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Abstract. Nonlinear singular systems present a general mathematical framework for the modeling and controlling 

of complicated systems, however the complex nature of this type of systems causes many difficulties in control 

strategy. In this paper, a model reference control approach is addressed for nonlinear affine singular systems. First, a 

basic control system is proposed based on the Lyapunov stability theorem so that nonlinear singular system can 

asymptotically track the desired linear reference model. After that, in the second design, it has been considered that 

systems’ parameters are unknown and two adaptive approaches are investigated. For better illustration, simulation has 

been done and the results show the tracking performance for both presented control systems. 

Keywords: Adaptive control; affine singular systems; Model Reference control; nonlinear systems; singular 
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1. Introduction 

Singular systems, which are also known as 

descriptor systems, differential-algebraic systems, 

semi-state systems, degenerate systems, constrained 

systems, etc. are more convenient and more precise 

models for realization of real systems. Singular 

models include both differential and algebraic 

equations. This class of systems has several 

applications in robotics, mechanical systems, electrical 

circuits, economic systems, chemical process systems, 

power systems, etc.[1-5]. Most of these models are 

multibody systems in which the singular model 

describes the dynamic behavior of the single 

component by differential equations and 

interconnection between subsystems by algebraic 

equations [6]. 

The advantage which singular systems offer in 

compare with ordinary differential systems is that they 

are easier to formulate especially in constrained 

systems. They have also some especial features that 

cannot be found in an ordinary state-space system 

such as they may have infinite dynamic modes which 

model the impulsive behavior in some systems. 

However, compared with ordinary state space models, 

they are generally more difficult to deal with.   

A common concept in singular systems is the 

index of the system. The system index demonstrates 

how a singular system differs from an ordinary state 

space one.  Systems with a higher index are more 

complicated and more difficult to handle.  There are 

several definitions for the system index, but the most 

used concept is the differential index which is equal to 

the number of differentiations of algebraic equations 

needed to change a singular system to an ordinary 
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differential equations system [6]. The systems with 

index zero are ordinary differential systems. Index one 

models can transform to ordinary state space model by 

one differentiation. In the systems with index one, all 

the constraints are explicit in model algebraic 

equations, but in higher index systems, there are some 

hidden constraints which can be observed by 

differentiating of the algebraic equations as many 

times as the system index.  

Nowadays it can be claimed that most of the real 

systems have a singular model, and the ordinary state 

space model is a simplified model of the original 

singular one [1]. Therefore, in recent years there has 

been an increasing interest in singular control systems 

and stability analysis of such systems.  

Many control approaches are rapidly extended for 

singular systems. Optimal control and robust methods 

have widely used for this class of systems [7-9]. State 

feedback control [10, 11], intelligent methods [12, 13] 

and Lyapunov based approaches [14, 15] are also 

extended for singular systems so far. However, few 

results have been reported on model reference and 

adaptive control. An adaptive state feedback controller 

for linear singular systems is investigated in [16] in 

which the closed-loop stability has been guaranteed by 

Lyapunov theory. Some model reference controller for 

nonlinear singular system is designed in [17, 18]. In 

[17] a model reference control for singular nonlinear 

systems with nonlinear parameterization where the 

nonlinearity in the parameters is convex or concave is 

investigated. A TS fuzzy model following control 

strategy is designed in [18].  As the complex nature of 

this type of systems causes many difficulties in control 

strategy, most of the control methods which have been 

designed so far are for linear systems, while the real 

systems have mostly nonlinear models. Singular 

nonlinear control systems are still an open research 

field.  

Therefore, the goal of this paper is the model 

reference control for nonlinear affine singular systems. 

The objective is that the states of the nonlinear model 

track the states of a reference linear model. A basic 

controller is designed based on the Lyapunov stability 

theorem knowing all system parameters. After that the 

controller is generalized to an adaptive one.  The 

proposed adaptive control design is divided in two 

sections. In the first part, it is considered that the 

coefficients matrix of state’s derivative, which is 

named E in singular systems, is known and other 

parameters are unknown. It is assumed that the 

reference system has also the same E. Then in the 

second part, an adaptive model reference control is 

designed assuming E is also unknown. Not knowing 

the matrix E increases the controller complexity and 

cost. For better illustration; both of the proposed 

controllers are then applied to a sample nonlinear 

singular system. 

The paper is organized as follows. In Section 2 the 

problem statement is provided and the theories and 

assumptions used for control design are presented. In 

Section 3, the basic control approach is designed 

based on the Lyapunov stability theorem. Adaptive 

control design is investigated in Section 4. Two 

adaptive approaches based on knowing or not 

knowing the matrix E are discussed there. Simulation 

results are presented in Section 5 and Section 6 

concludes the paper.  

2.Problem Statement 

Consider the following nonlinear affine singular 

system 

   ( ) ( ) ( )t t u t  Ex Ax f x g x  (1) 

where 
n

Rx  is the vector of the system’s states and 
1

u R is the control input. 
1

( ) and ( )
n n n

R R
 

 g x f x are nonlinear function 

vectors. 
n n

A R


  is the system matrix of linear 

coefficients and  is a scalar. The matrix E can be 

singular (Rank (E) <n).  

If the matrix E is invertible, then by multiplying 

the inverse of E, one can reach an ordinary nonlinear 

system which only has differential equations. But 

when denotes determinant0 ( . )E  , the system (1) 

introduces a singular or descriptor system which has 

both differential and algebraic equations. Algebraic 

equations mostly are resulted from constraints which 

exist in the system. 

Now the control objective is that the nonlinear 

constrained system follows a desired reference linear 

model which is given by   

     t t tm m mm m
 Ex A x B r  (2) 

where
n

m
Rx is the vector of the reference states. The 

matrices 
1
and

n n n

m m
R R

 
 B A are constant system 

matrices and 
m

r  is the reference model input. The 

matrix E in the reference model is considered to be the 

same as the one in the real model. It means that the 

degree of complexity, the number of algebraic 

variables and system index is similar. 

Choosing an appropriate reference model is a very 

important part of the control design. The desired 

reference system should be admissible. It means that 

the system is regular, impulse free and stable. In other 

words, it can be written as:  

1. 
m

sE A  is not identically zero. It means 

that the reference system is regular and has a 

unique solution. 

2.  deg
m

sE A rank E  . This condition 

ensures that the reference system doesn’t 

have an impulsive response. 


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3. The real parts of all roots of 0
m

sE A    

have a negative value that is equal to the 

stability of the reference system. 

Zhang in [15] presented a stability theorem based 

on Lyapunov function for linear singular systems 

which is used here for the presented controller design.  

Theorem1. The system (2) is regular, impulse free 

and asymptotically stable if and only if a 

matrix P exists which satisfies the 

following equations: 

0

T T

m m

T T

P A A P Q

E P P E

  

 





 (3) 

where the matrix Q is positive definite [15]. 

Therefore it is assumed that there is a matrix P 

with which the reference model ( m
E, A  ) satisfies (5) 

in Theorem 1.  

To define a linear system as a reference model for 

the nonlinear one, there are some more conditions that 

should be satisfied. If the nonlinear singular system 

(1) is rewritten as  

   
1
( ) ( )t A u t Ex x x g x  (4) 

then there are some matching (or perfect model 

following) conditions which guarantee that the 

equality 
m

x x can be obtained. These conditions 

were established by several works (for instance, [19-

21]) for ordinary differential systems. Because the 

matrix E in the nonlinear plant and in the reference 

model is the same, these conditions can also be 

generalized for singular systems according to the 

proof in [20, 21]. The matching condition can be 

expressed as rank requirements:  

1

(R( ) denotes ( ))

( ) ( ),

( ) ( )

m

m
a Rang a

R R

R R

 



g A A

g B
 (5.a) 

or   

† †

1
( ) 0 ; ( )( ) 0

m m
    I gg B I gg A A  (5.b) 

where 
† 1

( )
T T

g g g g  is the pseudo-inverse of g. It is 

obvious that the both conditions are equivalent. It is 

assumed that the proposed reference model satisfies 

the conditions in (5). 

After choosing an appropriate linear reference 

model, by defining the tracking error vector as  

m
 e x x  (6) 

and by subtracting (2) from (1), the closed loop 

dynamics would be as  

  ( ) ( )
m m m m

t u r     Ee A e Ax f x A x g x B .(7) 

For simplifying the equations, the following 

definition is introduced:  

ˆ( ) ( )
m

  f x Ax f x A x . (8) 

So, the error dynamic of the closed loop system 

would be as follows: 

  ˆ( ) ( )
m m m

t u r   Ee A e f x g x B . (9) 

Now the control objective is to find 𝑢 such that the 

tracking error tends to zero as fast as possible. 

3. Basic Control Design 

In the first step, it is assumed that all parameters of 

the system are known, and tracking the states in 

reference model is the objective of the control design. 

In mathematical view, the error term in (9) tends to 

zero. The control law is directly extracted from 

Lyapunov function. The convergence rate depends on 

the reference model, as the reference model poles 

define how fast the tracking error tends to zero.  

In order to find a control law, which would fulfill 

our goal and guarantee the stability, the following 

Lyapunov function is proposed: 

T T
V e E Pe  (10) 

where P satisfies (3). 

Differentiating V results in   

T T T T
V  e E Pe e P Ee  (11) 

Using (9), one can get   

ˆ( ) 2 [ ( ) ( ) ].
T T T T T

m m m m
V x x u r    e A P P A e e P f g B

 (12) 

Now it is clear that if u is chosen in the way that 

the equation  

ˆ( ) ( )
m m

x u x r  g f B  (13) 

is satisfied, then the derivative of V would be as 

follows: 

T
V  e Qe  (14) 

Based on the Lyapunov stability theorem, the 

tracking error tends to zero and the nonlinear system 

follows the desired reference model. Equation (13) is a 

non-square matrix equation that can be solved in many 

ways. If g(x) is a vector, one solution would be as 

follows: 

† ˆ( ( ) )
m m

u x r  g f B . (15) 

When u is eliminated from (15) and (13), the zero 

error condition can be express as: 

† ˆ( )( ( ) ) 0
m m

x r   I gg f B . (16) 
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Using (8) and (4), the condition in (16) can be 

rewritten as 

†

1
( )( ( ) ) 0

m m m
r    I gg A A x B . (17) 

It can be easily proved, the equation (17) can be 

obtained from matching conditions (5). In other 

words, the matching conditions (5) guarantee that (17) 

will be hold for all values of x and
m

r . So, as a result, 

it can be obtained that the proposed control law (15) 

satisfies (13). 

So, by choosing the control law (15), the error 

dynamic would be as  

m
Ee A e . (18) 

Therefore the poles of the system ( ,
m

E A ), which 

are the roots of 0
m

s  E A , define the error 

decreasing rate.  

As a conclusion, if all the system parameters are 

known and the control law is chosen as in (15), then 

all the states of nonlinear singular system (1) track the 

states of the linear reference model (2). The control 

system is summarized in Figure 1. In the second step, 

as discussed in the following section, some system 

parameters are considered to be unknown and two 

adaptive approaches are designed based on known and 

unknown matrix E.  

4. Adaptive Control Design 

In the first approach, it is assumed that the matrix 

A and the scalar  are unknown but fixed. It means 

that the nonlinear dynamics structures are known but 

system parameters are unknown. For this situation, the 

following control law is proposed: 

 (19) 

where �̂�  and �̂�  stand for estimation of A and , 

respectively. Multiplying g in both sides of (19) and 

adding and subtracting some terms, results in  

(20) 

Considering matching condition (5), the equation 

(20) can be rewritten as  

. (21) 

Now by substituting (21) in the error dynamic 

system (7), the closed loop system would be as 

. (22) 

From (22) it is clear that, if �̂� and �̂� is equal to 𝐀 

and 𝛼respectively, then the error asymptotically tends 

to zero.  

 

Figure 1. Basic control system structure 

Now, to guarantee the stability and to decrease the 

parametric error, the following Lyapunov function is 

the candidate:  

2

1 2

1 1
ˆ ˆˆ( ) ( ) ( )

TT T
V vec vec 

 
     e E Pe A A A A

 (23) 

where P satisfies (3) and vec(A) denotes vectorization 

of A,  which is obtained by stacking the columns of 

the matrix A on top of one another.  It is a linear 

transform which converts the matrix into a column 

vector. Using vec(A) and Kronecker product makes 

the computations more simple. 

Differentiating the Lyapunov function with respect 

to t results in  

1

2

2
ˆ ˆ( )

2
ˆ ˆ( ) ( )

T T T T

T

V

vec vec

  




   

 

e P Ee e E Pe

A A A

. (24) 

Considering the system dynamic (22), the 

Lyapunov derivative can be rewritten as  

.(25) 

It can be written as:  

(26) 

as the term  𝐞 𝐏 𝐠𝐠 (𝐀 − �̂�)𝐱 is scalar, this term can 

be written as 

 (27) 

and due to the Kronecker product properties, it is 

equal to  



† ˆ ˆ( ( ) )
m m m

u x x x r    g A f A B



† ˆ ˆ( ( ) ( ) ( ) ( ))
m m m

u r          g gg Ax f x A x B A A x f x

†

( ( ) )

ˆ ˆ(( ) ( ) ( ))

m m m
u r

 

    

   

g Ax f x A x B

gg A A x f x

† ˆ ˆ(( ) ( ) ( ))
m

     Ee A e gg A A x f x

†

1 2

ˆ ˆ( ) 2 (( ) ( ) ( ))

2 2 ˆ ˆˆ ˆ( ) ( ) ( )

T T T T T

m m

T

V

vec vec

 

  
 

     

   

e A P P A e e P gg A A x f x

A A A

†

1

1

†

2

2
ˆ ˆ( )[ ( )]

2ˆ ˆ ˆ2 ( ) ( ) ( )

T T T

T T T

V

vec vec

   




    

   

e Qe e P gg f x

e P gg A A x A A A

† †ˆ ˆ( ) ( ( ) )
T T T T

vec  e P gg A A x e P gg A A x



Adaptive Control for Nonlinear Singular Systems 

191 

. (28) 

So, the derivative of Lyapunov functions (26) 

would be as 

.

(29) 

Now by defining the parameters updating law as 

 (30) 

the derivative of Lyapunov function can be written as 

. (31) 

By the proposed updating mechanism, the stability 

would thus be guaranteed and the tracking error tends 

to zero. The adaptive model reference control 

structure is summarized in Figure 2.  

In the second approach, it is considered that matrix 

E of the system is also unknown and it is different 

from 𝐸  in the reference model. This assumption 

makes the control system more complicated.  

4.1. Unknown Matrix E 

In this part, it is assumed that the parameters E,A 

and   in the nonlinear model (1) are unknown and 

the objective is tracking a linear singular model with 

different E like  

 (32) 

where 𝐄 , 𝐀  should satisfy (3). Unknown E 

increases the complexity of the control design and 

cost. The matrix E is not just a coefficient, it 

demonstrates the system index and it is in charge of 

complexity of the system.  In this section, the system 

may be forced to track a reference model with a 

different index or even a non-singular system ( ). 

However to obtain such an advantage, the design 

difficulty and the cost should be tolerated.  

First, the matching conditions (5) must be 

reviewed. Some conditions on 𝐄  will be added 

because 𝐄  in the reference model is different from E 

in the real system. According to the proof in [21], it 

can easily be resulted that the rang of g must contain 

the rang of (𝐄 − 𝐄), as 

 (33.a) 

Or 

 (34.b) 

 

Figure 2. Adaptive model reference control system 

while the exact value of the system parameters is 

unknown, but it is assumed that the system matrices 

satisfy the matching conditions (5) and (33). It is not 

an unpractical assumption because the matching 

conditions are originally rank requirements, and it is 

natural to know about the ranks and degree of the 

system which is under control. For example, to control 

a DC motor, the dynamics structures and ranks are 

known, however the value of parameters, such as 

armature resistance and coefficients, may not be 

available. To fulfill the goals, the system (32) is 

subtracted from (1). Then using (6) results in  

(34) 

which is the dynamics of tracking error. Now the 

objective is that the tracking error tends to zero. A 

control law is proposed as  

 (35) 

where �̂� , �̂�  and �̂�  are estimations of E, A and , 

respectively. As it has been shown, a state derivative 

feedback term is added to the controller. Using state 

derivative feedback is very useful and typical in 

singular systems because it can directly affect the 

index and regularity of closed-loop systems. However 

in ordinary differential systems, performance of the 

state derivative feedback control is not different from 

usual state feedback. So, it is not usually applied there.  

Now according to matching conditions (5), (33) and 

multiplying g in both sides of (19) results in  

.(36) 

By substituting (20) in system dynamic (34), the 

closed-loop error dynamic system can be given by 

(37) 

Now, to stabilize the system and decrease the 

parameter errors, the following Lyapunov function is 

defined: 

† †ˆ ˆ( ( ) ) ( ) ( )
T T T T T

vec vec   e P gg A A x x e P gg A A

†

1

1

†

2

2

2
ˆ ˆ( )[ ( )]

2 ˆ ˆ[ ( ) ( )] ( )

T T T

T T T T

V

vec vec

   





    

    

e Qe e P gg f x

A x e P gg A A

†

1

†

2

ˆ ( )

ˆ( ) ( )

T T

T T T T
vec

 





 

e P gg f x

A x e P gg

T
V  e Qe



     t t tm m mm m m
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 (38) 

The Lyapunov derivative can be written as  

.(39) 

Similar to (25) – (29), (39) can be rewritten as  

.(40) 

So, by choosing the adaption law as  

 (41) 

the Lyapunov derivative function will be negative as 

 (42) 

and the tracking error tends asymptotically to zero. 

Adding state derivative feedback to control law makes 

the controller more complicated. The vector  cannot 

directly be calculated from equations in singular 

systems, as some state variables appear just 

algebraically. By differentiating, the vector  can be 

obtained. As we know, differentiating may add some 

extra noise to the system and increase the 

computational efforts; however, due to better control 

performance and the advantages of tracking a 

reference model with different index, it is acceptable. 

The structure of adaptive model reference control with 

unknown E is summarized in Figure 3. 

For better illustration, simulation has been done as 

reported in the following section. It is clear that by 

using the simple control (15) the reference model’s 

poles are responsible for convergence rate. Since the 

reference model 1 has one pole in s= -4, good tracking 

rate is obtained, which confirms the mentioned claim. 

In simulation B, following system (27) the reference 

model 2 is the objective of the adaptive control. 

5. Simulation Results  

In order to illuminate the two discussed 

approaches  more  clearly  two  simulations have  been 

 
Figure 3. Adaptive model reference control system with 

unknown E 

performed. In the first simulation, the controller is 

applied to a typical numerical system introduced by 

(43) and in the second one, we use the proposed 

method for reference model tracking of a nonlinear 

mass-spring-damper system modeled by singular 

systems. 

5.1. Simulation on numerical system 

Consider the nonlinear affine singular system (1) 

with the following matrices: 

.(43) 

The control objective is that the system (27) 

follows two different linear reference systems. The 

reference models are defined as follows. 

Reference model 1 is 

 (44) 

which is singular and introduced for the first approach 

where E is known and similar to 𝐄 . The reference 

model 2 is defined as 

 (45) 

where 𝑟 = sin(0.5𝜋𝑡). 

The reference model 2 is not singular (|𝐸| ≠ 0). It 

is defined for the second proposed approach. Both of 

the models satisfy matching conditions. Two 

simulation scenarios have been considered which are 

investigated in the following subsections. 

5.1.1. Simulation A 

In this simulation scenario, the objective is that the 

nonlinear system (43) follows the reference model 1
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Figure 4. State of x1, following the reference model 1  

using controller (18). The matrix E is similar  

in real and reference systems 

 

Figure 6. Tracking error in simulation A 

 

Figure 5. state of x2, following the reference model 1 using 

controller (18). The matrix E is similar in real  

and reference systems 

 

Figure 7. Control input in simulation A 

 

(44) using the adaptive control (18) and the adaption 

mechanism (26). The matrix A and  are considered 

to be unknown during the simulation. Their initial 

values are set to zero. 

Simulation results emphasize that good tracking 

performance has been obtained. Figures 4-7 display 

the system performance. Tracking the reference model 

by system states is shown in Figures 4 and 5. The 

states of x1 and x2 completely track the reference 

states of xm1 and xm2.  Figure 6 shows the tracking 

error tending to zero; and in Figure 7, the control input 

is displayed which is smooth and bounded.  

Now in simulation B, the objective is that the 

system (43) follows the reference model 2 (45). 

5.1.2. Simulation B 

This simulation has been done to discuss the case 

where the matrix E is also unknown. In this part, the 

objective is that the nonlinear singular system follows 

the non-singular reference model 2 using the control 

law (35) and the adaption rules (41). The matrices E, 

A and 𝛼 are considered to be unknown. The derivative 

array is needed and should be calculated.  

The controller is applied to the system and the 

results are shown in Figures 8-11. Tracking 

performance is displayed in Figures 8 and 9. It’s clear 

that the system’s states tend to the reference model. 

The tracking error is shown in Figure 10. It tends to 

zero. As it is shown, when the matrix E is also 

unknown, the convergence takes more time because 

there are more parameters which should be adjusted.  

The control input is shown in Figure 11. The results 

show that the proposed controller has completely 

coped with tracking a system with a different index 

even with an unknown E. 

From all simulation results on sample system, it is 

clear that both discussed control systems are well-

behaved and have desirable performance. For better 

illustration of control performance, another simulation 

is also done on a mechanical system. Simulating the 

proposed control on a nonlinear mass-spring-damper 

system is investigated in the following section. 
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Figure 8. Following the non-singular reference model 2 

using controller (34), state of x1 

 

Figure 10. Tracking error in simulation B,  

the error tends  

to zero asymptotically 

 

Figure 9. Following the non-singular reference model 2 

using controller (34), state of x2 

 

Figure 11. Control input in simulation B, it is smooth  

and bounded

 

5.2. Simulation on nonlinear mass-spring-damper 

system 

Consider the mass-spring-damper system with 

spring hardening and position dependent mass 

described by: 

2 3

0 1
(1 )m q q bq k q k q u    

 (46) 

where q is the displacement of position dependent 

mass m and 𝑘 , 𝑘  are nonlinear spring constants. The 

parameter b is damping coeficient of the damper. By 

choosing the state variables as  

1 2 3
[ ] [ ]T Tx x x q q q x

 (47) 

the system dynamics can be rewritten in singular form 

similar to (1) using the following matrices: 
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. (48) 

It is possible to model this mechanical system 

using just two differential equations in ordinary state 

space, but by using the singular model of the mass-

spring-damper system we can reach more precise 

model which can also describe the behavior of 

accelration of the mass.  

Moreover, we can also control the mass 

accelaration respect to algebraic constraint appeared in 

the third equation in (48). 

Similar to the previouse simulation, two poroposed 

control strategies are applied to system (48). Two 

different reference models are also defined as: 
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Reference model 3: 

1 1
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0 1 0 0 0 1 0
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m m

m m m
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x x
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         
                      (49) 

which is singular and introduced for the first approach 

where E is known and is similar to 𝐄 . The reference 

model 4 is defined as 

1 1

2 2

3 3

1 0 0 0 1 0 0

0 1 0 0 0 1 0

0 0 1 6 11 6 2

m m

m m m

m m

x x
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         
                     . (50) 

The reference model 4 is not singular and is 

introduced for the second approach.  

The selected reference input  𝑟  is shown in 

Fig. 12. Two different simulations for tracking the two 

proposed reference models are investigated in the 

following subsections. The model parameters are set 

to 𝑚 = 1, 𝑘 = 1, 𝑘 = 1 and 𝑏 = 1.  

5.2.1. Simulation C 

In this sub-section, the objective of the control is 

tracking the states of the linear reference model (49) 

using the adaptive control (18) and the adaption 

mechanism (26). The matrix A and 𝛼 are considered to 

be unknown during the simulation. Control system 

simulation results are shown in Figures 13-15. 

The states’ responses tracking desired states are 

displayed in Figure 13. As Figure 14 shows the 

tracking error is acceptable and tends to zero. The 

control input is displayed in Figure 15. The simulation 

results emphasize the effectiveness of the proposed 

controller. 

Now in the following subsection, simulation of 

tracking the reference model 4 is investigated. 

5.2.2. Simulation D   

In this part the objective of the control is following 

the non-singular reference model 4 using the control 

law (35) and the adaption rules (41). The matrices E, 

A and 𝛼 are considered to be unknown. The controller 

is applied to the system and the results are displayed 

in Figures 16-18. Figure 16 shows the states’ 

responses. Figure 17 shows the tracking error and the 

control input is displayed in Figure 18. As the results 

show, the controller is successfully tracking a non-

singular model. 

All simulation results emphasize the acceptable 

performance of both proposed control approaches.  

 

Figure 12.  the reference input in simulation C and D 

 

Figure 13. The states’ response tracking reference model 

(49) in simulation C 

 

Figure 14. Tracking error in simulation C 

 

Figure 15. Control input in simulation C 
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Figure 16. The states’ response tracking reference model 

(50) in simulation D 

 

Figure 17. Tracking error in simulation D 

 

Figure 18. Control input in simulation D

6. Conclusion 

In this paper, the model reference control for 

nonlinear affine singular systems has been 

investigated. A basic non-adaptive control structure 

has been proposed and was generalized to two 

different adaptive control approaches. The stability of 

all controllers was proved using Lyapunov stability 

theorem. In the first adaptive control system, it is 

assumed that some system parameters are unknown 

but the matrix E which is in charge of the complexity 

and system index is known. The controller is very 

simple, practical and shows good performance. In the 

second adaptive control approach, the matrix E is also 

considered to be unknown. The control cost and 

complexity increase, but it has a good performance 

even in tracking a non-singular system. Simulation 

results showed a desirable tracking performance for 

the both proposed control systems. 
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