derivatives dk/ds and dq/dt 

are a constant.  

The image centre is deduced via Fig. 6(a) by the 

equation Lf=(xij-xc)(D+hij), which generates the 

sequence (x1j–xc)(D +h1j)=(x2j–xc)(D+h2j) = (x3j-

xc)(D+h3j) and the expression [h2j(x2j- xc)-h1j(x1j- 
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xc)](x1j-x3j) =[h3j(x3j- xc)-h1j(x1j- xc )](x1j - x2j). Thus, the 

image centre is defined by  

))((

))((

))((

))((

2113

3121

211133

312211

jjjj

jjjj

jjjjjj

jjjjjj

c

xxhh

xxhh

xxxhxh

xxxhxh

x










. (20) 

For this equation, hij is calculated by the network 

via sij. Then, the distance D is determined by  
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The focal length is deduced via Fig. 7 by moving 

the camera lens from f to f1. Thus, the line is moved 

from xij to αxij and the distance D1 is calculated by 
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Figure 6. (a) Geometry of the optical setup in x-axis. 

(b) Geometry of the optical setup in y-axis 

D1=hij(αxij-xc)/(αxij-αx0j). Then, fL=D(x0j-xc) and 

f1L =D1(αx0j-xc) are deduced from Fig. 6(a) and 

Fig. 7, respectively. From these terms and the equation 

D+f = D1+f1, the focal length is computed by   
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, (22) 

f1=D+ f -D1. (23) 

Thus, the focal length f and its modification f1 are 

obtained. From Fig. 6(a), the pixel size  is deduced 

via distances a2 =(x0j-xc)22 + f2,  b2 =[D(x0j-xc)/f]2 + 

D2 and c2 = [D(x0j-xc)/f0 + (x0j-xc)]2+ (D+f)2. From 

these distances and the relationship c=a+b, the next 

equation is obtained  
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This equation is solved by the bisection method 

via interval 0η 1 to obtain η. Then, the coordinate yc 

is deduced based on Fig. 6(b) by solving the equa-

tions: t1=( y0–yc)-( y1–yc) and t2 =( y0–yc)-(y2–yc). 

From this calibration, the coordinate y=(D+hij)f/(yj-

yc) is computed to complete  the coordinates (x, y, z) 

of the plantar surface. The surface modeling is 

described in Section 5. 
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Figure 7. Geometry of the optical setup at f1 in x-axis 

5. Plantar surface modeling  

The plantar surface model is constructed via 

coordinates (x, y, z). The slider machine provides the 

coordinate x where the line is captured. From the line 

shifting values (u,v), the network in Eq.(16) calculates 

the surface z=H(u, v). The coordinate y=(D+hij)f/ (yj-

yc) is determined based on line position yj. From all 

images, the network H(u,v) computes the plantar 

surface shown in Fig. 8(a). The accuracy of this 

measurement is a relative rms(%)= 0.482 %. This 
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values is calculated by the expression rms(%)=rms 

x100/hm, where the rms=0.1014 mm and n=400. Then, 

the surface is divided in 4x4 segments to construct the 

model. This procedure is performed via points shown 

in Fig. 8(b), which represent the heel area. Thus, the 

surface positions (x, y) of each segment are converted 

to values (u, v) by the following equations 

u=(x-p)/T,   p = int(x/T)*T,    0  u  1, (25) 

v=(y-q)/T,    q = int(y/T)*T,   0  v  1. (26) 

For these equations, T=3 is the period of each 

segment and the values (p, q) are the period number. 

Then, the control points Pij =hij are replaced in Eq.(5) 

to build the model  

S(u,v)=(1+4u)(1-u)4(1+4v)(1-v)4W00 P00+ 

,......,+10(1-u)3u2(1+4v)(1-v)4W10P10+ 

,.......,+(5-4u)u4(5-4v)v4W33P33. (27) 

For this equation, the weights W01, W02, W10, W20, 

W13, W23, W31, W32 are computed based on the 

procedure described in Eqs. (6) and (7). These weights 

are put in Eq.(27) to obtain Eq.(8), which is solved to 

obtain W11, W21, W12, W22. Thus, the model of each 

segment is generated via sixteen terms Wijhij. 

Therefore, plantar surface model is a matrix, which 

contains the terms Wijhij of all surface segments. The 

steps to construct the surface model are indicated in  

 

 

(a) 

 

(b) 

Figure 8. (a) Plantar surface retrieved via network 

H (u, v). (b) Surface points to collect  

4x4 segments 

the flow chart shown in Fig. 9. In this flow chart, the 

values L1 and L2 are the length and the width of the 

measured surface data, respectively. The function fix() 

provides the integer part of a division. 

The plantar surface model is defined by the matrix 

M(i, j), which stores all terms Wij*Pij. The terms Gij in 

the flow chart correspond to G01=[P01-(1+4v01)   (1- 

v01)4P00-(5-4v01)v01
4P03]/10(1-v01)2v01

2, G10=[P10-    

(1+4u10)(1-u10)4P00 - (5-4u10)u10
4P30] / 10(1-u10)2u10

2, 

.....,G32=[P32 - (1+4v32)(1-v32)4P03 - (5-4v32)v32
4P33]/ 

10(1-v32)2u32
2. The surface model determines the sur-

face z= S(u, v) via  position (x, y). Also, the network 

provides equations for the surface position (x, y) via 

next expressions 

x(u, v) = W00x00B0(u)B0(v) + W01x01B0(u)B1(v)+ 

,....,+W03x03B0(u)B3(v)+,...,+W33x33B3(u)B3(v), (28) 

y(u, v) = W 00y00B0(u)B0(v) +W01y01B0(u)B1(v) + 

,...,+W03y03B0(u)B3(v)+,…,+W33y33B3(u)B3(v). (29) 

For these equations, the procedure to determine the 

weights Wij is applied to compute the weights Wij and 

Wij. Thus, Eq.(28) and Eq.(29) calculate the position 

x=x(u,v) and y=y(u,v). 
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Figure 9. Flow chart to construct the surface model 
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To represent the surface (x, y, z), the networks 

Eq.(27), Eq.(28) and Eq.(29) are evaluated for each 

segment in the intervals 0u1and 0v 1. In the 

surface edge, the period T varies in x-axis and y-axis 

according to the segment points. Thus, plantar surface 

shown in Fig. 10 is computed by z=S(u, v), x=x(u, v) 

and y = y(u, v). The accuracy of this surface is 

determined via rms Eq.(17), where hoi is provided by 

H(u, v),  hci is the surface computed by S(u, v) and 

n= 400. Thus, an rms= 0.000478 mm is obtained and 

the relative error is rms(%)=0.0022% based on 

hm=22.08 mm. The procedure to compute object 

surface via network (5) is described by the algorithm 

shown in Fig. 11. The algorithm to construct the surfa-

ce model and the algorithm to compute the object sur-

face are implemented in C programming language. 

 

Figure 10. Plantar surface generated by the network S(u, v) 

The surface model provides the data to adjust the 

shoe-last bottom shown to the plantar surface. To 

carry it out, the shoe-last bottom shown in Fig. 12(a) 

is scanned via setup shown in Fig. 4. In this procedu-

re, the line shifting sij is detected via Eq.(10), Eq.(11) 

and Eq.(12). Then, the shifting is converted to values 

(u, v), which are replaced in the network Eq.(16) to 

compute the surface z=H(u, v). 

The coordinate x is provided by the slider device,  

 

Define T=3, L , L  , r, s, t, E[1]=E[2]=A[1]=A[2]=10;

for p=0 to L

for q=0 to L
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Figure 11. Algorithm to compute the object  

surface S(u,v) 

whereas the coordinate y is computed via equation 

y=(D+hij)f/(yj-yc). Then, the model of the shoe-last 

bottom is constructed via Eq.(27), Eq.(28), Eq.(29). 

These equations are evaluated in the intervals 0u1 

and 0v1to obtain each surface segment of shoe-last 

bottom shown in Fig. 12(b). Then, the morphological 

parameters are deduced from the diagram shown in 

Fig. 13(a) [11]. The foot length is the distance 

between the heel point A and the maximum point B in 

x-axis. 

The center line is the line passing the center heel A 

and the second metatarsal C. The foot width is the 

distance between the points E and D in y-axis. The 

mid foot width is the breadth at ½ of the foot length in 

x-axis. The heel width is the maximum width in the 

heel area. The positions of first and fifth metatarsal 

heads are pointed by D and J, respectively.  Thus, the 

surface is moved toward the plantar surface in x-axis 

and y-axis. To carry it out, the maximum plantar 

surface dy outside of shoe-last bottom is detected via 

equation dy=ys-yf, where yf is the contour position of 

the plantar surface in y-axis and ys is the contour 

position of the shoe-last bottom. Then, the contour of 

the shoe-last bottom is magnified based on the scale 

factor ε=(ys+dy)/ys. Thus, the surface position (x, y) is 

re-computed via equations x=xε and y=yε. Then, the 

position of the morphological parameters of the shoe-

last bottom is moved toward the morphological para-

meters of the foot sole. These two steps are shown in 

Fig. 13(b) by the green dash line. Then, the contour is 

smoothed to obtain continuity G1 via derivatives of the 

neighbor points. The contour is smoothed in y-axis by 

the expression yij=(yi-1,j+yi+1,j )/ 2, where the indexes (i, 

j) correspond to the row and column number, respect-

tively. The smoothed contour is shown in Fig. 13(b) 

by the black continuous line. Based on these steps, the 
 

 

(a) 

 

(b) 

Figure 12. (a) Shoe-last bottom to be adjusted to the  

plantar surface. (b) Surface of the shoe-last bottom  

represented by the network S(u,v) 
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(a) (b) 

 

(c) 

Figure 13. (a) Morphological parameters of the  

foot sole. (b) Matching of the shoe-last bottom  

with the morphological parameters.  

(c) Adjusted shoe-last bottom in x-axis  

and y-axis 

shoe-last bottom is adjusted in x-axis and y-axis. In 

this procedure, the position (x, y) is magnified by the 

equations x=xε and y=yε. Then, the contour is matched 

and smoothed with the morphological parameters. The 

adjustment of the shoe-last bottom in x-axis and y-axis 

is shown in Fig. 13(c). 

The adjustment in z-axis is performed based on the 

diagram shown in Fig. 14(a), where the surface dz 

outside of the contour is determined by dz=zf-zs. For 

this equation zf is the plantar surface position and zs is 

the position of the shoe-last bottom. Then, the contour 

of the shoe-last bottom is magnified in z-axis via scale 

factor ζ=(zs+dz)/zs. Thus, the surface is re-computed by 

hij=hijζ. The result of this process is shown in 

Fig. 14(a) by the green dash line. Then, the arch height 

is replaced in the surface of the shoe-last bottom, 

which is smoothed by means of the equation 

hij=(hij+hi+1,j+ hi,j+1+hi+1,j+1)/4. This adjustment is 

shown by the continuous black line in Fig. 14(a). 

Thus, the adjustment in z-axis is performed by 

detecting dz to magnify the surface via expression 

hij=hijζ. 

Then, the surface of the shoe-last bottom is match- 
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(c) 

Figure 14. (a) Diagram to adjust the plantar surface in  

z-axis. (b) Adjusted surface in z-axis. (c) Adjusted  

shoe-last bottom in x-axis, y-axis and z-axis 

ed with arch height. Thus, the shoe-last bottom is 

smoothed based on neighbor points and the result is 

shown in Fig. 14(b). Thus, the adjustment of the shoe-

last bottom has been completed and it is shown in 

Fig. 14(c). The evaluation of the plantar surface model 

is described in Section 6.  

6. Evaluation of the plantar surface model 

The plantar surface model has been constructed via 

Bezier networks. This model interpolates all control 

points and preserves continuity. Moreover, the calibra-

tion does not add errors to the surface representation. 

It is because the vision parameters are determined 

based on the laser line. Thus, surface representation 

error is minor to 1%.   

The surface representation uncertainty u is dedu-

ced by the measurement uncertainty uh and the model 

uncertainty uM. Based on the propagation law, the 

measurement uncertainty is deduced via line position 

(u, v) and the focal length f1 by the following 

expression 
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where ∂h/∂u, ∂h/∂v, ∂h/∂f are the sensitivity 

coefficients. The uncertainty u2
v=(∂v/∂yj)2(uy)2 is 

deduced via Eq.(15) and uy=0.2570 pixels is computed 

by the standard deviation of sixteen measurements of 

the laser line in y-axis. Thus, the sensitivity coefficient 

is ∂v/∂yj=b1=0.2282 1/pixel and the uncertainty is 

uv=0.0585. The uncertainty u2
u=(∂u/∂s)2(us)2 is 

deduced via Eq.(14), where us = 0.2688 pixels is the 

standard deviation of sixteen measurements of the line 

shifting in x-axis. Thus, the sensitivity coefficient is 

∂u/∂s= 0.1714 1/pixel and uu=0.0461. The uncertainty 

u2
f1=(∂f1/∂f)2 (uf)2 is determined via Eq.(23), where 

(uf)2=(∂f/∂xi)2(uxi)2 and  uxi=0.328 pixels is the 

standard deviation of sixteen measurements xij. The 

sensitivity coefficients are ∂f/∂xij=0.1032 1/pixel, ∂f1/∂f 

=0.3442 1/pixel.  Thus, the uncertainties are uf =0.0432 

and uf1= 0.0142. Then, the sensitivity coefficients 

∂h/∂u= 0.5253mm, ∂h/∂v=0.5394 mm and ∂h/∂f1 = 

0.5234mm are computed based on the network 

Eq.(16). These values are substituted in Eq.(30) to 

calculate the measurement uncertainty uh=0.04065 

mm. Then, the model uncertainty uM is determined via 

surface position (u, v) by the following expression 
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. (31) 

The uncertainty u2
v= (∂v/∂yj)2(uy)2 is deduced via 

Eq.(26), where uy=0.2570 pixels is the standard 

deviation of sixteen measurements of the laser line in 

y-axis. Thus, the sensitivity coefficient is ∂v/∂yj= 

b1=0.3142 1/pixel and the uncertainty is uv=0.0807. 

The uncertainty uu is deduced by moving the laser line 

via slider device from a reference x0. Based on the 

displacement s=(x–x0), the uncertainty is defined by 

u2
u=(∂s/∂x)2(ux)2, where ux=0.2868 pixels is the 

standard deviation of sixteen displacements. Thus, 

sensitivity coefficient is ∂s/∂x=0.1063 mm/pixel and 

uu=0.03056 mm. The sensitivity coefficients ∂S/∂u= 

0.4321mm and ∂S/∂v= 0.4897 mm are calculated via 

network Eq.(27).  These values are substituted in 

Eq.(31) to compute the model uncertainty uM= 

0.04166 mm. Then, the uncertainty u is determined by 

u=(u 2

h
+u 2

M
)1/2 [18]. Thus, the uncertainty of the 

surface representation is u=0.0624 mm. 

The proposed model preserves both interpolation 

and continuity. Thus, a contribution is achieved to 

improve accuracy, speed and memory size of the 

plantar surface representation. Typically, B-splines 

and NURBS do not interpolate to preserve continuity. 

Moreover, the interpolation provided by these 

methods introduces discontinuities near of the interpo-

lated points [5], [14]. The interpolation and continuity 

has a great influence in the surface representation 

accuracy. For instance, the network interpolates all 

control points by solving a small equation system. 

Thus, a high accuracy for surface representation is 

achieved. Also, the model improves the speed to 

compute each surface point via 200 operations. This 

number of operations is minor than the number of 

operations performed by the traditional methods. 

Moreover, the method saves the terms WijPij of each 

surface segment by means of via sixteen memory 

localities. The contribution of the proposed surface 

modeling is elucidated by an evaluation based on 

model accuracy, representation accuracy, number of 

operations, memory size and consumed time. The 

evaluated methods are Least squared, B-Splines and 

NURBS, which are indicated in the first column of 

Table 1. These methods construct the plantar surface 

model. The accuracy of each model is determined via 

relative rms and it is shown in the second column in 

millimeters and in percentage. The model accuracy of 

the traditional methods is a relative rms over 0.031%. 

This accuracy is reported by the traditional methods in 

the references [13], [24], [27]. The surface represent-

ation accuracy is calculated by the sum of the model 

error and the measurement error. The representation 

accuracy of the traditional methods is a relative rms 

over 0.86%, which is shown in the third column. To 

represent the plantar surface shown in Fig.10, 27840 

points are computed. To calculate these points, the 

Bezier networks perform (27840x200)=5568000 ope-

rations and B-splines perform (27840x415)=11553600 

operations. The fourth column shows the number of 

operations to represent the plantar surface. The Bezier 

network uses 160 bytes to save each segment model 

via sixteen localities. The plantar surface model is 

composed by 870 segments, which lead to use 139200 

memory bytes. The B-splines use 480 bytes to save 

each segment model by means of forty-eight memory 

localities for the terms Ni 
p(u), Nj

q(v) and WijPij. Thus, 

the B-splines consume 556800 memory bytes to save 

the plantar surface model. The memory size used to 

save the plantar surface model is shown in the fifth 

column. The time taken to represent the plantar surfa-

ce includes surface measurement, model implementa-

tion and surface computation. The time is shown in 

the sixth column. The results presented in Table 1 

indicate that the Bezier network improves the model 

accuracy and surface representation accuracy. It is 

because the model interpolates all surface points and 

preserves continuity. Also, the speed and memory size 

have been improved via Bezier network. These results 

provide a contribution of the proposed method in the 

plantar surface modeling. For instance, the Bezier 

networks represent the plantar surface with a relative 

rms=0.4842% and reduce the number of operations 

and memory size. Thus, that the model of the plantar 

surface of the traditional methods has been improved. 

The improvement is corroborated by the results 

presented in Table 1. 

The computer used to perform the surface mode-

ling is a PC of 1.8 GHz. In this computer, the surface 

modeling is implemented in C programming language. 

The slider moves the vision system at 34 steps per



Improving the Modeling of the Plantar Surface via Bezier Networks and Laser Projection 

369 

Table 1. Evaluation of the plantar surface model. 

Method 
Model accuracy. 

Relative rms % 

Accuracy of the 

plantar surface 

representation. 

Relative rms % 

Operations to 

represent the 

plantar surface. 

Memory size to 

save the plantar 

surface model. 

Bytes 

Consumed time 

to represent the 

plantar surface. 

Seconds 

Least squared 
0.325mm 

(1.46 %) 

1.135 mm 

(5.09%) 
16213512 421472 480 s 

B-Splines 
0.007mm 

(0.031%) 

0.193 mm 

(0.86%) 
11553600 380640 41.5 s 

NURBS 
0.009mm 

(0.042%) 

0.218mm 

(0.97%) 
24053760 486400 72.8 s 

Bezier Networks 
0.0004mm 

0.0022% 

0.106 mm 

( 0.464%) 
5568000 139200 14.51 s 

 

second. The frame rate of the camera is 34 fps. Each 

image of laser line is captured via language C based 

on XCLIB software library of EPIX. Each laser line 

image is processed by the network in 0.010 sec. The 

step resolution of the slider machine is 0.024 mm. This 

machine has a position error of 0.0014 mm. This error 

is added to the network H(u,v), which provides the 

surface measurement. Thus, a high accuracy for sur-

face representation is achieved via Bezier networks. 

Thus, the plantar surface modeling is performed in 

good manner. 

7. Conclusions  

A technique to construct the plantar surface model 

via Bezier networks has been presented. The proposed 

technique provides a valuable tool for the examination 

of the plantar surface via computational models. This 

technique avoids measurements on the setup, as is 

common in the optical methods. The vision parame-

ters are obtained automatically by computational pro-

cess to improve representation accuracy. It is because 

the errors of external measurement to the vision sys-

tem are not added to the surface representation. Also, 

the proposed model reduces the number of operations 

and memory size to represent the plantar surface. 

Thus, computational-optical setup constructs the mo-

del of the plantar surface, which provides morphologi-

cal parameters to perform the adjustment of the shoe-

last bottom. Therefore, the modeling of the plantar 

surface is carried out in good manner. 
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