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Abstract. Mobiles enter cloud computing domain by trying to access the shared pool of computing resources 

provided by the cloud on demand. Mobile cloud computing brings new types of services and facilities for mobile users 

to take full advantage of cloud computing. The paper considers batch processing applications for mobile cloud computing 

environment. The mobile device’s user requirements arrive in batches into the mobile cloud systems. For example, 

mobile device’s users submit batch jobs (e.g., financial analytics, scientific simulations) to mobile cloud system for fast 

processing. The paper proposes a multistage scheduling for batch processing applications in mobile cloud. The multistage 

scheduling optimization is involved with mobile cloud provider’s optimization, mobile device application’s optimization 

and mobile device job’s optimization, respectively. Multimedia search as an example in mobile cloud environment is 

presented, and the proposed multistage scheduling method is applied to mobile cloud environment. In the simulations, 

our proposed mobile cloud multistage scheduling algorithms are compared with two related works. Our algorithm 

combines the perspectives of mobile cloud providers and mobile device users; it outperforms better than other related 

works. 
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1. Introduction 

As mobile devices become increasingly powerful, 

mobile devices extends beyond traditional telecommu-

nications and moves to cloud computing environment. 

However, low bandwidth, intermittent network 

connectivity and scarcity of computing resources and 

energy are still key issues in applying mobiles in 

complex and data intensive applications. Mobile cloud 

architecture can facilitate enormous amounts of data 

storage and high computational capabilities by means 

of the Cloud [1]. The purpose of mobile cloud 

computing is to balance the application distribution 

between the mobile device and the cloud, in order to 

achieve faster interactions, battery savings and better 

resource utilization. With this, mobile devices evolve 

from being mere intermediaries between the cloud and 

the end user into true intermediaries of cloud 

computing.  

Given the nature of cloud applications, users do not 

need to have the highest resource devices, as complex 

computing operations would be run within the cloud. 

This lessens the cost of mobile computing to the client 

and allows even low-entry types of devices to take 

advantage of the cloud capabilities. Mobile cloud can 

facilitate the use of mobile devices to collect data, 

manipulate them and interact with scientific workflows 

running in the Cloud. By deploying data-intensive 

computation and data storage to the Cloud, the mobile 

cloud can release mobiles from heavy computational 

loads, thereby reducing mobile energy consumption, 

while using the cloud to increase processing power and 

storage capacity. 

There are some works dealing with mobile cloud.  

In [2], Kaewpuang et al. proposed a framework for 

resource allocation to the mobile applications, and 

revenue management and cooperation formation 

among service providers. They formulate and solve 

optimization models to obtain the optimal number of 

application instances that can be supported to maximize 

the revenue of the service providers while meeting the 

resource requirements of the mobile applications. In 

[3], Wu et al. studied the tradeoff between shortening 

execution time and extending battery life of mobile 

devices in mobile cloud. A novel adaptive offloading 

scheme is proposed and analyzed based on the tradeoff 

analysis. In [4], Yamauchi et al. proposed a distributed 

parallel scheduling methodology for mobile cloud and 

developed a simulator to analyze these characteristics 

and the bottleneck of mobile cloud. In [5], Lin et al. 

propose an optimal control policy in a mobile cloud 
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computing system based on stochastic data. They 

define the expected “performance sum” as the objective 

function, which essentially captures a desirable trade-

off between performance and power consumption of 

the mobile device. Abolfazli et al. [6] propose a market-

oriented architecture based on SOA (service-oriented 

architecture) to stimulate publishing, discovering, and 

hosting services on nearby mobiles. In [7], a framework 

from modeling to design, and to implementation is 

proposed to build a service selection system in mobile 

cloud. A Markov chain model is used for performance 

measures calculation. In [8], Park and Lee make groups 

of mobile devices by measuring the behavior of mobile 

devices and calculating the entropy in mobile cloud. In 

[9], Nishio et al. propose an architecture and mathema-

tical framework for heterogeneous resource sharing in 

mobile cloud. They formulate optimization problems 

for maximizing the sum of the utility functions and 

solve them via convex optimization approaches. 

Shiraz et al. [10] study virtual machine deployment 

for application outsourcing in mobile cloud. This paper 

analyzes the impact of VM (Virtual Machine) deploy-

ment and management on the execution time of 

application. In [11], Balakrishnan and Tham attempt to 

apply DVFS (Dynamic voltage and frequency scaling) 

in mapping as well as scheduling stages by combining 

both the task-resource and resource-frequency assign-

ments in mobile cloud. In [12], Mohammad et al. 

propose a cooperative game-theoretic solution for the 

benefit of the cloud providers in horizontal dynamic 

cloud federation. They study two utility maximizing 

cooperative resource allocation games. In [13], Hung et 

al. present a novel architecture, taking advantage of 

collaboration of thin and thick clients in cloud compu-

ting. The paper aims at optimizing data distribution and 

utilizing cloud resources so that QoS (Quality of 

Service) requirements can be met. They also propose an 

algorithm to select an optimal resource allocation 

strategy to satisfy various Service Level Agreements. 

In [14], Yang et al. study how to optimize the 

computation partitioning of a data stream application 

between mobile and cloud to achieve maximum 

speed/throughput in processing the streaming data in 

mobile cloud. Li et al. [15] propose Armada, an 

efficient range query processing scheme to support 

delay bounded single-attribute and multiple-attribute 

range queries. Sanaei et al. [16] propose a Service-

based arbitrated multi-tier infrastructure for mobile 

cloud computing. 

In [17], Sindia et al. explore how cloud computing 

techniques can be used on mobile devices. Two ways 

are proposed to deploy mobile cloud computing in an 

efficient manner: a customizable job scheduler; and a 

mobile friendly MapReduce framework. In [18], 

Niyato et al. model the resource allocation process of a 

mobile cloud computing system as an auction 

mechanism with premium and discount factors. In [19], 

Park et al. propose a resource allocation technique 

which offers reliable resource allocation considering 

the availability of mobile resources and movement 

reliability of mobile resources in mobile cloud. 

Reference [20] proposed phased scheduling for 

resource-constrained mobile devices in mobile cloud 

computing. Reference [21] presents optimal resource 

provisioning for cloud computing environment. 

Andziulis et al. [22] study robust intelligent 

construction procedure for job-shop scheduling.  

From the above review of related literature on 

mobile cloud, most researches of the mobile cloud 

scheduling do not consider how to fulfill both mobile 

users’ expectations and mobile cloud providers’ 

optimization objectives. The methods and contributions 

of this paper are different from the above related works. 

Our contributions are as follows.  

1) The formulation of mobile cloud multistage 

scheduling strategy for batch processing applications 

combines the perspectives of mobile cloud providers 

and mobile device users.  

2) The maximization of the Lagrangian of mobile 

cloud multistage scheduling optimization in mobile 

cloud can be processed in parallel. In order to achieve 

a distributed solution, the multistage scheduling 

optimization is involved with mobile cloud provider’s 

optimization, mobile device application’s optimization 

and mobile device job’s optimization, respectively. 

3) The paper adopts a distributed mobile cloud 

multistage scheduling algorithm among mobile 

device’s batch applications, mobile cloud providers and 

mobile device users in mobile cloud.  

In the paper, multimedia search as an example in 

mobile cloud environment is presented, and the 

proposed multistage scheduling method is applied to 

mobile cloud environment. The experiments aim at 

comparing our algorithm (MCMSA) with other two 

related works. The rest of the paper is structured as 

follows. Section 2 discusses system model of batch 

processing applications for mobile cloud computing. 

Section 3 presents mobile cloud multistage scheduling 

algorithm. In Section 4, the experiments are conducted 

and discussed. Section 5 gives an application example. 

Section 6 gives the conclusions to the paper.  

2. Efficient Scheduling Strategy for Batch 

Processing Applications in Mobile Cloud 

2.1. System Model Description 

The mobile cloud system proposed in Fig. 1 

includes mobile device users, cloud datacenter and 

mobile cloud proxy. For achieving efficient scheduling 

optimization for batch processing applications in 

mobile cloud, different multistage scheduling strategies 

are deployed at three levels: mobile cloud job sche-

duling, mobile cloud batch applications’ scheduling and 

mobile cloud system’s scheduling. At the top, the 

mobile cloud system scheduling controls the gross 

provisioning of VMs to the mobile cloud batch 

applications. At the next level down, the mobile cloud 

batch applications scheduling is responsible for the  
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Figure 1. Mobile cloud environment

deployments of all mobile device applications that 

exploit the mobile cloud resources. At the lowest level, 

the mobile device’s job scheduling adjusts the mobile 

cloud resource usages to optimize the utility of single 

mobile device application. Mobile device’s batch appli-

cations’ scheduling take more time to decide which of 

their control actions will maximize mobile device’s 

batch applications’ utility. Mobile cloud job scheduling 

aims at maximizing the utility of mobile cloud job. The 

multistage scheduling process in mobile cloud is shown 

in Fig. 2. The mobile cloud system scheduling performs 

a system wide allocation of mobile cloud resources. 

After initialization, the scheduling of mobile device’s 

batch applications and mobile device’s job scheduling 

in the system would be able to take finer control. The 

mobile cloud system scheduling chooses mobile cloud 

resource allocation for the mobile device’s application 

that maximizes mobile cloud system utility. 

The operations of mobile device’s job level schedu-

ling, mobile device’s batch applications’ scheduling 

and mobile cloud system’s scheduling are coordinated 

with each other. Efficient multistage scheduling optimi-

zation for batch processing applications uses composite 

utility functions to measure system performance at 

multistage. Mobile cloud scheduling is deployed at the 

different stages; the implementation of multistage 

scheduling optimization leads to the decomposition of 

the system. The mobile device’s batch applications’ 

scheduling works independently to acquire VMs from 

mobile cloud providers. The mobile device’s batch 

applications’ scheduling acquires VMs in order to 

maintain batch applications’ utility.

 

Figure 2. Multistage scheduling process in mobile cloud

2.2. Problem Formulation 

Let 𝜈𝑖
𝑗
 denote the VM for mobile device’s applica-

tion 𝑖 from the mobile cloud provider 𝑗. The deadline 

given by the mobile device’s batch application 𝑘  is 

denoted by 𝑇𝑘. The maximum capacity of mobile cloud 

provider 𝑗  is denoted by 𝐶𝑗 . The time taken by the 

mobile device’s application 𝑖 to complete the nth job is 

denoted by 𝑡𝑖
𝑛 . 𝑡𝑘

𝑖   refers to the time taken by the 𝑖 
application in the mobile device’s batch application 𝑘, 

𝑟𝑖
𝑗
  refers to the payments of the mobile device’s 
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application 𝑖  to mobile cloud provider 𝑗 , 𝐸𝑘  refers to 

the budget of mobile device’s batch application 𝑘 , 𝑇𝑖  

refers to the deadline given by mobile device’s 

application 𝑖 . The energy dissipation used by the 𝑗 th 

mobile cloud provider is denoted by 𝑒𝑛𝑗 . The limit of 

energy consumption of mobile cloud provider 𝑗  is 

denoted by 𝐷𝑗 . The budget of mobile device’s applica-

tion 𝑖 is denoted by 𝐵𝑖 . The payment of the 𝑛th job of 

mobile device’s application 𝑖  is denoted by 𝑠𝑖
𝑛 . The 

computation task of the 𝑖 th mobile device’s applica-

tion’s nth job is denoted by 𝑞𝑖
𝑛 . 

In multistage scheduling model of mobile cloud, the 

objective of mobile device’s batch applications 

optimization is to provision VMs for batch applications 

such that the mobile cloud utility 𝑈𝑀𝑜𝑏𝑖𝑙𝑒𝑐𝑙𝑜𝑢𝑑  is 

maximized subject to the resource constraints of mobile 

cloud datacentre and the requirements of mobile 

device’s batch applications, respectively. The problem 

of mobile cloud multistage scheduling optimization is 

formulated as follows: 

𝑀𝑎𝑥 𝑈𝑀𝑜𝑏𝑖𝑙𝑒𝑐𝑙𝑜𝑢𝑑   

𝑠. 𝑡𝐸𝑘 ≥ ∑ 𝑟𝑖
𝑗

𝐼

𝑖=1
, 

𝑒𝑛𝑗 ≤ 𝐷𝑗, (2.1) 

𝐶𝑗 ≥ ∑ 𝜈𝑖
𝑗

𝑖
, 

𝑇𝑘 ≥ ∑ 𝑡𝑘
𝑖𝐼

𝑖=1
. 

Mobile cloud system utility is the sum of the mobile 

device’s batch application’s utility and mobile cloud 

provider’ utility. It aims to jointly optimize the benefit 

of mobile device’s application and mobile cloud 

provider. 

𝑈𝑀𝑜𝑏𝑖𝑙𝑒𝑐𝑙𝑜𝑢𝑑 = ∑ ((𝑇𝑘 − ∑ 𝑡𝑘
𝑖

𝐼

𝑖=1

) + (𝐸𝑘 − ∑ 𝑟𝑖
𝑗

𝐼

𝑖=1

))

𝐾

𝑘=1

 

+ ∑ (𝑟𝑖
𝑗

log 𝜈𝑖
𝑗
)

𝑁

𝑖=1
− 𝑒𝑛𝑗. (2.2) 

In Formula (2.2), 𝑁  is the sum number of mobile 

device’s applications. 𝐾 denotes the sum number of the 

mobile application groups. 𝐼  denotes total number of 

mobile device’s applications. 𝑗 denotes certain mobile 

cloud provider. 𝑖  denotes certain mobile device’s 

application. 

(𝑇𝑘 − ∑ 𝑡𝑘
𝑖𝐼

𝑖=1
) + (𝐸𝑘 − ∑ 𝑟𝑖

𝑗
𝐼

𝑖=1
)  means the 

mobile device’s batch applications’ saving time and 

cost surplus, when completing the mobile device’s 

applications. It is the utility of mobile device’s batch 

application 𝑘. ∑ 𝑟𝑖
𝑗

log 𝜈𝑖
𝑗

𝑁

𝑖=1
− 𝑒𝑛𝑗 presents the bene-

fit of mobile cloud provider. 

The constraint of Formula (2.2) implies that the 

aggregate VMs can not exceed the total number of VMs 

of mobile cloud provider 𝑗. Other constraints are related 

with mobile cloud applications. The objective of 

mobile cloud applications is to complete a sequence of 

applications within specified deadline, 𝑇𝑘 , while the 

total payment cannot exceed the budget 𝐸𝑘 , ∑ 𝑟𝑖
𝑗

𝐼

𝑖=1
 

are the payments of the mobile device’s batch 

applications to the mobile cloud provider 𝑗  for 

provisioned VMs. 

Let us consider the Lagrangian form of mobile 

cloud multistage scheduling optimization problem: 

𝐿 = 𝑈𝑀𝑜𝑏𝑖𝑙𝑒𝑐𝑙𝑜𝑢𝑑 + 𝜆 (𝐶𝑗 − ∑ 𝜈𝑖
𝑗

𝑖
) + 𝛽 (𝑇𝑘 −

∑ 𝑡𝑘
𝑖𝐼

𝑖=1
) + 𝜇 (𝐸𝑘 ∑ 𝑟𝑖

𝑗
𝐼

𝑖=1
) + (2.3) 

𝜎(𝐷𝑗 − 𝑒𝑛𝑗) 

where 𝜆𝑖 , 𝛽 , 𝜇 , 𝜎  are the Lagrangian multipliers. 

Solving Formula (2.2) requires the cooperation of 

mobile cloud applications, but it is not applicable in 

mobile cloud environment. Since the Lagrangian 

function is separable, the maximization of the 

Lagrangian can be processed in parallel by mobile 

cloud applications and mobile cloud providers. The 

mobile cloud batch application optimization problem 

can be converted into two sub-optimization problems, 

which are respectively achieved by mobile cloud batch 

applications and mobile cloud providers as follows: 

𝑀𝑎𝑥 𝑈𝐶𝑙𝑜𝑢𝑑𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 = ∑ (𝑟𝑖
𝑗

log 𝜈𝑖
𝑗
)

𝑁

𝑖=1
− 𝑒𝑛𝑗  

𝑠. 𝑡𝐶𝑗 ≥ ∑ 𝜈𝑖
𝑗

𝑖
, 𝑒𝑛𝑗 ≤ 𝐷𝑗. (2.4) 

 

𝑀𝑎𝑥 𝑈𝑀𝑜𝑏𝑖𝑙𝑒𝑏𝑎𝑡𝑐ℎ𝑎𝑝𝑝 = ∑ ((𝑇𝑘 −

𝐾

𝑘=1

∑ 𝑡𝑘
𝑖𝐼

𝑖=1
) + (𝐸𝑘 − ∑ 𝑟𝑖

𝑗
𝐼

𝑖=1
)) (2.5) 

𝑠. 𝑡𝑇𝑘 ≥ ∑ 𝑡𝑘
𝑖𝐼

𝑖=1
, 𝐸𝑘 ≥ ∑ 𝑟𝑖

𝑗
𝐼

𝑖=1
. 

Formula (2.4) corresponds to the behavior of the 

mobile cloud provider. Different mobile cloud pro-

viders compete for provisioning the VMs for mobile 

cloud batch applications and maximizing the revenue. 

In Formula (2.4), 𝑁 denotes the total number of mobile 

cloud providers. ∑ (𝑟𝑖
𝑗

log 𝜈𝑖
𝑗
)

𝑁

𝑖=1
 presents the revenue 

obtained by mobile cloud provider 𝑗  from mobile 

device’s application 𝑖 . We chose the 𝑙𝑜𝑔  function 

because the benefit increases quickly from zero as the 

allocated virtual machines increase from zero and then 

increases slowly. To provision VMs for mobile cloud 

batch applications, the mobile cloud provider has to pay 

for the energy cost. The mobile cloud provider aims to 

maximize the utility function without exceeding 

maximal energy constraints. Formula (2.5) corresponds 

to the behavior of the mobile cloud batch applications. 

The mobile batch applications compute the optimal 

payment to mobile cloud providers under the 
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constraints to maximize mobile device’s batch 

applications’ satisfaction. The ith mobile device’s 

application pays 𝑟𝑖
𝑗
 to the mobile cloud provider 𝑗 for 

obtaining virtual machines. 𝐸𝑘 − ∑ 𝑟𝑖
𝑗

𝐼

𝑖=1
  represents 

the surpluses of mobile device’s batch applications. 

(𝑇𝑘 − ∑ 𝑡𝑘
𝑖𝐼

𝑖=1
)  represents the saving time, which is 

calculated by the deadline minus the actual execution 

time. 

In job-level optimization problem of mobile cloud 

multistage scheduling model, a mobile device’s appli-

cation needs to complete a sequence of jobs within the 

deadline, 𝑇𝑖  , while minimizing the cost occurred and 

processing time. Each job of mobile device’s 

application 𝑖  submits 𝑠𝑖
𝑛  for the VM. Mobile device’s 

jobs compete for the resources of mobile cloud applica-

tion 𝑖. The resources allocated to mobile device’s jobs 

depend on the relative payments sent by all jobs. The 

𝑛th mobile device’s jobs receive mobile cloud 

resources proportional to its payment. Given the 

deadline 𝑇𝑖   for mobile device’s application 𝑖  to 

complete all jobs, the job-level optimization scheduling 

in mobile cloud can be formulated as: 

𝑀𝑎𝑥 𝑈𝑚𝑜𝑏𝑖𝑙𝑒𝑑𝑒𝑣𝑖𝑐𝑒𝑗𝑜𝑏 = {(𝐵𝑖 − ∑ 𝑠𝑖
𝑛

𝑛
) +

𝜎(𝑇𝑖 − ∑ 𝑡𝑖
𝑛

𝑛
)}  

𝑠. 𝑡𝑇𝑖 ≥ ∑ 𝑡𝑖
𝑛

𝑛
. (2.6) 

In Formula (2.6), 𝜎  is the relative importance of 

costs and times to complete mobile device jobs, mobile 

cloud application with larger value of 𝜎 would indicate 

a greater preference to reduce its completion time. 

When 𝜎 = 1, meaning that costs and times are equally 

important. In Formula (2.6), we use absolute value of 

money and time, and the weights of the factors are 

equal. 

2.3. Solutions for Scheduling Strategy for Batch 

Processing Applications in Mobile Cloud 

For multistage scheduling for batch processing 

applications in mobile cloud, the mobile cloud system 

scheduling controls the gross provisioning of VMs to 

the mobile device’s batch applications. Mobile cloud 

provider's optimization aims at computing the optimal 

VM 𝜈𝑖
𝑗∗

  for mobile device’s batch applications while 

maximizing the benefit function of mobile cloud 

provider without exceeding the total number of VMs 

and upper payment of energy consumption. The VMs 

allocated to mobile device’s batch applications are 

constrained by the total of capacity of mobile cloud 

providers. Total allocated VMs do not exceed the total 

capacity 𝐶𝑗 . For the mobile cloud provider's optimi-

zation problem, mobile cloud providers compute 

optimal VMs to maximize the benefit function and 

minimize the payment for providing VMs to mobile 

device’s batch applications. The profits of mobile cloud 

provider are affected by the payments of mobile 

device’s batch applications and energy payment of 

provisioning VMs. So the revenue of mobile cloud 

provider increases when the VMs leased to the mobile 

device’s batch applications increase and the payments 

received from mobile devices increase, also the 

payment for energy consumption decreases. The sum 

∑ (𝑟𝑖
𝑗

log 𝜈𝑖
𝑗
)

𝑁

𝑖=1
  presents the revenue obtained by 

mobile cloud provider 𝑗  from mobile device’s batch 

applications. The objective of mobile cloud provider is 

to maximize the revenue and minimize energy 

consumption 𝑒𝑛𝑗.  

Mobile device’s batch application adaptively sub-

mits the demand of VM based on the current conditions 

of mobile cloud provider, while the mobile cloud 

provider adaptively allocates VMs required by the 

mobile device’s batch applications. The interaction 

between mobile device’s batch applications and mobile 

cloud provider is controlled through the use of the 

variables 𝑝𝑗 , 𝑝𝑗  denotes VM prices provided by the 

mobile cloud providers, which is used in mobile cloud 

batch application optimization problem. 

The energy consumption rate of mobile cloud 

provider for hosting VMs is denoted as 𝑒𝑗. The energy 

consumption of mobile cloud provider 𝑗  to provision 

virtual machine for mobile device’s application 𝑖 

denoted as 𝑒𝑐𝑖
𝑗
 can be written as follows: 

𝑒𝑐𝑖
𝑗

= 𝑒𝑗 ∗ 𝜈𝑖
𝑗
. (2.7) 

Let 𝑝𝑥𝑗   denote electricity price. The energy 

consumption cost of mobile cloud provider for hosting 

VMs is expressed as follows: 

𝑒𝑛𝑗 = 𝑝𝑥𝑗 ∗ ∑ 𝑒𝑐𝑖
𝑗

𝑁

𝑖=1
. (2.8) 

The mobile cloud provider's optimization problem 

is reformulated as  

𝑀𝑎𝑥∑(𝑟𝑖
𝑗

log 𝜈𝑖
𝑗
) − 𝑝𝑥𝑗 ∑ 𝑒𝑗 ∗ 𝜈𝑖

𝑗
𝑁

𝑖=1
. (2.9) 

The Lagrangian function for 𝑈𝑐𝑙𝑜𝑢𝑑𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟(𝜈𝑖
𝑗
)  in 

Formula (2.4) is 

𝐿(𝜈𝑖
𝑗
) = ∑(𝑟𝑖

𝑗
log 𝜈𝑖

𝑗
) − 𝑝𝑥𝑗 ∑ 𝑒𝑗 ∗ 𝜈𝑖

𝑗
𝑁

𝑖=1
+  

𝜆 (𝐶𝑗 − ∑ 𝜈𝑖
𝑗

𝑖
) + 𝜂 (𝐷𝑗 − 𝑝𝑥𝑗 ∑ 𝑒𝑗 ∗ 𝜈𝑖

𝑗
𝑁

𝑖=1
) (2.10) 

where 𝜆  and 𝜂  are the Lagrangian constants. From 

Karush-Kuhn-Tucker Theorem, the optimal solution 

can be gotten, given 
𝜕𝐿(𝜈𝑖

𝑗
)

𝜕𝜈𝑖
𝑗⁄ = 0  for 𝜆 > 0 . We 

take derivative with respect to 𝜈𝑖
𝑗
  and get (2.11) as 

follows: 

𝜕𝐿(𝜈𝑖
𝑗
)

𝜕𝜈𝑖
𝑗⁄ =

𝑟𝑖
𝑗

𝜈
𝑖
𝑗 − (1 + 𝜆 + 𝜂)𝑝𝑥𝑗𝑒𝑗 (2.11) 

Let 
𝜕𝐿(𝜈𝑖

𝑗
)

𝜕𝜈𝑖
𝑗⁄ = 0, we can get 𝜈𝑖

𝑗
 as follows: 
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𝜈𝑖
𝑗

=
𝑟𝑖

𝑗

(1+𝜆+𝜂)𝑝𝑥𝑗𝑒𝑗
 (2.12) 

Using this result in the constraint equation of 

Formula (2.4), let 𝜔 = 1 + 𝜂 + 𝜆, we can get the result 

as follows: 

𝐷𝑗 =
1

𝜔
∑ 𝑟𝑖

𝑗
,     𝜔 =

∑ 𝑟𝑖
𝑗

𝐷𝑗
 

From Karush-Kuhn-Tucker Theorem, we can get 

𝜈𝑖
𝑗∗

 as follows: 

𝜈𝑖
𝑗∗

=
𝑟𝑖

𝑗
𝐷𝑗

𝑝𝑥𝑗𝑒𝑗 ∑ 𝑟
𝑖
𝑗 (2.13) 

In (2.13), 𝜈𝑖
𝑗∗

 means that the mobile cloud provider 

𝑗 computes optimal units of virtual machines for mobile 

device’s application 𝑖 while maximizing its benefit. 

The mobile device’s application 𝑖 is the consumer 

of mobile cloud provider, which provision VMs for 

mobile device’s application. The mobile device’s 

application 𝑖  submits payment 𝑟𝑖
𝑗
  to the mobile cloud 

provider 𝑗  for VM. Let 𝑟𝑖
𝑗
  be the payment of the ith 

mobile device’s application. 𝑁  mobile device’s 

applications compete for the VMs. Mobile cloud 

provider’s VMs are allocated using a market 

mechanism, where the divisions depend on the relative 

payments sent by the mobile device’s batch 

applications.  

Let’s consider the interactions of mobile device’s 

application 𝑖  and mobile cloud provider in mobile 

cloud. The benefit function for mobile device’s 

application 𝑖  depends on the units of VM denoted by 

𝜈𝑖
𝑗
. For the mobile device’s batch application optimi-

zation problem, the mobile device’s application 𝑖 
calculates the unique optimal payment to mobile cloud 

provider under the constraints to maximize the mobile 

device’s batch application’s benefit. The payment 

accrued to buy or lease VMs cannot exceed the budget 

of mobile device’s batch application 𝐸𝑘.  

The mobile device’s batch applications give the 

unique optimal payment to mobile cloud providers 

under the constraints of the deadline and budget to 

maximize the set of mobile device’s batch applications’ 

benefits.  

The time taken by the mobile device’s batch 

application to complete the 𝑖th application is 

𝑡𝑘
𝑖 =

𝑝𝑗

𝐶𝑗𝑟
𝑖
𝑗. (2.14) 

The mobile cloud batch application optimization 

problem can be rewritten as follows: 

𝑀𝑎𝑥 (𝑇𝑘 − 𝐾 ∑
𝑝𝑗

𝐶𝑗𝑟
𝑖
𝑗

𝑖

) + (𝐸𝑘 − ∑ 𝑟𝑖
𝑗

𝑗
)  

𝑠. 𝑡𝑇𝑘 ≥ ∑ 𝑡𝑘
𝑖𝐼

𝑖=1
, 𝐸𝑘 ≥ ∑ 𝑟𝑖

𝑗
𝐼

𝑖=1
. (2.15) 

In (2.15), 𝑘  denotes the number of mobile cloud 

batch application, 𝑗  denotes certain mobile cloud 

provider. 𝐸𝑘 ≥ ∑ 𝑟𝑖
𝑗

𝐼

𝑖=1
 means the payments of the 𝑖th 

mobile cloud application in the mobile device’s batch 

application 𝑘  to the mobile cloud provider 𝑗  can not 

exceed the budget 𝐸𝑘. 

Let the pricing policy, 𝑝 = (𝑝1, 𝑝2, … , 𝑝𝑗) , denote 

the set of VM prices of all mobile cloud providers. The 

mobile device’s application 𝑖  receives the VMs 

according to its payment relative to the sum of the 

mobile cloud provider’s revenue. 

The Lagrangian for the problem 𝑈𝑀𝑜𝑏𝑖𝑙𝑒𝑏𝑎𝑡𝑐ℎ𝑎𝑝𝑝 in 

Formula (2.5) is 𝐿(𝑟𝑖
𝑗
) 

𝐿(𝑟𝑖
𝑗
) = (𝐸𝑘 − ∑ 𝑟𝑖

𝑗

𝑗
) + (𝑇𝑘 − 𝐾 ∑

𝑝𝑗

𝐶𝑗𝑟
𝑖
𝑗

𝑗

) +  

𝛽 (𝐸𝑘 − ∑ 𝑟𝑖
𝑗

𝑗
) + 𝜂 (𝑇𝑘 − 𝐾 ∑

𝑝𝑗

𝐶𝑗𝑟
𝑖
𝑗

𝑗

) (2.16) 

where 𝛽  and 𝜂  are the Lagrangian constants. From 

Karush-Kuhn-Tucker Theorem, the optimal solution 

can be gotten, if 𝜕𝐿
𝜕𝑟𝑖

𝑗⁄ = 0  for 𝛽 > 0 . We take 

derivative with respect to 𝑟𝑖
𝑗
 and get (2.17) as follows: 

𝜕𝐿(𝑟𝑖
𝑗
)

𝜕𝑟𝑖
𝑗⁄ = −1 + 𝐾

𝑝𝑗

𝐶𝑗(𝑟
𝑖
𝑗

)
2 − 𝛽 +  

𝜂𝐾
𝑝𝑗

𝐶𝑗(𝑟
𝑖
𝑗

)
2 (2.17) 

Let 𝜕𝐿
𝜕𝑟𝑖

𝑗⁄ = 0 , we get 𝑟𝑖
𝑗
  denoted in (2.18) as 

follows: 

𝑟𝑖
𝑗

= (
(𝑘𝜂+𝑘)𝑝𝑗

(1+𝛽)𝐶𝑗
)

1/2

. (2.18) 

Using this result in the constraint equation in (2.15), 

let 𝜃 =
(𝑘𝜂+𝑘)

(1+𝛽)
, we can get (𝜃)−1/2 

(𝜃)−1/2 =
𝑇𝑘

∑ (
𝑝𝑗

𝐶𝑗
)

1/2
𝐽

𝑗=1

. (2.19) 

We use the result of (2.19) and apply it to (2.18) to 

obtain 𝑟𝑖
𝑗∗

 as follows: 

𝑟𝑖
𝑗∗

= (
𝑝𝑗

𝐶𝑗
)

1/2  
∑ (

𝑝𝑗

𝐶𝑗
)

1/2
𝐽

𝑗=1

𝑇𝑘
. (2.20) 

The mobile cloud application 𝑖  pay 𝑟𝑖
𝑗∗

  to mobile 

cloud provider 𝑗 for virtual machines. 

In mobile cloud multistage scheduling model, 

mobile device’s job level scheduling optimization in 

mobile cloud is conducted by mobile device’s 

application; the mobile device’s application calculates 

the payment to mobile cloud provider under the 

deadline to satisfy the mobile cloud application’s 
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requirements. 𝐵𝑖 − ∑ 𝑠𝑖
𝑛 

𝑛
 is the surplus of all jobs of 

mobile device’s application. ∑ 𝑡𝑖
𝑛 

𝑛
  represents the 

execution time for processing all mobile device 

application’s jobs. The objective of job level 

scheduling optimization is to minimize the cost of 

mobile device’s applications and complete all jobs as 

soon as possible. Under the constraint of the deadline, 

mobile device application 𝑖 wants to complete all jobs. 

𝑞𝑖
𝑛  is the computation task of 𝑖 th mobile device 

application’s nth job. The execution time taken by the 

𝑖th mobile device application to complete the 𝑛th job 

is: 

𝑡𝑖
𝑛 =

𝑞𝑖
𝑛

𝑣
𝑖
𝑗

𝑠𝑖
𝑛
. (2.21) 

The mobile device’s job level scheduling optimiza-

tion is reformulated as 

𝑀𝑎𝑥 {(𝐵𝑖 − ∑ 𝑠𝑖
𝑛 

𝑛
) + (𝑇𝑖 − ∑

𝑞𝑖
𝑛

𝑣
𝑖
𝑗

𝑠𝑖
𝑛

𝑁
𝑛=1 )}.(2.22) 

The Lagrangian for 𝑈𝑚𝑜𝑏𝑖𝑙𝑒𝑑𝑒𝑣𝑖𝑐𝑒𝑗𝑜𝑏   in (2.6) is 

𝐿(𝑠𝑖
𝑛). 

𝐿(𝑠𝑖
𝑛) = (𝐵𝑖 − ∑ 𝑠𝑖

𝑛 
𝑛

) + (𝑇𝑖 − ∑
𝑞𝑖

𝑛

𝑣
𝑖
𝑗

𝑠𝑖
𝑛

𝑁

𝑛=1

) +

𝜆 (𝑇𝑖 − ∑ 𝑡𝑖
𝑛𝑁

𝑛=1
) (2.23) 

where 𝜆 is the Lagrangian constant. 

Using this result in the constraint equation in (2.6), 

Let 𝜃 = 1 + 𝜆, 𝜃 can be obtained in (2.24) 

(𝜃)−1/2 =
𝑇𝑖

∑ (
𝑞𝑖

𝑛

𝑣
𝑖
𝑗 )

1/2
𝑁

𝑛=1

. (2.24) 

We use the result of (2.24) and apply it to (2.23) to 

obtain 𝑠𝑖
𝑛∗

 

𝑠𝑖
𝑛∗

= (
𝑞𝑖

𝑛

𝑣
𝑖
𝑗 )

1/2 ∑ (
𝑞𝑖

𝑛

𝑣
𝑖
𝑗 )

1/2

𝑁
𝑛=1

𝑇𝑖
  . (2.25) 

In (2.25), the 𝑛th job of mobile device’s application 

𝑖 pay 𝑠𝑖
𝑛∗

 to the mobile cloud provider 𝑗. 

3. Mobile Cloud Multistage Scheduling 

Algorithm  

The multistage scheduling algorithms in mobile 

cloud are involved with mobile cloud provider’s 

optimization, mobile device application’s optimization 

and mobile device job’s optimization, respectively.  

The proposed algorithm that achieves multistage 

scheduling for data-Intensive batch applications can be 

described as follows.

 

Algorithm 1. Mobile Cloud Multistage Scheduling Algorithm (MCMSA) 

Routine mobile device application_Optimization(𝑝𝑗) 

If   𝐸𝑘 ≥ ∑ 𝑟𝑖
𝑗

𝐼

𝑖=1
 

  Then 𝑟𝑖
𝑗∗

← 𝑀𝑎𝑥 𝑈𝑚𝑜𝑏𝑖𝑙𝑒𝑑𝑒𝑣𝑖𝑐𝑒𝑗𝑜𝑏(𝑟𝑖
𝑗
); //compute 𝑟𝑖

𝑗
 according to Formula (2.20) 

Return 𝑟𝑖
𝑗∗

; 

Routine mobile device job Optimization(𝑣𝑖
𝑗
) 

 If  𝐵𝑖 ≥ ∑ 𝑠𝑖
𝑛𝑁

n=1
 

  𝑠𝑖
𝑛∗

← 𝑀𝑎𝑥 𝑈𝑀𝐷𝐽(𝑠𝑖
𝑛); // compute 𝑠𝑖

𝑛∗
 according to Formula (2.25) 

Return 𝑠𝑖
𝑛∗

; 

 

Routine mobile cloud provider_Optimization (𝑟𝑖
𝑗(𝑛)

) 

 𝜈𝑖
𝑗∗

← 𝑀𝑎𝑥 {𝑈𝐶𝑙𝑜𝑢𝑑𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟}; //compute 𝜈𝑖
𝑗∗

 according to Formula (2.13) 

 If 𝐶𝑗 ≥ ∑ 𝜈𝑖
𝑗

𝑖
; 

  Then 𝑝𝑗
(𝑛+1)

← max {𝜀, 𝑝𝑗
(𝑛)

+ 𝜂 (∑ 𝑣𝑖
𝑗

𝑖
− 𝐶𝑗)} 

 // where 𝜂 > 0 is a small step size parameter, 𝑛 is iteration step. Let 𝜀 > 0 be a sufficiently small constant preventing prices to 

approach zero. It is consistent with the law of supply and demand: if the demand for VM exceeds the mobile cloud provider’s 

supply 𝐶𝑗, then the price 𝑝𝑗
(𝑛+1)

 is raised; otherwise, the VM’s price is reduced; 

Return 𝑝𝑗
(𝑛+1)

; 

 

4. Experiments  

In this section, we compare the proposed mobile 

cloud multistage scheduling algorithm (MCMSA) with 

other related works. A mobile cloud environment with 

a 2-dimensional area of 500m*500m is used to 

compare and analyze three algorithms. Mobile cloud 

proxy residing in WLANs acts as the interface point 

between the mobile devices. All Wi-Fi interfaces 

operate at a rate of 11Mb/s. All Ethernet interfaces 

operate at a rate of 10Gb/s. Jobs arrive at each cloud 
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node 𝑠𝑖, 𝑖 = 1, 2, … , 𝑛, according to a Poisson process 

with rate 𝛼. The energy cost can be expressed in the 

dollar that can be defined as unit energy processing 

cost. Mobile device users submit their jobs with 

varying deadlines. The deadlines of mobile device 

user are chosen from 100ms to 400ms. The budgets of 

mobile device users are set from 100 to 1500 dollars. 

Each experiment is repeated 6 times and 95% 

confidence intervals are obtained. Simulation para-

meters are listed in Table 2. 

Table 2. Simulation Parameters 

Simulation Parameter Value 

Total number of mobile device users 40 

Total number of cloud providers 12 

Mobility model Random-walking 

mobility 

Average speed of mobile device 5m/s 

Initial price of VM [10, 500] 

Deadline [100, 400] 

Expense budget [100, 1500] 

electrical energy [0.1, 1.0] 

Bandwidth [100, 1000] 

Computing power [100, 1000] 

RAM [100, 2000] 

Energy price [1, 100] 

Job arrival rate [0.1, 0.6] 

 

The simulations are conducted to compare our mo-

bile cloud multistage scheduling Algorithm (MCMSA) 

with cooperative resource allocation algorithm in 

mobile cloud computing [2], which is named as CRAA 

and optimal collaboration of thin–thick clients and 

resource allocation algorithm in mobile cloud 

computing [13], which is named as OCRA. In [2], 

Kaewpuang et al. propose a framework for resource 

allocation to the mobile applications, and revenue 

management and cooperation formation among 

service providers in mobile cloud. They formulate and 

solve optimization models to obtain the optimal 

number of application instances that can be supported 

to maximize the revenue of the service providers while 

meeting the resource requirements of the mobile 

applications. In [13], Hung et al. present a novel 

architecture that enhances mobile client’s capabilities 

with computing resources from mobile clouds. Hung 

et al. [13] focus on optimizing the data distribution 

from cloud networks to mobile client and utilizing 

computing resources so that QoS requirements can be 

fulfilled. They proposed an algorithm that can select 

the best resource allocation strategy in order to satisfy 

Service Level Agreements. 

The following simulation metrics are adopted: 

resource allocation efficiency, execution success ratio 

and revenue. Resource allocation efficiency is the ratio 

of the consumed cloud resources to the total cloud 

resources available as a percentage. Execution success 

ratio is the percentage of jobs executed successfully 

before their deadline. We compare MCMSA algorithm 

with CRAA and OCRA by varying load factor, deadline 

and network latency to study how they affect the 

performance of these algorithms. 

Figures 3 to 5 are to study allocation efficiency, 

execution success ratio, and revenue under different 

load factor (𝑎), respectively. Fig. 3 shows that when 

load factor increases ( 𝑎 = 0.5 ), resource allocation 

efficiency of MCMSA is as much as 12% less than that 

with 𝑎 = 0.1 . The resource allocation efficiency is 

larger when the load factor is higher. When the load 

factor is 0.5 (𝑎 = 0.5), resource allocation efficiency 

of CRAA is 22% more than MCMSA. Compared with 

OCRA, the resource allocation efficiency of MCMSA 

and CRAA sharply decreases than CRAA when the load 

factor increases. When the load factor is 0.7  ( 𝑎 =
0.7), the allocation efficiency of CRAA decreases to 

55%, the energy allocation efficiency of MCMSA 

decreases to 75%. When the load factor increases, 

fewer mobile cloud users can be admitted into the 

mobile cloud system due to the increase of system 

burden, so, resource allocation efficiency decreases. 

Considering the execution success ratio, from the 

results in Fig. 4, when load factor is 0.7 (𝑎 = 0.7), the 

execution success ratio of CRAA is 22% less than that 

using MCMSA. When load factor increases, system 

load increases as well; some mobile device user’s 

requirements can’t be processed on time, this leads to 

low execution success ratio. When load factor 

increases, execution success ratio of CRAA 

deteriorates quickly. OCRA performs better than 

CRAA and MCMSA. CRAA resource allocation 

algorithm does not consider the optimization of both 

mobile cloud providers and mobile device users; it 

wants to optimize the revenue of the mobile cloud 

providers. Fig. 5 shows the effect of the load factor on 

the revenue. The revenue increases as the load factor 

increases. When load factor is 0.7  ( 𝑎 = 0.7 ), the 

execution success ratio of CRAA is 17% more than that 

using MCMSA. MCMSA jointly considers both mobile 

device users and mobile cloud resource providers; 

CRAA mainly optimizes the revenues of mobile cloud 

providers, it has better revenues than OCRA and 

MCMSA. 

 

 

Figure 3. Allocation efficiency under different load factor 
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Figure 4. Execution success ratio under different  

load factor 

 

Figure 5. Revenue under different load factor 

The deadline effects on allocation efficiency, 

execution success ratio and revenue are illustrated  

in Fig. 6-8. Fig. 6 shows the resource allocation 

efficiency with different deadlines. We can see that  

the resource allocation efficiency increases when  

the deadline increases. When the deadline is low,  

the job with low budget can not buy expensive  

cloud resource; this leads to low allocation efficiency. 

When the deadline is 350 (T=350), the resource 

allocation efficiency of MCMSA is 29% higher  

than T=100. Compared with MCMSA, the allocation 

efficiency of OCRA decreases more slowly than 

MCMSA when the deadline decreases. When  

deadline is 100 (T=100), allocation efficiency of 

CRAA decreases to 32%, allocation efficiency of 

MCMSA decreases to 61%. Fig. 7 is to show the  

effect of the deadline on execution success ratio.  

When the deadline is low, execution success  

ratios of MCMSA, CRAA and OCRA are low.  

When increasing deadline, execution success  

ratio of MCMSA outperforms CRAA and OCRA. 

Because under low deadline, more jobs can’t be 

completed on time. When deadline is 100  

(T=100), execution success ratio of MCMSA  

falls to 64% and execution success ratio of  

OCRA falls to 51%. From the results in Fig. 8,  

the revenue increases when the deadline decreases. 

When the deadline is low, the jobs need to be 

completed in short time, so mobile device user  

chooses more expensive cloud resources to  

process the jobs. However, when the deadline 

becomes higher, it is likely that the jobs can be 

completed before the deadline, so mobile device  

user considers using the cheaper cloud resources  

to complete jobs, the revenue of the mobile  

cloud provider becomes high. When the deadline  

is 300 (T=300), the revenue of CRAA is 17%  

higher than OCRA and 10% higher than MCMSA. 
 

 

Figure 6. Allocation efficiency under different deadline 

 

 

Figure 7. Execution success ratio under different deadline 

 

 

Figure 8. Revenue under different deadline 

 

 

Figure 9. Effect of network latency on allocation efficiency 
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Figure 10. Effect of network latency on execution  

success ratio 

 

Figure 11. Effect of network latency on revenue 

Figures 9 to 11 are to measure the effect of network 

latency on allocation efficiency, execution success 

ratio and revenue, respectively. Network latency refers 

to the time elapsed between the sending of a message 

to a router and the return of that message. Considering 

the resource allocation efficiency, from the results in 

Fig. 9, the X-axis shows a change in network, the 

resource allocation efficiency of MCMSA is as much 

as 18% less than OCRA. The resource allocation 

efficiency of MCMSA is as much as 17% higher than 

CRAA. When network latency reaches 0.05, the 

resource allocation efficiency of MCMSA is 19% more 

than OCRA. From the results in Fig. 10, lower network 

latency leads to higher execution success ratio. After 

network latency reaches 0.005, the execution success 

ratio of OCRA can be as much as 8% more than 

MCMSA. The execution success ratio of CRAA is as 

much as 17% less than MCMSA. The reason is that 

increasing network latency leads to longer times to 

complete tasks; so the execution success ratio becomes 

less. Fig. 11 shows the effect of varying network 

latency on the revenue. The revenue of MCMSA 

decreases when the network latency increases. Larger 

network latency enables mobile cloud user to expense 

more time for transfer and computation. When the 

network latency is large, the revenue is low. When the 

network latency is 0.05, the revenue of MCMSA is 

19% less than the revenue when the network latency is 

0.003. With the same network latency, CRAA can get 

more revenues than both MCMSA and OCRA.  

The following experiments are to measure effect of 

different mobile cloud node numbers on the execution 

success ratio and allocation efficiency, respectively. 

Firstly, considering the execution success ratio, 

Fig. 12 shows that when the number of mobile clouds 

nodes increases up to 80, execution success ratio of 

MCMSA is as much as 17% less than that with N=10. 

The execution success ratio is larger when the number 

of mobile cloud nodes is smaller. The execution 

success ratio of MCMSA is higher than OCRA and 

CRAA when mobile cloud node increases. When the 

number of mobile cloud users is 100, the execution 

success ratio of CRAA decreases to 49%, the execution 

success ratio of MCMSA decreases to 64%, the 

execution success ratio of OCRA decreases to 

56%.Considering allocation efficiency, as shown in 

Fig. 13, when the number of mobile cloud nodes 

increases, allocation efficiency deteriorates. When the 

number of mobile cloud nodes is 80, the allocation 

efficiency of MCMSA is as 34% less than the number 

of mobile cloud nodes is 10. Compared with CRAA 

and MCMSA, the allocation efficiency of OCRA 

slowly decreases than CRAA and MCMSA when the 

number of mobile cloud nodes increases. When the 

number of mobile cloud nodes is 100, allocation 

efficiency of OCRA decreases to 73%, resource 

allocation efficiency of CRAA decreases to 51%, 

allocation efficiency of MCMSA decreases to 59%. 

When the numbers of mobile cloud nodes are same, 

OCRA can get better allocation efficiency than both 

MCMSA and CRAA. 
 

 

Figure 12. Execution success ratio versus the number of 

mobile cloud nodes 

 

Figure 13. Allocation efficiency versus the number of 

mobile cloud nodes 

From above simulation results, the objective of 

MCMSA is to satisfy mobile device users’ needs, as 
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well as optimize the profit of mobile cloud provider. 

CRAA aims to maximize the revenue of the mobile 

cloud service providers, OCRA aims to select the best 

resource allocation strategy in order to satisfy SLA in 

mobile cloud. The execution success ratio of MCMSA 

is better than OCRA and CRAA; CRAA behaves best in 

term of revenue; OCRA outperforms better than 

MCMSA and CRAA. 

5. An Application Example  

In this section, we take multimedia search as an 

example in mobile cloud environment, and apply the 

proposed multistage scheduling method to mobile 

cloud environment. Multimedia data consist of files 

recorded on mobile devices, including videos, photos, 

and sound clips. They also encompass files stored on 

mobile devices for entertainment, such as music and 

movies. Multimedia search application would find 

photos, videos, or music files whose contents are 

similar to that of an input sample. The multimedia 

search application allows the cloud users to browse 

through videos and images stored on cloud datacenter 

and search by time, location, and quality. The agent 

based multimedia search model in mobile cloud is 

shown in Fig. 14. 

In our method, several agents are used, namely, 

mobile cloud provider agents, mobile device user 

agents, intelligent service agent and mobile cloud 

scheduler agent which implements scheduling of batch 

applications for mobile cloud computing environment. 

Intelligent service agent is to provide multimedia 

search support for mobile device user agents. Mobile 

cloud provider agents and mobile device user agents 

act on behalf of mobile cloud provider and mobile 

cloud users. Mobile device user agents send the 

requests to intelligent service agents to find the needed 

videos or other multimedia resource in the mobile 

cloud and then mobile device user agent can get the 

multimedia data for mobile cloud users. The mobile 

cloud scheduler agent receives the request from 

mobile device users and schedules the request to 

suitable cloud resource nodes. The mobile cloud 

scheduler agent monitors the task requests from 

mobile device user agent. It receives the task 

requirements and puts them into the task queue. While 

the task queue is not empty, the mobile cloud 

scheduler agent starts the multistage scheduling 

algorithm (MCMSA). 

 

Figure 14. Agent based multimedia search model in mobile cloud 

When the mobile cloud provider agent updates its 

price, it forwards the price to mobile device user 

agents; the mobile cloud resource price is put in a pa-

cket. Whenever the new price passes to mobile device 

user agent, it computes the benefit utility. According 

to the multistage scheduling algorithm, if the price is 

higher than the budget limit, mobile device user agent 

can’t offer the payment for mobile cloud providers. 

The mobile device user agent can be informed the 

price for the next iteration. Searching some sort of 

multimedia resources in the mobile cloud requires 

cooperation between intelligent service agent and the 

mobile cloud provider agents. There are two kinds of 

cooperation strategies: agent based search strategy and 

message based search strategy. In agent based search 

strategy, intelligent service agent provides mobile 

cloud user agents with a list of choices of multimedia 

data located in different places, the mobile cloud user 

agent then checks these locations in turn (See Fig. 15).  

In the message based search strategy (see Fig. 16), 

intelligent service agent conducts a search through the 

use of messages in order to select a suitable location to 

the mobile device user agent. Then the mobile device 

user agent can go to the destination location and avoid 

the high overhead of moving the mobile device user 

agent to all possible locations. The message based 

search strategy is essentially a search via direct 

communication between mobile device user agents 

and intelligent service agents. 

6. Conclusions  

Mobile cloud can facilitate the use of mobile 

devices to collect data, manipulate them and interact 

with scientific workflows running in the Cloud. The 

paper studies efficient multistage scheduling strategy 

for batch processing applications in mobile cloud. In  
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Figure 15. Agent based multimedia search strategy in mobile cloud (MDU=Mobile Device User Agent,  

ISA=Intelligent Service Agent) 

 

Figure 16. Message based multimedia search strategy in mobile cloud (MDU=Mobile Device User Agent,  

ISA=Intelligent Service Agent) 

multistage scheduling model of mobile cloud, the 

objective of mobile device’s batch applications 

optimization is to provision VMs for batch 

applications such that the mobile cloud utility is 

maximized subject to the resource constraints of 

mobile cloud datacenter and the requirements of 

mobile device’s batch applications, respectively. In 

order to achieve a distributed solution, the mobile 

cloud multistage scheduling optimization is 

decomposed into divisible subproblems, which are 

processed in parallel by mobile device’s batch 

applications and mobile cloud providers, respectively.  

We take multimedia search as an example in 

mobile cloud environment, and apply the proposed 

multistage scheduling method to mobile cloud 

environment. The experiments aimed at comparing 

our mobile cloud multistage scheduling algorithm 

(MCMSA) with CRAA [2], which maximizes the 

revenue of the mobile cloud service providers and 

OCRA [13], which selects the best resource allocation 

strategy in order to satisfy SLA in mobile cloud. The 

objective of MCMSA is to satisfy mobile device users’ 

needs, as well as optimize the profit of mobile cloud 

provider. So from the simulation results, execution 

success ratio of MCMSA is better than OCRA and 

CRAA; CRAA behaves best in term of revenue; 

allocation efficiency of OCRA is better than MCMSA 

and CRAA. In the future, we will move our mobile 

cloud multistage scheduling to real mobile cloud 

environment to test the feasibility and correctness. We 

also want to build mobile cloud platform for our 

campus.  
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