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Abstract. This paper is concerned with the problem of robust H∞ output tracking control for uncertain sampled-

data systems with probabilistic actuator failures. By assuming that each actuator fault takes values randomly in a finite 

set, a new actuator-failure-mode is proposed. Lyapunov-Krasovskii functional combined with the input delay approach 

as well as the free-weighting matrix approach are employed to establish the H∞ performance, and the controller design 

is cast into a convex optimization problem with linear matrix inequality (LMI) constraints. The designed reliable 

controller can guarantee that the output of the closed-loop sampled-data system tracks the reference signal without 

steady-state error. An airship model is considered in this paper and its simulation results are given. 

Keywords: probabilistic actuator failures; output tracking; sampled-data control; convex polytope; flight control; 

parameter uncertainty. 

 

1. Introduction 

In the past years, output tracking control has 

received considerable attention due to its wide 

applications in dynamic processes in industry such as 

robot control [1], flight control [2-4] and motor 

control [5, 6]. The main objective of output tracking is 

to design a controller to guarantee the output of 

controlled system tracking the reference signal as 

close as possible, which is more general and more 

difficult than stabilization. Up to date, many results 

have been reported on output tracking [7-9]. 

As is well known, with the fast development of 

microprocessor and electronic technologies, digital 

computers are widely used to control continuous-time 

systems in modern control systems. For example, in a 

flight control system about airship (see Figure 1), a 

microcontroller is usually used to sample and quantize 

a continuous-time measurement signal, and then 

produce a discrete-time control input signal, which 

can be further converted into a continuous-time 

control input signal using a zero-order holder. Such 

control systems involve both continuous-time and 

discrete-time signals in continuous-time framework 

are referred to as sampled-data systems. Considerable 

research efforts have been made on various aspects of 

sampled-data systems, such as control systems [10-12] 

and filtering problems [13-15]. It is worth mentioning 

that little progress has been made to design controllers 

for uncertain sampled-data systems to make the output 

to track the reference signal without steady-state error, 

although it is of both theoretical significance and 

practical importance. 

In reality, because of the actuators aging, zero shift 

and electromagnetic interference, actuator failures are 

unavoidable, which may lead to intolerable 

performance of the system. Therefore, it is necessary 

and important to design controllers that can tolerate 

actuator failures. A common assumption in most of the 

existing results on reliable control is that the actuator 

failure model is depicted as an unknown bounded 

constant [16-18]. It is not difficult to understand that 

in some situations, however, actuator failures may 

happen in a random way. Recent works assume that 

the actuator failures satisfy certain probabilistic 

distribution on the given intervals [19-21]. 

Motivated by above discussions, this paper focuses 

on the controller design for a class of uncertain 

sampled-data systems with probabilistic actuator 

failures. The main contributions of this paper are as 

follows: 

1) This is the first paper that a controller is 

designed to make the output of uncertain sampled-data 

system to track the reference signal without steady-

state error, and the results can be applied to flight 

control and other areas. 

2) A new fault failure mode is established for the 

first time by assuming that each actuator fault takes 

values randomly in a finite set, which is more realistic 

and accurate in some situations. 
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Figure 1. Architecture of airship control system 

2. Problem formulation 

Consider the following uncertain linear system: 

{
𝑥̇(𝑡) = 𝐴(𝜆)𝑥(𝑡) + 𝐵(𝜆)𝑢 (𝑡) + 𝐷(𝜆)𝑤(𝑡)

𝑦(𝑡) = 𝐶 (𝜆)𝑥(𝑡) + 𝐷 (𝜆)𝜂(𝑡)
 (1) 

where 𝑥(𝑡) ∈ 𝑅  is the state vector, 𝑢 (𝑡) ∈ 𝑅  is the 

actuator output considering possible failure, 𝑦(𝑡) ∈
𝑅  is the output, 𝑤(𝑡) ∈ 𝐿 [0,∞)   denotes the 

exogenous disturbance signal, 𝐴(𝜆), 𝐵(𝜆), 𝐷(𝜆), 𝐶 (𝜆) 
and 𝐷 (𝜆)  are system matrices containing uncertain 

parameters, represented by 𝜆 . Assume that Ω ≜
(𝐴(𝜆), 𝐵(𝜆), 𝐷(𝜆), 𝐶 (𝜆), 𝐷 (𝜆)) ∈ ℜ , where ℜ  is a 

given convex-bounded polyhedral domain described 

by 𝑟 vertices 

ℜ ≜ {Ω|Ω =∑𝜆 Ω ; 

 

   

∑𝜆 = 1,

 

   

𝜆 ≥ 0} (2)(2) 

with Ω ≜ (𝐴 , 𝐵 , 𝐷 , 𝐶  , 𝐷  ) ∈ ℜ  denoting the 

vertices of the polytope. 

In this paper, the following actuator failure model 

will be adopted: 

𝑢 (𝑡) = Θ𝑢(𝑡) = ∑ 𝜃 Δ 𝑢(𝑡)
 

   
, (3) 

where Θ = 𝑑𝑖𝑎𝑔{𝜃 , 𝜃 , … , 𝜃 } , 𝜃 (𝑙 = 1,… ,𝑚)  are 

𝑚 unrelated random variables and 

Δ = 𝑑𝑖𝑎𝑔 {0,… , 0⏟  
   

, 1, 0, … , 0⏟  
   

}. 

It is assumed that 𝜃  takes values in a finite set, 

that is 𝜃 ∈ {𝜏  , 𝜏  , … , 𝜏  }. In addition, the process 

{𝜃 }  is assumed to be independent and 

identicallydistributed, with the probabilities given by 

𝑃𝑟𝑜𝑏{𝜃 = 𝜏  } = 𝛼  ,  

𝑙 = 1, … ,𝑚, 𝑗 = 1,… , 𝑞  (4) 

where 𝛼   is a positive scalar and ∑ 𝛼  = 1
  

   
. 

Remark 1. In the most of existing results on 

reliable control, variable 𝜃  is an unknown constant 

with known lower and upper bounds (see, for example 

[16–18]). Some other results, for example [19–21], 

assumed that the variable 𝜃  satisfies a certain 

probabilistic distribution on the given interval [0; 𝜃], 

which is more general and practical than the former 

results in some situations. In many real control 

systems, however, the type of actuator failures is 

finite. In this situation, the assumption in (4) can 

better describe the failure characterization. 

Remark 2. In this paper, the random variable 𝜃  
takes values in a finite set. For 𝜃 = 0 , it means 

complete failure of the 𝑖 th actuator; for 𝜃 = 1 , it 

means that the 𝑖th actuator is in good work condition; 

for 0 < 𝜃 < 1 , it means partial failure of the 𝑖 th 

actuator; for 𝜃 > 1 , it means the actuator-amplifier 

with forward drift. 

It is well known that the tracking error integral 

action of controller can effectively eliminate the 

steady-state tracking error. Similar to Ye and Yang [2], 

and Liao et al. [4], we introduce the following 

augmented system state-space description of system 

(1) with actuator failure model: 

𝜍̇(𝑡) = 𝐴̅(𝜆)𝜍(𝑡) + 𝐵̅(𝜆)∑𝜃 

 

   

Δ 𝑢(𝑡) 

+𝐷̅(𝜆)𝑤̅(𝑡) (5) 

𝑧(𝑡) = 𝐶̅𝜍(𝑡), 

where 

𝜍(𝑡) = [𝑥 (𝑡) (∫ 𝑒(𝑡)𝑑𝑡
 

 
)
 

]
 

, 

𝑒(𝑡) = 𝑟(𝑡) − 𝑆𝑦(𝑡), 

𝑤̅(𝑡) = [𝑤 (𝑡) 𝜂 (𝑡) 𝑟 (𝑡)] , 

𝐴̅(𝜆) = [
𝐴(𝜆) 0

−𝑆𝐶 (𝜆) 0
], 

𝐵̅(𝜆) = [
𝐵(𝜆)
0
], 

𝐷̅(𝜆) = [
𝐷(𝜆) 0 0

0 −𝑆𝐷 (𝜆) 1
], 

𝐶̅ = [0 𝐼], 

𝑆 ∈ 𝑅      is a known constant matrix used to form 

output required to track the reference signal. 

The reliable robust sampled-data 𝐻  output 

tracking problem considered in this paper is to design 

a sampling controller such that: 

1) During normal operation, the closed-system is 

asymptotically stable, and the output 𝑆𝑦(𝑡) tracks the 

reference signal 𝑟(𝑡) without steady-state error, that is 

lim   𝑒(𝑡) = 0 . Moreover, the effect of 𝑤̅(𝑡)  on 

tracking error integral 𝑧(𝑡)  is attenuated below a 

desired level in the 𝐻  sense. More specifically, it is 

required that ∥ 𝑧(𝑡) ∥ < 𝛾 ∥ 𝑤̅(𝑡) ∥  for all nonzero 

𝑤̅(𝑡) ∈ 𝐿 [0,∞) under zero condition, where 𝛾 > 0. 

2) In the event of actuator failures, the closedloop 

system is still stable, and the required output 𝑆𝑦(𝑡) 
tracks the reference signal 𝑟(𝑡)  without steadystate 

error. 

For sampled-data control with zero-order holder, 

the following state-feedback controller is designed for 

the augmented system [2, 4]: 



Y. Wang, P. Zhou, Q. Wang, D. Duan 

176 

𝑢(𝑡) = 𝑢 (𝑡 ) = 𝐾𝜍(𝑡 ) = [𝐾 𝐾 ] [
𝑥(𝑡 )

∫ 𝑒(𝑡)𝑑𝑡
  
 

],(6) 

𝑡 ≤ 𝑡 < 𝑡   , 𝑘 = 0, 1, 2, …, 

where 𝑢 (𝑡 )  is a discrete-time control signal, 𝑡  

denotes the sampling instant. Under control law (6), 

the closed-loop system is given by 

𝜍̇(𝑡) = 𝐴̅(𝜆)𝜍(𝑡) + 𝐵̅(𝜆)∑𝜃 

 

   

Δ 𝐾𝜍(𝑡 ) 

+𝐷̅(𝜆)𝑤̅(𝑡), (7) 

𝑧(𝑡) = 𝐶̅𝜍(𝑡), 

𝑡 ≤ 𝑡 < 𝑡   . 
Assumption 1. The interval between two 

consecutive sampling instants is bounded, that is 

𝑡 − 𝑡 ≤ ℎ, ∀> 0: 

Similar to Liao et [2], the sampled-data 

formulation in (7) can be transformed into the 

following system: 

𝜍̇(𝑡) = 𝐴̅(𝜆)𝜍(𝑡) + 𝐵̅(𝜆)∑𝜃 

 

   

Δ 𝐾𝜍(t − d(t))

+ 𝐷̅(𝜆)𝑤̅(𝑡) 

𝑧(𝑡) = 𝐶̅𝜍(𝑡), (8) 

where 𝑑(𝑡) = 𝑡 − 𝑡 ≤ ℎ, 𝑡 ≤ 𝑡 < 𝑡    is piece-wise 

linear with derivative 𝑑(𝑡) = 1 for 𝑡 ≠ 𝑡 . 

Remark 3. The input delay approach is an effective 

one for the analysis and design of sampled-data 

systems which was introduced by Fridman et al. [10] 

and extensively used by Fridman et al. [11], Gao et al. 

[12]. This approach can be applied to systems with 

non-uniform uncertain sampling and system 

parameter uncertainties, which has been recognized to 

be a difficult problem for traditional lifting techniques. 

3. 𝑯  output tracking performance analysis 

In this section, we are concerned with the problem 

of 𝐻  output tracking analysis based on the 

transformed closed-loop system in (8). More 

specifically, assuming that the controller gains 𝐾  and 

𝐾  are known, we shall study the conditions under 

which the system in (8) achieves 𝐻  output tracking 

performance 𝛾. 

To solve the problem with probabilistic actuator 

failure model in (3), we introduce indicator functions 

𝜋{      } as 

𝜋{      } = {
1, 𝜃 = 𝜏  ,

0, 𝜃 ≠ 𝜏  .
 (9) 

Thus we obtain 

𝑬 {𝜋{      }} = 𝑃𝑟𝑜𝑏{𝜃 = 𝜏  } = 𝛼  , (10) 

𝑙 = 1,… ,𝑚, 𝑗 = 1,… , 𝑞 . 
Therefore, the augmented closed-loop system in 

(8) can be rewritten as 

{
 
 

 
 

𝜍̇(𝑡) = 𝐴̅(𝜆)𝜍(𝑡) +

𝐵̅(𝜆) ∑ ∑ 𝜋{      }𝜏  
  
   Δ 𝐿𝜍(𝑡 − 𝑑(𝑡)) +

 
   

𝐷̅(𝜆)𝑤̅(𝑡)

𝑧(𝑡) = 𝐶̅𝜍(𝑡).

(11) 

Remark 4. We introduce indicator functions 

𝜋{      } satisfying Bernoulli distributions to solve the 

problem with probabilistic actuator failures. To the 

best of the authors’ knowledge, few attempts have 

been made to utilize it for solving the problem related 

to probabilistic actuator failures, which is one of the 

important contributions of this paper. 

Now, we are in a position to present the conditions 

to achieve 𝐻  output tracking performance. 

Theorem 1. Given scalar ℎ > 0  and the controller 

gains 𝐾  and 𝐾 , the augmented closed-

loop system in (11) achieves the 𝐻  

output tracking performance , if there 

exist matrices 𝑃 > 0, 𝑄 > 0, 𝑅 > 0, 𝑀   

and 𝑁  , 𝑗 = 1, 2, 3, 4 satisfying 

[
 
 
 
 Λ √ℎ𝑀 √ℎ𝑁 Ξ   Ξ   
∗ −𝑅 0 0 0
∗ ∗ −𝑅 0 0
∗ ∗ ∗ −𝑅 0
∗ ∗ ∗ ∗ Ξ   ]

 
 
 
 

< 0,  (12) 

𝑖 = 1,… , 𝑟,

 

where 

Λ =

[
 
 
 
 
Ξ   𝑃𝐵̅ Θ̅𝐾 −𝑀  +𝑀  

 +𝑁  𝑀  
 −𝑁  𝑃𝐷̅ +𝑀  

 

∗ −𝑀  −𝑀  
 + 𝑁  + 𝑁  

 −𝑀  
 − 𝑁  + 𝑁  

 𝑀  
 +𝑁  

 

∗ ∗ −𝑄 − 𝑁  − 𝑁  
 −𝑁  

 

∗ ∗ ∗ −𝛾 𝐼 ]
 
 
 
 

, 

Ξ   = 𝑃𝐴̅ + 𝐴̅ 
 𝑃 + 𝑄 +𝑀  +𝑀  

 + 𝐶 ̅
 𝐶 ̅, 

Ξ   = √ℎ[𝑅𝐴̅ 𝑅𝐵̅ Θ̅𝐾 0 𝑅𝐷̅ ]
 , 
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Ξ   =

[
 
 
 
 
 
 
 0 √ℎ∑ 𝛼  𝜏  

   
   𝐵̅ Δ 𝐾 0 0

0 √ℎ∑ 𝛼  𝜏  
   

   𝐵̅ Δ 𝐾 0 0

⋮ ⋮ ⋮ ⋮

0 √ℎ∑ 𝛼  𝜏  
   

   𝐵̅ Δ 𝐾 0 0
]
 
 
 
 
 
 
 
 

, 

𝑀 = [𝑀  
 𝑀  

 𝑀  
 𝑀  

 ] , 

𝑁 = [𝑁  
 𝑁  

 𝑁  
 𝑁  

 ] , 

Θ̅ =∑∑𝛼  𝜏  Δ 

  

   

 

   

. 

 

 

 

 

▼Proof. Choose a Lyapunov-Krasovskii functional as  

𝑉(𝜍 ) = 𝑉 (𝜍 ) + 𝑉 (𝜍 ) + 𝑉 (𝜍 ), 

𝑉 (𝜍 ) = 𝜍
 (𝑡)𝑃𝜍(𝑡), 

𝑉 (𝜍 ) = ∫ 𝜍 (𝑠)𝑄𝜍(𝑠)𝑑𝑠
 

   
, (13) 

𝑉 (𝜍 ) = ∫ ∫ 𝜍̇ (𝜃)𝑅𝜍̇(𝜃)𝑑𝜃
 

   

𝑑𝑠

 

  

, 

where 𝑃 > 0 , 𝑄 > 0 , 𝑅 > 0  are matrices to be 

determined. The infinitesimal operator 𝐿 is defined as 

𝐿𝑉(𝜍 ) = lim    
 

 
{𝐄{𝑉(𝜍 + Δ)|𝜍 } − 𝑉(𝜍 )}. (14) 

Using the operator (14) for (13), and taking 

expectation on it, we have 

𝐄{𝐿𝑉 (𝜍 )} = 2𝜍
 (𝑡)𝑃

[
 
 
 
 

𝐴̅(𝜆)𝜍(𝑡) + 𝐵̅(𝜆)∑∑𝛼  𝜏  Δ 𝐾𝜍(𝑡 − 𝑑(𝑡)) + 𝐷̅(𝜆)𝑤̅(𝑡)

  

   

 

   ]
 
 
 
 

, 

𝐄{𝐿𝑉 (𝜍 )} = 𝜍
 (𝑡)𝑄𝜍(𝑡) − 𝜍 (𝑡 − ℎ)𝑄𝜍(𝑡 − ℎ), (15) 

𝐄{𝐿𝑉 (𝜍 )} = 𝐄{ℎ𝜍̇
 (𝑡)𝑅𝜍̇(𝑡) − ∫ 𝜍̇ 

 

   

(𝑠)𝑅𝜍̇(𝑠)𝑑𝑠}. 

From (11), we obtain 

𝐄{ℎ𝜍̇ (𝑡)𝑅𝜍̇(t)} = 𝐄{ℎ [𝐴̅(𝜆)𝜍(𝑡) + 𝐵̅(𝜆)∑∑𝜋{      }𝜏  Δ 𝐾𝜍(𝑡 − 𝑑(𝑡)) + 𝐷̅(𝜆)𝑤̅(𝑡)

  

   

 

   

]

 

, 

𝑅 [𝐴̅(𝜆)𝜍(𝑡) + 𝐵̅(𝜆)∑∑𝜋{      }𝜏  Δ 𝐾𝜍(𝑡 − 𝑑(𝑡)) + 𝐷̅(𝜆)𝑤̅(𝑡)

  

   

 

   

]} 

= ℎ𝜉 (𝑡)[𝐴̅(𝜆)Θ̅𝐵̅(𝜆)𝐾 0 𝐷̅(𝜆)] 𝑅 [𝐴̅(𝜆) Θ̅𝐵̅(𝜆)𝐾 0 𝐷̅(𝜆)]𝜉(𝑡) (16) 

−ℎ𝜉 (𝑡)Θ 𝐾 𝐵̅ (𝜆)𝑅𝐵̅(𝜆)𝐾𝜉(𝑡) 

+𝜍 (𝑡 − 𝑑(𝑡))∑∑α  𝜏  
 𝐾 Δ 

 𝐵̅ (𝜆)ℎ𝑅𝐵̅(𝜆)Δ 𝐾𝜍(𝑡 − 𝑑(𝑡))

  

   

 

   

. 

In addition, by the Newton-Leibniz formula, for 

any appropriately dimensioned matrices 𝑀(𝜆) =
[𝑀 

 (𝜆) 𝑀 
 (𝜆) 𝑀 

 (𝜆) 𝑀 
 (𝜆)]  and 𝑁(𝜆) =

[𝑁 
 (𝜆) 𝑁 

 (𝜆) 𝑁 
 (𝜆) 𝑁 

 (𝜆)] , we obtain 

 

2[𝜍 (𝑡)𝑀 (𝜆) + 𝜍
 (𝑡 − 𝑑(𝑡))𝑀 (𝜆) + 𝜍

 (𝑡 − ℎ)𝑀 (𝜆) − 𝑤̅
 (𝑡)𝑀 (𝜆)]  

× [𝜍(𝑡) − 𝜍(𝑡 − 𝑑(𝑡)) − ∫ 𝜍̇(𝛼)
 

   ( )

𝑑𝛼] 

2[𝜍 (𝑡)𝑁 (𝜆) + 𝜍
 (𝑡 − 𝑑(𝑡))𝑁 (𝜆) + 𝜍

 (𝑡 − ℎ)𝑁 (𝜆) − 𝑤̅
 (𝑡)𝑁 (𝜆)]  

× [𝜍 (𝑡 − 𝑑(𝑡)) − 𝜍 (𝑡 − ℎ) − ∫ 𝜍̇(𝛼)
   ( )

   
𝑑𝛼] = 0, (17) 

where 

𝜉(𝑡) = [𝜍 (𝑡) 𝜍 (𝑡 − 𝑑(𝑡)) 𝜍 (𝑡 − ℎ) 𝑤̅ (𝑡)]
 
. 

Combining (15)-(17), we have 
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𝐄{𝐿𝑉(𝜍𝑡)} + 𝐄{𝑧 (𝑡)𝑧(𝑡)} − 𝛾 𝐄{𝑤̅ (𝑡)𝑤̅(𝑡)} 

≤ 𝜉 (𝑡) [Λ + ℎ[𝐴̅(𝜆) Θ̅𝐵̅(𝜆)𝐾 0 𝐷̅(𝜆)] 𝑅[𝐴̅(𝜆) Θ̅𝐵̅(𝜆)𝐾 0 𝐷̅(𝜆)]

+ ℎ∑∑𝛼  𝜏  
 [0 𝐵̅(𝜆)Δ 𝐾 0 0] 

  

   

 

   

𝑅[0 𝐵̅(𝜆)Δ 𝐾 0 0] + ℎ𝑀(𝜆)𝑅  𝑀 (𝜆)

+ ℎ𝑁(𝜆)𝑅  𝑁 (𝜆)] 𝜉(𝑡) − ℎ𝜉 (𝑡)Θ̅ 𝐾 𝐵̅ (𝜆)𝑅𝐵̅(𝜆)𝐾𝜉(𝑡)

− ∫ [𝜉 (𝑡)𝑀(𝜆) + 𝜍̇ (𝑠)𝑅]𝑅  [𝑀 (𝜆)𝜉(𝑡) + 𝑅𝜍̇(𝑠)]𝑑𝑠
 

   ( )

 

− ∑ [𝜉 (𝑡)𝑁(𝜆) + 𝜍̇ (𝑠)𝑅]

   ( )

   

𝑅  [𝑁 (𝜆)𝜉(𝑡) + 𝑅𝜍̇(𝑠)]𝑑𝑠, 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂   𝑂(18) 

where 

Λ =

[
 
 
 
 
Ξ  𝑃𝐵̅(𝜆)Θ̅𝐾 −𝑀 (𝜆) + 𝑀 

 (𝜆) + 𝑁 (𝜆) 𝑀 
 −𝑁 (𝜆) 𝑃𝐷(𝜆) + 𝑀 

 (𝜆)

∗ −𝑀 (𝜆) − 𝑀 
 (𝜆) + 𝑁 (𝜆) + 𝑁 

 (𝜆) −𝑀 
 (𝜆) − 𝑁 (𝜆) + 𝑁 

 (𝜆) 𝑀 
 (𝜆) + 𝑁 

 (𝜆)

∗ ∗ −𝑄 − 𝑁 (𝜆) − 𝑁 
 (𝜆) −𝑁 

 (𝜆)

∗ ∗ ∗ −𝛾 𝐼 ]
 
 
 
 

, 

Ξ  = 𝑃𝐴̅(𝜆) + 𝐴̅
  (𝜆)𝑃 + 𝑄 +𝑀 (𝜆)𝑀 

 (𝜆) + 𝐶 ̅
 𝐶 ̅. 

 

By Schur complement, inequalities (12) guarantee 

Λ + ℎ[𝐴̅ Θ̅𝐵̅ 𝐾 0 𝐷̅ ]
 𝑅 [𝐴̅ Θ̅𝐵̅ 𝐾 0 𝐷̅ ] 

+ℎ∑∑𝛼  𝜏  
 [0 𝐵̅ Δ 𝐾 0 0] 

   

   

 

   

 𝑅 [0 𝐵̅ Δ 𝐾 0 0] 

+ℎ𝑀 𝑅
  𝑀 

 + ℎ𝑁 𝑅
  𝑁 

 < 0. (19) 

 

According to the inner property of polytopic 

uncertain systems, and considering the form 𝐴̅(𝜆) =
∑ 𝜆 𝐴 
 
   , 𝐵̅(𝜆) = ∑ 𝜆 𝐵̅ 

 
   , 𝐷̅(𝜆) = ∑ 𝜆 𝐷̅ 

 
   , 

𝑀(𝜆) = ∑ 𝜆 𝑀 
 
   , 𝑁(𝜆) = ∑ 𝜆 𝑁 

 
   , we obtain from 

(19) that 

 

Λ + ℎ[𝐴̅(𝜆) Θ̅𝐵̅(𝜆)𝐾 0 𝐷̅(𝜆)] 𝑅[𝐴̅(𝜆) Θ̅𝐵̅(𝜆)𝐾 0 𝐷̅(𝜆)] 

+ℎ∑∑𝛼  𝜏  
 [0 𝐵̅(𝜆)Δ 𝐾 0 0] 

   

   

 

   

 𝑅 [0 𝐵̅(𝜆)Δ 𝐾 0 0] 

+ ℎ 𝑀(𝜆)𝑅  𝑀 (𝜆) + ℎ𝑁(𝜆)𝑅  𝑁 < 0. (20) 

 

Note that 𝑅 > 0, thus the last three terms of (18) 

are negative. Therefore, we have 

𝐄{𝐿𝑉(𝜍 )} + 𝐄{𝑧
 (𝑡)𝑧(𝑡)} − 𝛾 𝐄{𝑤̅ (𝑡)𝑤̅(𝑡)} < 0

 (21) 

for all nonzero 𝑤̅(𝑡) ∈ 𝐿 [0,∞) . Under zero 

conditions, we have 𝑉(0) = 0  and 𝑉(∞) ≥ 0 . 

Integrating both sides of (21) yields ∥ 𝑧(𝑡) ∥ < 𝛾 ∥
𝑤̅(𝑡) ∥ for all nonzero 𝑤̅(𝑡) ∈ 𝐿 [0,∞), and the 𝐻  

output tracking performance is established. 

This completes the proof. ▲ 

Remark 5. In deriving the 𝐻  output tracking 

performance conditions in Theorem 1, Lyapunov- 

Krasovskii functional plus free weighting matrix 

techniques are utilized to analyze transformed delay 

system in (12). It is worth noting that not only the 

sampling interval h but also the actuator failure 

probabilities 𝛼   have been incorporated into the 

conditions presented in Theorem 1. When ℎ  and  

𝛼   are known, the conditions are LMIs over the 

decision variables to be determined. 
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4. 𝑯  output controller design 

In this section, the problem of 𝐻  output tracking 

controller design will be solved based on Theorem 1. 

Theorem 2. Given scalar ℎ > 0, there exists a state-

feedback controller in the form of (6) 

such that the augmented closed-loop 

system in (11) achieves the 𝐻  output 

tracking performance 𝛾  if there exist 

matrices 𝑃̂ > 0 , 𝑄̂ > 0 , 𝑅̂ > 0 , 𝑀̂   and 

𝑁̂   𝑗 = 1, 2, 3, 4, and 𝐾, satisfying 

[
 
 
 
 
 Λ̂ √ℎ𝑀̂ √ℎ𝑁̂ Ξ̂   Ξ̂   𝑃̂𝐶̂ 

 

∗ −𝑅̂ 0 0 0 0
∗ ∗ −𝑅̂ 0 0 0
∗ ∗ ∗ 𝑅̂ − 2𝑃̂ 0 0
∗ ∗ ∗ ∗ Ξ̂   0
∗ ∗ ∗ ∗ ∗ −𝐼 ]

 
 
 
 
 

< 0, 

𝑖 = 1,… , 𝑟 (22) 

where 

 

 

Λ̂ =

[
 
 
 
 
Ξ̂   𝐵̅ Θ̅𝐾 − 𝑀̂  +𝑀̂  

 + 𝑁̂  𝑀̂  
 − 𝑁̂  𝐷̅ 𝑃̂ + 𝑀̅  

 

∗ −𝑀̂  − 𝑀̂  
 + 𝑁̂  + 𝑁̂  

 −𝑀̂  
 − 𝑁̂  + 𝑁̂  

 𝑀̂  
 + 𝑁̂  

 

∗ ∗ −𝑄 − 𝑁̂  − 𝑁̂  
 −𝑁̂  

 

∗ ∗ ∗ −𝛾 𝐼 ]
 
 
 
 

, 

 

Ξ̂   = 𝐴̅ 𝑃̂ + 𝑃̂𝐴̅ 
 + 𝑄̂ + 𝑀̂  + 𝑀̂  

 , 

Ξ̂   = √ℎ[𝐴̅ 𝑃̂ 𝐵̅ Θ̅𝐾 0 𝐷̅ 𝑃̂]
 , 

Ξ̂   =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
0 √ℎ∑𝛼  𝜏  

 

   

   

𝐵̅ Δ 𝐾 0 0

0 √ℎ∑𝛼  𝜏  
 

   

   

𝐵̅ Δ 𝐾 0 0

⋮ ⋮ ⋮ ⋮

0 √ℎ∑𝛼  𝜏  
 

   

   

𝐵̅ Δ 𝐾 0 0

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 

𝑀̂ = [𝑀̂  
 𝑀̂  

 𝑀̂  
 𝑀̂  

 ] , 

𝑁̂ = [𝑁̂  
 𝑁̂  

 𝑁̂  
 𝑁̂  

 ] , 

Θ̅ =∑∑𝛼  𝜏  Δ 

  

   

 

   

. 

  Moreover, if the conditions have a 

feasible solution, the gain matrix of a 

desired controller in the form of (3) is 

given by 

[𝐾 𝐾 ] = 𝐾𝑃̂
  . (23) 

▼Proof. By noticing 𝑅̂ > 0, we have 

(𝑅̂ − 𝑃̂)𝑅̂  (𝑅̂ − 𝑃̂) > 0, 

which is equivalent to −𝑃̂𝑅̂  𝑃̂ ≤ 𝑅̂ − 2𝑃̂ . 

Performing a congruence transformation to (12) by 

𝑑𝑖𝑎𝑔 {𝑃  , 𝑃  , 𝑃  , 𝐼, 𝑃  , 𝑃  , 𝐼, 𝐼, … , 𝐼⏟  
 

}, 

and define 

𝑃̂ = 𝑃  , 𝑄̂ = 𝑃  𝑄𝑃  , 

𝑅̂ = 𝑃  𝑅𝑃  , 

𝑀̂  = 𝑃
  𝑀  𝑃

  , 𝑛 = 1, 2, 3,  

𝑁̂  = 𝑃
  𝑁  𝑃

  , 𝑛 = 1, 2, 3,  

𝑀̂  = 𝑀  𝑃
  , 𝑁̂  = 𝑁  𝑃

   , 

𝐾 = 𝐾𝑃  = [𝐾 𝐾 ]𝑃
  , 

we obtain (22) by Schur complement. This completes 

the proof.▲ 

Remark 6. Theorem 2 provides LMI conditions for 

the existence of desired reliable 𝐻  output tracking 

controller. The scalar 𝛾  can be included as an 

optimization variable to obtain a reduction of the 

guaranteed 𝐻  performance bound. Then the minimal 

𝛾  can be found by solving the following convex 

optimization problem: minimize 𝛾 subject to (22) over 

P̂ > 0, 𝑄̂ > 0 , 𝑅̂ > 0, 𝑀̂   and 𝑁̂   𝑗 = 1, 2, 3, 4, and 

𝐾. 

5. Simulation example 

In this section, an example of output tracking 

control for a linear airship model is given to show the 

effectiveness of the proposed method. The linearized 

dynamics of an autonomous airship (Altitude: 300𝑚, 

Speed: 7𝑚/𝑠) in the vertical plane is given by 

{
𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐷𝑤(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡)
 (25) 

where 

𝐴 = [

−0.0 1 −0.00  0.02  + 𝜆 0.0   + 𝜆 
0 −0.28  3.22 0

0.000 0.0088 −0.0037 −0.088 
0 0 1 0

], 
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Figure 2. 𝑟(𝑡) and 𝑦(𝑡) without actuator failures 

 

𝐵 = [

0.0001 0.018 
0 −0.3178
0 −0.0237
0 0

], 

𝐷 = [

0.001
0.001
0.001
0

],   𝐶 = [

0
0
0
1

]

 

, 

 

where 𝑥(𝑡) = [𝑢 𝑤 𝑞 𝜃] is the state vector which 

is composed of linear velocities 𝑢 and 𝑤 (along 𝑋 and 

𝑍  body axes, respectively), angular velocities 𝑞 

(around 𝑌  body axes) and pitch angle 𝜃 ; 𝑢(𝑡) =
[𝑛 𝛿 ]  is the control input which is composed of 

engine speed n and elevator angle 𝛿 ; 𝑦(𝑡) = 𝜃 is the 

output; 𝑤(𝑡) ∈ 𝐿 [0,∞) is the exogenous disturbance. 

𝜆  and 𝜆  are system parameter uncertainties 

satisfying |𝜆 | ≤ 𝜆 ̅ = 0.012  and |𝜆 | ≤ 𝜆̅ = 0.01 . 

Then, the system (25) can be represented by a four-

vertex polytopic system. 

For simulation, we assume 𝑆 = 1 , ℎ = 10𝑚𝑠 , 

𝑤(𝑡) = 0.0 sin 3𝑡  and 𝑟(𝑡) = 0.2 sin 0.8𝑡 . In 

addition, the initial state of the longitudinal airship 

system is assumed to be [0.1 0 0 0.3] . 

Case 1. Without considering the actuator failures, 

that is 𝜃 = 𝜃 = 1 . By solving the convex 

optimization problem formulated in Remark 5, the 

obtained minimum guaranteed 𝐻  tracking 

performance is min 𝛾   = 2. 204 and the admissible 

controller gain matrices are as follows: 

𝐾 = [
0.0101 −3.4  1 18.7102 −2. 0 1
−0.0347 −2.8  3 30.481 −0.0387

], 

𝐾 = [
1. 1 0
2. 7 8

]. 

The output 𝑦(𝑡)  and the reference output signal 

𝑟(𝑡) are shown in Fig. 2, from which we can see that 

𝑦(𝑡) tracks 𝑟(𝑡) well with parameter uncertainties. 

 

Figure 3. 𝑟(𝑡) and 𝑦(𝑡) with probabilistic actuator failures 

 

Case 2. Considering the probabilistic actuator 

failures, setting 𝜃 ∈ {0.4, 1, 1.3}  and 𝜃 ∈
{0. , 1, 1. } with probabilities given by 

𝑃𝑟𝑜𝑏{𝜃 = 0.4} = 𝑃𝑟𝑜𝑏{𝜃 = 0. } = 0.1, 

𝑃𝑟𝑜𝑏{𝜃 = 1} = 𝑃𝑟𝑜𝑏{𝜃 = 1} = 0.8, (26) 

𝑃𝑟𝑜𝑏{𝜃 = 1.3} = 𝑃𝑟𝑜𝑏{𝜃 = 1. } = 0.1. 

By solving the corresponding optimization 

problem, the obtained minimum guaranteed 𝐻  

tracking performance is 𝛾   = 2. 731  and the 

admissible controller gain matrices are given by 

𝐾 = [
0.041 −8.4  1 7. 827 − . 247
0.001 −4.82  13.74 3 −4.84 1

], 

𝐾 = [
0.4 37
1.28 4

]. 

The output 𝑦(𝑡)  and the reference output signal 

𝑟(𝑡) are shown in Fig. 3. From Fig. 3, it can be seen 

that 𝑦(𝑡)  tracks 𝑟(𝑡)  well with both probabilistic 

actuator failures and parameter uncertainties. 

6. Conclusions 

In this paper, the problem of robust 𝐻  output 

tracking control for uncertain sampled-data systems 

with probabilistic actuator failures has been 

investigated. By assuming that each actuator fault 

takes values randomly in a finite set, a new actuator-

failuremodel has been proposed. The system with 

sampling measurements has been transformed into a 

time delay system and polytopic parameter uncertainty 

has been utilized to characterize the real uncertain 

situation. Then a reliable output tracking controller 

design scheme has been proposed. An example of 

airship flight control has been considered and the 

simulation results have been given to illustrate the 

effectiveness of proposed method. 
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