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Abstract. In 2012, Tseng and Tsai presented a novel revocable ID (identity)-based public key setting that provides 

an efficient revocation mechanism with a public channel to revoke misbehaving or compromised users from public key 

systems. Subsequently, based on Tseng and Tsai’s revocable ID-based public key setting, Tsai et al. proposed a new 

revocable ID-based signature (RIBS) scheme in the standard model (without random oracles). However, their RIBS 

scheme possesses only existential unforgeability under adaptive chosen-message attacks. In the article, we propose the 

first strongly secure RIBS scheme without random oracles under the computational Diffie-Hellman and collision resistant 

assumptions. Comparisons with previously proposed schemes are made to demonstrate the advantages of our scheme in 

terms of revocable functionality and security property. 
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1. Introduction 

Digital signature, one important cryptographic 

primitive, provides the integrity, authentication and 

non-repudiation of messages. In traditional public key 

systems, before verifying a signature, a user must 

obtain the corresponding authenticated public key (i.e. 

certificate) from public directories. In such a case, 

efficient public key management becomes an important 

issue. In 1984, to simplify public key management, 

Shamir [1] introduced the concept of identity (ID)-

based cryptography (IBC), in which a user’s public key 

is determined by his/her identity information such as 

social security number, e-mail address, telephone 

number, name, etc. Moreover, a trusted third party, 

called private key generator (PKG), is responsible to 

produce private keys which are distributed to users via 

secure channels. As opposed to traditional public key 

systems, IBC eliminates the requirement of certificates. 

Shamir’s system was ingenious but not practical, how-

ever. In 2001, Boneh and Franklin [2] adopted Shamir’s 

idea to propose a new ID-based public key system and 

the first practical ID-based encryption (IBE) based on 

modification of bilinear pairings defined on elliptic 

curves. Since then, a numerous primitives for IBC have 

been published such as ID-based authentication 

protocols [3-5], ID-based key agreement protocols [6-

8], ID-based signature schemes [9-13] and ID-based 

encryption schemes [14-17].  

                                                           
* Corresponding author 

In 2002, according to Boneh and Franklin’s ID-

based public key setting [2], Paterson [18] proposed an 

ID-based signature (IBS) scheme by making use of 

bilinear pairings. Later, Cha and Cheon [10] proposed 

a new IBS scheme that improved Paterson’s scheme on 

both efficiency of computation and signature size while 

the security of their scheme was based on the gap 

Diffie-Hellman assumption. In 2009, Tseng et al. [19] 

and Shim [20], independently, proposed efficient IBS 

schemes that are provably secure and support variant 

kinds of batch verifications. Both schemes significantly 

improve the verification performance for many coope-

rative and distributed applications. The four IBS 

schemes mentioned above have been shown to be 

secure in the random oracle model. However, when 

random oracles are instantiated with concrete hash 

functions, those IBS schemes could be insecure. In 

2006, to overcome this problem, Paterson and Schuldt 

[9] proposed an IBS scheme without random oracles 

which is computationally efficient and has short signa-

ture size. In 2008, Narayan et al. [21] further improved 

Paterson and Schuldt’s scheme by reducing the size of 

the public parameters.  

All the IBS schemes mentioned above possess 

existentially unforgeable under adaptive chosen-

message attacks, but not strongly unforgeable. An IBS 

scheme is said to be strongly unforgeable if it is 

existentially unforgeable and an adversary who is given 
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signatures of the IBS scheme on some message m is 

unable to generate a new signature on m. Strong 

unforgeability ensures that an adversary cannot genera-

te a new signature for a previously signed message. 

Therefore, strongly unforgeable IBS schemes are 

important for constructing ID-based cryptographic 

schemes such as chosen-ciphertext secure ID-based 

cryptosystems and ID-based group signatures. In the 

past, several strongly unforgeable non-ID-based signa-

ture schemes [22-25] without random oracles have 

been proposed. Furthermore, the work in [26-28] provi-

ded several transformation methods to construct 

strongly unforgeable IBS schemes out of strongly 

unforgeable non-ID-based signature schemes. Re-

cently, without applying any transformation ways, Sato 

et al. [29] proposed a strongly unforgeable IBS scheme 

without random oracles based on Paterson and 

Schuldt’s IBS scheme [9]. Their scheme offered better 

performance in terms of signature size and computation 

cost when compared with the schemes in [26-28].  

A public key system construction must provide a 

revocation mechanism to revoke misbehaving or com-

promised users from the system. In 2001, Boneh and 

Franklin [22] presented a revocation mechanism for 

ID-based public key systems, in which the PKG gene-

rates and sends new private keys for non-revoked users 

periodically. To do so, the PKG must establish a secure 

channel with each non-revoked user to transmit the new 

private key. The key update size is equal to the number 

of non-revoked users. Boldyreva et al. [30] applied a 

binary tree structure to construct a revocable ID-based 

encryption (RIBE) which reduces the key update size 

to the logarithm of the number of users. However, both 

revocation methods mentioned above need secure 

channels to transmit the users’ new private keys 

periodically. This causes enormous computational load 

for both of encryption and decryption procedures.  

In order to resolve the “secure channel” problem 

above, Tseng and Tsai [31] proposed a new RIBE sche-

me and offered a practical revocation mechanism with 

a “public channel”. In their scheme, the PKG and non-

revoked users can significantly reduce computational 

burden due to the absence of encryption/decryption via 

secure channels. Subsequently, based on Tseng and 

Tsai’s revocable ID-based public key setting, Sun et al. 

[32] proposed a revocable ID-based signature (RIBS) 

scheme in the random oracle model. Although the 

scheme [32] based on the random oracle model can 

offer better performance, the resulting scheme could be 

insecure when random oracles are instantiated with 

concrete hash functions [33, 34]. Furthermore, Tsai et 

al. [12] proposed the first RIBS scheme in the standard 

model (without random oracles). However, their RIBS 

scheme possesses only existential unforgeability under 

adaptive chosen-message attacks. In this article, we 

first present a new framework and security notions for 

strongly unforgeable RIBS schemes with revocation 

via public channels. We then propose the first strongly 

unforgeable RIBS scheme without random oracles. 

Under the computational Diffie–Hellman and collision 

resistant assumptions, we demonstrate that our RIBS 

scheme possesses strong unforgeability under adaptive 

chosen-message attacks. When compared with 

previously proposed IBS and RIBS schemes without 

random oracles, our scheme provides better perfor-

mance in terms of computational cost and revocable 

functionality while possessing strong unforgeability.  

The remainder of the article is organized as follows. 

Preliminaries are given in Section 2. In Section 3, we 

present the framework and security notions for strongly 

unforgeable RIBS schemes. Section 4 presents our 

concrete scheme. In Section 5, we analyze the security 

of our scheme. Comparisons are presented in Section 6. 

Conclusions are given in Section 7. 

2. Preliminaries 

In the section, we will briefly review some 

properties of bilinear pairings. We also introduce the 

computational Diffie-Hellman (CDH) and collision 

resistant (CRH) assumptions. 

2.1. Bilinear pairings  

Let G1 and G2 be two multiplicative cyclic groups 

of large prime order p. Let g be a generator of G1. A 

mapping ê: G1G1  G2 is an admissible bilinear map 

if it satisfies the following properties:  

1. Bilinearity: For every ga, gb  G1, ê(ga, gb)  

ê(g, g)ab, where a, b  Zp
*. 

2. Non-degeneracy: ê(g, g)  1. 

3. Computability: There exists an efficient 

algorithm to compute the value ê(ga, gb). 

2.2. Security assumptions  

Two hard problems and their corresponding 

assumptions are presented here.  

Definition 1 (Computational Diffie-Hellman (CDH) 

Problem and Assumption). Let G1 be a cyclic 

multiplicative group of large prime order p with 

generator g. Given ga, gb  G1 with unknown a, b  Zp
*, 

the computational Diffie-Hellman (CDH) problem in 

G1 is to compute gab. We say that the (ε, t)-CDH 

assumption holds in the group G1 if no polynomial-time 

adversary A can solve the CDH problem in G1 with 

non-negligible probability ε within time t. Here, the 

successful probability (advantage) of the adversary A is 

presented as 

Pr[A(g, ga, gb) = gab], 

where the probability is over the random choice 

consumed by the adversary A. 

Definition 2. Collision-resistant hash (CRH) 

assumption. Let Hk:{0, 1}*{0, 1}n be a collision-

resistant hash family of functions, where n is a fixed 

length and k is an index. We say that the (ε,t)-CRH 

assumption holds if no polynomial-time adversary A 
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running in time at most t can break the collision-

resistance of Hk with probability ε. Here, the successful 

probability (advantage) of the adversary A is presented 

as 

Pr[A(k) = (m0, m1) : m0 ≠ m1, Hk(m0) = Hk(m1)], 

where the probability is over the random choice 

consumed by the adversary A. 

Remark 1. In this paper, we use collision resistant hash 

(CRH) functions to construct our RIBS scheme, in 

which the CRH functions can be easily constructed 

based on the CDH assumption [23].  

3. Framework and security notions of strongly 

unforgeable RIBS  

In this section, we present the framework and 

security notion for strongly unforgeable RIBS schemes. 

The framework of strongly unforgeable RIBS schemes 

is identical to that of Tsai et al.’s RIBS scheme [12]. 

We also define a new security notion for strongly 

unforgeable RIBS schemes based on the notions in [9, 

21, 28, 29].  

Definition 3. A strongly secure RIBS scheme consists 

of five algorithms: 

 Setup algorithm G is a probabilistic algorithm run 

by the PKG that takes as input a security parameter 

 and the total number z of all periods, and outputs 

a system secret key s and public parameters Parms. 

The public parameters Parms are made public and 

the secret key s is kept for the PKG itself.  

 Initial key extract algorithm IKE is a deterministic 

algorithm run by the PKG that takes as input the 

system secret key s and a user’s identity ID, and 

returns the user’s initial secret key DID. 

 Time key update algorithm TKU is a deterministic 

algorithm run by the PKG that takes as input the 

system secret key s, a user’s identity ID and a period 

t, and then returns the user’s time update key TID,t. 

Then, the user can combine the initial secret key DID 

and the time update key TID,t to obtain the signing 

key SID,t. 

 Signing algorithm S is a probabilistic algorithm that 

takes as input a period t, a user’s signing key SID,t 

and a message M, and returns a signature  on M. 

 Verification algorithm V is a deterministic 

algorithm that takes as input a signature pair (t, ), 

a message M and a user’s identity ID, and outputs 

“accept” if (t, ) is a valid signature on the message 

M for ID, and “reject” otherwise.  

Definition 4. A strongly secure RIBS scheme possesses 

strong unforgeability against adaptive chosen-message 

attacks (RID-SUF-ACMA) if no probabilistic 

polynomial-time adversary A has a non-negligible 

advantage in the following RID-SUF-ACMA game 

played with a challenger B. 

 Setup. The challenger B runs the setup algorithm G 

to generate a system secret key s and public 

parameters Parms. The public parameters Parms 

are sent to the adversary A and the system secret key 

s is kept by B itself.  

 Queries. The adversary A performs the following 

queries adaptively:  

- Initial key extract query (ID). When A requests 

the initial secret key on an identity ID, the 

challenger B runs the initial key extract 

algorithm IKE to obtain DID and returns it to the 

adversary A. 

- Time key update query (ID, t). When A requests 

the time update key on (ID, t), the challenger B 

runs the time key update algorithm TKU to 

obtain the time update key TID,t and returns it to 

the adversary A.  

- Signing queries (M, ID, t). When A requests a 

signature on the message M for an identity ID 

and a period t, the challenger B runs the initial 

key extract algorithm IKE and time key update 

algorithm TKU to obtain the user’s signing key 

SID,t. Then B runs the signing algorithm S to 

generate a signature  on the message M using 

SID,t and returns  to A.  

 Forgery. We say that the adversary A wins the RID-

SUF-ACMA game if A generates a tuple (M*, ID*, 

t*,*) which satisfies the following conditions:  

1. The response of the verification algorithm V 

on (M*, ID*, t*,*) is “accept”.  

2. * has not been outputted in the signing query 

on (M*, ID*, t*).  

3. Either ID* or (ID*, t*) has not appeared in the 

initial key extract queries or the time key 

update queries, respectively.  

The adversary A’s advantage is defined as the 

probability that A wins the RID-SUF-ACMA game.  

Remark 2. An RIBS scheme is said to be strongly 

unforgeable if it is existentially unforgeable and an 

adversary who is given signatures of the RIBS scheme 

on some message m is unable to generate a new 

signature on m. Strong unforgeability ensures that an 

adversary cannot generate a new signature for a 

previously signed message.  

4. Strongly unforgeable RIBS scheme  

In this section, we present a concrete strongly 

unforgeable RIBS scheme without random oracles that 

consists of the following algorithms:  
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 Setup: Given a security parameter  and the total 

number z of all periods, the PKG chooses two cyclic 

groups G1 and G2 of sufficiently large prime order 

p >2𝛿  . Let g be a generator of G1 and ê: G1G1  

G2 be an admissible bilinear map. The PKG sets the 

system secret key and the public parameters by 

performing the following tasks. 

1. Select two secret values α, β Zp
* at random 

and compute 𝑔1  gα+β G1. Select a random 

𝑔2  G1 and compute 𝑔2
𝛼 and 𝑔2

𝛽
. 

2. Set four collision-resistant hash functions 

H1:{0, 1}*{0, 1}m, H2:{0, 1}*{0, 1}n and 

H3, H4:{0, 1}*{0, 1}l, where m, n and l are 

fixed lengths. Here, we assume p > 2m, p > 2n 

and p > 2l so that the outputs of these hash 

functions can be directly viewed as elements 

of Zp without modulo p.  

3. Randomly choose three values u′, t′, w′G1 

and three vectors U = (ui), T = (tj), W = (wk), 

where ui, tj, wk G1 for i = 1, 2,…, m, j = 1, 

2,…, n and k = 1, 2,…, l. 

Finally, the PKG sets the system secret key s = (𝑔2
𝛼, 

𝑔2
𝛽

 ) and the public parameters Parms = <G1, G2, ê, 

g, 𝑔1, 𝑔2, H1, H2, H3, H4, u′, U, t′, T, w′, W>. 

 Initial key extract: Given a user’s identity ID  {0, 

1}*, the PKG computes a string v = H1(ID) of length 

m. Let vi denote the i-th bit of the string v and let 

U ⊂ {1, 2,…, m} be the set of indices i such that vi 

= 1 for i = 1, 2,…, m. Finally, the PKG chooses a 

random value rv Zp
*, computes the user’s initial 

secret key DID = (D1, D2) = (𝑔2
𝛼 (u′

Ui

iu ) vr , 𝑔𝑟𝑣) 

and sends DID to the user via a secure channel.  

 Time key update: Given a user’s identity ID{0,1}* 

and a period t, the PKG computes a string vt = 

H2(ID, t) of length n. Let vtj denote the j-th bit of the 

string vt and let T ⊂ {1, 2,…, n} be the set of 

indices j such that vtj = 1 for j = 1, 2,…, n. Finally, 

the PKG chooses a random value rt  Zp
* and 

computes the user’s time update key TID,t = (T1, T2) 

= (𝑔2
𝛽

 (t′
Tj

jt ) tr
, 𝑔𝑟𝑡). The PKG sends TID,t to the 

user via a public channel. Upon receiving TID,t, the 

user combines it with his/her initial secret key DID 

= (D1, D2) to generate the signing key SID,t = (S1, S2, 

S3) =(D1T1, D2, T2) =(𝑔𝛼+𝛽 vr

i

iuu' )( 
U

(t′
Tj

jt ) tr , 

𝑔𝑟𝑣, 𝑔𝑟𝑣).  

 Signing: For a period t, given a non-revoked user’s 

identity ID  {0, 1}*, a message M  {0, 1}*, the 

user first computes a string vm = H3(M) of length l. 

Let vmk denote the k-th bit of the string vm and let 

W ⊂ {1, 2,…, l} be the set of indices k such that 

vmk = 1 for k = 1, 2,…, l. Then the user chooses a 

random number rm  Zp
* and computes 𝑔𝑟𝑚 and h= 

H4(M||𝑔𝑟𝑚). Finally, the user generates a signature 

𝜎 on the message M as follows:  

𝜎 = (𝜎1,  𝜎2,  𝜎3,  𝜎4)  

= ((𝑆1)ℎ mr

k

kww' )( 
W

, (𝑆2)ℎ, (𝑆3)ℎ, 𝑔𝑟𝑚) 

= ((𝑔2
𝛼+𝛽

 vr

i

iuu' )( 
U

hr

j

j
ttt' ))( 

T

mr

k

kww' )( 
W

, 

𝑔𝑟𝑣ℎ, 𝑔𝑟𝑡ℎ,𝑔𝑟𝑚), 

where (S1, S2, S3) is the signing key SID,t obtained 

above. 

 Verification: Given a signature 𝜎  = (𝜎1 ,  𝜎2 ,  𝜎3 , 

 𝜎4) for an identity ID on a message M in a period t, 

a verifier computes h = H4(M||𝜎4) and validates the 

signature as follows:  

),(ˆ 1 ge  = he ),(ˆ 12 gg  ê  ( u′
Ui

iu ,  𝜎2) ê ( 
Tj

jtt' , 

 𝜎3). ê  ( 
Wk

kww' , 𝜎4). 

The algorithm outputs “accept” if the checking 

equation above holds, and “reject” otherwise.  

In the following, we show the correctness of the 

checking equation in the Verification algorithm as 

follows: 

 

),(ˆ 1 ge = ê  ((𝑔2
𝛼+𝛽

vr

i

iuu' )( 
U

hr

j

j
ttt' ))( 

T

mr

k

kww' )( 
W

, g) 

= ê  ( )(

2

hg ,  g) ê  ( hr

i

i
vuu' )( 

U

,  g) ê  ( hr

j

j
ttt' )( 

T

,  g) ê  ( mr

k

kww' )( 
W

,  g) 

= ê h),( 2

gg ê  ( )( 
Ui

iuu' , 𝑔𝑟𝑣ℎ) ê  ( )( 
Tj

jtt' , 𝑔𝑟𝑡ℎ) ê  ( )( 
Wk

kww' , 𝑔𝑟𝑚) 

= ê h),( 2 1gg ê  ( )( 
Ui

iuu' , 𝜎2) ê  ( )( 
Tj

jtt' , 𝜎3) ê  ( )( 
Wk

kww' ,𝜎4).
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5. Security analysis  

In this section, we give the security analysis of our 

RIBS scheme. In order to simplify the security analysis, 

we consider two types of adversaries, namely, outside 

adversary and inside adversary (or revoked user). We 

adopt a technique similar to that used in [12] to show 

that the proposed scheme possesses strong unforgeabi-

lity against adaptive chosen-message attacks for both 

types of adversaries under the CDH and CRH assump-

tions. Note that if the adversary is an outsider, it is 

allowed to issue all queries in the RID-SUF-ACMA 

game (mentioned in Section 3) except for the initial key 

extract query on the target identity ID*. If the adversary 

is an inside adversary, it is allowed to issue all queries 

in the RID-SUF-ACMA game except for the time key 

update query on (ID*, t*).  

Theorem 1. Under the CDH and CRH assumptions, 

the proposed RIBS scheme is strongly 

secure against adaptive chosen-message 

attacks (RID-SUF-ACMA) for an outside 

adversary A. More precisely, assume that 

there is an outsider A, with an advantage 

ε against the proposed RIBS scheme, 

which can make at most 
Eq > 0 initial key 

extract queries, 
Uq  > 0 time key update 

queries and 
Sq > 0 signing queries within 

a running time τ. Then there is an 

algorithm B that has an advantage 

ε′ ≥ ε [
)1()1)((16

1

 lqmqq SSE

] 

to solve the CDH problem or 

𝜀′′ ≥
𝜀

4
  

to violate the CRH assumption within a running time 

τ′ = τ + O( (m
Eq + n

Uq + (m + n+ l) 
Sq )τ1 + (

Eq +

Uq +
Sq )τ2), 

in which τ1 and τ2, respectively, denote the executing 

time of a multiplication in G1 and the executing time of 

an exponentiation in G1.  

Proof. We assume that there exists an outside adversary 

A which succeeds in attacking the proposed RIBS 

scheme. We will construct an algorithm B to solve the 

CDH problem or violate CRH assumption. Assume that 

the algorithm B is given <G1, G2, ê, g, ga, gb> as an 

instance of the CDH problem, where a and b are 

unknown to B. To compute gab, the algorithm B 

simulates a challenger for A in the RID-SUF-ACMA 

game as follows.  

 Setup. The challenger (algorithm) B first sets four 

collision-resistant hash functions as follows: H1:{0, 

1}*{0, 1}m, H2:{0, 1}*{0, 1}n and H3, H4:{0, 

1}*{0, 1}l, where m, n and l are fixed lengths. 

Note that the employed collision-resistant hash 

functions are not seen as random oracles in our 

security proofs. The challenger B sets lv = 2(
Eq  + 

Sq ) and lm = 2
Sq , and chooses two integers kv and 

km at random, where 0 ≤ kv ≤ m and 0 ≤ km ≤ l. We 

assume that lv(m + 1) < p and lm(l + 1) < p for the 

given values of 
Eq , 

Sq , m and l. The challenger B 

chooses a random value βZp as the secret value of 

the time update key, and assigns 𝑔1= gagβ and 𝑔2 = 

gb. The challenger B selects x′, x1,…, xm 𝑍𝑙𝑣
 , y′, 

y1,…, ym Zp, and computes u′ = 𝑔2
−𝑙𝑣𝑘𝑣+𝑥′

𝑔𝑦′
 and 

a vector U = (ui), where ui =𝑔2
𝑥𝑖𝑔𝑦𝑖 for 1 ≤ i ≤ m. In 

addition, the challenger B selects z′, z1,…, zn  Zp, 

and computes t′ = z'g  and a vector T= (tj), where tj 

=𝑔𝑧𝑗  for 1 ≤ j ≤ n. Moreover, the challenger B 

selects c′, c1,…, cl 𝑍𝑙𝑚
 , d′, d1,…, dl  Zp, and 

computes w′ = 𝑔2
−𝑙𝑚𝑘𝑚+𝑐′

𝑔𝑑′
 and a vector W = (wk), 

where wk =𝑔2
𝑐𝑘𝑔𝑑𝑘  for 1 ≤ k ≤ l. Now, the challenger 

B has constructed a set of public parameters as  

Parms = <G1, G2, ê, g, 𝑔1, 𝑔2, H1, H2, H3, H4, u′, 

U, t′, T, w′, W>. 

Before performing Queries and Forgery between A 

and B, we define three sets U, T  and W, and five 

functions F, J, E, K and L.  

1. Let v= H1(ID) which is a bit string of length 

m. Let U ⊂ {1, 2,…, m} be the set of indices 

i such that vi = 1, where vi denotes the i-th bit 

of the string v, for i = 1, 2,…, m. Define the 

functions F and J by  

F(v) = －lvkv + x′ + 
Ui

ix  and J(v) = y′ + 
Ui

iy . 

2. Let vt = H2(ID, t) which is a bit string of length 

n. Let T ⊂ {1, 2,…, n} be the set of indices j 

such that vtj = 1, where vtj denotes the j-th bit 

of the string vt, for j = 1, 2,…, n. Define the 

function E by 

E(vt) = z′ + 
Tj

jz . 

3. Let vm = H3(M) which is a bit string of length 

l. Let W ⊂ {1, 2,…, l} be the set of indices k 

such that vmk = 1, where vmk denotes the k-th 

bit of the string vm, for k = 1, 2,…, l. Define 

the functions K and L by  

K(vm) = －lmkm + c′ + 
Wk

kc    and   L(vm) = d′ + 


Wk

kd . 

Finally, for the cumbersome notations defined 

above, we conclude with three relations which will be 

referred to frequently in the sequel, namely,  
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( ) ( )

2

F v J v

i

i

u' u



U

g g , ( )E vt

j

j

t' t g



T

   and   

( ) ( )

2

K vm L vm

k

k

w' w



W

g g .
 

 Queries. The adversary A may make a number of 

queries in an adaptive manner as follows. 

- Initial key extract query (ID): Consider a query 

for the initial secret key of an identity ID. The 

challenger B first computes v = H1(ID) and then 

F(v) and J(v). If F(v) = 0 mod p, the challenger 

B aborts. Otherwise, the challenger B chooses a 

random rvZp and computes the initial secret 

key DID by 

DID = (D1, D2) = ( vr

i

i

vFvJa uu' )()( )()/(






U

g ,

vrvFa gg )(/1)(  ). 

Now, we are convinced that DID = (D1, D2) is a valid 

initial secret key by

 

D1 = vr

i

i

vFvJa uu' )()( )()/(






U

g = viivv r

i

yxy'x'klvFvJa )()( 22

)()/(






U

ggggg  

=
( )/ ( )

2 2( ) ( )
i i

v v i i v

x y
l k x' rJ v F v y'  

 
  ag g g g gU U = vi

i
i

ivv r
yy'xx'kl

vFavJ )()( 2

)(/)(


  UU ggg  

=
( ) ( ) / ( ) ( ) ( )

2 2 2( ) ( ) vra F v J v a F v F v J vg g g g g =
 

)(/)()(

22 )(
vFarvJvFa v ggg  

= 'r

i

i

a vuu' )(2 
U

g  

and 

D2 = vrvFa gg )(/1)(   = 
)(/ vFarv g =

'rvg , 

where )(/ vFar'r vv  .

- Time key update query (ID, t): Consider a query 

for the time update key of an identity ID and a 

period t. The challenger B first computes vt = 

H2(ID, t) of length n. The challenger B then cho-

oses a random rtZp and uses the secret value β 

to compute the time update key as follows: 

TID,t = (T1, T2) = ( tr

j

jtt' )(2 
T

g , 𝑔𝑟𝑡). 

- Signing query (M, ID, t): Consider a query for 

an identity ID, a period t and a message M. The 

challenger B first computes v = H1(ID) and then 

F(v) and J(v). Next, we consider two cases.  

Case 1: If F(v) ≠ 0 mod lv, the challenger B can 

compute the initial secret key and the time update key 

as in the initial key extract query and the time key 

update query, respectively, and B then uses the signing 

algorithm to create a signature on M. 

Case 2: If F(v) = 0 mod p, the challenger B first 

computes vm = H3(M) and then K(vm) and L(vm). If 

K(vm) = 0 mod p, the challenger B aborts. Otherwise, 

the challenger B chooses random values rv, rt, rm Zp 

and computes R= 𝑔𝑟𝑚 . The challenger B then computes 

h = H4(M||R) and constructs the signature as follows:

 

  = ( 1 , 2 , 3 , 4 )  

( ) / ( ) h/ ( )

2( ( ) ( ) ( ) ( ) ,  ,  ,  ( ) )v t m mr h rh r h h rh L vm h K vm K vm

i j k

i j k

u' u t' t w' w   

  

    v tr ra ag g g g g g
U T W

/ ( )( ) / ( )

2 2 2( ( ) ( ) ( ) ( ) ,  ,  ,  )v t m mr h rh r h h r ah K vmh L vm h K vm

i j k

i j k

u' u t' t w' w  

  

    v tr rah -ah ag g g g g g g
U T W

/ ( )( ) ( ) / ( ) ( ) ( )

2 2 2 2( ( ) ( ) ( ) ( ) ,  ,  ,  )v t m mr h rh r h h r ah K vmh K vm L vm K vm K vm L vm

i j

i j

u' u t' t 

 

   v tr rah ahg g g g g g g g g
U T

/ ( ) / ( )( ) ( )

2 2 2( ( ) ( ) ( ) ,  ,  ,  )v t m mr h rh r K vm h h r ah K vmh K vm L vm

i j

i j

u' u t' t  

 

   v tah r rahg g g g g g g
U T

/ ( ) / ( )( ) ( )

2 2 2( ( ) ( ) ( ) ,  ,  ,  )v t m mr h rh r K vm h h r ah K vmh K vm L vm

i j

i j

u' u t' t  

 

   v tah r rahg g g g g g g
U T

2(( ( ) ( ) ) ( ) ,   , ,  )v t m mr r r ' h h r 'h

i j k

i j k

u' u t' t w' w

  

    v tr rag g g g
U T W ,

where )(/ vmKahr'r mm  . 
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 Forgery. Assume that the adversary A generates a 

valid signature * = (𝜎1
∗,  𝜎2

∗,  𝜎3
∗,  𝜎4

∗) for (ID*, t*) 

on M*, where ID*, t* and M* are the target identity, 

period and message, respectively. We discuss two 

cases.  

Case 1: If (M*, ID*, t*) did not appear in the signing 

query, the challenger B computes v* = H1(ID*), vt* = 

H2(ID*, t*), vm* = H3(M*), F(v*) and K(vm*). If F(v*) ≠ 

0 mod p or K(vm*) ≠ 0 mod p, the challenger B aborts. 

Otherwise, the challenger B computes h = H4(M|| 𝜎4
∗) 

and outputs 𝑔𝑎𝑏  as follows:
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This resolves the computational Diffie-Hellman 

(CDH) problem. 
 

Case 2: If (M*, ID*, t*) has appeared in the signing 

query, adversary A owned a previously queried 

signature 𝜎  = (𝜎1 ,  𝜎2 ,  𝜎3 ,  𝜎4 ) of (ID*, t*) on M*. If 

 𝜎2≠ 𝜎2
∗ or  𝜎3≠ 𝜎3

∗, the challenger B can output 𝑔𝑎𝑏  as 

in Case 1. Otherwise, if  𝜎2 =  𝜎2
∗  and  𝜎3 = 𝜎3

∗ , then, 

since  𝜎2 =𝑔𝑟𝑣ℎ , 𝜎2
∗ =𝑔𝑟𝑣ℎ∗

 , 
3  =𝑔𝑟𝑡ℎ  and  𝜎3

∗ =,𝑔𝑟𝑡ℎ∗
 , 

we have h*=h, namely, H4(M|| 𝑔𝑟𝑚  ) =H4(M||
*

mrg  ) 

where  𝜎4=𝑔𝑟𝑚and 𝜎4
∗=

*
mrg . This causes a collision of 

H4 which violates the CRH assumption.  

Now, we analyze the probability of the event that 

the challenger B does not abort. In the phase of initial 

key extract query, if F(v) ≠ 0 mod p, the challenger B 

can correctly answer queries without aborting. In the 

phase of signing query, if F(v) ≠ 0 mod p or K(vm) ≠ 0 

mod p, the challenger B can correctly respond queries 

without aborting. Note that by the previously 

mentioned assumptions lv(m + 1) < p and lm(l + 1) < p, 

we have 0 ≤ lvkv ≤ p, 0 ≤ x′ +
Ui

ix ≤ p, 0 ≤ lmkm ≤ p and 

0 ≤ c′ +
Wk

kc ≤ p. Thus, F(v) = 0 mod p implies F(v) = 

0 mod lv and K(vm) = 0 mod p also implies K(vm) = 0 

mod lm. Equivalently, F(v) ≠ 0 mod lv implies F(v) ≠ 0 

mod p and K(vm) ≠ 0 mod lm also implies K(vm) ≠ 0 

mod p. Since the probability that F(v) = 0 mod lv and 

K(vm) ≠ 0 mod lm occur is negligible, it suffices to 

consider the case F(v) ≠ 0 mod lv in the phase of signing 

query. Obviously, the probability that both F(v) ≠ 0 

mod lv and K(vm) ≠ 0 mod lm occur is a lower bound for 

the probability that the challenger B does not abort in 

the phase of signing query. Furthermore, we discuss a 

case of the challenger B not aborting in the phase of 

Forgery. The case is that F(v*) = 0 mod p and K(vm*) = 

0 mod p must occur if (M*, ID*, t*) did not appear in the 

signing query. Let 1v ,…,
Iqv  be the identities appearing 

in either initial key extract queries or signing queries 

not involving the challenge identity ID* and let 

𝑣𝑚1,…, 𝑣𝑚𝑞𝑀
 be the messages in the signing queries 

involving the challenge identity ID*. Clearly, we have 

Iq  <
Eq  +

Sq   and 
Mq  <

Sq  . In order to simplify the 

analysis, we define the events as follows:  

Ai: F(vi) ≠ 0 mod lv,     A*: F(v*) = 0 mod p, 

Bk: K(vmk) ≠ 0 mod lm,   B*: K(vm*) = 0 mod p.  

Hence, the probabilities of the challenger B not to 

abort for Cases 1 and 2 are presented as follows:  

Pr[¬abortCase1] ≥ Pr[
Iq

i 1


*AAi  
Mq

k 1


*BBk  ] = 

Pr[A*]·Pr[
Iq

i 1


*| AAi
]·Pr[B*]·Pr[

Mq

k 1


*| BBk
] 

and  

Pr[¬abortCase2] ≥ Pr[
Iq

i 1
 iA 

Mq

k 1
 kB ]=Pr[

Iq

i 1
  

iA ]·Pr[
Mq

k 1
 kB ]. 

Here, we discuss the probabilities of the events A* 

and B*, respectively. We have that F(v) = 0 mod p 

implies F(v) = 0 mod lv and K(vm) = 0 mod p also 

implies K(vm) = 0 mod lm, since lv(m + 1) < p and lm(l 
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+ 1) < p. If F(v) = 0 mod lv and K(vm) = 0 mod lm, there 

will be a unique choice of kv with 0 ≤ kv ≤ m and km with 

0 ≤ km ≤ l such that F(v) = 0 mod p and K(vm) = 0 mod 

p. Since kv, x′, X, and km are chosen randomly, we have 

the probabilities of the events A* and B*as follows: 

Pr[A*] = Pr[F(v*) = 0 mod p] = Pr[F(v*) = 0 mod p

 F(v*) = 0 mod lv]  

= Pr[F(v*) = 0 mod lv]·Pr[F(v*) = 0 mod p | 

F(v*) = 0 mod lv]  

= 
1

11



mlv

 

and 

Pr[B*] = Pr[K(vm*) = 0 mod p]= Pr[K(vm*) = 0 

mod p  K(vm*) = 0 mod lm] 

= Pr[K(vm*) = 0 mod lm]·Pr[K(vm*) = 0 

mod p | K(vm*) = 0 mod lm] 

= 
1

11



llm

. 

We then have that  

Pr[
Iq

i 1


*| AAi
] = 1 − Pr[

Iq

i 1


*| AAi ] ≥ 1 −





Iq

i

i AA
1

*]|Pr[  = 1 − 

v

I

l

q ≥ 1 − 

v

SE

l

qq   

and  

Pr[
Mq

k 1


*| BBk
] = 1 − Pr[

Mq

k 1


*| BBk ] ≥ 1 −





Mq

k

k BB
1

*]|Pr[  = 1 − 

m

M

l

q  ≥ 1 − 

m

S

l

q . 

We also have Pr[
Iq

i 1
 iA  ] = Pr[

Iq

i 1


*| AAi
 ] and  

Pr[
Mq

k 1
 kB ] = Pr[

Mq

k 1


*| BBk
] by independency, hence we 

can obtain both 

Pr[
Iq

i 1


*AAi  ] = Pr[A*]·Pr[
Iq

i 1


*| AAi
] ≥ 










 












 v

SE

v l

qq

ml
1

1

11  

and 

Pr[
Sq

k 1


*BBk  ] = Pr[B*]·Pr[
Sq

k 1


*| BBk
] ≥ 



















 m

S

m l

q

ll
1

1

11 . 

We have set lv = 2(
Eq  +

Sq  ) and lm = 2
Sq  , so the 

resulting probabilities of the challenger B not aborting 

for Cases 1 and 2 in Forgery phase respectively are 

Pr[¬abortCase1] ≥ Pr[
Iq

i 1


*AAi  
Mq

k 1


*BBk  ]  

= Pr[A*]·Pr[
Iq

i 1


*| AAi
]·Pr[B*]·Pr[

Mq

k 1


*| BBk
]  

≥ 









 )1(4)1)((4

1

lqmqq SSE

 

and  

Pr[¬abortCase2] ≥ Pr[
Iq

i 1
 iA 

Mq

k 1
 kB ]=Pr[

Iq

i 1
  

iA ]·Pr[
Mq

k 1
 kB ]≥

1

4
. 

Since the adversary A has an advantage ε against the 

proposed strongly unforgeable RIBS scheme, the 

challenger B has an advantage  

ε′ ≥









 )1()1)((16

1

lqmqq SSE

 

to solve the CDH problem or 

ε′′ ≥
4

  

to violate the CRH assumption. 

According to the descriptions above, B requires 

O(m) multiplications and O(1) exponentiations in the 

initial key extract queries. Also, B requires O(n) 

multiplications and O(1) exponentiations in the time 

key update queries as well as O(m +n + l) 

multiplications and O(1) exponentiations in the signing 

queries. So, the total running time required for B is 

τ′ = τ + O((m
Eq + n

Uq +(m+n+l)
Sq )τ1+(

Eq +
Uq +

Sq

)τ2), 

where τ, τ1 and τ2 denote A’s running time, the executing 

time of a multiplication in G1 and the executing time of 

an exponentiation in G1, respectively. 

Theorem 2. Under the CDH and CRH assumptions, 

the proposed RIBS scheme is strongly 

secure against adaptive chosen-message 

attacks (RID-SUF-ACMA) for an inside 

adversary A. More precisely, assume that 

there is an inside adversary A, with an 

advantage ε against the proposed RIBS 

scheme, which can make at most 
Eq  > 0 

initial key extract queries, 
Uq > 0 time key 

update queries and 
Sq > 0 signing queries 

within a running time τ. Then there is an 

algorithm B that has an advantage 

ε′ ≥ ε 









 )1()1)((16

1

lqnqq SSU

 

to solve the CDH problem or 

ε′′ ≥
4

  

to violate the CRH assumption within a running time 
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τ′ = τ + O ( (m
Eq + n

Uq + (m + n+ l)
Sq )τ1 + (

Eq +

Uq  + Sq )τ2),  

in which τ1 and τ2, respectively, denote the executing 

time of a multiplication in G1 and the executing time of 

an exponentiation in G1. 

Proof. We assume that there exists an inside adversary 

A which succeeds in attacking the proposed RIBS 

scheme. We will construct an algorithm B to solve the 

CDH problem or violate CRH assumption. Assume that 

the algorithm B is given <G1, G2, ê, g, ga, gb> as an 

instance of the CDH problem, where a and b are 

unknown to B. To compute gab, the algorithm B must 

simulate a challenger for A in the RID-SUF-ACMA 

game as follows. 

 Setup. The challenger (algorithm) B sets four 

collision-resistant hash functions as follows: H1:{0, 

1}*{0, 1}m, H2:{0, 1}*{0, 1}n and H3, H4:{0, 

1}*{0, 1}l, where m, n and l are fixed lengths. 

Note that the employed collision-resistant hash 

functions are not viewed as random oracles in our 

security proofs. The challenger B first sets lvt = 2(

Uq +
Sq ) and lm = 2

Sq , and chooses
 
two integers kvt 

and km at random, where 0 ≤ kvt ≤ n and 0 ≤ km ≤ l. 
We assume that lvt(n + 1) < p and lm(l + 1) < p for 

the given values of 
Uq , 

Sq , n and l. The challenger 

B chooses a random value αZp as the secret value 

of the initial secret key and assigns 𝑔1= gαga, 𝑔2= 

gb. The challenger B selects z′, z1,…, zm  Zp, and 

computes u′ =𝑔𝑧′
  and a vector U = (ui), where ui 

=𝑔𝑧𝑖
  
for 1 ≤ i ≤ m. In addition, the challenger B 

selects x′, x1,…, xn 𝑍𝑙𝑣𝑡
 , y′, y1,…, yn Zp , and 

computes t′ = 𝑔2
−𝑙𝑣𝑡𝑘𝑣𝑡+𝑥′

𝑔𝑦′
 and a vector T= (tj) , 

where tj = 𝑔2

𝑥𝑗
𝑔𝑦𝑗   for 1 ≤ j ≤ n. Moreover, the 

challenger B selects c′, c1,…, cl 𝑍𝑙𝑚
, d′, d1,…, dl  

Zp, and computes w′ = 𝑔2
−𝑙𝑚𝑘𝑚+𝑐′

𝑔𝑑′
 and a vector 

W = (wk), where wk =𝑔2
𝑐𝑘𝑔𝑑𝑘  for 1 ≤ k ≤ l. Now, the 

challenger B has constructed a set of public 

parameters as  

Parms = <G1, G2, ê, g, 1g , 2g , H1, H2, H3, H4, u′, 

U, t′, T, w′, W>. 

Before performing Queries and Forgery between A 

and B, we define three sets U, T and W, and five 

functions E, F, J, K and L.  

1. Let v= H1(ID) which is a bit string of length 

m. Let U ⊂ {1, 2,…, m} be the set of indices 

i such that vi = 1, where vi denotes the i-th bit 

of the string v, for i = 1, 2,…, m. Define the 

function E by 

E(v) = z′ + 
Ui

iz . 

2. Let vt = H2(ID, t) which is a bit string of length 

n. Let T ⊂ {1, 2,…, n} be the set of indices j 

such that vtj = 1, where vtj denotes the j-th bit 

of the string vt, for j = 1, 2,…, n. Define the 

functions F and J by 

F(vt) = －lvtkvt + x′ + 
Tj

jx    and    J(vt) = y′ + 


Tj

jy . 

3. Let vm = H3(M) which is a bit string of length 

l. Let W ⊂ {1, 2,…, l} be the set of indices k 

such that vmk = 1, where vmk denotes the k-th 

bit of the string vm, for k = 1, 2,…, l. Define 

the functions K and L by 

K(vm) = －lmkm + c′ + 
Wk

kc     and    L(vm) = d′ + 


Wk

kd . 

 Queries. The adversary A may make a number of 

queries in an adaptive manner as follows. 

- Initial key extract query (ID): Consider a query 

for the initial secret key of an identity ID. The 

challenger B first computes v = H1(ID) of length 

m. The challenger B then chooses a random 

rvZp and uses the secret value αZp to compute 

the initial secret key by  

DID = (D1, D2) = ( vr

i

iuu' )(2 
U

g , vrg ). 

- Time key update query (ID, t): Consider a query 

for the time update key of an identity ID and a 

period t. The challenger B first computes vt = 

H2(ID, t) and then F(vt) and J(vt). If F(vt) = 0 

mod p, the challenger B aborts. Otherwise, the 

challenger B chooses a random rtZp and 

computes the time update key TID,t by 

TID,t = (T1, T2) = ( tr

j

j

vtFvtJa tt' )()( )()/(






T

g ,

trvtFa gg )(/1)(  ).  

Now, we are convinced that TID,t = (T1, T2) is a valid 

initial secret key as follows:

 

T1 = tr

j

j

vtFvtJa tt' )()( )()/(






T

g = tjjvtvt r

j

yxy'x'klvtFvtJa )()( 22

)()/(






T

ggggg  

= tj
j

j
j

vtvt r
yx

y'x'klvtFvtJ )()( 22

)()/(


  TT ggggga  
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= tj
j

j
jvtvt

r
yy'xx'kl

vtFavtJ )()( 2

)(/)(


  TT ggg  

= 
trvtJvtFvtFavtJvtFa )()( )()(

2

)(/)()(

22 ggggg   

= 
)(/)()(

22 )(
vtFarvtJvtFa t ggg  

= 
'r

j

j

a ttt' )(2 
T

g  

and 

T2 = )( )(/1 tra ggg vtF = )(/ vtFatrg = 
'rtg , 

where )(/ vtFar'r tt  . 

- Signing query (M, ID, t): Consider a query for 

an identity ID, a period t and a message M. The 

challenger B first computes v = H1(ID) and vt = 

H2(ID, t) and then computes F(vt) and J(vt). 

Here, we consider two cases. 

Case 1: If F(vt) ≠ 0 mod lvt, the challenger B can 

compute the initial secret key and the time update key 

as in the initial key extract query and the time key 

update query respectively, and B then uses the signing 

algorithm to create a signature on M.  

Case 2 : If F(vt) = 0 mod p, the challenger B first 

computes vm = H3(M) and then K(vm) and L(vm). If 

K(vm) = 0 mod p, the challenger B aborts. Otherwise, 

the challenger B chooses random values rv, rt, rm Zp 

and computes R=𝑔𝑟𝑚. The challenger B then computes 

h = H4(M||R) and constructs the signature as follows:

 

 = ( 1 , 2 , 3 , 4 )  

( )/ ( ) h/ ( )

2(( ( ) ( ) ( ) ) ( ) ,  ( ) ,  ( ) ,  ( ) )v t m mr r r ra L vm K vm h h h a K vm

i j k

i j k

u' u t' t w' w  

  

    v tr rg g g g g g
U T W

2(( ( ) ( ) ) ( ) ,  ,  ,  )v t m mr r r ' h h r 'a h

i j k

i j k

u' u t' t w' w

  

    v tr rg g g g
U T W

,

where )(/ vmKahr'r mm  . 

 Forgery. Assume that the adversary A generates a 

valid signature * = (𝜎1
∗,  𝜎2

∗,  𝜎3
∗,  𝜎4

∗) for (ID*, t*) 

on M*, where ID*, t* and M* are the target identity, 

period and message, respectively. We discuss two 

cases.  

Case 1: If (M*, ID*, t*) did not appear in the signing 

query, the challenge B computes v* = H1(ID*), vt* = 

H2(ID*, t*), vm* = H3(M*), F(vt*) and K(vm*). If F(vt*) 

≠ 0 mod p or K(vm*) ≠ 0 mod p, the challenger B aborts. 

Otherwise, the challenger B computes h = H4(M|| 𝜎4
∗) 

and outputs 𝑔𝑎𝑏  as follows:

 


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This resolves the computational Diffie-Hellman 

(CDH) problem. 
Case 2: If (M*, ID*, t*) has appeared in the signing 

query, adversary A owned a previously queried 

signature 𝜎  = (𝜎1 , 𝜎2 , 𝜎3 , 𝜎4 ) of (ID*, t*) on M*. If 
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𝜎2 ≠𝜎2
∗  or 𝜎3 ≠𝜎3

∗ , the challenger B can output 𝑔𝑎𝑏   as  

in Case 1. Otherwise, if 𝜎2 = 𝜎2
∗  and 𝜎3 =𝜎3

∗ , then,  

since 𝜎2 =𝑔𝑟𝑣ℎ , 𝜎2
∗ =𝑔𝑟𝑣ℎ∗

 , 𝜎3 = 𝑔𝑟𝑡ℎ∗
  and 𝜎3

∗ =, 𝑔𝑟𝑡ℎ∗
 ,  

we have h*=h, namely, H4(M|| 𝑔𝑟𝑚  ) =H4(M|| 𝑔𝑟𝑚  )  

where  𝜎4
∗=

*

 mrg and  𝜎4=𝑔𝑟𝑚 . This causes a collision of 

H4 which violates the CRH assumption.  

The probability analysis is similar to Theorem 1. We 

leave the details to the reader. The probabilities of the 

challenger B not aborting for Cases 1 and 2 are  

𝑃𝑟[¬𝑎𝑏𝑜𝑟𝑡𝐶𝑎𝑠𝑒1] ≥ 𝜀 [
1

16𝑞𝑠(𝑞𝑈+𝑞𝑆)(𝑛+1)(𝑙+1)
]  

and 

Pr[¬abortCase2] ≥ 
𝜀

4
. 

Then the challenger B has an advantage   

𝜀′ ≥  𝜀 [
1

16𝑞𝑠(𝑞𝑈+𝑞𝑆)(𝑛+1)(𝑙+1)]  

to solve the CDH problem or  

ε′′ ≥ 
𝜀

4
 

to violate the CRH assumption. The executing time is  

τ + O ((m
Eq + n

Uq + (m + n+ l) 
Sq ) τ1 + (

Eq +
Uq +

Sq ) τ2), 

where τ1 and τ2 denote the executing time of a 

multiplication in G1 and an exponentiation in G1, 

respectively. □ 

6. Comparisons  

For convenience, the following notations are used 

to analyze the performance. 

 TGe: The time of executing a bilinear pairing 

operation in G2.  

 Texp: The time of executing an exponentiation 

operation in G1.  

 ||: The bit length of a message . 

Note that in a multiplicative cyclic group, TGe and 

Texp are more time-consuming than the multiplication 

operation. Here, we compare with previously proposed 

schemes without random oracles to demonstrate the 

advantages of our RIBS scheme. Table 1 lists the 

comparisons among the schemes of Paterson and 

Schuldt [9], Sato et al. [29], Tsai et al. [12] and ours in 

terms of computational cost, signature size, revocable 

functionality and security property. For the 

computation cost in the signing phase, our scheme 

requires 5Texp to sign a message, which increases a little 

the computing cost in comparison to the other schemes. 

Nevertheless, our scheme has better performance than 

Sato et al.’s scheme in terms of the verification phase 

and signature size. On the other hand, we emphasize 

that our scheme possesses strong unforgeability, while 

Tsai et al.’s scheme offers only existential 

unforgeability. Note that strongly unforgeable signature 

schemes are important for constructing cryptographic 

schemes such as chosen-ciphertext secure 

cryptosystems and group signatures.  

In the following, we show that Tsai et al.’s RIBS 

scheme [12] is not strongly secure against adaptive 

chosen-message attacks. Assume that an adversary 

received a valid signature  = (1, 2, 3, 4) =  

( mtv r

k

k

r

j

j

r

i

i ww'tt'uu' )()()(2 


 
WTU

g  , vrg  , trg  , mrg  ) in 

[12]. Certainly, the valid signature  can pass the 

following equality: 

 

),(ˆ),(ˆ),(ˆ),(ˆ),(ˆ 432211 



WTU k

k

j

j

i

i ww'ett'euu'eee  ggg .

In such a case, the adversary chooses a random 

value rm′ Zp and uses the signature  to generate a new 

signature * = (𝜎1
∗ ,  𝜎2

∗ ,  𝜎3
∗ ,  𝜎4

∗ ) = ,)((
'

1
mr

k

kww'
W



),,
'

432
mrg . Obviously, * is still a valid 

signature since any verifier can validate the signature 

tuple by ,(ˆ),(ˆ),(ˆ),(ˆ *

3

*

221

*

1  euu'eee
i

i  
U

ggg

),(ˆ) *

4 



WT k

k

j

j ww'ett'  . It is obvious that Tsai et al.’s 

RIBS scheme [12] violates the property of strong 

unforgeability in Definition 4 and Remark 2.  

Indeed, Paterson and Schuldt’s scheme and Sato et 

al.’s scheme may be equipped with the revocation 

mechanism presented by Boneh and Franklin [2]. In 

this case, the revocation mechanism would require a 

secure channel to transmit the users’ new private keys 

periodically which causes enormous computation 

workload for the PKG and (non-revoked) users when 

encrypting and decrypting private keys. Based  

on Tseng and Tsai’s revocable ID-based public key 

setting, both RIBS schemes of Tsai et al. and ours adopt 

the revocation mechanism with a public channel, so 

that the computational burden can be significantly 

reduced due to the absence of encryption/decryption 

via secure channels. 

7. Conclusions 

In this article, an efficient strongly unforgeable 

RIBS scheme without random oracles was proposed. 

Comparisons with previously proposed schemes were 

made to demonstrate the advantages of our scheme in 

terms of revocable functionality and security property. 

In the standard model (without random oracles), we 

proved that our scheme possesses strong unforgeability 

against adaptive chosen-message attacks under the 

CDH and CRH assumptions. Indeed, Tseng and Tsai’s  
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Table 1. Comparisons between our RIBS scheme and the previously proposed schemes 

 

Paterson and 

Schuldt’s IBS 

scheme [9] 

Sato et al.’s IBS 

scheme [29] 

Tsai et al.’s RIBS 

scheme [12] 
Our RIBS scheme 

Computational cost for 

signing  
2Texp 3Texp 2Texp 5Texp 

Computational cost for 

verification 
4TGe 6TGe 5TGe 5TGe+ Texp  

Signature size 3|G1| 5|G1| 4|G1| 4|G1| 

Required channel  

for revocation 
Secure channel Secure channel Public channel Public channel 

Periodical 

encryption/decryption for 

revocation 

Required Required Not required Not required 

Security  

property 

Existential 

Unforgeability 

Strong 

Unforgeability 

Existential 

Unforgeability 

Strong 

Unforgeability 

 

 

revocable ID-based public key setting provides an 

efficient revocation mechanism with a public channel. 

Our strongly secure RIBS scheme is one of primitives 

for their revocable ID-based public key system and 

provides a fundamental to construct revocable ID-

based cryptographic schemes such as chosen-

ciphertext secure revocable ID-based cryptosystems 

and revocable ID-based group signatures. 
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