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Abstract. To manage the increasing complexity of computer systems, a need has arisen to process knowledge instead 

of only data. Ontologies are nowadays widely used to describe domain knowledge, but although a high level of interest 

is present with researchers, the technology has not yet sufficiently been put into practice. We present an approach that 

addresses the transformation of abstract ontological concepts into everyday programming technologies in order to ease the 

development of semantic web applications for solving common engineering tasks. The presented formal mapping and its 

implementation - the MOOT framework - is an evolution in the field of ontology to object mapping. They rely on 

description logics to formalize the transformation process and allow for a detailed discussion about the entailed 

expressivity. We pay special attention to logical characteristics of roles in order to preserve as much expressivity as 

possible. Furthermore, an evaluation of the system is presented, where its performance and scalability is demonstrated. 
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1. Introduction 

Computer systems are becoming increasingly 

complex due to both the growing number of users 

and their growing demand for functionality. Processors 

are more elaborate, memory systems are larger, 

networks are faster, and most importantly, the amount 

and complexity of data being used is overwhelming. 

This increasing complexity magnifies the already 

difficult task that developers face in implementing new 

technologies, designed to cope with emerging needs. 

As we face a paradigm shift towards a society of 

knowledge, the computerized processing of 

knowledge and the meaning of data is becoming one of 

the key aspects of computer engineering and software 

development. 

The first step towards this was the formation of 

ontologies, which are considered as a formal, explicit 

specification of a shared conceptualization [1]. Their 

formal semantics allows for describing complex 

axiomatic structures of knowledge and are therefore 

believed to be a core enabling technology of the 

semantic web [2]. Although ontologies and ontology 

languages have proven to be very popular in the field 

of research, the engineering industry has yet to adopt 

them. Some studies attribute this to the lack of available 

tools [3], the undefined cost to benefit ratio [4] or 

current organizational cultures [5]. Taking effective 

use of semantic web technologies requires new skills 

that developers in the industrial environment genera-

lly do not posses. Because of lack of available tools to 

help them evolve, the question arises whether to tackle 

this by using complex ontology processing API’s or to 

employ a mapping and ease access to semantic data, 

while risking some of their expressivity. We support the 

solution to transform some of the semantic web 

technologies into a well-known object-oriented envi-

ronment. Furthermore, we believe that bridging the 

gap between abstract ontological concepts and every-

day programming technologies would largely increase 

the adoption of ontologies in solving many common 

engineering tasks [6]. Thereby we focus on the 

developer’s perspective by helping them to access 

semantically rich information in a familiar way. 

The similarity between the ontological and object-

oriented worlds [7] has inspired researchers to find 

new solutions on how to access semantic data. It is 

undisputed that ontologies have higher expressivity 

than the object-oriented paradigm [8] and that an 

object-oriented model can only be created by sacrificing 

some of its characteristics [9]. Our aim was to develop a 

mapping which would preserve much of the 

expressivity that is appreciated with ontologies and 

transform it to the world of object-oriented software 

systems. Thereby we base our transformation on the 

formalisms of description logics (DL), which form 

the logical foundation of the Web Ontology Language 

(OWL) [10]. In this paper we present a general model 

that enables the mapping of semantic web ontologies to 

object-oriented artefacts. A detailed discussion of the 

entailed expressivity is given with special attention for 

the support of different DL languages. An implement-

tation of this model is provided in the form of the 

MOOT framework, which maps a subset of OWL 2 
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components to the programming language Java. It 

provides out of the box support for complex 

mappings of individuals to objects thereby employing 

an event-driven model to support logical characteristics 

like inverse, symmetric, reflective and transitive roles. 

We believe that supporting these characteristics is a 

vital factor in building a complete and expressive 

semantically supported software system. To determine 

the performance and scalability of the MOOT 

framework, an experiment is presented, where we 

evaluate the introduced framework. 

2. Related work 

Mapping ontology languages to facilitate their use 

has been researched from two perspectives. One 

approach treats ontology as a conceptual model or 

data schema and try to map it to its well-known 

equivalents in the form of the UML class diagram or 

Entity-Relationship model. In [11] an approach is 

presented where an ontological taxonomy is 

transformed into a relational database schema. A 

similar approach is presented in [12], where a graph 

oriented transformation is employed on OWL and 

transformed into an entity-relational schema. An 

advantage of this type of transformation is its ability to 

precisely define constraints against entities. However, 

the database schema has no native support for 

hierarchical structures, which need to be induced 

artificially. Furthermore, logical characteristics of 

roles are not addressed. Transformation of OWL 

ontologies into UML diagrams [13] is a similar 

approach, which can be employed in combination with 

the Model-Driven-Architecture initiative. Based on 

UML class models, constraints can be, for example, 

defined using rules [14] or the Object-Constraint 

Language (OCL) [15]. 

On the other hand, the direct mapping of 

ontological languages to source code has the advantage 

of quick adoption and a simplified transformation model 

[7]. One of the first such frameworks is Harmonia 

[16], which generates Java code for the JADE 

platform. Its model is unsophisticated and it does not 

support various features, e.g. multiple inheritance. 

The authors extended and refined their work in [17] 

where they defined a solid architectural foundation on 

which almost all future models build upon. We adopt 

their approach, by replacing generated functionality 

with an annotation based configuration model and 

supporting framework. ActiveRDF [18] is an adhoc 

framework for mapping RDF to the Ruby 

programming language. Some open-source projects 

are also available, like RDFReactor [19] and 

OWL2Java [20]. RDFReactor maps triples to an 

object-oriented model. The generated classes serve 

purely as a proxy for querying data. We employ a 

different strategy by creating a fully representative 

web of objects. 

OWL2Java employs a similar mechanism as RDF-

Reactor, but adds support for OWL. The Protégé 

ontology editor [21] is able to generate a simple Java 

API from an ontology. Compared to our system, the 

mapping depends on a generated vocabulary and does 

not support logical characteristics of roles. A further 

attempt to facilitate ontologies and object-oriented 

programming languages is presented in [22]. APIs a 

gogo define a domain specific language to tackle the 

complex mappings between ontologies and conceptual 

APIs. Their use of a model driven approach is unique 

and can only hardly be compared to our abstract 

transformation given below. Sapphire [23] is probably 

the most feature full framework for dealing pro-

grammatically with ontologies at the moment. In order 

to provide the necessary functionality it generates 

fragments of bytecode. We believe that this concept is 

not beneficial, because no additional functionality can 

be added to the domain model. 

In contrast to most of the cited works, our model 

relies on a formal model defined using DL and a set 

notation. While most solutions provide language 

specific point-to-point mapping, we developed a 

universal model, which can be expanded to support 

multiple ontological- and programming-languages. 

The MOOT framework employs a simplified configu-

ration model using annotations, which enable a simple 

integration and reuse of existing code. Besides that, 

we provide complete out-of-the-box support for 

relational inheritance and logical characteristics of 

roles without intrusive code, which focuses on 

developers by helping them access semantic data in a 

native an easy way. 

3. Mapping ontologies to objects 

The transformation of data from one form into the 

other is well known in the world of software engi-

neering. Techniques like serialization and deseriali-

zation are already established as is the well-known 

object-relational mapping process. By defining the 

mapping from ontologies to objects we follow the 

aforementioned techniques and adopt their highly 

regarded features in the context of the Semantic web. 

We define the mapping of ontologies to objects as a 

two stage process. Phase one includes the transfor-

mation of abstract ontological concepts to constructs 

of an object-oriented programming language using 

generation of source code and its configurations. The 

second phase is responsible for performing the actual 

mapping of semantic data, represented in the form of 

individuals, into objects. To describe this process, we 

use DL to provide formal semantics and the set 

notation [24] to describe the components included in 

the transformation. DL is a family of knowledge 

representation formalisms based on a combination of 

frames and semantic networks [25]. Its main features 

include formal logic-based semantic and finite 

reasoning capabilities. Our model is based on the 

differentiation between the terminological TBox and 

axiomatic ABox parts. We can therefore define the 

ontology schema as a model (𝑂𝑀  ), which consists of 
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a terminological ( 𝑇 𝐵𝑜𝑥𝑀  ) and axiomatic part 

(𝐴 𝐵𝑜𝑥𝑀) analogue to DL: 

𝑂𝑀  ≡<  𝑇 𝐵𝑜𝑥𝑀 , 𝐴𝐵𝑜𝑥𝑀  >  

𝑇 𝐵𝑜𝑥𝑀  ≡<  𝐶, 𝑅𝑇 , 𝐻, 𝐸, 𝐷𝑇  > (1) 

𝐴𝐵𝑜𝑥𝑀  ≡<  𝐼, 𝑅𝐴, 𝐷𝐴  >  

The terminological model is a 5-tuple consisting of 

sets of concepts 𝐶 , object relations 𝑅𝑇  , hierarchy 𝐻 , 

equivalence 𝐸  and datatype relations 𝐷𝑇  with the 

following definitions: 

𝑅𝑇 ≡ {(𝑎, 𝑟, 𝑏)|𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ∧ 𝑇 ⊑ ∀𝑟 .̅ 𝑎 ∧ 𝑇 ⊑
∀𝑟. 𝑏}  

𝐻 ≡ {(𝑎, 𝑏)|𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ∧ 𝑎 ⊑𝑑 𝑏 ∧ 𝑎 /= 𝑏}  

𝐸 ≡ {(𝑎, 𝑏)|𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ∧ 𝑎 ≡ 𝑏 ∧ 𝑎/= 𝑏} (2) 

𝐷𝑇 ≡ {(𝑎, 𝑣, 𝑡)|𝑎 ∈ 𝐶 ∧ 𝑡 ∈ 𝐷𝑇 ∧ 𝑇 ⊑ ∀𝑣 .̅ 𝑎 ∧ 𝑇 ⊑
∀𝑣. 𝑡}  

On the other hand, the axiomatic part of the 

model is represented as a 3-tuple, consisting of 

individuals 𝐼 , object relations 𝑅𝐴  and datatype 

relations 𝐷𝐴, which we define as follows: 

𝐼 ≡  {(𝑥, 𝑎)|𝑎 ∈  𝐶 ∧  𝑥 ∶  𝑎}  

𝑅𝐴 ≡ {(𝑥, 𝑟, 𝑦)|𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑟 ∈ 𝑅𝑇 ∧ (𝑥, 𝑦): 𝑟} (3)  

𝐷𝐴 ≡ {(𝑥, 𝑟, 𝑦)|𝑥 ∈ 𝐼 ∧ 𝑣 ∈ 𝐷𝑇 ∧ (𝑥, 𝑡): 𝑣} 

The abstract object-oriented model 𝑂𝑂 , which 

serves as the endpoint of the transformation is defined as 

follows: 

𝑂𝑂 ≡<  (𝐼, 𝐶, 𝐻, 𝑅, 𝑉 )  >  (4) 

where 𝐼 denotes interfaces, 𝐶 concrete classes, 𝐻 the 

hierarchy between interfaces, 𝑅  the relations 

between the interfaces and 𝑉 the variables. 

Now let us define a function 𝑓 which transforms 

the terminological model into the appropriate object-

oriented one and the axiomatic data into objects, 

respectively. The function 𝑓 is defined as follows: 

𝑓 = {
𝑓𝑇

𝑓𝐴
 (5) 

where 𝑓𝑇  is an injective function used to transform the 

terminological model into the object-oriented 𝑂𝑂: 

𝑓𝑇 ∶  𝑇 𝐵𝑜𝑥𝑇  →  𝑂𝑂. (6) 

The surjective function 𝑓𝐴  is defined analogously 

to 𝑓𝑇  and is used to transform the axiomatic model 

into an object graph denoted as 𝑂𝑏𝑗: 

𝑓𝐴 ∶  𝐴𝐵𝑜𝑥𝑀   →  𝑂𝑏𝑗. (7) 

The described transformation functions provide 

only an abstract definition of the actual mapping 

phase, which is dependent on the chosen ontology 

language, object-oriented programming language and 

development platform. Therefore, each mapping has to 

specify details that rely on the expressivity of the 

programming language. The expressivity of transfor-

mation is presented in the next section, where we 

discuss the loss of expressivity regardless of a concrete 

programming language. A detailed description of the 

mapping process of the MOOT framework, which 

maps OWL individuals to Java objects, is given in 

Section 5. 

4. Expressivity of transformation 

In order to assess the expressivity preserved by the 

transformations, we must first examine the expressivity 

itself as it is defined in DL. As already mentioned DL 

is a set of language characteristics with well-defined 

semantics. Each set of characteristics adds some form 

of expressivity, which are joined to form languages. A 

DL language is a subset of characteristics, which forms 

a comprehensive frame for a particular task [25]. Some 

of the most discussed DL languages are frame 

languages ℱℒ0 and ℱℒ− [26], attributive language 𝒜ℒ 

and its extended version with complements 𝒜ℒ𝒞 [27]. 

In the semantic web, DL languages form the basis for 

the web ontology language OWL, with 𝒮ℋ𝒪ℐ𝒩 (𝒟) 

[28] as the logical foundation for OWL 1 and 

𝒮ℋ𝒪ℐ𝒬 (𝒟) [29] as its equivalent for OWL 2. Table 1 

presents a short overview of each language with their 

appropriate DL constructs. We thereby resort to the use 

of standard DL notation of symbols, where 𝐴  and 𝐵 

denote atomic concepts, 𝐶 and 𝐷 complex concepts, 𝑅 

and 𝑆  resemble abstract roles and 𝑉  concrete or 

datatype roles. 

To assess the ability of maintaining any level of 

expressivity, we must not examine each of the given 

languages. Programming languages are not often 

examined from the standpoint of expressivity, although 

some considerable differences exist among them. One 

has to consider many characteristics and try to mini-

mize the expressivity loss when mapping from a more 

expressive ontological language to a less expressive 

programming language. This can be accomplished 

statically, by arranging classes in their correct 

hierarchical structure, or dynamically, by employing 

the realization of logical characteristics and 

constraints. We start our examination with the least 

expressive language and discuss whether each 

characteristic can be preserved. 

4.1. 𝓕𝓛𝟎 and 𝓕𝓛− 

First, we would like to examine the expressivity 

of the frame language ℱℒ0. As it can be deduced 

from Table 1, ℱℒ0  consists of atomic concepts, roles, 

their intersection and the universal quantification. Con-

sidering transformation of atomic concepts to classes 

and roles to methods as trivial, we turn our attention to 

the intersection and universal quantification. The se-

mantics of the intersection (Listing 1) can be modeled 

as a logical conjunction of two concepts. As such, the 

newly formed concept has all the characteristics of 

each concept occurring in the intersection. Translating 

this into the hierarchical structure of object-oriented 

code, a class needs to derive from both of the classes 

represented in the intersection. The final construct of
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Table 1. Expressivity of different DL languages  

Construct Syntax Languages 

Atomic concept  

Role  

Intersection  

Universal quantification  

𝐴 

𝑅 

𝐶 ⊓ 𝐷 

∀𝑅. 𝐶 

 

 

 

ℱℒ0 

Limited existential quantification 

Top concept  

∃𝑅. 𝑇 

⊺ 

 

ℱℒ− 

Bottom concept 

Atomic negation 

⊥ 

¬𝐴 

 

𝒜ℒ 

Complex negation 

Union 

Full existential quantification 

¬𝐶 

𝐶 ⊔ 𝐷 

∃𝑅. 𝐶 

 

 

𝒜ℒ𝒞 

Cardinality restriction  

Nominals  

Role hierarchy  

Inverse role  

Concrete roles  

≥ 𝑛𝑅 ≤ 𝑛𝑅 

{𝑎1, … , 𝑎𝑛} 

𝑅 ⊑ 𝑆 

𝑅− 

∀𝑅. 𝑉 

 

 

 

 

𝒮ℋ𝒪ℐ𝒩 (𝒟) 

Qualified cardinality restriction  

Role inclusion axioms 

≥ 𝑛𝑅. 𝐶 ≤ 𝑛𝑅. 𝐶 

𝑅 ∘ 𝑆 

 

𝒮ℋ𝒪ℐ𝒬 (𝒟) 

 

ℱℒ0 is universal quantification, which defines that the 

range of the given role consists only of individuals defi-

ned by a certain concept. As an independent construct, 

the universal quantification can be confidently trans-

formed into a method using the given domain and ran-

ge. The domain needs to be defined to identify the class 

in which the method resides and the range for the return 

type of the method. A problem can arise when one com-

bines the universal quantification with an intersection, 

thereby defining a new concept: 

𝑌 𝑜𝑢𝑛𝑔𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 ≡  𝑆𝑡𝑢𝑑𝑒𝑛𝑡 𝑛 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟  

𝐺𝑟𝑎𝑑𝑢𝑎𝑡𝑒𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ≡  

𝑆𝑡𝑢𝑑𝑒𝑛𝑡 𝑛 ∀𝑡𝑎𝑘𝑒𝑠𝐶𝑜𝑢𝑟𝑠𝑒. 𝐺𝑟𝑎𝑑𝑢𝑎𝑡𝑒𝐶𝑜𝑢𝑟𝑠𝑒  

The rules for transforming the intersection enable us 

to identify the GraduateStudent concept and transform 

it into a subclass of Student. On the other hand we 

cannot directly transform the universal quantification. 

Due to the limitations of modern object-oriented langua-

ges an overriding of methods is not possible in the 

return type of the method. So only the left part of the 

intersection will be transformed, while the universal 

quantification on the right will be ignored. This weakens 

the expressivity of the transformation due to the fact 

that we lose some information about graduate students 

which will not be inferred. Even though, this is not a 

huge setback, because even DLs need the support of a 

reasoner to infer this kind of knowledge. 

The extended logic ℱℒ− is basically ℱℒ0  exten-

ded with limited existential quantification and a top 

concept. The expressivity of the limited existential 

quantification is maintained by the transformation using 

the same strategy as with the universal quantification. 

We can confidently argue that the roles that have defi-

ned domain and range can be preserved by the map-

ping. An example is a Bachelor, who is defined as a 

person who has a bachelor’s degree:  

𝐵𝑎𝑐ℎ𝑒𝑙𝑜𝑟 ≡  𝑃 𝑒𝑟𝑠𝑜𝑛 𝑛 ∃ℎ𝑎𝑠𝐵𝑎𝑐ℎ𝑒𝑙𝑜𝑟𝐷𝑒𝑔𝑟𝑒𝑒  

The top concept is used here to denote any possible 

individual. In order to incorporate this in the transfor-

mation, we need to introduce a new top class all others 

are derived from. This ensures that any object that 

represents an individual can be reduced to this basic 

type. This is similar to the root classes from modern 

object-oriented languages. 

4.2. 𝓐𝓛 and 𝓐𝓛𝓒 

The attributive language 𝒜ℒ is sometimes referred 

to as a minimal set of language characteristics, which is 

of practical interest [25]. It adds to the expressivity of 

ℱℒ− by introducing the atomic negation of concept and 

the bottom concept, which is used to calculate inconsis-

tencies. Atomic negation is a complex operation, which 

can be used by the transformation to create a class in 

the hierarchical structure of the represented ontology: 

𝑈𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑𝑃𝑒𝑟𝑠𝑜𝑛 ≡ ¬ 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑𝑃𝑒𝑟𝑠𝑜𝑛  

The bottom concept has no direct transformation in 

the object-oriented world, because it is used only in 

the process of calculating inconsistencies [30] and has 

no real value when working with semantic data. 

Therefore, we can confidently dismiss it in the 

transformation procedure. 

𝒜ℒ𝒞  is probably the most discussed of the DL 

languages [27]. It is obtained by adding further cons-

tructs to 𝒜ℒ. The union of concepts 𝒰 and the full exis-

tential quantification ℰ are the most prominent of them. 

Complex negation of concepts 𝒞 is another feature, but 
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as it has been proven it can be equally expressed using 

the union and the full existential quantification of 

concepts and vice versa [25]. Therefore the languages 

𝒜ℒ𝒰ℰ  and 𝒜ℒ𝒞  are semantically equivalent. Due to 

this theorem we use the union of concepts and the full 

existential quantification in order to determine whether 

our transformation preserves the expressivity of 𝒜ℒ𝒞. 

The union of concepts can be regarded as a logical 

disjunction. In the class hierarchy, this is expressed as 

a class higher in the hierarchy. The transformation 

procedure takes this into account by placing the new 

concept as a superclass of both classes used in the union 

operation. So each individual representing either of the 

concepts will be automatically regarded as a union of 

them both. Next listing is an example of a union 

operation where it defines a faculty employee as either 

a professor, teaching assistant or a researcher: 

𝐹𝑎𝑐𝑢𝑙𝑡𝑦𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 ≡  

𝑃𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟 ⊔  𝑇𝑒𝑎𝑐ℎ𝑖𝑛𝑔𝐴𝑠𝑠𝑖𝑠𝑡𝑎𝑛𝑡 ⊔ 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟  

The full existential quantification is an extension 

to the limited existential quantification, already known 

from ℱℒ− . Earlier we argued that the transformation 

preserves the expressivity of the limited existential 

quantification due to the fact that no specific concept 

is declared as the range of the role. On the other hand, 

the full existential quantification allows specifying a 

concept in the range of a role. An example of this is 

shown below, where a master is defined as a person who 

received a Master’s degree: 

𝑀𝑎𝑠𝑡𝑒𝑟 ≡ 𝑃𝑒𝑟𝑠𝑜𝑛 ⊓ ∃ ℎ𝑎𝑠𝐷𝑒𝑔𝑟𝑒𝑒. 𝑀𝑎𝑠𝑡𝑒𝑟𝐷𝑒𝑔𝑟𝑒𝑒  

This restriction allows for precise selection of in-

dividuals based on the relationships they have. In the 

object-oriented world, classes are used to describe the 

structure of an object. Although hierarchy is used to 

specify different types of objects, the base signature of 

a method cannot be predefined in a subclass. 

Therefore, a transformation cannot preserve this type of 

expressivity. In order to support full existential 

quantification, some other form of dynamic object 

transformation would be necessary. 

4.3. 𝓢𝓗𝓞𝓘𝓝 (𝓓) and 𝓢𝓗𝓞𝓘𝓠 (𝓓) 

So far we have established a common basis for the 

discussion of specific semantic web logics. As we 

have shown, the transformation supports a wide va-

riety of 𝒜ℒ𝒞 constructs. It is not surprising that only 

some of the components are partially entailed in the 

transformation as most of them require a reasoner in 

order to support their full expressivity. This addresses 

the issue of dynamic classification of individuals, 

which is something most of the other mappings do not 

consider. In order to evaluate some of the non-

terminological components of 𝒮ℋ𝒪ℐ𝒩 (𝒟)  and 

𝒮ℋ𝒪ℐ𝒬 (𝒟) , a different model is needed which 

manages the relations between objects at runtime. 

The 𝒮ℋ𝒪ℐ𝒩 (𝒟) [28] DL language is the logical 

foundation of the Web Ontology Language OWL DL. It 

provides the semantics for the more abstract ontolo-

gical components and allows for a finite reasoning 

process. 𝒮ℋ𝒪ℐ𝒬 (𝒟)  [29] is an extension of 

𝒮ℋ𝒪ℐ𝒩 (𝒟) developed to cope with the increasing 

complexity of OWL 2 ontologies. We will assess 

𝒮ℋ𝒪ℐ𝒩 (𝒟) and 𝒮ℋ𝒪ℐ𝒬 (𝒟) along each other due 

to their high amount of commonalities. Both of them 

are resembled by a set of logical characteristics descri-

bed using the six letters. 𝑆  is an extension of 𝒜ℒ𝒞  by 

adding transitive roles. In order to support transitive 

roles one has to establish a supporting system, which 

ensures that the references between objects are indeed 

transitive. Some mappers employ a strategy of establi-

shing these relations at the time of mapping and igno-

re them later on. Others generate source code, which 

ensures that the correct references are put in place. 

Although these solutions proved well, they also have 

a drawback due to the introduction of high amount of 

code in the domain classes. Therefore we prefer a non-

invasive approach which is reflection based and hidden 

from the developer. The source code of the domain 

objects should remain unaltered and be easily confi-

gured by the developer. 

The same strategy could also be applied to hierar-

chical roles ℋ and their extensions in complex role in-

clusion axioms ℛ. Thereby it is necessary to distinguish 

between role characteristics that provide additional 

functionality (such as symmetry and reflectivity), from 

those that are of a restrictive nature (such as asymmetry 

and irreflectivity). While the former needs to support the 

addition of new references among objects according to 

the characteristics, the latter needs to prevent it. Role 

inheritance is a special feature within this set. It 

allows for defining roles, which are more specific 

than others. This is something unknown in the object-

oriented world where polymerphism is the preferred 

choice for expressing specific relations. But at the same 

time, role inheritance is not problematic from the 

standpoint that each role has a unique name. Therefore, 

role inheritance can be successfully tackled using the 

previously mentioned solutions. Role inclusion 

axioms are a novelty introduced in OWL 2. In their 

current form they cannot be directly transformed in the 

object-oriented world, but an advanced dynamic model 

could be used as for other logical characteristics. 

Nominals 𝒪 represent a concept similar to enume-

ration in the object-oriented world. The main difference 

between those two is that nominals are formed by 

using instances, whereas enumerations are formed using 

primitive types. The use of nominals results in a highly 

coupled TBox and ABox. For this reason, their use is 

omitted in some of the sublanguages e.g. OWL Lite 

[31]. Because object-oriented languages do not allow 

to define classes based on their instances, it is only 

possible to map a nominal concept to a class. But at 

runtime it is impossible to verify whether the instance 

data match concrete objects. 
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Inverse roles ℐ, in contrast to symmetric roles, are 

not a typical logical characteristic because the operation 

involves two roles. The first one is the original role, 

while the latter one is its inverse. This enables the use 

of different concepts that act in the domain and range 

of the role, which is impossible to do using symmetric 

roles. As other logical characteristics, inverse roles 

could also be supported at runtime using a dynamic 

model. 

Cardinality restrictions in its unqualified 𝒩  as 

well as qualified 𝒬 form are an important part of the 

OWL language and are used to classify individuals 

similar to the universal and existential quantification. 

By default, roles cannot be restrained with a minimum 

or maximum number of instances. The only restriction 

available is to define new concepts which have certain 

cardinality constraint defined on a role: 

𝑇𝑒𝑎𝑐ℎ𝑒𝑟 ≡  𝑃𝑒𝑟𝑠𝑜𝑛𝑛 ⊓≥  1𝑡𝑒𝑎𝑐ℎ𝑒𝑠   

𝑃𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟 ≡  𝑃 𝑒𝑟𝑠𝑜𝑛𝑛 ⊓ ≥
1𝑡𝑒𝑎𝑐ℎ𝑒𝑠. 𝐺𝑟𝑎𝑑𝑢𝑎𝑡𝑒𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠  

An exception of that applies to roles that are defined 

as functional and have their cardinality fixed at one. For 

any other form of cardinality the same restrictions 

apply as already mentioned by the full existential quan-

tification. The mapping can support only the identifica-

tion of a new concept in the hierarchy, but cannot dy-

namically classify objects without the use of inference. 

It is important to highlight the good support the 

mapping offers for concrete roles (𝒟). But it is also 

worth noting that in order to take effective use of 

datatype roles one needs to precisely define the do-

main and range type of the role. If the range is not 

specified, the content could be considered as a character 

string. For most of the commonly used datatypes, 

corresponding object-oriented datatypes and mappings 

exist. The reason for this is the use of XML Schema 

for the OWL datatypes. It must be stressed that OWL 

does not impose restrictions on the cardinality of data 

roles. Thus, a role may appear zero, one or more times. 

Mapping this directly into the program code would 

cause ambiguity and further complicate the use of 

semantic data. For this reason and following the 

example of other tools mentioned in the related work, 

we suggest limiting the data characteristics to only one 

per role. This means that one could have a concept of 

a single instance of each data role. 

To summarize the findings from the expressivity 

check, we can say that the proposed model provides 

good support for a large number of expressivity compo-

nents. Unfortunately, we were not able to provide 

support for the full range of functionality that is pres-

cribed by the different DLs. However, regarding the 

differences between the object-oriented programming 

languages and ontologies, that was not expected. Besi-

des the quantification and cardinality restrictions, the 

most challenging obstacles are to provide the support 

for logical characteristics of roles, which must be esta-

blished at runtime. Our research identified two distinct 

solutions, which seem prominent to tackle these chal-

lenges. One could establish the logical characteristics 

of semantic data within the mapping process of indivi-

duals to objects. An advantage of this solution is its sim-

ple implementation and effective query answering ca-

pability. But on the other side, it does not preserve the 

logical characteristics throughout the life cycle of the 

objects when manipulating them. To ensure full support 

for logical characteristics throughout the whole process, 

a solution is needed in the form of a dynamic model that 

instantly responds to any change in the relationship 

between two objects and adapt to it accordingly. 

5. The MOOT framework 

The encouraging results gained from the expressi-

vity check lead us to the development of a framework, 

which implements the proposed strategies and follows 

the formal model presented in Section 3. We chose 

OWL 2 [32] as the source ontology language and Java 

as the target object-oriented language. OWL is the most 

widely used ontological language at the time of wri-

ting and has been chosen because of a wide variety 

of tools supporting the language. On the other hand, we 

chose Java, a modern object-oriented language, as the 

endpoint of the transformation. Although Java enforces 

some restrictions on the conceptual model (e.g. disal-

lows multiple-inheritance) and thereby reduces the ex-

pressivity, we nevertheless address it because of its pre-

valence among developers of information systems. 

The MOOT framework is comprised of two 

individual components, which tightly rely on each 

other to enable the generation of object-oriented 

source code and establish the mapping between 

ontological individuals and objects. To ease the 

development process, the system is comprised of a 

code generator (the MOOT Generator) and a factory 

(the MOOT Mapper) that performs the mapping itself. 

A model of the framework is presented in Fig. 1. The 

MOOT Generator is responsible for creating object-

oriented source code based on the definitions of the 

ontological components, whereas the MOOT Mapper 

performs the actual mapping where individuals are 

loaded into the system, transformed into their 

corresponding object representation and populated with 

data. 

Overall the framework relies on an ontology proces-

sing API and a reasoner. The first is used to process 

the ontology and the latter is used to provide addi-

tional information of the ontology. The architectural 

composition of the system allows for the addition of 

new APIs for managing ontologies. Further more, 

weak coupling between all components enables the 

support of different reasoning mechanisms. With the 

abstraction of the inference procedure, we were able 

to provide support for a wide range of different 

reasoning mechanisms and their implementations. The 

only requirement for each of them is that their 

implementation is compatible with the API used to 

process the ontology. By excluding programming 
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Figure 1. Model of MOOT framework 

interfaces for handling ontologies and reasoning 

mechanisms, we were able to provide the possibility of 

using our framework also with the future versions of 

We argue that the presented MOOT framework, 

which automatically maps ontology individuals by 

generating Java source code, conforms to 𝑓. The 

MOOT Generator is an implementation of 𝑓𝑇  and the 

MOOT Mapper is an implementation of 𝑓𝐴 , 

respectively. The framework combines the generated 

source code and its configuration using predefined 

annotations, which resemble key components of 

OWL. In this way, we kept the code clean and more 

readable. Moreover, the generated source code and its 

configuration can be added to existing source files and 

therefore enable the reuse of existing classes. If this 

is not needed, they are automatically added to the files 

generated from an ontology schema. The detailed 

description of the main components follows below. 

5.1. The MOOT Generator 

The MOOT Generator is responsible for creating 

object-oriented source code based on the definitions of 

the ontological components. The process begins with a 

user defined OWL ontology that is loaded into the 

system. Any valid OWL and OWL 2 ontology is 

supported and can be processed in various notations, 

e.g. RDF/XML, Turtle or Manchester. The ontology is 

then converted into the intermediate object model, 

which is a direct implementation of the formal model 

defined using DL and the set notation in Section 3. The 

intermediate object model consists of classes that 

represent concepts, object- and datatype-properties. 

Using these classes, an in-memory graph of 

interconnected objects is created, which is a direct 

representation of the ontology and serves as a hub in 

the process of transforming the conceptual 

ontological model into object-oriented source code. It 

allows for greater abstraction and facilitates data 

processing by eliminating the coupling between the 

code generation component and the API for processing 

ontological documents. From the intermediate object 

model, source code is generated using predefined 

template files. These are text files, defined using special 

markup, which is populated using actual data at 

runtime. Templates are used in order to achieve an 

expandable model, which on one hand supports several 

types of programming languages and on the other hand, 

in combination with the intermediate object model, 

supports different types of ontological languages. 

The code generation component employs a well-

established strategy [17] by creating interface-class 

combinations for each ontological concept. Each inter-

face represents one concept, whose methods resemble 

roles in the ontological domain. Interfaces are used to 

support multiple inheritance, which is, in Java, dis-

allowed with classes. Each interface has a class, which 

implements all of its defined and inherited methods. 

This allows hiding some of the implemented code and 

equips a developer with a clean and easy to understand 

class model. The static structure of the ontology is 

transformed using simple transformation rules, which 

are detailed in Table 2. 

The initial implementation of the MOOT Generator 

did not include any support of inference mechanisms. 

This led to the problem of completeness, because the 
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resulting source code was missing methods and the 

class hierarchy was incomplete. The reason why 

missing hierarchical links occurred was because we 

have built the object model on top of semantically weak 

data. Depending on the API used for processing 

ontological documents, it is sometimes not possible to 

derive the whole hierarchy of concepts and to identify 

the domains and ranges of roles. To solve this problem, 

we introduced a reasoner into the architecture of the 

system. This could be done without negative 

consequences to the performance, because it has been 

proven that the TBox reasoning is very effective [33]. 

Only by including ABox statements the complexity 

rises significantly. With an empty ABox, as it is in our 

case, the reasoner is used only to infer the entire 

hierarchical structure of the ontology and to identify the 

concepts that appear in the domain and range of roles. 

In this way, we ensure that the implicit ontological 

knowledge is included as well and that the acquired 

structural data of the ontology are complete. Although 

the use of a reasoner is encouraged, it is up to the end 

user to decide whether to use a reasoner or not. 

Furthermore, one can also choose among a multitude of 

supported implementations. For us, Pellet [34] was the 

reasoner of choice, because its reasoning engine is 

among the most widely used ones. 

Fig. 2 presents a class diagram of a simple 

generated schema. One can identify the main interface 

Student, which implements the OWLThing top 

interface. The Student interface defines a pair of get-set 

methods to access a datatype role called 

indexNumber and a get method takesCourse, 

which is used to retrieve the related courses. The class 

StudentImpl is an implementation of the Student 
interface. It hosts all the implemented fields and access 

methods thereby following the POJO principle. As one 

can see, no additional code is being generated which is 

used to perform the mapping or provide any additional 

functionalities. This is all handled by the MOOT 

Mapper. 

5.2. The MOOT Mapper 

While the generation of source code usually takes 

place only once per ontology version, the second stage 

of the process is executed numerous times. This is the 

actual mapping where individuals are loaded into the 

system, transformed into their corresponding object 

representation, populated with data and returned to the 

user. In order for this transformation to happen, some 

kind of configuration mechanism must be put into place. 

It is necessary to provide an automatically generated 

baseline, which can be influenced by developers at the 

implementation phase. Modern methods, such as the 

conventions over configuration [35], have proven to be 

unsuitable due to the uncertainty of ontological URIs. 

Therefore, we needed to find a different solution to 

allow dynamic loading of data and mapping them to the 

correct class files. From the development of the 

software systems, mainly two solutions to this problem 

are used in the majority of cases. The first uses a text 

 

Figure 2. A class diagram of the generated source code 

or XML file to store the configuration properties, 

while the latter stores the configuration in the form 

of code annotations. Regardless of the method, the 

reading and configuration management is a perfor-

mance expensive and time-consuming operation. 

Therefore, we decided for the latter method, as it 

allows for a transparent way of combining source code 

and its configuration. Furthermore, this kind of 

configuration makes 

Fig. 3 provides an example of an interface with 

attached annotations. The interface is identified by 

the OWLClass annotation which provides the URI of 

the concept. This is needed in order to identify the 

individuals belonging to the concept. The next 

annotation is an OWLDatatypeProperty annota-

tion. It is used to identify datatype roles. There is 

only one annotation on the get method for each role. 

Naming conventions are used to find the correct 

method when setting values during the mapping 

process. Finally, the abstract roles are identified using 

an OWLObjectPropery annotation. Such roles may 

have multiple annotations attached to them depending 

on any special characteristics they provide. For 

example, the alumni role is defined as an inverse to 

the graduateFrom role as indicated by the 

OWLInverseOf annotation. 

The actual process that utilizes annotations in order 

to map semantic data to objects is called materializa- 
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Table 2. Transformation rules from OWL and DL concepts to Java code 

OWL DL Java 

Concepts   

Top class  

Bottom class  

Class  

Subclass 

Equivalent classes  

Disjoint classes  

Intersection  

Union 

⊺  

⊥  

𝐶  

𝐶1 𝐶 ⊑ 𝐶2 

𝐶1 ≡ 𝐶2 

𝐶1 ⊓ 𝐶2 ≡⊥ 

𝐶3 ≡ 𝐶1 ⊓ 𝐶2 

𝐶3 ≡ 𝐶1 ⊔ 𝐶2 

Interface OWLThing 

/  

𝐼 extends OWLThing, 𝐶 implements 𝐼  

𝐼1 extends 𝐼2 

𝐶 implements 𝐼1, 𝐼2 

𝐼1 and 𝐼2 define the same method with different return types 

I3  extends 𝐼1, 𝐼2 

𝐼1 extends 𝐼3, 𝐼2  extends 𝐼3 

Object properties   

Domain 

Range 

Equivalent property 

Functional property 

⊺ ⊑  ∀𝑅−. 𝐶 

⊺ ⊑  ∀𝑅. 𝐶  

𝑅1 ≡  𝑅2 

⊺ ⊑ ≤ 1𝑅 

𝐼 has method 𝑅 

𝑅 is of type Collection< 𝐼 >  

𝑅1, 𝑅2 use same backing field 

𝑅 is of type 𝐼 

Datatype properties   

Domain Range ⊺ ⊑ ∀𝑉−. 𝐶 

⊺ ⊑ ∀𝑉−. 𝐷 

𝐼 has field 𝑅  

𝑉 is of type 𝐷 

Individuals   

Individual 𝑥 ∶  𝐶 𝑥 instanceof 𝐼 

 

tion. Materialization is the process of manufacturing 

facilities described on the basis of semantic infor-

mation. During this process the annotations are read 

using reflection. This is a process of reading data from 

the source code after it has already been compiled into 

byte code. The entire process takes place in several 

steps, which combines the query for semantic data and 

reflective operations to create and populate objects 

using it. Although the concept of materialization is 

defined a process that transforms an object from an 

abstract to a concrete form, in our case it is understood 

as a specific mapping of semantic data described into 

software objects. Fig. 4 shows the pseudo code for the 

process. 

The procedure requires an ontology document, as 

well as annotated interfaces which resemble concepts as 

an input. For a number of selected concepts, all indivi-

duals are retrieved. For each of them, an object of the 

corresponding interface is dynamically generated, 

which is then populated using its datatype roles. From 

the technological perspective, ontologies use URIs to 

uniquely define concepts, properties and individuals. 

This prevents ambiguity between components that 

share the same name. The MOOT framework preser-

ves URIs in order to precisely define the transformed 

component’s name. If two or more components share 

the same name, they should be separated by different 

namespaces. In the current version of the framework, 

we support the following methods: (a) load single 

objects defined by a class and an individual’s URI and 

(b) load all individuals of a given class or a collection 

of classes. The system also supports two techniques for 

loading related individuals. If individuals are mapped 

using deep loading, all related individuals are retrieved 

and their logical characteristics are applied, whereas 

when shallow loading is requested none of these are 

taken into consideration. To ensure that for each 

resolved URI the same object is returned, we keep an 

internal reference counter. This is also the time when 

observers, which realize sub-role relations and other 

logical characteristics, are registered. 

In the implementation of the MOOT mapper, 

particular attention has been paid to the provisioning of 

logical characteristics of roles, which were identified as 

a crucial factor in maintaining a high level of 

expressivity. Our literature review has shown that the 

existing approaches (presented in the related work 

section) do not acknowledge them as an important 

part of ensuring the integrity of semantic data. We 

believe that inverse, symmetric, reflective and transitive 

roles are vital factors in building a complete and 

expressive semantically supported software system. To 

maintain a high level of expressivity, the relationships 

between objects need to physically exist in memory, 

and not only be expressed in some meta-data structure. 

In order to support this type of relationship we have 

resorted to the event model, which implements the 

observer design pattern [36]. In our case any collection 

serves as an observer and is observable at the same 

time. At the time of mapping, the role characteristics 

are read from the annotations and a complex network 

of references is being automatically put in place. The 

implemented event model ensures that after each 

change of a collection element all registered observers 

are notified and the change is automatically pushed 

across all relevant objects. This ensures that all the 

necessary relationships are present and can be easily 

navigated within the object graph. This has a lot of 
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Table 3. Annotations and their DL equivalents 

Annotation  DL equivalent Location 

@OWLAsymetricProperty() Asymmetric role Method 

@OWLClass(String uri)  Concept Interface 

@OWLDatatypeProperty(String uri)  Datatype role Method 

@OWLDisjointWith(String uri)  Disjoint concepts Interface 

@OWLEquivalentClass(String uri)  Equivalent concepts Method 

@OWLFunctionalProperty()  Functional role Method 

@OWLInverseOf(String uri)  Inverse role Interface 

@OWLIrreflexiveProperty()  Irreflexive role Method 

@OWLObjectProperty(String uri)  Role Method 

@OWLReflexiveProperty()  Reflexive role Method 

@OWLSubPropertyOf(String uri)  Role inheritance Method 

@OWLSymmetricProperty()  Symmetric role Method 

@OWLTransitiveProperty()  Transitive role Method 

 

 

@OWLClass(id="http://example.org/univ.owl#University") 

public interface University extends Organization { 

@OWLDatatypeProperty(id="http://example.org/univ.owl#researchId") 

String getResearchId(); 

void setResearchId(String value); 

 

@OWLInverseOf(id="http://example.org/univ.owl#graduatedFrom") 

@OWLObjectProperty(id="http://example.org/univ.owl#alumni") 

Collection<Person> getAlumni(); 

} 

Figure 3. Example of an interface with annotations 

 

Input: Annotated interfaces, Ontology document 

Output: Objects 

for all concepts c from interfaces do 

load individuals of type c from ontology 

for all i in individuals do 

create object o for i of type c 

populate o with datatype roles 

if deep loading enabled then 

for all abstract roles where domain equals c do 

load abstract roles recursive 

end for 

register observers on roles 

end if 

end for 

end for 

Figure 4. Materialization procedure for mapping individuals to objects 

advantages over a conventional system based on se-

mantic triples, where roles are loaded for each query 

separately. We provide a support for irreflective and 

asymmetric roles in a similar manner by checking if a 
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change to the collection’s elements does not inflict any 

contradictory statements in the knowledge base. If such 

a state would be detected, the addition of this element 

to the collection is prohibited. 

6. System evaluation 

The performance of a system (or framework) and 

its scalability are crucial factors for its adoption in 

the software development process. Providing only 

functionality without the corresponding performance 

characteristic can result in a quick rejection. Our 

motivation for the experiment was to evaluate the 

system’s performance, scalability and to see whether 

the MOOT framework can be effectively put into 

practice. In order to observe and to predict the 

behavior of the framework, we executed benchmarks 

and analyzed their results using standard statistical 

methods. To gain comparable results, we used the 

LUBM dataset and a benchmarking framework. The 

Lehigh University Benchmark (LUBM) [37] is well-

established and a de-facto standard dataset for evalua-

ting performance of semantic web technologies. In 

addition to an ontology, it provides a data generator, 

which ensures reproducible synthetic data of different 

sizes. The ontology itself describes a university envi-

ronment, with fine grained concepts that include 

departments, professors, graduate- and undergraduate- 

students, courses and publications, as well as a variety of 

simple and complex roles between them. In our experi-

ment we used the LUBM0 dataset generated using the 

default parameters. It consists of 15 files with approxi-

mate 100,000 triples and about 17,000 individuals. 

We evaluated the performance by measuring the 

execution time of tasks, which are most frequently 

used. These tasks include: (i) the start-up phase; (ii) 

the mapping of single individuals; and (iii) the mapping 

of all individuals. The first, or start-up, task is where 

the mapping factory is created and the ontology model 

is loaded. The second task uses the mapping factory to 

load single individuals. The third stage maps all 

individuals using shallow and deep loading. 

To achieve statistically reliable and comparable re-

sults, we used a micro benchmark framework discu-

ssed in [38]. It measures the time of a task, while 

ensuring that external influences can be neglected. 

Each task is first executed once (First measurement), 

after that the same task is executed until 60 repeated 

executions (Mean measurement) yield statistically 

insignificant differences. In this manner, it ensures the 

standard deviation (SD) and confidence interval (CI) to 

be within the tolerance threshold. All benchmarks were 

executed on a workstation with an Intel E8400 Core2 

Duo processor and 8GB of DDR3 RAM. The operating 

system used in the experiment was Windows 7 and 

virtual machine Java SE version 7u9 with 4GB of 

dedicated memory. The version of the OWL API [39] 

used to process ontologies was 3.3. 

6.1. Start-up phase 

In the start-up or initialization phase we measured 

the execution time the framework takes to initialize all 

factories and load the ontology document. The results 

are presented in Fig. 5, where we plot the execution 

time in relation to the size of dataset. The top higher 

values represent measurements from the first execu-

tion, while the lower represents the mean values of 60 

consecutive measurements. It can be undoubtedly reco-

gnized that the performance varies depending on the si-

ze of the dataset. Although the first executions proved 

to be significantly slower than their means, it must be 

noted that standard deviation (SD) of measurements was 

always below 5%. The extreme difference between the 

first execution and the rest, which can reach to a factor 

of 12, can be, according to [40], generally regarded as 

usual and brought back to virtual machine optimi-

zation. 

It must be noted that although each file sizes only a 

few hundred KB, the combined dataset achieves a size 

of almost 8MB, which has an impact on the perfor-

mance. While digging deeper, we normalized the 

elapsed time by the number of loaded individuals. 

Fig. 6 presents the normalized mean data value in 

relation to the size of dataset. Each measurement is 

calculated by dividing the mean time by the number of 

individuals of the dataset. Interestingly, its values first 

rapidly decline and then stabilize following an inverse 

logarithmic curve. This  allows us to predict  the  time 

 

Figure 5. Execution time taken to initialize the framework 

in relation to the size of dataset 

 

Figure 6. Time taken to initialize the framework divided by 

the number of individuals in each dataset 
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necessary to complete the start-up phase for large 

datasets. 

Further examinations proved our hypothesis that the 

performance at this stage mainly depends on the time 

the supporting ontology framework needs to load the 

ontology model. In our case, this is accomplished 

using the OWL API and we do not have the ability to 

influence it at all. 

6.2. Loading single individuals 

The level of performance for mapping single 

individuals constitutes a very important aspect of 

the system’s overall performance. Ideally, one would 

want a predictable behavior, which is independent 

from the type of concept and the dataset size. 

Therefore, we evaluated the performance by loading 

individuals from different concepts and compared 

them using shallow and deep loading. 

The gathered data lead us to the conclusion that 

shallow mapping of single individuals was indeed 

independent from the size of the dataset. The system 

achieved values, which deviated less than 5%, 

independently from the size of the dataset. On the 

other hand, different concepts proved to have very 

diverse execution times. An example of this is 

presented in Fig. 7, where the mapping times of two 

concepts are plotted. The concept UndergraduateStu-

dent averaged a time of 273ms (SD: 6ms, CI: ±3ms), 

while, on the other hand, the concept Publication 

averaged a value of 80ms (SD: 2ms, CI: ±1ms). While 

investigating this phenomenon, we discovered that the 

times correlate with the number of datatype properties 

of a given concept. When we compared the times with 

deep loading, we received very diverse results. This 

was due to the different numbers and types of child 

individuals that had to be loaded. Therefore no 

statistically relevant data can be provided. 

6.3. Loading single individuals 

The final test was comprised of mapping all indivi-

duals for a given dataset. Although the MOOT frame-

work does not support the mapping of individuals from 

all concepts simultaneously, we achieved this by retrie-

ving all individuals from all concepts consecutively. 

The results displayed in Fig. 8 clearly resemble a 

linear increase of execution times as the dataset sizes 

increase. Also, the clear separation between shallow 

and deep loading is present here more than ever. 

Regardless of the difference, we were able to 

determine a linear regression function with a coefficient 

of data. This allows us to draw precise predictions for 

the behavior of the system, even for large datasets. 

The difference between an individual mapped shallow 

and deep was averaged at a factor of 5.5 with a SD 
of 6%. After further investigation, we discovered that 

much of the difference can be brought back to reading 

annotations and creating collections, while reading role 

values from datasets, and virtual machine optimization 

played only a minor difference. 

 

 

Figure 7. Execution times to map single individuals in 

relation to the size of dataset 

 

Figure 8. A comparison between the execution times of 

deep and shallow loading 

7. Conclusions 

Providing developers with a simple programming 

model is an important aspect in the development of 

semantic web technologies. Existing systems have laid 

a solid architectural foundation for the mapping of 

ontological concepts to object-oriented programming 

models, but mostly ignoring expressivity features like 

logical characteristics of roles. We addressed this by 

formally defining a transformation based on descrip-

tion logics which allows efficient mapping of ontolo-

gies to objects while preserving much of the expressi-

vity. In this manner, an expressivity check has been 

performed to assess the transformations ability to 

handle complex DL constructs. Based on this, the 

MOOT framework was implemented that maps 

OWL 2 ontologies and individuals to Java components 

and objects, respectively. In our belief, the presented 

framework hides the complexity of ontologies and 

aligns the access to semantic data to what developers are 

used to. Our framework thereby reduces the gap be-

tween ontological systems and everyday programming 
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environments. To evaluate the framework performan-

ce, benchmark tests have been performed and their 

results analyzed. 

The acquired results show that the introduced 

framework confidently handles data independently 

from a given dataset. Depending on the dataset size, 

the start-up performance varies, but mapping single 

individuals has proven to be unaffected by that. The 

variations between different concepts can be drawn 

back to the number of datatype roles that need to be 

set. To map whole sets of individuals, a clear linear 

regression function was determined, which allows for 

predicting execution times in the future. Future work on 

the framework will include support for some reasoning 

features and optimization of the mapping process, 

especially the extensive use of reflection related 

operations gives us room for further improvements. 

Although, in our opinion, the trade-off between 

performance characteristics and a simplified method of 

accessing knowledge already clearly swings in favor of 

the later. 

Acknowledgments 

This paper was produced within the framework of 

the operation entitled "Centre of Open innovation 

and ResEarch UM". The operation is co-funded by the 

European Regional Development Fund and conducted 

within the framework of the Operational Programme 

for Strengthening Regional Development Potentials for 

the period 2007–2013, development priority 1: 

"Competitiveness of companies and research excel-

lence", priority axis 1.1: "Encouraging competitive 

potential of enterprise and research excellence". 

References 

[1] T. R. Gruber. A translation approach to portable ontolo-

gy specifications. Knowledge Acquisition, 1993, Vol. 5, 

No. 2, 199-220. 

[2] T. Berners-Lee, J. Hendler, O. Lassila. The semantic 

web. Scientific American, 2011, pp. 29-37. 

[3] V. Janev, S. Vraneš. Applicability assessment of 

semantic web technologies. Information Processing & 

Management, 2011, Vol. 47, No. 4, 507-517. 

[4] E. Della Valle, G. Niro, C. Mancas. Results of a survey 

on improving the art of semantic web application 

development. In: The 10th International Semantic Web 

Conference, Bonn, Germany, 2011. 

[5] T. Pellegrini, A. Blumauer, G. Granitzer, A. Paschke, 

M. Luczak-Rösch. Semantic web awareness barometer 

2009 – comparing research- and application- oriented 

approaches to social software and the Semantic Web. 

In: Proceedings of I-KNOW’09 and I-SEMAN-

TICS’09, Graz, Austria, 2009, pp. 518-529. 

[6] V. Podgorelec, M. Grešak. Supporting the Study Pro-

cess using Semantic Web Technologies. Electronics 

and Electrical Engineering, 2011, Vol. 116, No. 10, 

pp. 105-108. 
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