
7

ISSN 1392–124X (print), ISSN 2335–884X (online) INFORMATION TECHNOLOGY AND CONTROL, 2015, T. 44, Nr. 1

An Efficient Scheduling Strategy for Batch Processing Applications

in Mobile Cloud: Model and Algorithm

Chunlin Li, LaYuan Li

Department of Computer Science, Wuhan University of Technology,

Wuhan 430063, P.R.China

e-mail: chunlin74@aliyun.com, jwtu@public.wh.hb.cn

 http://dx.doi.org/10.5755/j01.itc.44.1.5319

Abstract. Mobiles enter cloud computing domain by trying to access the shared pool of computing resources

provided by the cloud on demand. Mobile cloud computing brings new types of services and facilities for mobile users

to take full advantage of cloud computing. The paper considers batch processing applications for mobile cloud computing

environment. The mobile device’s user requirements arrive in batches into the mobile cloud systems. For example,

mobile device’s users submit batch jobs (e.g., financial analytics, scientific simulations) to mobile cloud system for fast

processing. The paper proposes a multistage scheduling for batch processing applications in mobile cloud. The multistage

scheduling optimization is involved with mobile cloud provider’s optimization, mobile device application’s optimization

and mobile device job’s optimization, respectively. Multimedia search as an example in mobile cloud environment is

presented, and the proposed multistage scheduling method is applied to mobile cloud environment. In the simulations,

our proposed mobile cloud multistage scheduling algorithms are compared with two related works. Our algorithm

combines the perspectives of mobile cloud providers and mobile device users; it outperforms better than other related

works.

Keywords: mobile cloud computing; batch processing; multistage optimization model.

1. Introduction

As mobile devices become increasingly powerful,

mobile devices extends beyond traditional telecommu-

nications and moves to cloud computing environment.

However, low bandwidth, intermittent network

connectivity and scarcity of computing resources and

energy are still key issues in applying mobiles in

complex and data intensive applications. Mobile cloud

architecture can facilitate enormous amounts of data

storage and high computational capabilities by means

of the Cloud [1]. The purpose of mobile cloud

computing is to balance the application distribution

between the mobile device and the cloud, in order to

achieve faster interactions, battery savings and better

resource utilization. With this, mobile devices evolve

from being mere intermediaries between the cloud and

the end user into true intermediaries of cloud

computing.

Given the nature of cloud applications, users do not

need to have the highest resource devices, as complex

computing operations would be run within the cloud.

This lessens the cost of mobile computing to the client

and allows even low-entry types of devices to take

advantage of the cloud capabilities. Mobile cloud can

facilitate the use of mobile devices to collect data,

manipulate them and interact with scientific workflows

running in the Cloud. By deploying data-intensive

computation and data storage to the Cloud, the mobile

cloud can release mobiles from heavy computational

loads, thereby reducing mobile energy consumption,

while using the cloud to increase processing power and

storage capacity.

There are some works dealing with mobile cloud.

In [2], Kaewpuang et al. proposed a framework for

resource allocation to the mobile applications, and

revenue management and cooperation formation

among service providers. They formulate and solve

optimization models to obtain the optimal number of

application instances that can be supported to maximize

the revenue of the service providers while meeting the

resource requirements of the mobile applications. In

[3], Wu et al. studied the tradeoff between shortening

execution time and extending battery life of mobile

devices in mobile cloud. A novel adaptive offloading

scheme is proposed and analyzed based on the tradeoff

analysis. In [4], Yamauchi et al. proposed a distributed

parallel scheduling methodology for mobile cloud and

developed a simulator to analyze these characteristics

and the bottleneck of mobile cloud. In [5], Lin et al.

propose an optimal control policy in a mobile cloud

C. Li, L. Li

8

computing system based on stochastic data. They

define the expected “performance sum” as the objective

function, which essentially captures a desirable trade-

off between performance and power consumption of

the mobile device. Abolfazli et al. [6] propose a market-

oriented architecture based on SOA (service-oriented

architecture) to stimulate publishing, discovering, and

hosting services on nearby mobiles. In [7], a framework

from modeling to design, and to implementation is

proposed to build a service selection system in mobile

cloud. A Markov chain model is used for performance

measures calculation. In [8], Park and Lee make groups

of mobile devices by measuring the behavior of mobile

devices and calculating the entropy in mobile cloud. In

[9], Nishio et al. propose an architecture and mathema-

tical framework for heterogeneous resource sharing in

mobile cloud. They formulate optimization problems

for maximizing the sum of the utility functions and

solve them via convex optimization approaches.

Shiraz et al. [10] study virtual machine deployment

for application outsourcing in mobile cloud. This paper

analyzes the impact of VM (Virtual Machine) deploy-

ment and management on the execution time of

application. In [11], Balakrishnan and Tham attempt to

apply DVFS (Dynamic voltage and frequency scaling)

in mapping as well as scheduling stages by combining

both the task-resource and resource-frequency assign-

ments in mobile cloud. In [12], Mohammad et al.

propose a cooperative game-theoretic solution for the

benefit of the cloud providers in horizontal dynamic

cloud federation. They study two utility maximizing

cooperative resource allocation games. In [13], Hung et

al. present a novel architecture, taking advantage of

collaboration of thin and thick clients in cloud compu-

ting. The paper aims at optimizing data distribution and

utilizing cloud resources so that QoS (Quality of

Service) requirements can be met. They also propose an

algorithm to select an optimal resource allocation

strategy to satisfy various Service Level Agreements.

In [14], Yang et al. study how to optimize the

computation partitioning of a data stream application

between mobile and cloud to achieve maximum

speed/throughput in processing the streaming data in

mobile cloud. Li et al. [15] propose Armada, an

efficient range query processing scheme to support

delay bounded single-attribute and multiple-attribute

range queries. Sanaei et al. [16] propose a Service-

based arbitrated multi-tier infrastructure for mobile

cloud computing.

In [17], Sindia et al. explore how cloud computing

techniques can be used on mobile devices. Two ways

are proposed to deploy mobile cloud computing in an

efficient manner: a customizable job scheduler; and a

mobile friendly MapReduce framework. In [18],

Niyato et al. model the resource allocation process of a

mobile cloud computing system as an auction

mechanism with premium and discount factors. In [19],

Park et al. propose a resource allocation technique

which offers reliable resource allocation considering

the availability of mobile resources and movement

reliability of mobile resources in mobile cloud.

Reference [20] proposed phased scheduling for

resource-constrained mobile devices in mobile cloud

computing. Reference [21] presents optimal resource

provisioning for cloud computing environment.

Andziulis et al. [22] study robust intelligent

construction procedure for job-shop scheduling.

From the above review of related literature on

mobile cloud, most researches of the mobile cloud

scheduling do not consider how to fulfill both mobile

users’ expectations and mobile cloud providers’

optimization objectives. The methods and contributions

of this paper are different from the above related works.

Our contributions are as follows.

1) The formulation of mobile cloud multistage

scheduling strategy for batch processing applications

combines the perspectives of mobile cloud providers

and mobile device users.

2) The maximization of the Lagrangian of mobile

cloud multistage scheduling optimization in mobile

cloud can be processed in parallel. In order to achieve

a distributed solution, the multistage scheduling

optimization is involved with mobile cloud provider’s

optimization, mobile device application’s optimization

and mobile device job’s optimization, respectively.

3) The paper adopts a distributed mobile cloud

multistage scheduling algorithm among mobile

device’s batch applications, mobile cloud providers and

mobile device users in mobile cloud.

In the paper, multimedia search as an example in

mobile cloud environment is presented, and the

proposed multistage scheduling method is applied to

mobile cloud environment. The experiments aim at

comparing our algorithm (MCMSA) with other two

related works. The rest of the paper is structured as

follows. Section 2 discusses system model of batch

processing applications for mobile cloud computing.

Section 3 presents mobile cloud multistage scheduling

algorithm. In Section 4, the experiments are conducted

and discussed. Section 5 gives an application example.

Section 6 gives the conclusions to the paper.

2. Efficient Scheduling Strategy for Batch

Processing Applications in Mobile Cloud

2.1. System Model Description

The mobile cloud system proposed in Fig. 1

includes mobile device users, cloud datacenter and

mobile cloud proxy. For achieving efficient scheduling

optimization for batch processing applications in

mobile cloud, different multistage scheduling strategies

are deployed at three levels: mobile cloud job sche-

duling, mobile cloud batch applications’ scheduling and

mobile cloud system’s scheduling. At the top, the

mobile cloud system scheduling controls the gross

provisioning of VMs to the mobile cloud batch

applications. At the next level down, the mobile cloud

batch applications scheduling is responsible for the

An Efficient Scheduling Strategy for Batch Processing Applications in Mobile Cloud: Model and Algorithm

9

Figure 1. Mobile cloud environment

deployments of all mobile device applications that

exploit the mobile cloud resources. At the lowest level,

the mobile device’s job scheduling adjusts the mobile

cloud resource usages to optimize the utility of single

mobile device application. Mobile device’s batch appli-

cations’ scheduling take more time to decide which of

their control actions will maximize mobile device’s

batch applications’ utility. Mobile cloud job scheduling

aims at maximizing the utility of mobile cloud job. The

multistage scheduling process in mobile cloud is shown

in Fig. 2. The mobile cloud system scheduling performs

a system wide allocation of mobile cloud resources.

After initialization, the scheduling of mobile device’s

batch applications and mobile device’s job scheduling

in the system would be able to take finer control. The

mobile cloud system scheduling chooses mobile cloud

resource allocation for the mobile device’s application

that maximizes mobile cloud system utility.

The operations of mobile device’s job level schedu-

ling, mobile device’s batch applications’ scheduling

and mobile cloud system’s scheduling are coordinated

with each other. Efficient multistage scheduling optimi-

zation for batch processing applications uses composite

utility functions to measure system performance at

multistage. Mobile cloud scheduling is deployed at the

different stages; the implementation of multistage

scheduling optimization leads to the decomposition of

the system. The mobile device’s batch applications’

scheduling works independently to acquire VMs from

mobile cloud providers. The mobile device’s batch

applications’ scheduling acquires VMs in order to

maintain batch applications’ utility.

Figure 2. Multistage scheduling process in mobile cloud

2.2. Problem Formulation

Let 𝜈𝑖
𝑗
 denote the VM for mobile device’s applica-

tion 𝑖 from the mobile cloud provider 𝑗. The deadline

given by the mobile device’s batch application 𝑘 is

denoted by 𝑇𝑘. The maximum capacity of mobile cloud

provider 𝑗 is denoted by 𝐶𝑗 . The time taken by the

mobile device’s application 𝑖 to complete the nth job is

denoted by 𝑡𝑖
𝑛 . 𝑡𝑘

𝑖 refers to the time taken by the 𝑖
application in the mobile device’s batch application 𝑘,

𝑟𝑖
𝑗
 refers to the payments of the mobile device’s

C. Li, L. Li

10

application 𝑖 to mobile cloud provider 𝑗 , 𝐸𝑘 refers to

the budget of mobile device’s batch application 𝑘 , 𝑇𝑖

refers to the deadline given by mobile device’s

application 𝑖 . The energy dissipation used by the 𝑗 th

mobile cloud provider is denoted by 𝑒𝑛𝑗 . The limit of

energy consumption of mobile cloud provider 𝑗 is

denoted by 𝐷𝑗 . The budget of mobile device’s applica-

tion 𝑖 is denoted by 𝐵𝑖 . The payment of the 𝑛th job of

mobile device’s application 𝑖 is denoted by 𝑠𝑖
𝑛 . The

computation task of the 𝑖 th mobile device’s applica-

tion’s nth job is denoted by 𝑞𝑖
𝑛 .

In multistage scheduling model of mobile cloud, the

objective of mobile device’s batch applications

optimization is to provision VMs for batch applications

such that the mobile cloud utility 𝑈𝑀𝑜𝑏𝑖𝑙𝑒𝑐𝑙𝑜𝑢𝑑 is

maximized subject to the resource constraints of mobile

cloud datacentre and the requirements of mobile

device’s batch applications, respectively. The problem

of mobile cloud multistage scheduling optimization is

formulated as follows:

𝑀𝑎𝑥 𝑈𝑀𝑜𝑏𝑖𝑙𝑒𝑐𝑙𝑜𝑢𝑑

𝑠. 𝑡𝐸𝑘 ≥ ∑ 𝑟𝑖
𝑗

𝐼

𝑖=1
,

𝑒𝑛𝑗 ≤ 𝐷𝑗, (2.1)

𝐶𝑗 ≥ ∑ 𝜈𝑖
𝑗

𝑖
,

𝑇𝑘 ≥ ∑ 𝑡𝑘
𝑖𝐼

𝑖=1
.

Mobile cloud system utility is the sum of the mobile

device’s batch application’s utility and mobile cloud

provider’ utility. It aims to jointly optimize the benefit

of mobile device’s application and mobile cloud

provider.

𝑈𝑀𝑜𝑏𝑖𝑙𝑒𝑐𝑙𝑜𝑢𝑑 = ∑ ((𝑇𝑘 − ∑ 𝑡𝑘
𝑖

𝐼

𝑖=1

) + (𝐸𝑘 − ∑ 𝑟𝑖
𝑗

𝐼

𝑖=1

))

𝐾

𝑘=1

+ ∑ (𝑟𝑖
𝑗

log 𝜈𝑖
𝑗
)

𝑁

𝑖=1
− 𝑒𝑛𝑗. (2.2)

In Formula (2.2), 𝑁 is the sum number of mobile

device’s applications. 𝐾 denotes the sum number of the

mobile application groups. 𝐼 denotes total number of

mobile device’s applications. 𝑗 denotes certain mobile

cloud provider. 𝑖 denotes certain mobile device’s

application.

(𝑇𝑘 − ∑ 𝑡𝑘
𝑖𝐼

𝑖=1
) + (𝐸𝑘 − ∑ 𝑟𝑖

𝑗
𝐼

𝑖=1
) means the

mobile device’s batch applications’ saving time and

cost surplus, when completing the mobile device’s

applications. It is the utility of mobile device’s batch

application 𝑘. ∑ 𝑟𝑖
𝑗

log 𝜈𝑖
𝑗

𝑁

𝑖=1
− 𝑒𝑛𝑗 presents the bene-

fit of mobile cloud provider.

The constraint of Formula (2.2) implies that the

aggregate VMs can not exceed the total number of VMs

of mobile cloud provider 𝑗. Other constraints are related

with mobile cloud applications. The objective of

mobile cloud applications is to complete a sequence of

applications within specified deadline, 𝑇𝑘 , while the

total payment cannot exceed the budget 𝐸𝑘 , ∑ 𝑟𝑖
𝑗

𝐼

𝑖=1

are the payments of the mobile device’s batch

applications to the mobile cloud provider 𝑗 for

provisioned VMs.

Let us consider the Lagrangian form of mobile

cloud multistage scheduling optimization problem:

𝐿 = 𝑈𝑀𝑜𝑏𝑖𝑙𝑒𝑐𝑙𝑜𝑢𝑑 + 𝜆 (𝐶𝑗 − ∑ 𝜈𝑖
𝑗

𝑖
) + 𝛽 (𝑇𝑘 −

∑ 𝑡𝑘
𝑖𝐼

𝑖=1
) + 𝜇 (𝐸𝑘 ∑ 𝑟𝑖

𝑗
𝐼

𝑖=1
) + (2.3)

𝜎(𝐷𝑗 − 𝑒𝑛𝑗)

where 𝜆𝑖 , 𝛽 , 𝜇 , 𝜎 are the Lagrangian multipliers.

Solving Formula (2.2) requires the cooperation of

mobile cloud applications, but it is not applicable in

mobile cloud environment. Since the Lagrangian

function is separable, the maximization of the

Lagrangian can be processed in parallel by mobile

cloud applications and mobile cloud providers. The

mobile cloud batch application optimization problem

can be converted into two sub-optimization problems,

which are respectively achieved by mobile cloud batch

applications and mobile cloud providers as follows:

𝑀𝑎𝑥 𝑈𝐶𝑙𝑜𝑢𝑑𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 = ∑ (𝑟𝑖
𝑗

log 𝜈𝑖
𝑗
)

𝑁

𝑖=1
− 𝑒𝑛𝑗

𝑠. 𝑡𝐶𝑗 ≥ ∑ 𝜈𝑖
𝑗

𝑖
, 𝑒𝑛𝑗 ≤ 𝐷𝑗. (2.4)

𝑀𝑎𝑥 𝑈𝑀𝑜𝑏𝑖𝑙𝑒𝑏𝑎𝑡𝑐ℎ𝑎𝑝𝑝 = ∑ ((𝑇𝑘 −

𝐾

𝑘=1

∑ 𝑡𝑘
𝑖𝐼

𝑖=1
) + (𝐸𝑘 − ∑ 𝑟𝑖

𝑗
𝐼

𝑖=1
)) (2.5)

𝑠. 𝑡𝑇𝑘 ≥ ∑ 𝑡𝑘
𝑖𝐼

𝑖=1
, 𝐸𝑘 ≥ ∑ 𝑟𝑖

𝑗
𝐼

𝑖=1
.

Formula (2.4) corresponds to the behavior of the

mobile cloud provider. Different mobile cloud pro-

viders compete for provisioning the VMs for mobile

cloud batch applications and maximizing the revenue.

In Formula (2.4), 𝑁 denotes the total number of mobile

cloud providers. ∑ (𝑟𝑖
𝑗

log 𝜈𝑖
𝑗
)

𝑁

𝑖=1
 presents the revenue

obtained by mobile cloud provider 𝑗 from mobile

device’s application 𝑖 . We chose the 𝑙𝑜𝑔 function

because the benefit increases quickly from zero as the

allocated virtual machines increase from zero and then

increases slowly. To provision VMs for mobile cloud

batch applications, the mobile cloud provider has to pay

for the energy cost. The mobile cloud provider aims to

maximize the utility function without exceeding

maximal energy constraints. Formula (2.5) corresponds

to the behavior of the mobile cloud batch applications.

The mobile batch applications compute the optimal

payment to mobile cloud providers under the

An Efficient Scheduling Strategy for Batch Processing Applications in Mobile Cloud: Model and Algorithm

11

constraints to maximize mobile device’s batch

applications’ satisfaction. The ith mobile device’s

application pays 𝑟𝑖
𝑗
 to the mobile cloud provider 𝑗 for

obtaining virtual machines. 𝐸𝑘 − ∑ 𝑟𝑖
𝑗

𝐼

𝑖=1
 represents

the surpluses of mobile device’s batch applications.

(𝑇𝑘 − ∑ 𝑡𝑘
𝑖𝐼

𝑖=1
) represents the saving time, which is

calculated by the deadline minus the actual execution

time.

In job-level optimization problem of mobile cloud

multistage scheduling model, a mobile device’s appli-

cation needs to complete a sequence of jobs within the

deadline, 𝑇𝑖 , while minimizing the cost occurred and

processing time. Each job of mobile device’s

application 𝑖 submits 𝑠𝑖
𝑛 for the VM. Mobile device’s

jobs compete for the resources of mobile cloud applica-

tion 𝑖. The resources allocated to mobile device’s jobs

depend on the relative payments sent by all jobs. The

𝑛th mobile device’s jobs receive mobile cloud

resources proportional to its payment. Given the

deadline 𝑇𝑖 for mobile device’s application 𝑖 to

complete all jobs, the job-level optimization scheduling

in mobile cloud can be formulated as:

𝑀𝑎𝑥 𝑈𝑚𝑜𝑏𝑖𝑙𝑒𝑑𝑒𝑣𝑖𝑐𝑒𝑗𝑜𝑏 = {(𝐵𝑖 − ∑ 𝑠𝑖
𝑛

𝑛
) +

𝜎(𝑇𝑖 − ∑ 𝑡𝑖
𝑛

𝑛
)}

𝑠. 𝑡𝑇𝑖 ≥ ∑ 𝑡𝑖
𝑛

𝑛
. (2.6)

In Formula (2.6), 𝜎 is the relative importance of

costs and times to complete mobile device jobs, mobile

cloud application with larger value of 𝜎 would indicate

a greater preference to reduce its completion time.

When 𝜎 = 1, meaning that costs and times are equally

important. In Formula (2.6), we use absolute value of

money and time, and the weights of the factors are

equal.

2.3. Solutions for Scheduling Strategy for Batch

Processing Applications in Mobile Cloud

For multistage scheduling for batch processing

applications in mobile cloud, the mobile cloud system

scheduling controls the gross provisioning of VMs to

the mobile device’s batch applications. Mobile cloud

provider's optimization aims at computing the optimal

VM 𝜈𝑖
𝑗∗

 for mobile device’s batch applications while

maximizing the benefit function of mobile cloud

provider without exceeding the total number of VMs

and upper payment of energy consumption. The VMs

allocated to mobile device’s batch applications are

constrained by the total of capacity of mobile cloud

providers. Total allocated VMs do not exceed the total

capacity 𝐶𝑗 . For the mobile cloud provider's optimi-

zation problem, mobile cloud providers compute

optimal VMs to maximize the benefit function and

minimize the payment for providing VMs to mobile

device’s batch applications. The profits of mobile cloud

provider are affected by the payments of mobile

device’s batch applications and energy payment of

provisioning VMs. So the revenue of mobile cloud

provider increases when the VMs leased to the mobile

device’s batch applications increase and the payments

received from mobile devices increase, also the

payment for energy consumption decreases. The sum

∑ (𝑟𝑖
𝑗

log 𝜈𝑖
𝑗
)

𝑁

𝑖=1
 presents the revenue obtained by

mobile cloud provider 𝑗 from mobile device’s batch

applications. The objective of mobile cloud provider is

to maximize the revenue and minimize energy

consumption 𝑒𝑛𝑗.

Mobile device’s batch application adaptively sub-

mits the demand of VM based on the current conditions

of mobile cloud provider, while the mobile cloud

provider adaptively allocates VMs required by the

mobile device’s batch applications. The interaction

between mobile device’s batch applications and mobile

cloud provider is controlled through the use of the

variables 𝑝𝑗 , 𝑝𝑗 denotes VM prices provided by the

mobile cloud providers, which is used in mobile cloud

batch application optimization problem.

The energy consumption rate of mobile cloud

provider for hosting VMs is denoted as 𝑒𝑗. The energy

consumption of mobile cloud provider 𝑗 to provision

virtual machine for mobile device’s application 𝑖

denoted as 𝑒𝑐𝑖
𝑗
 can be written as follows:

𝑒𝑐𝑖
𝑗

= 𝑒𝑗 ∗ 𝜈𝑖
𝑗
. (2.7)

Let 𝑝𝑥𝑗 denote electricity price. The energy

consumption cost of mobile cloud provider for hosting

VMs is expressed as follows:

𝑒𝑛𝑗 = 𝑝𝑥𝑗 ∗ ∑ 𝑒𝑐𝑖
𝑗

𝑁

𝑖=1
. (2.8)

The mobile cloud provider's optimization problem

is reformulated as

𝑀𝑎𝑥∑(𝑟𝑖
𝑗

log 𝜈𝑖
𝑗
) − 𝑝𝑥𝑗 ∑ 𝑒𝑗 ∗ 𝜈𝑖

𝑗
𝑁

𝑖=1
. (2.9)

The Lagrangian function for 𝑈𝑐𝑙𝑜𝑢𝑑𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟(𝜈𝑖
𝑗
) in

Formula (2.4) is

𝐿(𝜈𝑖
𝑗
) = ∑(𝑟𝑖

𝑗
log 𝜈𝑖

𝑗
) − 𝑝𝑥𝑗 ∑ 𝑒𝑗 ∗ 𝜈𝑖

𝑗
𝑁

𝑖=1
+

𝜆 (𝐶𝑗 − ∑ 𝜈𝑖
𝑗

𝑖
) + 𝜂 (𝐷𝑗 − 𝑝𝑥𝑗 ∑ 𝑒𝑗 ∗ 𝜈𝑖

𝑗
𝑁

𝑖=1
) (2.10)

where 𝜆 and 𝜂 are the Lagrangian constants. From

Karush-Kuhn-Tucker Theorem, the optimal solution

can be gotten, given
𝜕𝐿(𝜈𝑖

𝑗
)

𝜕𝜈𝑖
𝑗⁄ = 0 for 𝜆 > 0 . We

take derivative with respect to 𝜈𝑖
𝑗
 and get (2.11) as

follows:

𝜕𝐿(𝜈𝑖
𝑗
)

𝜕𝜈𝑖
𝑗⁄ =

𝑟𝑖
𝑗

𝜈
𝑖
𝑗 − (1 + 𝜆 + 𝜂)𝑝𝑥𝑗𝑒𝑗 (2.11)

Let
𝜕𝐿(𝜈𝑖

𝑗
)

𝜕𝜈𝑖
𝑗⁄ = 0, we can get 𝜈𝑖

𝑗
 as follows:

C. Li, L. Li

12

𝜈𝑖
𝑗

=
𝑟𝑖

𝑗

(1+𝜆+𝜂)𝑝𝑥𝑗𝑒𝑗
 (2.12)

Using this result in the constraint equation of

Formula (2.4), let 𝜔 = 1 + 𝜂 + 𝜆, we can get the result

as follows:

𝐷𝑗 =
1

𝜔
∑ 𝑟𝑖

𝑗
, 𝜔 =

∑ 𝑟𝑖
𝑗

𝐷𝑗

From Karush-Kuhn-Tucker Theorem, we can get

𝜈𝑖
𝑗∗

 as follows:

𝜈𝑖
𝑗∗

=
𝑟𝑖

𝑗
𝐷𝑗

𝑝𝑥𝑗𝑒𝑗 ∑ 𝑟
𝑖
𝑗 (2.13)

In (2.13), 𝜈𝑖
𝑗∗

 means that the mobile cloud provider

𝑗 computes optimal units of virtual machines for mobile

device’s application 𝑖 while maximizing its benefit.

The mobile device’s application 𝑖 is the consumer

of mobile cloud provider, which provision VMs for

mobile device’s application. The mobile device’s

application 𝑖 submits payment 𝑟𝑖
𝑗
 to the mobile cloud

provider 𝑗 for VM. Let 𝑟𝑖
𝑗
 be the payment of the ith

mobile device’s application. 𝑁 mobile device’s

applications compete for the VMs. Mobile cloud

provider’s VMs are allocated using a market

mechanism, where the divisions depend on the relative

payments sent by the mobile device’s batch

applications.

Let’s consider the interactions of mobile device’s

application 𝑖 and mobile cloud provider in mobile

cloud. The benefit function for mobile device’s

application 𝑖 depends on the units of VM denoted by

𝜈𝑖
𝑗
. For the mobile device’s batch application optimi-

zation problem, the mobile device’s application 𝑖
calculates the unique optimal payment to mobile cloud

provider under the constraints to maximize the mobile

device’s batch application’s benefit. The payment

accrued to buy or lease VMs cannot exceed the budget

of mobile device’s batch application 𝐸𝑘.

The mobile device’s batch applications give the

unique optimal payment to mobile cloud providers

under the constraints of the deadline and budget to

maximize the set of mobile device’s batch applications’

benefits.

The time taken by the mobile device’s batch

application to complete the 𝑖th application is

𝑡𝑘
𝑖 =

𝑝𝑗

𝐶𝑗𝑟
𝑖
𝑗. (2.14)

The mobile cloud batch application optimization

problem can be rewritten as follows:

𝑀𝑎𝑥 (𝑇𝑘 − 𝐾 ∑
𝑝𝑗

𝐶𝑗𝑟
𝑖
𝑗

𝑖

) + (𝐸𝑘 − ∑ 𝑟𝑖
𝑗

𝑗
)

𝑠. 𝑡𝑇𝑘 ≥ ∑ 𝑡𝑘
𝑖𝐼

𝑖=1
, 𝐸𝑘 ≥ ∑ 𝑟𝑖

𝑗
𝐼

𝑖=1
. (2.15)

In (2.15), 𝑘 denotes the number of mobile cloud

batch application, 𝑗 denotes certain mobile cloud

provider. 𝐸𝑘 ≥ ∑ 𝑟𝑖
𝑗

𝐼

𝑖=1
 means the payments of the 𝑖th

mobile cloud application in the mobile device’s batch

application 𝑘 to the mobile cloud provider 𝑗 can not

exceed the budget 𝐸𝑘.

Let the pricing policy, 𝑝 = (𝑝1, 𝑝2, … , 𝑝𝑗) , denote

the set of VM prices of all mobile cloud providers. The

mobile device’s application 𝑖 receives the VMs

according to its payment relative to the sum of the

mobile cloud provider’s revenue.

The Lagrangian for the problem 𝑈𝑀𝑜𝑏𝑖𝑙𝑒𝑏𝑎𝑡𝑐ℎ𝑎𝑝𝑝 in

Formula (2.5) is 𝐿(𝑟𝑖
𝑗
)

𝐿(𝑟𝑖
𝑗
) = (𝐸𝑘 − ∑ 𝑟𝑖

𝑗

𝑗
) + (𝑇𝑘 − 𝐾 ∑

𝑝𝑗

𝐶𝑗𝑟
𝑖
𝑗

𝑗

) +

𝛽 (𝐸𝑘 − ∑ 𝑟𝑖
𝑗

𝑗
) + 𝜂 (𝑇𝑘 − 𝐾 ∑

𝑝𝑗

𝐶𝑗𝑟
𝑖
𝑗

𝑗

) (2.16)

where 𝛽 and 𝜂 are the Lagrangian constants. From

Karush-Kuhn-Tucker Theorem, the optimal solution

can be gotten, if 𝜕𝐿
𝜕𝑟𝑖

𝑗⁄ = 0 for 𝛽 > 0 . We take

derivative with respect to 𝑟𝑖
𝑗
 and get (2.17) as follows:

𝜕𝐿(𝑟𝑖
𝑗
)

𝜕𝑟𝑖
𝑗⁄ = −1 + 𝐾

𝑝𝑗

𝐶𝑗(𝑟
𝑖
𝑗

)
2 − 𝛽 +

𝜂𝐾
𝑝𝑗

𝐶𝑗(𝑟
𝑖
𝑗

)
2 (2.17)

Let 𝜕𝐿
𝜕𝑟𝑖

𝑗⁄ = 0 , we get 𝑟𝑖
𝑗
 denoted in (2.18) as

follows:

𝑟𝑖
𝑗

= (
(𝑘𝜂+𝑘)𝑝𝑗

(1+𝛽)𝐶𝑗
)

1/2

. (2.18)

Using this result in the constraint equation in (2.15),

let 𝜃 =
(𝑘𝜂+𝑘)

(1+𝛽)
, we can get (𝜃)−1/2

(𝜃)−1/2 =
𝑇𝑘

∑ (
𝑝𝑗

𝐶𝑗
)

1/2
𝐽

𝑗=1

. (2.19)

We use the result of (2.19) and apply it to (2.18) to

obtain 𝑟𝑖
𝑗∗

 as follows:

𝑟𝑖
𝑗∗

= (
𝑝𝑗

𝐶𝑗
)

1/2
∑ (

𝑝𝑗

𝐶𝑗
)

1/2
𝐽

𝑗=1

𝑇𝑘
. (2.20)

The mobile cloud application 𝑖 pay 𝑟𝑖
𝑗∗

 to mobile

cloud provider 𝑗 for virtual machines.

In mobile cloud multistage scheduling model,

mobile device’s job level scheduling optimization in

mobile cloud is conducted by mobile device’s

application; the mobile device’s application calculates

the payment to mobile cloud provider under the

deadline to satisfy the mobile cloud application’s

An Efficient Scheduling Strategy for Batch Processing Applications in Mobile Cloud: Model and Algorithm

13

requirements. 𝐵𝑖 − ∑ 𝑠𝑖
𝑛

𝑛
 is the surplus of all jobs of

mobile device’s application. ∑ 𝑡𝑖
𝑛

𝑛
 represents the

execution time for processing all mobile device

application’s jobs. The objective of job level

scheduling optimization is to minimize the cost of

mobile device’s applications and complete all jobs as

soon as possible. Under the constraint of the deadline,

mobile device application 𝑖 wants to complete all jobs.

𝑞𝑖
𝑛 is the computation task of 𝑖 th mobile device

application’s nth job. The execution time taken by the

𝑖th mobile device application to complete the 𝑛th job

is:

𝑡𝑖
𝑛 =

𝑞𝑖
𝑛

𝑣
𝑖
𝑗

𝑠𝑖
𝑛
. (2.21)

The mobile device’s job level scheduling optimiza-

tion is reformulated as

𝑀𝑎𝑥 {(𝐵𝑖 − ∑ 𝑠𝑖
𝑛

𝑛
) + (𝑇𝑖 − ∑

𝑞𝑖
𝑛

𝑣
𝑖
𝑗

𝑠𝑖
𝑛

𝑁
𝑛=1)}.(2.22)

The Lagrangian for 𝑈𝑚𝑜𝑏𝑖𝑙𝑒𝑑𝑒𝑣𝑖𝑐𝑒𝑗𝑜𝑏 in (2.6) is

𝐿(𝑠𝑖
𝑛).

𝐿(𝑠𝑖
𝑛) = (𝐵𝑖 − ∑ 𝑠𝑖

𝑛
𝑛

) + (𝑇𝑖 − ∑
𝑞𝑖

𝑛

𝑣
𝑖
𝑗

𝑠𝑖
𝑛

𝑁

𝑛=1

) +

𝜆 (𝑇𝑖 − ∑ 𝑡𝑖
𝑛𝑁

𝑛=1
) (2.23)

where 𝜆 is the Lagrangian constant.

Using this result in the constraint equation in (2.6),

Let 𝜃 = 1 + 𝜆, 𝜃 can be obtained in (2.24)

(𝜃)−1/2 =
𝑇𝑖

∑ (
𝑞𝑖

𝑛

𝑣
𝑖
𝑗)

1/2
𝑁

𝑛=1

. (2.24)

We use the result of (2.24) and apply it to (2.23) to

obtain 𝑠𝑖
𝑛∗

𝑠𝑖
𝑛∗

= (
𝑞𝑖

𝑛

𝑣
𝑖
𝑗)

1/2 ∑ (
𝑞𝑖

𝑛

𝑣
𝑖
𝑗)

1/2

𝑁
𝑛=1

𝑇𝑖
 . (2.25)

In (2.25), the 𝑛th job of mobile device’s application

𝑖 pay 𝑠𝑖
𝑛∗

 to the mobile cloud provider 𝑗.

3. Mobile Cloud Multistage Scheduling

Algorithm

The multistage scheduling algorithms in mobile

cloud are involved with mobile cloud provider’s

optimization, mobile device application’s optimization

and mobile device job’s optimization, respectively.

The proposed algorithm that achieves multistage

scheduling for data-Intensive batch applications can be

described as follows.

Algorithm 1. Mobile Cloud Multistage Scheduling Algorithm (MCMSA)

Routine mobile device application_Optimization(𝑝𝑗)

If 𝐸𝑘 ≥ ∑ 𝑟𝑖
𝑗

𝐼

𝑖=1

 Then 𝑟𝑖
𝑗∗

← 𝑀𝑎𝑥 𝑈𝑚𝑜𝑏𝑖𝑙𝑒𝑑𝑒𝑣𝑖𝑐𝑒𝑗𝑜𝑏(𝑟𝑖
𝑗
); //compute 𝑟𝑖

𝑗
 according to Formula (2.20)

Return 𝑟𝑖
𝑗∗

;

Routine mobile device job Optimization(𝑣𝑖
𝑗
)

 If 𝐵𝑖 ≥ ∑ 𝑠𝑖
𝑛𝑁

n=1

 𝑠𝑖
𝑛∗

← 𝑀𝑎𝑥 𝑈𝑀𝐷𝐽(𝑠𝑖
𝑛); // compute 𝑠𝑖

𝑛∗
 according to Formula (2.25)

Return 𝑠𝑖
𝑛∗

;

Routine mobile cloud provider_Optimization (𝑟𝑖
𝑗(𝑛)

)

 𝜈𝑖
𝑗∗

← 𝑀𝑎𝑥 {𝑈𝐶𝑙𝑜𝑢𝑑𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟}; //compute 𝜈𝑖
𝑗∗

 according to Formula (2.13)

 If 𝐶𝑗 ≥ ∑ 𝜈𝑖
𝑗

𝑖
;

 Then 𝑝𝑗
(𝑛+1)

← max {𝜀, 𝑝𝑗
(𝑛)

+ 𝜂 (∑ 𝑣𝑖
𝑗

𝑖
− 𝐶𝑗)}

 // where 𝜂 > 0 is a small step size parameter, 𝑛 is iteration step. Let 𝜀 > 0 be a sufficiently small constant preventing prices to

approach zero. It is consistent with the law of supply and demand: if the demand for VM exceeds the mobile cloud provider’s

supply 𝐶𝑗, then the price 𝑝𝑗
(𝑛+1)

 is raised; otherwise, the VM’s price is reduced;

Return 𝑝𝑗
(𝑛+1)

;

4. Experiments

In this section, we compare the proposed mobile

cloud multistage scheduling algorithm (MCMSA) with

other related works. A mobile cloud environment with

a 2-dimensional area of 500m*500m is used to

compare and analyze three algorithms. Mobile cloud

proxy residing in WLANs acts as the interface point

between the mobile devices. All Wi-Fi interfaces

operate at a rate of 11Mb/s. All Ethernet interfaces

operate at a rate of 10Gb/s. Jobs arrive at each cloud

C. Li, L. Li

14

node 𝑠𝑖, 𝑖 = 1, 2, … , 𝑛, according to a Poisson process

with rate 𝛼. The energy cost can be expressed in the

dollar that can be defined as unit energy processing

cost. Mobile device users submit their jobs with

varying deadlines. The deadlines of mobile device

user are chosen from 100ms to 400ms. The budgets of

mobile device users are set from 100 to 1500 dollars.

Each experiment is repeated 6 times and 95%

confidence intervals are obtained. Simulation para-

meters are listed in Table 2.

Table 2. Simulation Parameters

Simulation Parameter Value

Total number of mobile device users 40

Total number of cloud providers 12

Mobility model Random-walking

mobility

Average speed of mobile device 5m/s

Initial price of VM [10, 500]

Deadline [100, 400]

Expense budget [100, 1500]

electrical energy [0.1, 1.0]

Bandwidth [100, 1000]

Computing power [100, 1000]

RAM [100, 2000]

Energy price [1, 100]

Job arrival rate [0.1, 0.6]

The simulations are conducted to compare our mo-

bile cloud multistage scheduling Algorithm (MCMSA)

with cooperative resource allocation algorithm in

mobile cloud computing [2], which is named as CRAA

and optimal collaboration of thin–thick clients and

resource allocation algorithm in mobile cloud

computing [13], which is named as OCRA. In [2],

Kaewpuang et al. propose a framework for resource

allocation to the mobile applications, and revenue

management and cooperation formation among

service providers in mobile cloud. They formulate and

solve optimization models to obtain the optimal

number of application instances that can be supported

to maximize the revenue of the service providers while

meeting the resource requirements of the mobile

applications. In [13], Hung et al. present a novel

architecture that enhances mobile client’s capabilities

with computing resources from mobile clouds. Hung

et al. [13] focus on optimizing the data distribution

from cloud networks to mobile client and utilizing

computing resources so that QoS requirements can be

fulfilled. They proposed an algorithm that can select

the best resource allocation strategy in order to satisfy

Service Level Agreements.

The following simulation metrics are adopted:

resource allocation efficiency, execution success ratio

and revenue. Resource allocation efficiency is the ratio

of the consumed cloud resources to the total cloud

resources available as a percentage. Execution success

ratio is the percentage of jobs executed successfully

before their deadline. We compare MCMSA algorithm

with CRAA and OCRA by varying load factor, deadline

and network latency to study how they affect the

performance of these algorithms.

Figures 3 to 5 are to study allocation efficiency,

execution success ratio, and revenue under different

load factor (𝑎), respectively. Fig. 3 shows that when

load factor increases (𝑎 = 0.5), resource allocation

efficiency of MCMSA is as much as 12% less than that

with 𝑎 = 0.1 . The resource allocation efficiency is

larger when the load factor is higher. When the load

factor is 0.5 (𝑎 = 0.5), resource allocation efficiency

of CRAA is 22% more than MCMSA. Compared with

OCRA, the resource allocation efficiency of MCMSA

and CRAA sharply decreases than CRAA when the load

factor increases. When the load factor is 0.7 (𝑎 =
0.7), the allocation efficiency of CRAA decreases to

55%, the energy allocation efficiency of MCMSA

decreases to 75%. When the load factor increases,

fewer mobile cloud users can be admitted into the

mobile cloud system due to the increase of system

burden, so, resource allocation efficiency decreases.

Considering the execution success ratio, from the

results in Fig. 4, when load factor is 0.7 (𝑎 = 0.7), the

execution success ratio of CRAA is 22% less than that

using MCMSA. When load factor increases, system

load increases as well; some mobile device user’s

requirements can’t be processed on time, this leads to

low execution success ratio. When load factor

increases, execution success ratio of CRAA

deteriorates quickly. OCRA performs better than

CRAA and MCMSA. CRAA resource allocation

algorithm does not consider the optimization of both

mobile cloud providers and mobile device users; it

wants to optimize the revenue of the mobile cloud

providers. Fig. 5 shows the effect of the load factor on

the revenue. The revenue increases as the load factor

increases. When load factor is 0.7 (𝑎 = 0.7), the

execution success ratio of CRAA is 17% more than that

using MCMSA. MCMSA jointly considers both mobile

device users and mobile cloud resource providers;

CRAA mainly optimizes the revenues of mobile cloud

providers, it has better revenues than OCRA and

MCMSA.

Figure 3. Allocation efficiency under different load factor

An Efficient Scheduling Strategy for Batch Processing Applications in Mobile Cloud: Model and Algorithm

15

Figure 4. Execution success ratio under different

load factor

Figure 5. Revenue under different load factor

The deadline effects on allocation efficiency,

execution success ratio and revenue are illustrated

in Fig. 6-8. Fig. 6 shows the resource allocation

efficiency with different deadlines. We can see that

the resource allocation efficiency increases when

the deadline increases. When the deadline is low,

the job with low budget can not buy expensive

cloud resource; this leads to low allocation efficiency.

When the deadline is 350 (T=350), the resource

allocation efficiency of MCMSA is 29% higher

than T=100. Compared with MCMSA, the allocation

efficiency of OCRA decreases more slowly than

MCMSA when the deadline decreases. When

deadline is 100 (T=100), allocation efficiency of

CRAA decreases to 32%, allocation efficiency of

MCMSA decreases to 61%. Fig. 7 is to show the

effect of the deadline on execution success ratio.

When the deadline is low, execution success

ratios of MCMSA, CRAA and OCRA are low.

When increasing deadline, execution success

ratio of MCMSA outperforms CRAA and OCRA.

Because under low deadline, more jobs can’t be

completed on time. When deadline is 100

(T=100), execution success ratio of MCMSA

falls to 64% and execution success ratio of

OCRA falls to 51%. From the results in Fig. 8,

the revenue increases when the deadline decreases.

When the deadline is low, the jobs need to be

completed in short time, so mobile device user

chooses more expensive cloud resources to

process the jobs. However, when the deadline

becomes higher, it is likely that the jobs can be

completed before the deadline, so mobile device

user considers using the cheaper cloud resources

to complete jobs, the revenue of the mobile

cloud provider becomes high. When the deadline

is 300 (T=300), the revenue of CRAA is 17%

higher than OCRA and 10% higher than MCMSA.

Figure 6. Allocation efficiency under different deadline

Figure 7. Execution success ratio under different deadline

Figure 8. Revenue under different deadline

Figure 9. Effect of network latency on allocation efficiency

C. Li, L. Li

16

Figure 10. Effect of network latency on execution

success ratio

Figure 11. Effect of network latency on revenue

Figures 9 to 11 are to measure the effect of network

latency on allocation efficiency, execution success

ratio and revenue, respectively. Network latency refers

to the time elapsed between the sending of a message

to a router and the return of that message. Considering

the resource allocation efficiency, from the results in

Fig. 9, the X-axis shows a change in network, the

resource allocation efficiency of MCMSA is as much

as 18% less than OCRA. The resource allocation

efficiency of MCMSA is as much as 17% higher than

CRAA. When network latency reaches 0.05, the

resource allocation efficiency of MCMSA is 19% more

than OCRA. From the results in Fig. 10, lower network

latency leads to higher execution success ratio. After

network latency reaches 0.005, the execution success

ratio of OCRA can be as much as 8% more than

MCMSA. The execution success ratio of CRAA is as

much as 17% less than MCMSA. The reason is that

increasing network latency leads to longer times to

complete tasks; so the execution success ratio becomes

less. Fig. 11 shows the effect of varying network

latency on the revenue. The revenue of MCMSA

decreases when the network latency increases. Larger

network latency enables mobile cloud user to expense

more time for transfer and computation. When the

network latency is large, the revenue is low. When the

network latency is 0.05, the revenue of MCMSA is

19% less than the revenue when the network latency is

0.003. With the same network latency, CRAA can get

more revenues than both MCMSA and OCRA.

The following experiments are to measure effect of

different mobile cloud node numbers on the execution

success ratio and allocation efficiency, respectively.

Firstly, considering the execution success ratio,

Fig. 12 shows that when the number of mobile clouds

nodes increases up to 80, execution success ratio of

MCMSA is as much as 17% less than that with N=10.

The execution success ratio is larger when the number

of mobile cloud nodes is smaller. The execution

success ratio of MCMSA is higher than OCRA and

CRAA when mobile cloud node increases. When the

number of mobile cloud users is 100, the execution

success ratio of CRAA decreases to 49%, the execution

success ratio of MCMSA decreases to 64%, the

execution success ratio of OCRA decreases to

56%.Considering allocation efficiency, as shown in

Fig. 13, when the number of mobile cloud nodes

increases, allocation efficiency deteriorates. When the

number of mobile cloud nodes is 80, the allocation

efficiency of MCMSA is as 34% less than the number

of mobile cloud nodes is 10. Compared with CRAA

and MCMSA, the allocation efficiency of OCRA

slowly decreases than CRAA and MCMSA when the

number of mobile cloud nodes increases. When the

number of mobile cloud nodes is 100, allocation

efficiency of OCRA decreases to 73%, resource

allocation efficiency of CRAA decreases to 51%,

allocation efficiency of MCMSA decreases to 59%.

When the numbers of mobile cloud nodes are same,

OCRA can get better allocation efficiency than both

MCMSA and CRAA.

Figure 12. Execution success ratio versus the number of

mobile cloud nodes

Figure 13. Allocation efficiency versus the number of

mobile cloud nodes

From above simulation results, the objective of

MCMSA is to satisfy mobile device users’ needs, as

An Efficient Scheduling Strategy for Batch Processing Applications in Mobile Cloud: Model and Algorithm

17

well as optimize the profit of mobile cloud provider.

CRAA aims to maximize the revenue of the mobile

cloud service providers, OCRA aims to select the best

resource allocation strategy in order to satisfy SLA in

mobile cloud. The execution success ratio of MCMSA

is better than OCRA and CRAA; CRAA behaves best in

term of revenue; OCRA outperforms better than

MCMSA and CRAA.

5. An Application Example

In this section, we take multimedia search as an

example in mobile cloud environment, and apply the

proposed multistage scheduling method to mobile

cloud environment. Multimedia data consist of files

recorded on mobile devices, including videos, photos,

and sound clips. They also encompass files stored on

mobile devices for entertainment, such as music and

movies. Multimedia search application would find

photos, videos, or music files whose contents are

similar to that of an input sample. The multimedia

search application allows the cloud users to browse

through videos and images stored on cloud datacenter

and search by time, location, and quality. The agent

based multimedia search model in mobile cloud is

shown in Fig. 14.

In our method, several agents are used, namely,

mobile cloud provider agents, mobile device user

agents, intelligent service agent and mobile cloud

scheduler agent which implements scheduling of batch

applications for mobile cloud computing environment.

Intelligent service agent is to provide multimedia

search support for mobile device user agents. Mobile

cloud provider agents and mobile device user agents

act on behalf of mobile cloud provider and mobile

cloud users. Mobile device user agents send the

requests to intelligent service agents to find the needed

videos or other multimedia resource in the mobile

cloud and then mobile device user agent can get the

multimedia data for mobile cloud users. The mobile

cloud scheduler agent receives the request from

mobile device users and schedules the request to

suitable cloud resource nodes. The mobile cloud

scheduler agent monitors the task requests from

mobile device user agent. It receives the task

requirements and puts them into the task queue. While

the task queue is not empty, the mobile cloud

scheduler agent starts the multistage scheduling

algorithm (MCMSA).

Figure 14. Agent based multimedia search model in mobile cloud

When the mobile cloud provider agent updates its

price, it forwards the price to mobile device user

agents; the mobile cloud resource price is put in a pa-

cket. Whenever the new price passes to mobile device

user agent, it computes the benefit utility. According

to the multistage scheduling algorithm, if the price is

higher than the budget limit, mobile device user agent

can’t offer the payment for mobile cloud providers.

The mobile device user agent can be informed the

price for the next iteration. Searching some sort of

multimedia resources in the mobile cloud requires

cooperation between intelligent service agent and the

mobile cloud provider agents. There are two kinds of

cooperation strategies: agent based search strategy and

message based search strategy. In agent based search

strategy, intelligent service agent provides mobile

cloud user agents with a list of choices of multimedia

data located in different places, the mobile cloud user

agent then checks these locations in turn (See Fig. 15).

In the message based search strategy (see Fig. 16),

intelligent service agent conducts a search through the

use of messages in order to select a suitable location to

the mobile device user agent. Then the mobile device

user agent can go to the destination location and avoid

the high overhead of moving the mobile device user

agent to all possible locations. The message based

search strategy is essentially a search via direct

communication between mobile device user agents

and intelligent service agents.

6. Conclusions

Mobile cloud can facilitate the use of mobile

devices to collect data, manipulate them and interact

with scientific workflows running in the Cloud. The

paper studies efficient multistage scheduling strategy

for batch processing applications in mobile cloud. In

C. Li, L. Li

18

Figure 15. Agent based multimedia search strategy in mobile cloud (MDU=Mobile Device User Agent,

ISA=Intelligent Service Agent)

Figure 16. Message based multimedia search strategy in mobile cloud (MDU=Mobile Device User Agent,

ISA=Intelligent Service Agent)

multistage scheduling model of mobile cloud, the

objective of mobile device’s batch applications

optimization is to provision VMs for batch

applications such that the mobile cloud utility is

maximized subject to the resource constraints of

mobile cloud datacenter and the requirements of

mobile device’s batch applications, respectively. In

order to achieve a distributed solution, the mobile

cloud multistage scheduling optimization is

decomposed into divisible subproblems, which are

processed in parallel by mobile device’s batch

applications and mobile cloud providers, respectively.

We take multimedia search as an example in

mobile cloud environment, and apply the proposed

multistage scheduling method to mobile cloud

environment. The experiments aimed at comparing

our mobile cloud multistage scheduling algorithm

(MCMSA) with CRAA [2], which maximizes the

revenue of the mobile cloud service providers and

OCRA [13], which selects the best resource allocation

strategy in order to satisfy SLA in mobile cloud. The

objective of MCMSA is to satisfy mobile device users’

needs, as well as optimize the profit of mobile cloud

provider. So from the simulation results, execution

success ratio of MCMSA is better than OCRA and

CRAA; CRAA behaves best in term of revenue;

allocation efficiency of OCRA is better than MCMSA

and CRAA. In the future, we will move our mobile

cloud multistage scheduling to real mobile cloud

environment to test the feasibility and correctness. We

also want to build mobile cloud platform for our

campus.

An Efficient Scheduling Strategy for Batch Processing Applications in Mobile Cloud: Model and Algorithm

19

Acknowledgements

The authors thank the editors and the anonymous

reviewers for their helpful comments and suggestions.

The work was supported by the National Natural

Science Foundation (NSF) under grants

(No.61472294, No.61171075), Key Natural Science

Foundation of Hubei Province (No.2014CFA050),

National Key Basic Research Program of China (973

Program) under Grant No.2011CB302601, Program

for the High-end Talents of Hubei Province, and Open

Fund of the State Key Laboratory of Software

Development Environment (SKLSDE). Any opinions,

findings, and conclusions are those of the authors and

do not necessarily reflect the views of the above

agencies.

References

[1] P. Bahl, Y. Han R, E. Li L, S. Mahadev. Advancing

the state of mobile cloud computing. In: Proceedings

of the third ACM workshop on Mobile cloud computing

and services. ACM, 2012, pp. 21-28.

[2] R. Kaewpuang, D. Niyato, P. Wang, E. Hossain.
A Framework for Cooperative Resource Management

in Mobile Cloud Computing. IEEE Journal on

Selected Areas in Communications, 2013, Vol. 31,

No. 12, 2685-2700.

[3] H. Wu, Q. Wang, K. Wolter. Tradeoff between per-

formance improvement and energy saving in mobile

cloud offloading systems. In: IEEE International

Conference on Communications Workshops (ICC),

IEEE, 2013, pp. 728-732.

[4] H. Yamauchi, K. Kurihara, T. Otomo, Y. Teranishi,

T. Suzuki, K. Yamashita. Effective distributed pa-

rallel scheduling methodology for mobile cloud com-

putting. In: Proceedings of the 17th Workshop on

Synthesis and System Integration of Mixed Information

Technologies (SASIMI’12), 2012, pp. 516-521.

[5] X. Lin, Y. Wang, M. Pedram. An optimal control

policy in a mobile cloud computing system based

on stochastic data. In: 2nd International Conference

on Cloud Networking (CloudNet), IEEE, 2013,

pp. 117-122.

[6] S. Abolfazli, Z. Sanaei, A. Gani, M. Shiraz.
MOMCC: Market-Oriented Architecture for Mobile

Cloud Computing Based on Service Oriented

Architecture. In: IEEE International Conference

on.Communications, China Workshops (ICCC), 2012,

pp. 8-13.

[7] Z. Shi, R. Gu. A framework for mobile cloud compu-

ting selective service system. Wireless Telecommuni-

cations Symposium (WTS), 2013, pp. 1-5.

[8] J. S. Park, E. Y. Lee. Entropy-based grouping techni-

ques for resource management in mobile cloud compu-

ting. In: Ubiquitous Information Technologies and

Applications, Springer Netherlands, 2013, 773-780.

[9] T. Nishio, R. Shinkuma, T. Takahashi, B. N. Man-

dayam. Service-oriented heterogeneous resource sha-

ring for optimizing service latency in mobile cloud. In:

Proceedings of the First International Workshop on

Mobile Cloud Computing & Networking, ACM, 2013,

pp. 19-26.

[10] M. Shiraz, S. Abolfazli, Z .Sanaei, A. Gani. A study

on virtual machine deployment for application

outsourcing in mobile cloud computing. The Journal

of Supercomputing, 2013, Vol. 63, No. 3, 946-964.

[11] P. Balakrishnan, C. K. Tham. Energy-Efficient

Mapping and Scheduling of Task Interaction Graphs

for Code Offloading in Mobile Cloud Computing. In:

Proceedings of the 2013 IEEE/ACM 6th International

Conference on Utility and Cloud Computing, 2013,

pp. 34-41.

[12] M. H. Mohammad, H. M. Shamim, J. Sarkar.

Cooperative game-based distributed resource

allocation in horizontal dynamic cloud federation

platform. Information Systems Frontiers, published

online.

[13] P. P. Hung, T. Bui, M. A. G. Morales, M. V. Nguyen,

E. Huh. Optimal collaboration of thin–thick clients

and resource allocation in cloud computing. Personal

and Ubiquitous Computing, 2014, Vol. 18, No. 3,

563-572.

[14] L. Yang, J. Cao, S. Tang, Y. Yuan. A framework for

partitioning and execution of data stream applications

in mobile cloud computing. ACM Sigmetrics Perfor-

mance Evaluation Review, 2013, Vol. 40, Nr. 4, 23-32.

[15] D. Li, J. Cao, X. Lu. Efficient Range Query Pro-

cessing in Peer-to-Peer Systems. IEEE Transactions

on Knowledge and Data Engineering. 2009, Vol. 21,

No. 1, 78-91.

[16] Z. Sanaei, S. Abolfazli, A. Gani, M. Shiraz. SAMI:

Service-based arbitrated multi-tier infrastructure for

Mobile Cloud Computing. 1st IEEE International

Conference on Communications in China Workshops

(ICCC), 2012, pp. 14-19.

[17] S. Sindia, A. S. Lim, S. Gao, V. Agrawal, B. Black,

P. Agrawal. MobSched: Customizable scheduler

for mobile cloud computing. In: IEEE 45th South-

eastern Symposium on System Theory (SSST), 2013,

pp. 129-134.

[18] Y. Zhang, D. Niyato, P. Wang. An auction

mechanism for resource allocation in mobile cloud

computing systems. In: Wireless Algorithms, Systems,

and Applications. Springer, 2013, 76-87.

[19] J. Park, H. Yu, E. Y. Lee. Resource allocation techni-

ques based on availability and movement reliability for

mobile cloud computing. In: Distributed Computing

and Internet Technology. Springer, 2012, 263-264.

[20] C. L. Li, L. Y. Li. Phased Scheduling for Resource-

Constrained Mobile Devices in Mobile Cloud Compu-

ting, Wireless Personal Communications, 2014,

Vol. 77, No. 4, 2817-2837.

[21] C. L. Li, L. Y. Li. Optimal Resource Provisioning For

Cloud Computing Environment. Journal of

Supercomputing, 2012, Vol. 62, No. 2, 989-1022.

[22] A. Andziulis, D. Dzemydienė, R. Steponavičius, S.

Jakovlev. A Robust Intelligent Construction Proce-

dure for Job-Shop Scheduling. Information Techno-

logy and Control, 2014, Vol. 43, No. 3, 217-229.

Received June 2013.

