
252 

ISSN 1392–124X (print), ISSN 2335–884X (online) INFORMATION TECHNOLOGY AND CONTROL, 2014, T. 43, Nr. 3 

Group-Oriented Data Access Structure Using Threshold-CAE Scheme  

and Its Extension 

Han-Yu Lin 

Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan 

e-mail: lin.hanyu@msa.hinet.net 

  http://dx.doi.org/10.5755/j01.itc.43.3. 5708 

Abstract. Conventional authenticated encryption (AE) schemes put emphasis on the single-user setting, which only 

allow one signer to produce an authenticated ciphertext such that merely the designated recipient is capable of recovering 

the message and verifying its corresponding signature. In the multi-user environments, e.g., organizational operations, 

several senior managers might cooperatively sign a confidential business contract according to the organizational signing 

policies. To fulfill such application requirements, in this paper, we propose a secure (t, n) threshold convertible authenti-

cated encryption (TCAE) scheme and its variant with message linkages for the multi-user environment. In our proposed 

scheme, any t or more signers can cooperatively generate a valid authenticated ciphertext while less than or equal to t1 

cannot. In case of a later dispute over repudiation, the designated recipient can solely convert the authenticated ciphertext 

into an ordinary multi-signature without extra computational efforts for protecting his benefits. Moreover, the security 

requirement of confidentiality against adaptive chosen-ciphertext attacks (IND-CCA2) and that of unforgeability against 

existential forgery on adaptive chosen-message attacks (EF-CMA) are proved in the random oracle model. Compared 

with related works, our scheme provides not only better functionalities, but also lower computational costs. 
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1. Introduction 

The public key cryptosystem was first introduced 

by Diffie and Hellman [1] in 1976. Based on the intract-

ability of solving the discrete logarithm problem (DLP) 

[1, 2], the public key system equips each user with a 

private key and the corresponding public key which is 

accessible to anyone. It is computationally infeasible 

for any malicious adversary to derive the private key 

from its known public one. The public key encryption 

and digital signature schemes [3-5] are two vital me-

chanisms of public key systems. When communicating 

over an insecure channel like the Internet, a sender can 

deliver a message encrypted with the receiver’s public 

key to the destination such that only the intended recei-

ver can decrypt the ciphertext with his own private key. 

It thus can be seen that the public key encryption fulfills 

the security requirement of confidentiality [6]. As to 

further achieving the property of authenticity [7], an au-

thenticated encryption (AE) scheme introduced by 

Horster et al. [8] is applicable. Such schemes enable a 

signer to generate an authenticated ciphertext such that 

only the designated recipient has the ability to recover 

the message and verify its corresponding signature. It 

is not necessary to establish a secret channel between 

the signer and the designated recipient in advance. Yet, 

a later dispute that the signer repudiates his signatures 

might occur. To eliminate the drawback, in 1999, Araki 

et al. [9] proposed a convertible limited verifier signa-

ture scheme which provides the signature conversion 

mechanism to deal with the dispute. However, some 

extra computational cost will be incurred during the 

conversion. In 2002, Wu and Hsu [10] proposed a 

convertible authenticated encryption (CAE) scheme in 

which the signature conversion process is rather simple 

and can be solely done by the designated recipient 

without any additional communicational and computa-

tional cost. That is to say, CAE schemes further satisfy 

the requirement of non-repudiation [11]. In 2005, Chen 

and Jan [12] proposed CAE schemes using self-

certified public key system [13]. Peng et al. [14] 

addressed a publicly verifiable authenticated encryp-

tion scheme with message linkages for transmitting a 

large message. Later, Lv et al. [15] further proposed a 

more secure and practical CAE scheme to improve the 

Wu-Hsu scheme. To orient this research topic, Hwang 

and Liu [16] have given detailed overview and analyses 

in relation to the key issues of AE/CAE schemes. 

With the diversified development of E-Commerce, 

group-oriented applications play an important role in 

the modern society. In the multi-user environments, 

e.g., organizational operations, several senior managers 

might cooperatively sign a confidential business 
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contract. In such a case, traditional cryptographic 

schemes focusing on the single-user setting are not 

applicable here. Although threshold signature schemes 

[17] permit a subset of signers to produce a valid 

signature on behalf of the entire signing group, they are 

not suitable for the situation where confidentiality is 

regarded as a crucial property. To fulfill the above 

group-oriented application requirement, in 2008, Wu et 

al. [18] proposed a convertible multi-authenticated 

encryption scheme which enables a signing group 

composed of multiple signers to generate a valid 

authenticated ciphertext. In 2009, Tsai [19] improved 

Wu et al.’s scheme by reducing the computational costs 

and removing the necessity of message redundancy. 

However, we find out that Tsai’s scheme still cannot 

satisfy the security requirement of indistinguishability 

since anyone can easily identify the encrypted message 

from two candidate messages for a given ciphertext. 

Based on Wu et al.’s scheme, Chang [20] also presented 

another variant with shared verification of multiple 

designated recipients. Lin and Yeh [21] further 

proposed a threshold convertible authenticated 

encryption (TCAE) scheme allowing any t or more 

signers to cooperatively generate a valid authenticated 

ciphertext on behalf of the original signing group. 

Nevertheless, the computational costs of the Lin-Yeh 

scheme are rather high and no formal security proofs 

are given. Considering the key-compromise problem in 

2011, Hsu and Lin [22] proposed an identity-based key-

insulated convertible multi-authenticated encryption 

scheme. 

In this paper, we propose a secure (t, n)-TCAE sche-

me and its variant with message linkages. The variant 

with message linkages is especially suitable for the 

transmission of a large message over the public net-

work. When the signing group repudiates having gene-

rated their authenticated ciphertext, the designated reci-

pient can convert the authenticated ciphertext into an 

ordinary multi-signature for public verification without 

neither extra computational costs nor the cooperation of 

the signers. Besides, the security requirement of confi-

dentiality against adaptive chosen-ciphertext attacks 

(IND-CCA2) and that of unforgeability against existen-

tial forgery on adaptive chosen-message attacks (EF-

CMA) are proved in the random oracle model. To the 

best of our knowledge, the proposed scheme is the first 

provably secure (t, n)-TCAE scheme based on the 

computational Diffie-Hellman problem (CDHP). 

Compared with previous works, ours provides not only 

better functionalities, but also lower computational 

costs. 

The rest of this paper is organized as follows. 

Section 2 states some preliminaries. The formal model 

of our proposed scheme is defined in Section 3. We 

introduce the proposed (t, n)-TACE scheme and its 

variant with message linkages in Section 4. Some 

comparisons and the security proofs are detailed in 

Section 5. Finally, a conclusion is made in Section 6. 

2. Preliminaries 

In this section, we briefly review some security 

notions and the concept of random oracle model. 

Discrete Logarithm Problem; DLP 

Let p and q be two large primes satisfying q | p 1, 

and g a generator of order q over GF(p). The discrete 

logarithm problem is, given an instance (y, p, q, g), 

where y = g
x
 mod p for some x  Zq, to derive x.  

Discrete Logarithm (DL) Assumption 

Let Ik = {(p, q, g)  I | |p| = k} with k  N, where I 

is the universe of all instances and |p| represents the bit-

length of p. For every probabilistic polynomial-time 

algorithm A, every positive polynomial P() and all 

sufficiently large k, the algorithm A can solve the DLP 

with an advantage at most 1/P(k), i.e., 

Pr[A(y, p, q, g) = Log p, q, g(y),  

(p, q, g)  Ik, y 
*
pZ ]  1/P(k). 

The probability is taken over the uniformly and 

independently chosen instance with a given security 

parameter k and over the random choices of A. 

Definition 1. The (t, )-DL assumption holds if there 

exists no polynomial-time adversary that can solve the 

DLP in time at most t and with the advantage . 

Computational Diffie-Hellman Problem; CDHP 

Let p and q be two large primes satisfying that q|p1 

and g a generator of order q over GF(p). The computa-

tional Diffie-Hellman problem is, given an instance (p, 

q, g, ga, gb) for some a, b  Zq, to derive gab mod p. 

Computational Diffie-Hellman (CDH) Assumption 

Let Ik = {(p, q, g)  I | |p| = k} with k  N, where I 

is the universe of all instances and |p| represents the bit-

length of p. For every probabilistic polynomial-time 

algorithm A, every positive polynomial P() and all 

sufficiently large k, the algorithm A can solve the 

CDHP with an advantage at most 1/P(k), i.e., 

Pr[A(p, q, g, ga, gb) = gab,  

(p, q, g)  Ik, a, b  Zq]  1/P(k). 

The probability is taken over the uniformly and 

independently chosen instance with a given security 

parameter k and over the random choices of A. 

Definition 2. The (t, )-CDH assumption holds if there 

exists no polynomial-time adversary that can solve the 

CDHP in time at most t and with the advantage . 

Random Oracle Model 

In the random oracle model, a cryptographic hash 

function is simulated as a random oracle which must be 

queried in order to obtain the corresponding output with 

respect to a given input. That is to say, an adversary can 
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query a hash oracle for his chosen input and a challen-

ger will return the response. An adaptive chosen-

message attacker (CMA) is also allowed to query the 

signature for his chosen messages adaptively while an 

adaptive chosen-ciphertext attacker (CCA2) is further 

given the ability to query the plaintext for his chosen 

ciphertexts for several times. A signature scheme is said 

to be CMA-secure in the random oracle model if there 

is no polynomial-time adversary that can forge a valid 

signature with non-negligible advantage. Similarly, an 

encryption mechanism is said to be CCA2-secure in the 

random oracle model if there is no polynomial-time 

adversary that can decrypt the target challenge with 

non-negligible advantage. 

3. Formal Model of Our Proposed Scheme 

This section defines the formal model of our pro-

posed (t, n)-TCAE scheme. 

3.1. Involved Parties 

A (t, n)-TCAE scheme has two kinds of involved 

parties: a group of n signers and a designated recipient. 

Each one is a probabilistic polynomial-time Turing ma-

chine (PPTM). Any t or more signers can cooperatively 

produce a valid authenticated ciphertext on behalf of 

the group while less than or equal to t  1 cannot. 

Finally, the designated recipient decrypts the ciphertext 

and verifies the multi-signature. 

3.2. Composed Algorithms 

The proposed (t, n)-TCAE scheme consists of the 

following algorithms: 

 Setup: Taking as input 1k where k is a security 

parameter, the algorithm generates the system’s 

public parameters params. 

 Authenticated-Ciphertext-Generation (ACG):  

The ACG algorithm takes as input the system para-

meters params, a message m, the public key of 

designated recipient and the private keys of at least 

t signers. It generates the resulted authenticated 

ciphertext . 

 Signature-Recovery-and-Verification (SRV):  

The SRV algorithm takes as input the system 

parameters params, an authenticated ciphertext , 

the private key of designated recipient and the 

public key of the signing group. It outputs the 

message m and its converted multi-signature  if 

the authenticated ciphertext  is valid. Otherwise, 

the symbol ¶ is returned as a result. 

4. The Proposed Scheme 

In this section, we introduce the proposed scheme 

along with its variant over a finite field and then 

demonstrate its correctness. One realistic application 

for our proposed scheme is business contract signing. 

Suppose that a board of directors for some company 

consists of n persons. According to the regulation, a va-

lid contract must be signed by at least t directors where 

t  n. Since the content of this business contract is con-

fidential, only the lawyer of corresponding company is 

able to verify it. Based on the roles of the above exam-

ple, the board of n directors could be regarded as the 

original signing group, t directors who have signed the 

contract are the actual signing subgroup and the lawyer 

is viewed as the designed verifier in the following 

construction. 

In the proposed scheme, there are three main phases 

including Setup, Authenticated-Ciphertext-Generation 

(ACG) and Signature-Recovery-and-Verification 

(SRV). In Setup phase, a system authority is respon-

sible for generating necessary system parameters along 

with each user’s key pair. In ACG phase, a subgroup of 

t signers will cooperatively generate a valid authen-

ticated ciphertext with the assistance of a clerk. Finally, 

in SRV phase, a designated verifier can decrypt the ci-

phertext and verify the corresponding multi-signature. 

If necessary, the designated verifier has the right to re-

veal a converted multi-signature for public verification. 

4.1. Construction 

 Setup: Taking as input 1k, the system authority (SA) 

selects a t  1 degree polynomial f() = d0 + d1 + 

…+ dt–1 t–1 for all di’s  Zq, two large primes p and 

q where |q| = k and q | (p  1), and g a generator of 

order q. Let h1: {0, 1}k  𝑍𝑝
∗ Zq, h2: {0, 1}k 𝑍𝑝

∗ , 

h3: 𝑍𝑝
∗  {0, 1}k and h4: 𝑍𝑝

∗  Zq be collision 

resistant hash functions. The system publishes the 

public parameters params = {p, q, g, h1, h2, h3} and 

derives each user Ui’s private key xi = f(i). The 

corresponding public key is computed as 

.mod pgy ix
i   

 Authenticated-Ciphertext-Generation (ACG):  

Without loss of generality, let O = {U1, U2, …, Un} 

be the signing group, SO = {U1, U2, …, Ut} the sub-

group composed of t signers who cooperatively ge-

nerate a valid authenticated ciphertext on behalf of 

O, and Uck a semi-trusted clerk who is responsible 

for verifying individuals’ signatures and combining 

them into the corresponding authenticated cipher-

text. A semi-trusted third party is said to be honest 

but curious, i.e., he will not perform anything that 

deviates from the predefined procedures, but he 

might attempt to learn any secret information from 

observed messages. The private key of O is d0 and 

the corresponding public key is y𝐷 = g𝑑0  mod 𝑝 . 

For signing the message mR {0, 1}k, each Ui  SO 

first chooses ri R Zq to compute the Lagrange 

coefficient [23] ci as 

ci = 



}{\

)/(
ij USOU

ijj  mod q, (1) 
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ei = ci  xi mod q, (2) 

,mod pgR ir

i   (3) 

and then sends Ri to Uj  SO \ {Ui} and Uck. Upon 

receiving all Rj’s, Ui  SO computes 

pmhRR

n

j

j mod)(2

1




 , (4) 

qRmhers iii mod),(1 . (5) 

si is then delivered to the clerk Uck via a secure channel. 

After receiving all si’s, Uck verifies whether 

pygR
Rmhc

i

s

i
ii mod

),(1 . (6) 

If it does not hold, si is requested to be sent again; 

else, Uck chooses  R Zq to compute 

qss

SOU

i

i

mod


 , (7) 

K = yv
(s + )

 mod p, (8) 

T = g
(s + )

 mod p, (9) 

Q1 = sh4(K), (10) 

Q2 = h3(K)  m. (11) 

The authenticated ciphertext  = (Q1, Q2, R, T) is 

then delivered to the designated recipient Uv. 

 Signature-Recovery-and-Verification (SRV):  

Upon receiving (Q1, Q2, R, T), Uv first computes 

,mod)( pTK vx
  (12) 

s = h4(K)1Q1, (13) 

m = Q2  h3(K), (14) 

and then checks the redundancy embedded in m. Uv 

can further verify the multi-signature by checking 

).(mod)(2
),(1 pmhygR Rmh

D
s  (15) 

When the case of a later dispute over repudiation 

occurs, Uv can announce the converted multi-signature 

 = (R, s) and the message m to convince the third party 

of the signing group’s dishonesty without any 

additional computational effort or communicational 

overhead. Therefore, with the assistance of Eq. (15), 

anyone can verify the converted multi-signature. 

4.2. Correctness 

The correctness proof includes two parts: correct 

recovery of the message and effective verification of 

the multi-signature. To recover the message, the desi-

gnated recipient must first derive the common secret K 

and then use Eq. (14) to obtain the message. We show 

that the designated recipient can correctly compute the 

shared secret K with his private key and T, the last 

element of the received authenticated ciphertext. From 

the right-hand side of Eq. (12), we have 

(𝑇)𝑥𝑣  

= (g
(s + )

)xv (by Eq. (9)) 

= yv
(s + ) 

= K (mod p) (by Eq. (8)) 

which leads to the left-hand side of Eq. (12).  

If the authenticated ciphertext (Q1, Q2, R, T) is 

correctly generated, it will pass the test of Eq. (15). 

From the right-hand side of Eq. (15), we have 

)(2
),(1 mhyg Rmh

D
s

 

)(2
),(10 mhgg

Rmhd

s
SOjU

j


  (by Eq. (7)) 

)(2

),(1

mhg
SOjU

jj

SOjU

j xcRmhs 




   

 (by Lagrange Interpolation [22]) 

)(2

),(1

mhg

Rmhes j

SOjU

j 


  

)(2 mhg
SOjU

jr


  (by Eq. (5)) 

)(2

1

mhR

n

j

j


  

)(mod pR  (by Eq. (4)) 

which leads to the left-hand side of Eq. (15). 

4.3. Variant with Message Linkages 

Due to the limited system bandwidth, an online 

processing system often has difficulty encrypting a 

large message. For example, for an encryption system 

such as RSA system which processes message block of 

1024 bits, a 1KB message must be divided into 

8 message blocks before encryption. In the subsection, 

we propose a variant with message linkages for 

facilitating this case by dividing a large message into 

lots of small message blocks. The construction is 

similar to that in Section 4.1. We only describe the 

different parts as follows: 

 Authenticated-Ciphertext-Generation (ACG):  

For signing the large message m on behalf of the 

signing group O, each Ui  SO first divides the 

message m into z pieces, i.e., m = m1 || m2 || … || mz 

such that each ml has a suitable length, and then 

chooses ri R Zq and w0 = 0 to compute ci, ei, Ri, R 

and si as Eqs. (1) to (5). The clerk Uck computes s, 

K, T and Q1 as Eqs. (7) to (10). Uck further computes 

wl = ml  h3(wl  1  h3(K)) mod p,  

for l = 1, 2,…, z, (16) 
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and deliveries  = (Q1, R, T, w1, w2, …, wz) to the 

designated recipient Uv. 

 Signature-Recovery-and-Verification (SRV):  

Upon receiving the authenticated ciphertext  = (Q1, 

R, T, w1, w2, …, wz), Uv first computes K and s as 

Eqs. (12) and (13). He then computes 

ml = wl  h3(wl  1  h3(K))1 mod p,  

for l = 1, 2,…, z, (17) 

and recovers the message m as m1 || m2 || … || mz. Uv 

can further verify the multi-signature by checking 

Eq. (15). 

We show that with the authenticated ciphertext (Q1, 

R, T, w1, w2, …, wz), the designated recipient Uv can 

recover the message m and check its validity with 

Eq. (17). From the right-hand side of Eq. (17), we have 

wl  h3(wl  1  h3(K))1 

= ml  h3(wl  1  h3(K))  h3(wl  1  h3(K))1 

 (by Eq. (16)) 

= ml (mod p) 

which leads to the left-hand side of Eq. (17). 

5. Security Proof and Comparison 

In this section, we first address the security model 

with respect to the proposed scheme and prove it in the 

random oracle model. Then some comparisons with 

related schemes are made. 

5.1. Security Model 

Any cryptographic scheme simultaneously satis-

fying the properties of confidentiality and authenticity 

should consider the security requirements of message 

confidentiality and unforgeability. The widely accepted 

notion for the security of message confidentiality 

comes from the definition of indistinguishability-based 

security, i.e., the adversary attempts to distinguish a 

target ciphertext with respect to two candidate 

messages. We define these notions as follows: 

Definition 3. (Confidentiality) A (t, n)-TCAE scheme is 

said to be semantically secure against adaptive chosen-

ciphertext attacks (IND-CCA2) if there exists no 

probabilistic polynomial-time adversary A with non-

negligible advantage in the following game played with 

a challenger B: 

Setup: The challenger B first runs the Setup(1k) 

algorithm and sends the system’s public parameters 

params to the adversary A. 

Phase 1: The adversary A can issue several kinds of 

queries adaptively, i.e., each query might be based on 

the result of previous queries: 

 Authenticated-Ciphertext-Generation (ACG) 

queries: A chooses a message m and then gives B 

the message m. B runs the ACG algorithm on behalf 

of the signing group and forwards the outputted 

authenticated ciphertext  to A. 

 Signature-Recovery-and-Verification (SRV) 

queries: A submits an authenticated ciphertext  to 

B. Then B runs the SRV algorithm on behalf of the 

designated recipient. If  is valid, the recovered 

message m and its converted multi-signature  are 

returned; else, the error symbol ¶ is outputted as a 

result. 

Challenge: The adversary A produces two messages, 

m0 and m1, of the same length. The challenger B flips a 

coin  ← {0, 1} and generates an authenticated 

ciphertext * for m. The ciphertext * is then delivered 

to A as a target challenge. 

Phase 2: The adversary A can issue new queries as 

those in Phase 1 except for the SRV query for the target 

ciphertext. 

Guess: At the end of the game, A outputs a bit . The 

adversary A wins this game if  = . We define A’s 

advantage as Adv(A) = | Pr[ = ] − 1/2 |. 

Definition 4. (Unforgeability) A (t, n)-TCAE scheme is 

said to achieve existential unforgeability against 

adaptive chosen message attacks (EF-CMA) if there 

exists no probabilistic polynomial-time adversary A 

with non-negligible advantage in the following game 

played with a challenger B: 

Setup: B first runs the Setup(1k) algorithm and sends 

the system’s public parameters params to the adversary 

A. 

Phase 1: The adversary A adaptively issues ACG 

queries as those in Phase 1 of Definition 3. 

Forgery: Finally, A arbitrarily chooses a message m 

and produces an authenticated ciphertext * which is 

not outputted by the ACG query. The adversary A wins 

if * is valid. 

5.2. Security Proof 

We prove that the proposed scheme achieves the 

IND-CCA2 and the EF-CMA security in the random 

oracle model as Theorems 1 and 2, respectively. The 

security proofs can also be applied to its variant with 

message linkages, since they have almost the same 

structure.  

Theorem 1. (Proof of Confidentiality) The proposed 

scheme is (t, qh1
, qh2

, qh3
, qACG, qSRV, )-

secure against adaptive chosen-ciphertext 

attacks (IND-CCA2) in the random oracle 

model if there exists no probabilistic 

polynomial-time adversary that can (t', 

')-break the CDHP, where 
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'  (qh3

1)(2 
k

hhSRV qqq

2

)1(
31


), 

t'  t + t(qh2
 + 4qACG + 2qSRV). 

Here t is the cost for performing a modular 

exponentiation over a finite field. 

Proof: Suppose that a probabilistic polynomial-time 

adversary A can (t, qh1
, qh2

, qh3
, qACG, qSRV, )-break the 

proposed scheme with non-negligible advantage  un-

der the adaptive chosen-ciphertext attack after running 

in time at most t and asking at most qhi
 hi random oracle 

(for i = 1 to 3), qACG ACG and qSRV SRV queries. Then 

we can construct another algorithm B that (t', ')-breaks 

the CDHP by taking A as a subroutine. Let all involved 

parties and parameters be defined the same as those in 

Section 4.1. Note that in this proof, the hash functions 

h1 to h3 are simulated as random oracles which must be 

queried in order to get the output with respect to any 

input. The objective of B is to obtain ( pg vxd
mod0 ) by 

taking (p, q, g, yD, yv) as inputs. In this proof, B 

simulates a challenger to A in the following game.  

Setup: The challenger B runs the Setup(1k) algorithm 

and sends the system’s public parameters params = {p, 

q, g, h1, h2, h3} along with (yD, yv) to the adversary A. 

Phase 1: A issues the following kinds of queries 

adaptively: 

 h1 oracle: When A queries an h1 oracle of h1(m, R), 

B returns O-Sim_h1(m, R). The simulated random 

oracle O-Sim_h1 operates as shown in Fig. 1. Note 

that the function insert(N, b) will insert the value b 

into the array N. 

 h2 oracle: When A queries an h2 oracle of h2(m), B 

returns O-Sim_h2(m). The simulated random oracle 

O-Sim_h2 operates as depicted in Fig. 2. Note that 

the function check(N, b) will return a Boolean value 

depending on whether the value b is stored in the 

array N or not. 

 

oracle O-Sim_h1(m, R) 

1: int Q_h1[qh1
][2], A_h1[qh1

]; // Let Q_h1 and A_h1 be two arrays. 

2: for i = 0 to qh1
  1 

3:  if (Q_h1[i][0] = m) and (Q_h1[i][1] = R) then 

4:   exit for;  // It is an old query. 

5:  else if (Q_h1[i][0] = “”) then  // It is a new query. 

6:   insert(Q_h1, (m, R)); A_h1[i]  v1 R Zq; exit for; 

7:   end if 

8: next i 

9: return A_h1[i]; 

Figure 1. Algorithm of the simulated random oracle O-Sim_h1 

oracle O-Sim_h2(m) 

1: int Q_h2[qh2
], A_h2[qh2

][3]; // Let Q_h2 and A_h2 be two arrays. 

2: for i = 0 to qh2
  1 

3:  if (Q_h2[i] = m) then  // It is an old query. 

4:   exit for; 

5:  else if (Q_h2[i] = “”) then  // It is a new query. 

6:   Q_h2[i]  m; A_h2[i][0]  v2 R Zq; 

7:   if (check(Q_h1, m)) = true) then // h1(m, *) has ever been queried. 

8:    for j = 0 to qh1
  1 

9:     if (Q_h1[j][0] = m) then  

10:      R = Q_h1[j][1]; A_h2[i][1]  R; A_h2[i][2]  V2 = Rgv2 mod p; exit for; 

11:     end if 

12:    next j 

13:   else // h1(m, *) has never been queried. 

14:    A_h2[i][1] = 1; A_h2[i][2]  V2 = gv2 mod p; 

15:   end if 

16:   exit for; 

17:   end if 

18: next i 

19: return A_h2[i][2]; 

Figure 2. Algorithm of the simulated random oracle O-Sim_h2 
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oracle O-Sim_h3(K) 

1: int Q_h3[qh3
], A_h3[qh3

]; // Let Q_h3 and A_h3 be two arrays. 

2: for i = 0 to qh3
  1 

3:  if (Q_h3[i] = K) then  // It is an old query. 

4:   exit for; 

5:  else if (Q_h3[i] = “”) then  // It is a new query. 

6:   Q_h3[i]  K; A_h3[i]  v3 R {0, 1}k; exit for; 

7:   end if 

8: next i 

9: return A_h3[i]; 

Figure 3. Algorithm of the simulated random oracle O-Sim_h3 

 

oracle O-Sim_ACG(m) 

1: V2 = O-Sim_h2(m); 

2: do 

3:   Choose s, v1 R Zq; 
pVygR v

D
s mod2

1
; 

4: while (check(Q_h1, (m, R)) = true) 

5: insert(Q_h1, (m, R)); insert(A_h1, v1);  // define h1(m, R) = v1 

6: Choose  R Zq; K = yv
(s + )

 mod p; T = g
(s + )

 mod p; Q1 = sh4(K); Q2 = O-Sim_h3(K)  m; 

7: return  = (Q1, Q2, R, T); 

 

Figure 4. Algorithm of the simulated ACG oracle O-Sim_ACG 

 

oracle O-Sim_SRV() //  = (Q1, Q2, R, T) 

1: if (check(Q_h1, R) = true) then // h1(*, R) has ever been queried. 

2:  for j = 0 to qh1
  1 

3:   if (Q_h1[j][1] = R) then m = Q_h1[j][0]; exit for; 
5:   end if 

6:  next j 

7:  v3 = Q2  m; 

8:  if (check(A_h3, v3)) = true) then  

9:   for j = 0 to qh3
  1 

10:    if (A_h3[j] = v3) then K = Q_h3[j]; exit for; 
12:    end if 

13:   next j 

14:   s = Q1(K mod q)1 mod q; 

15:   if (
pmhygR Rmh

D
s mod)(2

),(1
) then return (m, R, s); 

17:   else 

18:    return ¶; 

19:   end if 

20:  else 

21:   return ¶; 

22:  end if 

23: else // h1(*, R) has never been queried. 

24:   return ¶; 

25: end if 

Figure 5. Algorithm of the simulated SRV oracle O-Sim_SRV 
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algorithm Sim_Challenge(m) 

1: V2 = O-Sim_h2(m); 

2: do 

3:   Choose s*, v1 R Zq; pVygR v
D

s mod* 2
* 1 ; 

4: while (check(Q_h1, (m, R*)) = true) 

5: insert(Q_h1, (m, R*)); insert(A_h1, v1);  // define h1(m, R*) = v1 

6: Choose , K** R Zq, v3 R {0, 1}k; 

7: T* = yD
(s* + )

 mod p; // implicitly define K* = yv
d

0
(s + )

 mod p 

// Note that B does not know K*. 

8: Q1* = sK**; // implicitly define K** = h4(K*) 

9: Q2* = v3  m; // implicitly define h3(K*) = v3 

10: return * = (Q1*, Q2*, R*, T*); 

Figure 6. Algorithm of the simulated Sim_Challenge 

 h3 oracle: When A queries an h3 oracle of h3(K), B 

returns O-Sim_h3(K). The simulated random 

oracle O-Sim_h3 operates as shown in Fig. 3 

 ACG queries: When A makes an ACG query for 

some message m, B returns O-Sim_ACG(m) as the 

result. The simulated ACG oracle O-Sim_ACG 

operates as depicted in Fig. 4. 

SRV queries: When A makes an SRV query for 

some authenticated ciphertext , B returns O-

Sim_SRV() as the result. The simulated SRV 

oracle O-Sim_SRV operates as shown in Fig. 5. 

Challenge: A generates two messages, m0 and m1, of 

the same length. The challenger B flips a coin  ← {0, 

1} and produces an authenticated ciphertext * = (Q1*, 

Q2*, R*, T*) for m by running the simulated 

Sim_Challenge(m). The algorithm of 

Sim_Challenge operates as depicted in Fig. 6. 

Phase 2: A makes new queries as those stated in 

Phase 1 except for the SRV query for the target 

ciphertext *.  

Guess: A outputs a bit  as the result. 

Output: Finally, B randomly selects K of the Q_h3 

array and outputs 
1)( sK  as a correct answer to the 

CDHP.  

Analysis of the game: Since B always returns a valid 

authenticated ciphertext for each issued ACG query 

without abortion, the simulation of ACG queries is 

said to be perfect. We then evaluate the simulation of 

SRV queries. Let SRV_ERR be the event that an SRV 

query fails during the entire game, i.e., an error symbol 

is returned for a valid authenticated ciphertext. 

An SRV query for some valid  = (Q1, Q2, R, T) fails 

if A can produce  without asking the corresponding 

h1(m, R) or h3(K) random oracles beforehand. Let AC-

V be an event that the authenticated ciphertext  of an 

SRV query made by A is valid. QH1 and QH3 

separately denote the events that A has ever asked 

h1(m, R) and h3(K) random oracles beforehand. Then 

we can express the fail probability of any SRV query 

as 

Pr[AC-V | QH3] + Pr[AC-V  QH3 | QH1] 

 = Pr[AC-V  QH1 | QH3]  

 + Pr[AC-V  QH1 | QH3]  

 + Pr[AC-V  QH3 | QH1] 

  Pr[QH1 | QH3]  

 + Pr[AC-V | QH1  QH3]  

 + Pr[AC-V  QH3 | QH1] 

  
k

h

kk

h qq

22

1

2

31   = 
k

hh qq

2

1
31


. 

Besides, A can make at most qSRV SRV queries. 

Consequently, we can express the probability of 

SRV_ERR as 

Pr[SRV_ERR]  
k

hhSRV qqq

2

)1(
31


. (18) 

Also note that in the challenge phase, B has 

returned a simulated authenticated ciphertext * = 

(Q1*, Q2*, R*, T*) where T* = yD
(s* + )

 mod p, i.e., 

the value K* is implicitly defined as K* = yv
d

0
(s + )

 

mod p. As long as the adversary A never makes an 

h3(K*) query in Phase 2, the entire simulation game 

could finish without abortion. Let QH3* be the event 

that A does make an h3(K*) query in Phase 2, and GP 

the event that the entire simulation game does not 

abort. When the entire simulation game is normally 

terminated, it is obvious that A gains no advantage in 

guessing , i.e., 

Pr[ =  | GP] = 1/2. (19) 

We can further rewrite Pr[ = ] as  

Pr[ = ] = Pr[ =  | GP] Pr[GP]  

 + Pr[ =  | GP] Pr[GP] 
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  (1/2)Pr[GP] + Pr[GP] (by Eq. (19)) 

 = (1/2)(1  Pr[GP]) + Pr[GP] 

 = (1/2) + (1/2)Pr[GP]. (20) 

Moreover, we can also derive that  

Pr[ = ]  Pr[ =  | GP] Pr[GP] 

 = (1/2)(1  Pr[GP]) 

 = (1/2)  (1/2)Pr[GP]. (21) 

Combing Eqs. (18) and (19), we obtain that  

| Pr[ = ] − 1/2 |  (1/2)Pr[GP]. (22) 

By the definition of A’s advantage in the security 

model, we have 

 = | Pr[ = ] − 1/2 | 

  (1/2)Pr[GP] (by Eq. (22)) 

 = (1/2)(Pr[QH3*  SRV_ERR]) 

  (1/2)(Pr[QH3*] + Pr[SRV_ERR])  

Rewriting the above inequality, we have 

Pr[QH3*]  2  Pr[SRV_ERR]) 

  2 
k

hhSRV qqq

2

)1(
31


. 

If the event QH3* happens, we claim that the value  

K* = yv
d

0
(s + )

 mod p will be left in some entry of the 

Q_h3 array. Therefore, B is capable of outputting 

vxds gK 0
1)(*)( 


  as the correct answer to the 

CDHP with non-negligible probability 

'  (qh3

1)(2 
k

hhSRV qqq

2

)1(
31


). 

The time required for B is t'  t + t(qh2
 + 4qACG + 

2qSRV). 

 Q.E.D. 

To prove that the proposed scheme achieves the 

EF-CMA security in the random oracle model, we 

utilize the Forking lemma [24] presented by 

Pointcheval and Stern. According to their proof 

techniques, we can directly obtain the same result as 

follows. 

(The Forking Lemma) Pointcheval and Stern 

introduced the Forking lemma to prove the security of 

digital signature schemes. In the random oracle mode, 

let (G, , V) be a generic signature scheme and A a 

probabilistic polynomial-time Turing machine whose 

input only consists of public data. We denote by N1 

and N2 the numbers of queries that A can ask to the 

random oracle and to the signer, respectively. Assume 

that, within a time bound T, A produces, with probabi-

lity   10(N2 + 1)(N2 + N1)/2k, a valid signature (m, 

1, h, 2) where 1 = R, h = (h1(m, R), h2(m)) and 

2 = s. If the triples (1, h, 2) can be simulated 

without knowing the private key with an indistin-

guishable distribution probability, then there is 

another machine which has control over the machine 

obtained from A replacing interaction with the signer 

by simulation and produces two valid signatures (m, 

1, h, 2) and (m, 1, h', 2') such that h1(m, R)  

h'1(m, R) in the expected time T '  120686T/. 

More concretely, in our scheme, we can first obtain 

two equations below: 

R = g
s

 yD
h1(m, R)

h2(m) mod p, 

R = g
s'

 yD
h'1(m, R)

h2(m) mod p. 

Then the private key d0 can be computed as  

d0 = (s  s')/(h'1(m, R)  h1(m, R)). 

Still, to show the tight relation between the security 

of our proposed scheme and the intractability of the 

DLP, we give another more detailed security proof as 

Theorem 2. 

Theorem 2. (Proof of Unforgeability) The proposed 

scheme is (t, qh1
, qh2

, qACG, )-secure 

against existential forgery on adaptive 

chosen-message attacks (EF-CMA) in the 

random oracle model if there exists no 

probabilistic polynomial-time adversary 

that can (t', ')-break the DLP, where 

'  (21)(  2k)(1 + 41(  2k)2(21 + qh1

1)), 

t'  t + t(qh2
 + 4qACG). 

Here t is the cost for performing a modular 

exponentiation over a finite field. 

Proof: Suppose that a probabilistic polynomial-time 

adversary A can (t, qh1
, qh2

, qACG, )-break the proposed 

scheme with non-negligible advantage  under the 

adaptive chosen-message attack after running in time 

at most t and asking at most qhi
 hi random oracle (for 

i=1 and 2) and qACG ACG queries. Then we can 

construct another algorithm B that (t', ')-breaks the 

DLP by taking A as a subroutine. Let all involved 

parties and notations be defined the same as those in 

Section 4.1, h3 and h4 two collision resistant hash 

functions, and (h1, h2) random oracles. The objective 

of B is to obtain )log(0 Dg yd   by taking (p, q, g, yD) 

as inputs. In this proof, B simulates a challenger to A 

in the following game. 

Setup: The challenger B runs the Setup(1k) algorithm 

to obtain the system’s public parameters params = {p, 

q, g, h1, h2, h3} and comes up with a random tape 

composed of a long sequence of random bits. Then B 

simulates one or two runs of (t, n)-TCAE scheme to 

the adversary A on input params, yD, yv = g mod p 

where   R Zq, and the random tape. 
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Phase 1: A adaptively asks h1 and h2 random oracles, 

and ACG queries as those defined in Theorem 1. 

Analysis of the game: As the simulated result of each 

ACG query is computationally indistinguishable from 

the one produced by a real scheme, the adversary A’s 

view in the simulation is just like that he is playing in 

the real scheme. Let AC-V be the event that A attempts 

to forge an authenticated ciphertext for his arbitrarily 

chosen message m and then finally outputs a valid  = 

(Q1, Q2, R, T). By assumption, A has non-negligible 

probability  to break the proposed scheme under the 

adaptive chosen-message attack, i.e., Pr[AC-V] = . It 

is possible that A successfully generates a valid  

without asking h1(m, R) and h2(m) random oracles 

beforehand. We denote the event that A guesses correct 

random values without asking random oracles by NH 

and we know that Pr[NH]  2k. Then, we can further 

express the probability that A outputs a valid forgery 

= (Q1, Q2, R, T) after asking h2(m) and h1(m, R) 

random oracles as 

Pr[AC-V  NH]  (  2k). 

With the outputted  = (Q1, Q2, R, T), B first 

recovers (m, s) using the initially selected private key 

, and then checks the entry of A_h2 array in relation 

to the h2(m) query. According to the simulation 

algorithm of O-Sim_h2(m), the output of h2(m) random 

oracle would be either Rgv2 or gv2. If h2(m) = Rgv2, we 

have  

R = g
s

 yD
h1(m, R)

h2(m) mod p 

= g
s

 yD
h1(m, R)

Rgv2 mod p. 

Rewriting the above equality, we can obtain  

gv2 = g
s

 yD
h1(m, R)

 mod p. Then B will be able to solve 

the DLP by computing  

d0 = (v2  s)h1(m, R)1 mod q. 

Since the supplied sequence of random bits are 

unpredictable and each random oracle is simulated 

without collision, we can expect that Pr[h2(m) = Rgv2] 

= 21, i.e., B would have the probability of 21 to solve 

the DLP in the first simulation on condition that the 

event (AC-V  NH) happens. 

In the other hand, with the probability of (1  21) 

= 21, B might have to launch the second simulation in 

case that h2(m) = gv2. B again runs A on input params, 

yD, yv = g mod p where   R Zq, and the same random 

tape. As the adversary A is given the same sequence of 

random bits, we know that the i-th random query he 

makes will always be the same as the one during the 

first simulation. For all the oracle queries before the 

h1(m, R) query, B returns identical results as those in 

the first time. When A asks an h1(m, R) random oracle, 

B directly gives a new v1*R Zq instead of v1. At the 

same time, A is provided with another different 

random tape which is also composed of a long 

sequence of random bits. By the “Forking lemma” 

stated above, when A eventually outputs another valid 

authenticated ciphertext * = (Q1*, Q2*, R, T*) with 

h1(m, R)  h1*(m, R) or h2(m) = Rgv2 this time, B would 

have a chance to solve the DLP. To evaluate B’s 

success probability, we use the “Splitting lemma” [24] 

as follows:  

Let X and Y be the sets of possible sequences of 

random bits and random function values supplied to A 

before and after the h1(m, R) query is made, 

respectively. It follows that on inputting a random 

value (x || y) for any x  X and y  Y, A outputs a valid 

forgery with the probability of , i.e., Pr xX, yY [AC-

V] = . By the “Splitting lemma”, there exists a subset 

D  X such that 

(a). Pr[x  D] = |D|  |X|1  21. 

(b). x  D, Pr yY [AC-V]  21. 

From the above definition, we can derive that if   

 D is the supplied sequence of random bits and 

random function values for A before the h1(m, R) query 

is made, then for any sequence of random bits and 

random function values y'  Y after that, A outputs a 

valid forgery in the second simulation with the 

probability of at least (21)2 = 412, i.e., Pr  D, y'Y 

[AC-V]  412. Since Pr[h2(m) = Rgv2] = 21 and the 

probability that A outputs another * = (Q1*, Q2*, R, 

T*) with h1(m, R)  h1*(m, R) is qh1

1, we can express 

the probability that B solves the DLP in the second 

simulation as 

(  2k)(41(  2k)2)(21 + qh1

1) 

= 41(  2k)3(21 + qh1

1). 

Combining the result in the first simulation, we can 

derive that after the second simulation, B could solve 

the DLP with the success probability 

'  (21)(  2k)  

 + (1  21)(41(  2k)3(21 + qh1

1)) 

 = (21)(  2k)(1 + 41(  2k)2(21 + qh1

1)). 

In addition, the time required for B in one 

simulation is  

t + t(qh2
 + 4qACG). 

We hence can represent the total time for B after 

the second simulation as  

t'  (21)(t + t(qh2
 + 4qACG))  

 + (1  21)(t + t(qh2
 + 4qACG)) 

 = t + t(qh2
 + 4qACG). 

 Q.E.D. 

According to Theorem 2, the proposed scheme is 

secure against existential forgery attack, which stands 
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for that the signing group cannot deny having 

generated their authenticated ciphertext. Hence, we 

obtain the following corollary. 

Corollary 1. The proposed scheme satisfies the 

security requirement of non-repudiation. 

5.3. Comparisons 

To the best of our knowledge, the proposed scheme 

is the first provably secure (t, n)-TCAE scheme based 

on the CDHP. We compare the proposed scheme with 

some related works including Lv et al.’s (LWK for 

short) [15], Tso et al.’ (TOO for short) [25], Araki et 

al.’ (AUI for short) [9], the Wu-Hsu (WH for short) 

[10], Wu et al.’s (WHT for short) [18], Chang’s (Cha 

for short) [20], Tsai’s (Tsa for short) [19] and the Lin-

Yeh (LY for short) [21] schemes in terms of 

functionalities and security proofs. Detailed compari-

sons are demonstrated as Table 1.  

To evaluate the computational performance, we 

further compare the proposed scheme with above 

group-oriented CAE ones in number of the most time-

consuming operation, i.e., modular exponentiation 

computation. The required computational costs with 

respect to each compared scheme are shown as 

Table 2. From this table, it can be seen that if we let t 

 n, Tsai’s scheme would have the same performance 

as ours. Yet, in practice, our scheme with threshold 

signing group would offer much more flexibility than 

Tsai’s. To sum up, we claim that the proposed scheme 

provides not only better functionalities, but also lower 

computational costs. 

6. Conclusion 

In this paper, we have proposed a secure (t, n)-

TCAE scheme for confidential applications in the 

multi-user environment. A variant with message linka-

ges is also introduced for facilitating the situation 

where a large message needs to be transmitted over the 

public network. Both the proposed scheme and its 

variant can simultaneously satisfy the security 

requirements of authenticity, confidentiality and non-

repudiation. Unlike previous schemes focusing on the 

single-user setting, our proposed scheme and its 

variant allow any t or more signers to cooperatively 

generate a valid authenticated ciphertext. The conver-

sion mechanism enables the designated recipient to 

publicize the signing group’s ordinary multi-signature 

for protecting his benefits. Furthermore, we also 

proved that the proposed scheme achieves the IND-

CCA2 and the EF-CMA security in the random oracle 

model. Compared with related works, ours provides 

not only better functionalities, but also lower computa-

tional costs.

 

Table 1. Comparisons in terms of functionalities and security proofs 

              Scheme 

Item 
LWK TOO AUI WH WHT Cha Tsa LY Ours 

Multi-User Environment     O O O O O 

Threshold Groups      O  O O 

Message Linkages O        O 

Signature Conversion O O O O O O O O O 

No Conversion Cost O O  O O O O O O 

Proof of Confidentiality     O O   O 

Proof of Unforgeability     O O   O 

 

Table 2. Comparisons in number of required modular exponentiation operations 

           Scheme 

Item WHT Cha Tsa LY Ours 

Computational Costs* 3n2  n + 5 3n2  n + 5 3n + 5 3t2 + t + 3 3t + 5 

Remark *:  Let t be the threshold value and n the size of signing group. The computational costs include those executed by 

each signer in the signing group, the clerk and the designated recipient. 
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