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Abstract. Since the idea of synchronizing two identical chaotic systems under different initial conditions was first 

introduced by Pecora and Carroll, the synchronization of chaotic systems has attracted much attention, and the 

synchronization of non-identical chaotic systems has also been investigated. Single-Machine Infinite-Bus (SMIB) 

power system has nonlinear behaviour. On account of avoiding undesirable behaviours in power systems such as 

voltage collapse, the synchronization and control of SMIB power system have considerable importance. This paper 

presents chaos synchronization and anti-synchronization of SMIB power system to Duffing oscillator by means of 

active control method. The sum of synchronization and anti-synchronization signals converge asymptotically to zero 

and achieve the control of SMIB power system. Numerical simulations are used to demonstrate the validity of 

proposed active control method on the non-identical synchronization, anti-synchronization and control of SMIB power 

system. 

Keywords: Single-Machine Infinite-Bus; Duffing oscillator; synchronization; anti-synchronization; control; active 
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1. Introduction 

Due to the complex behaviour, the synchronization 

and control of chaotic systems have been among the 

major issues in electrical control engineering. Firstly, 

Pecora and Carroll introduced a method for 

synchronizing chaotic systems in 1990 [23]. The aim 

of synchronization is to use a drive system’s output to 

induce a response system so that the response system’s 

output could follow the drive system’s output 

asymptotically. After the pioneering work of Pecora 

and Carroll [23], various types of chaos 

synchronization have been investigated such as anti-

synchronization [9, 13, 17, 19, 28], phase 

synchronization [12], lag synchronization [18], 

projective synchronization [32], and so on. In anti-

synchronization, the response output of synchronized 

system has the same absolute values but opposite 

signs. The synchronization and control of nonlinear 

systems have been extensively studied, some useful 

methods were developed and applied to numerous 

chaotic systems. These methods mainly include 

feedback control [11], active control [1, 3, 9, 21, 27, 

28, 34], sliding mode control [7, 14, 26], passive 

control [2, 16, 36], adaptive control [13, 28], and 

impulsive control [4]. Synchronization of two 

identical Lorenz chaotic systems evolving from 

different initial conditions using active control method 

was introduced by Bai and Lonngren in 1997 [3]. 

Thereafter, the synchronization and anti-

synchronization have been applied to both identical [1, 

21, 27] and non-identical chaotic systems [9, 28, 34] 

by using active control. Non-identical synchronization 

deals with synchronizing between two different 

chaotic systems. Yassen has applied the active control 

method to realize the chaos synchronization for each 

pair of Lorenz, Lü and Chen chaotic systems [34]. 

Emadzadeh and Haeri have implemented the active 

control method to achieve anti-synchronization of 

chaos between Lü and Rössler systems [9]. Wang and 

Shi have concerned with the anti-synchronization 
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between Liu and Lorenz chaotic systems by means of 

active control method with known parameters and 

adaptive control method with unknown parameters 

[28]. The other popular method, sliding mode control 

has been also used for the synchronization and anti-

synchronization of identical and non-identical chaotic 

systems [7, 14, 26]. The synchronization with passive 

control method has been implemented to Chen system 

[16], between Rössler and Genesio-Tesi systems [2], 

hyperchaotic Lü system [36] and many other chaotic 

systems. The synchronization and control of nonlinear 

systems will be explored due to its useful applications 

in a variety of fields including physics, chemistry, 

ecology, biological systems and secure 

communication [5, 35]. 

Power systems are basically a collection of 

nonlinearly coupled systems and generators which 

supply electric power to loads. A SMIB power system 

is a simplified dynamic model of complex power 

systems. As shown in Fig. 1, it composes of a single 

synchronous generator connected through a 

transmission line to a very large grid approximated by 

an infinite bus. The voltage profile of SMIB is pointed 

out using current and voltage phasors in Fig. 2. The 

SMIB power system is also a typical nonlinear 

dynamical system, the control and synchronization of 

nonlinear behaviours in electrical power systems have 

great importance from the management point of view 

to avoid undesirable behaviours such as voltage 

collapse [15, 24]. Recently, the control, stability and 

synchronization of nonlinear behaviours in SMIB 

have been studied. Chen et al. presented the dynamic 

behaviours of a SMIB power system with bifurcation 

diagrams, and controlled its chaos with a feedback 

controller in 2005 [8]. Ford et al. used nonlinear 

control technique to examine the transient stability 

problem for SMIB power systems in 2006 [10]. 

Shahverdiev et al. applied the chaos synchronization 

in some simple power models including SMIB power 

system in 2008 [25]. Yang et al. implemented chaos 

synchronization in SMIB powers system with sliding 

mode control and applied to secure communication 

[33]. Chang et al. designed a fuzzy controller to 

achieve the strict input passivity and Lyapunov 

stability for the SMIB power system [6]. Wei and Qin 

controlled the chaos in SMIB power system with 

adaptive passive control method in 2011 [29]. 

Ouassaid et al. developed a new nonlinear observer–

controller scheme using sliding mode control method 

and applied to the SMIB power system in 2012 [22]. 

 

Figure 1. Single-Machine infinite-bus (SMIB)  

power system 

 

Figure 2. Phasor diagram of SMIB 

The aim of this paper is to achieve the non-

identical synchronization, anti-synchronization and 

control of SMIB power system by using active control 

method. Due to the fact that SMIB power system has 

second order differential equations, the well-known 

second order Duffing chaotic system is preferred for 

synchronization and anti-synchronization. For this 

purpose, firstly SMIB power system and Duffing 

oscillator are described and defined as a set of 

differential equations. Then, the active control, which 

is a widely-used method for the synchronization of 

chaotic systems due to its simplicity and success, is 

applied to these dynamical systems for non-identical 

synchronization and anti-synchronization. For 

implementing the control of SMIB power system, 

synchronization and anti-synchronization signals are 

summed. Finally, numerical simulations are performed 

to show the synchronization, anti-synchronization 

between these two chaotic systems and the control of 

SMIB power system. 

2. System Descriptions 

2.1. Single-Machine Infinite-Bus (SMIB) power 

system 

The classical SMIB power system can be defined 

by the following swing equation as 

,)sin(max mPPDM     (1) 

where θ, M, D, Pmax and Pm represent angle of gene-

rator, moment of inertia, damping constant, maximum 

power of generator and power of the machine, 

respectively [31]. Also Pm = Asin(ωt) where t is the 

time variable, A is the amplitude and ω is the angular 

frequency of the power of the machine [8]. 

Taking x = θ and y =  , the equation (1) is 

equivalent to the following system 

),sin()sin(

,

tfxcyy

yx

 






 (2) 

where c = D / M, β = Pmax / M and f = A / M [8]. 

As shown in Figs. 3 and 4, when the SMIB power 

system (2) is at c = 1, β = 3, f = 5, ω = 1 parameters 

values under x(0) = 1, y(0) = –0.5 initial conditions, it 

exhibits chaotic behaviour. 
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(a) 

.

 

(b) 

Figure 3. Time series of SMIB power system for (a) x signals, and (b) y signals 

 

Figure 4. x-y phase plane of SMIB power system 

 

2.2. Duffing oscillator 

Duffing oscillator is a nonlinear system which 

describes the hardening spring effect observed in 

many mechanical problems with a cubic stiffness 

term. It is one of the extensively studied nonlinear 

non-autonomous equations, exhibiting various 

dynamic behaviours, including chaos and bifurcations. 

The most general forced form of the Duffing equation 

is 

),sin()( 2
0

3   txxxx   (3) 

where t is the time variable, δ > 0, μ, β, ω and   

parameters denote damping coefficient, amplitude of 

the parametric excitation, stiffness constant, forcing 

frequency and the clock, respectively [30]. This 

equation is used in a number of special forms 

depending on the parameters chosen. For example, 

with taking β = 1, ω0 = 1, resetting the clock so that 
𝜙 =  0  and using the minus sign, the equation (3) 

becomes 

).sin()( 3 txxxx     (4) 

The equation (4) can be rewritten as a set of two 

first-order differential equations [20]: 

).sin(

,

3 tyxxy

yx

 






 (5) 

 

 

a) 

 

 

(b)

Figure 5. Time series of Duffing oscillator for (a) x signals, and (b) y signals 
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Figure 6. x-y phase plane of Duffing oscillator

As shown in Figs. 5 and 6, the Duffing equation 

(5) represents chaotic behaviour with parameter values 

δ = 0.25, μ = 0.4, ω = 1 under initial conditions x(0) = 

0.2, y(0) = 0. 

3. Non-Identical Synchronization, Anti-

Synchronization and Control of SMIB Power 

System  

3.1. Synchronization between SMIB power system 

and Duffing oscillator 

In order to observe the synchronization between 

SMIB power system and Duffing oscillator, we have 

two above-mentioned systems where the Duffing 

drive system denoted by the subscript 1 controls the 

SMIB response system which is denoted by the 

subscript 2. The drive system is given by 

),sin(

,

11
3
11

11

tyxxy

yx

 






 (6) 

and the response system is defined as follows: 

),()sin()sin(

),(

2222

122

tutfxycy

tuyx








 (7) 

where u1(t) and u2(t) in system (7) are the control 

functions to be determined. In order to estimate the 

control functions for synchronization, we subtract 

equation (6) from equation (7). We define the error 

system as the differences between the Duffing 

oscillator (6) and the SMIB power system (7) that is to 

be controlled and the controlling system using 

.

,

122

121

yye

xxe




 (8) 

Subtracting equation (6) from equation (7) and 

using the notation (8) yields 

).()sin()(

)sin(

),(

21

11

3

1222

121

tutfy

yxxxyce

tuee












 (9) 

System (9) is called the error system; e1 and e2 are 

the error states. The synchronization problem is to 

ensure the error system (9) asymptotically stable at the 

origin. Therefore, we define the active control 

functions u1(t) and u2(t) as follows: 

).()sin()(

)sin()(

),()(

211

3

1222

11

tvtfyx

xxyctu

tvtu









  (10) 

Then, the error system (9) becomes 

).(

),(

22

121

tve

tvee








 (11) 

The error system (11) is linear and the convergent 

solution can be found under appropriate control input 

v1(t) and v2(t) as function of the error states e1 and e2. 

As long as the solutions of the system (11) converge to 

zero as time t goes to infinity, the synchronization 

between SMIB power system and Duffing oscillator is 

realized. There are many possible choices for the 

control v1(t) and v2(t) functions, we take 

,
)(

)(

2

1

2

1


















e

e
A

tv

tv
 (12) 

where A is a 2 x 2 constant matrix to be determined. In 

order to make the closed loop system to be stable, the 

proper choice of the entries of the matrix A is such that 

the feedback system must have all of the eigenvalues 

with negative real parts. Let the matrix A is chosen in 

the following form 

.
10

11












A  (13) 

For this particular choice, the closed loop system 

(11) has the eigenvalues –1 and –1. This choice of 

control gains will lead to a stable system in which the 

error states e1 and e2 converge to zero as time t goes to 

infinity. Hence, it implies that the synchronization 

between Duffing oscillator and SMIB power system is 

achieved. 
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3.2. Anti-synchronization between SMIB power 

system and Duffing oscillator 

In order to observe the anti-synchronization 

between SMIB power system and Duffing oscillator, 

as in the previous section, we have two above-

mentioned systems where the Duffing drive system 

denoted by the subscript 1 controls the SMIB response 

system which is denoted by the subscript 2. The drive 

and response systems are the same as in equations (6) 

and (7) with u3(t) and u4(t) control functions, 

respectively. 

In this case, we add the drive and response system 

instead of subtracting: 

.

,

122

121

yye

xxe




 (14) 

This leads to 

).()sin()(

)sin(

),(

41

1

3

1222

321

tutfy

xxxyce

tuee












 (15) 

The anti-synchronization problem is to ensure the 

error system (15) asymptotically stable at the origin. 

Therefore, we define the active control functions u3(t) 

and u4(t) as follows: 

).()sin()(

)sin()(

),()(

41

1

3

1224

33

tvtfy

xxxyctu

tvtu









  (16) 

Then, this implies 

).(

),(

42

321

tve

tvee








 (17) 

The error system (17) of anti-synchronization is 

reached to exactly the same error system of the 

synchronization in equation (11). We take v3(t) and 

v4(t) control inputs as before in equation (12). If we 

choose the A matrix in the form as (13) for anti-

synchronization, we will obtain the same negative 

eigenvalues –1 and –1 for the closed loop system (17). 

This choice of control gains will lead to a stable 

system in which the error states e1 and e2 converge to 

zero as time t goes to infinity. Hence, it implies that 

the anti-synchronization between Duffing oscillator 

and SMIB power system is achieved. 

3.3. Control of SMIB power system 

In order to observe the control SMIB power 

system, we add non-identical synchronization and 

anti-synchronization signals that are acquired in the 

previous sections.  

The non-identical synchronization of the SMIB 

power system has the following equation 

),()sin()sin(

),(

2222

122

tutfxycy

tuyx








 (18) 

where u1(t) and u2(t) are the control functions which 

provide synchronization to Duffing oscillator. From 

the equations (10), (12), (13) and (8), they can be 

calculated as follows: 

),()sin()(

)sin()(

),()()(

121

1

3

1222

12121

yytfy

xxxyctu

yyxxtu









  (19) 

where the x1 and y1 are the state variables of Duffing 

oscillator. 

The non-identical anti-synchronization of the 

SMIB power system has the following equation 

),()sin()sin(

),(

4222

322

tutfxycy

tuyx








 (20) 

where u3(t) and u4(t) are the control functions which 

provide anti-synchronization to Duffing oscillator. 

From the equations (16), (12), (13) and (14), they can 

be calculated as follows: 

),()sin()(

)sin()(

),()()(

121

1

3

1224

12123

yytfy

xxxyctu

yyxxtu









  (21) 

where the x1 and y1 are the state variables of Duffing 

oscillator. 

So that the error dynamics of non-identical 

synchronization and anti-synchronization of SMIB 

power system converge asymptotically to zero, the 

sum of these functions in equations (18) and (20) will 

lead to a stable system in which the error states 

converge to zero as time t goes to infinity. The control 

signals of SMIB power system becomes 

),()(

)sin()sin()(

),()()(

42

226

3125

tutu

tfxyctu

tutuytu







  (22) 

where u5(t) and u6(t) denote the control functions for 

the x and y state variables of SMIB power system, 

respectively.  

Hence, it implies that the control of SMIB power 

system is achieved. 

4. Numerical Results 

In this section, numerical simulations are perfor-

med to show the non-identical synchronization, anti-

synchronization and control of SMIB power system. 

The fourth-order Runge–Kutta method is used in all 

numerical simulations with variable time step. The 

parameters of SMIB power system are taken as c = 1, 

β = 3, f = 5, ω = 1 so that the system exhibits chaotic 
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behaviour. The initial values of the SMIB response 

system are selected as x (0) = 1 and y (0) = –0.5. The 

parameters of drive Duffing oscillator are considered 

as δ = 0.25, μ = 0.4, ω = 1 to ensure the chaotic 

behaviour and the initial values of the Duffing system 

are chosen as x (0) = 0.2, y (0) = 0. The controllers are 

arbitrary activated at t = 25 in all simulations. By 

using Matlab–Simulink program, the mathematical 

model of the non-identical synchronization, anti-

synchronization and control of SMIB power system 

are constructed and shown in Fig. 7. 

 

 

(a) 

 

(b) 

 

(c)

Figure 7. Matlab–Simulink modelling of SMIB power system for (a) non-identical synchronization,  

(b) non-identical anti-synchronization, and (c) control 

 

 

(a) 

 

(c) 

 

(b) 

 

(d) 

Figure 8. The time response of states for SMIB response system and Duffing drive system with active  

controllers are activated at t = 25 (a) x signals for synchronization, (b) x signals for  

anti-synchronization, (c) y signals for synchronization, and (d) y signals  

for anti-synchronization 
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(a) 

 

(b) 

Figure 9. The time response of the error signals for SMIB response system and Duffing drive system with  

active controllers are activated at t = 25 (a) synchronization, and (b) anti-synchronization

 

(a) 

 

(b) 

Figure10. The time response of the controlled SMIB power system to E(0, 0) equilibrium point with active  

controllers are activated at t = 25 (a) x signals, and (b) y signals 

The simulation results of the synchronization and 

anti-synchronization between SMIB power system 

and Duffing oscillator are shown in Fig. 8: (a) x 

signals for synchronization, (b) x signals for anti-

synchronization, (c) y signals for synchronization, and 

(d) y signals for anti-synchronization. The error 

signals between these systems are illustrated in Fig. 9: 

(a) displays for synchronization, and (b) displays for 

anti-synchronization. 

As expected, the error signals that are shown in 

Fig. 9 converge asymptotically to zero. Synchroni-

zation and anti-synchronization between SMIB power 

system and Duffing oscillator is observed when t ≥ 29, 

which verifies the feasibility of the proposed active 

control method. 

The simulation results for the control of SMIB 

power system to zero equilibrium point are shown in 

Fig. 10: (a) displays x signals, and (b) displays y 

signals. 

As expected, the outputs of the SMIB power 

system converge to the E(0, 0) equilibrium point, after 

the controllers are activated. As seen in Fig. 10, 

control is firstly observed when t ≥ 28 with the active 

controllers, which confirms the effectiveness of the 

proposed control method. 

Although simplified power system model cannot 

be analysed basically regarding synchronization and 

anti-synchronization, with a well-known Duffing 

chaotic oscillator, the SMIB have been easily 

synchronized and anti-synchronized non-identically to 

this system. The related Figs. 8–10 show that the error 

dynamics converge to zero asymptotically in the non-

identical synchronization, anti-synchronization and 

control of SMIB power system which can be hardly 

obtained stability condition. 

5. Conclusion 

In recent years, electrical power systems have been 

gaining importance, but difficult to operate especially 

when they exhibit chaotic behaviour under the lack of 

reactive power and different disturbances. In this 

paper, it is the first time that the non-identical 

synchronization and anti-synchronization of SMIB 

power system is applied. This paper shows that SMIB 

power system and Duffing oscillator can be master 

and slave each other. SMIB power system is one of 

the simple power models which are essentially 

nonlinear dynamic systems. Duffing oscillator is the 

well-known second order chaotic system which is 

appropriate for the synchronization and anti-

synchronization of SMIB power system. Based on 

active control theory, active controllers have been 

designed for synchronization and anti-synchronization 

of SMIB power system to Duffing oscillator. The sum 

of non-identical synchronization and anti-

synchronization signals provides the control of chaotic 

SMIB power system. Numerical simulations show that 

when the controllers are activated at t = 25, non-

identical synchronization and anti-synchronization are 
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observed at t ≥ 29, and the control of SMIB power 

system is observed at t ≥ 28, which validates the 

robustness of the proposed active control method. As a 

future work, the other chaos control methods may be 

applied for the non-identical synchronization and anti-

synchronization of SMIB power system. 
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