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Abstract. In this paper we report a novel application-based model as a suitable alternative for the classification and 

identification of attacks on a computer network, and thus guarantee its safety from HTTP protocol-based malicious 

commands. The proposed model is built on a self-recurrent neural network architecture based on wavelets with 

multidimensional radial wavelons, and is therefore suited to work online by analyzing non-linear patterns in real time 

to self-adjust to changes in its input environment. Six different neural network based systems have been modeled and 

simulated for comparison purposes in terms of overall performance, namely, a feed-forward neural network, an Elman 

network, a fully connected recurrent neural network, a recurrent neural network based on wavelets, a self-recurrent 

wavelet network and the proposed self-recurrent wavelet network with multidimensional radial wavelons. Within the 

models studied, this paper presents two recurrent architectures which use wavelet functions in their functionality in 

very distinct ways. The results confirm that recurrent architectures using wavelets obtain superior performance than 

their peers, in terms not only of the identification and classification of attacks, but also the speed of convergence. 

Keywords: Self-Recurrent Wavelet Neural Networks; Multidimensional Radial Wavelons; Intrusion Detection 

Systems. 

 

1. Introduction 

It is a matter of common knowledge that network 

security poses a constantly evolving and increasingly 

complex task due to the sheer size of the distribution 

and array of computer network interconnections [1]. 

Certain applications, such as online banking sites, are 

particularly at risk due to the fact that a breach in 

security would be catastrophic. As a result, several 

approaches (see e.g. [1–5]) have already been 

developed as alternative solutions to the problem of 

Internet security, focusing for the most part in 

detecting attacks and thus enabling pertinent 

corrective or preventive measures to be taken. 

The classification carried out by intrusion 

detection systems may take into account the 

information source and the analysis technique. The 

information source uses the origin of the data that is 

analysed in order to determine whether an attack has 

been carried out or not, whereas the analysis technique 

is the method by which the data obtained by the 

information source will be analyzed. Intruder 

Detection Systems (IDSs) may obtain the information 

for the analysis from different sources. When an IDS 

only considers the data obtained from isolated 

terminals, it is classified as host-based. They will 

carry out statistical analysis of data within the host, 

carrying out access control routines and evidence 

collection of suspected attacks as part of their normal 

functions [1]. Due to their thorough approach, host-

based systems are widely used in intranet 

environments where the threat of a security breach 

comes from inside the network, not from an external 

intruder. In contrast, when an IDS evaluates the flow 

of information that travels through a network, the IDS 

is classified as network-based. 
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The analysis techniques used in IDS are classified 

as the misuse intrusion detection and anomaly 

intrusion detection. The misuse intrusion detection 

utilizes a database containing attack signatures, where 

each signature corresponds to a specific attack and 

describes its characteristics. This technique must 

maintain the updating of the database that contains the 

attack signatures as it can only recognize attacks 

whose profile coincides with a signature on the 

database (see e.g., [6]). The main disadvantage of this 

analysis technique is that it can only detect attacks that 

are already known and whose pattern has been 

previously described. One of the advantages of IDSs 

based on misuse technique is that they obtain results 

with a low rate of false positives. On the other hand, 

anomaly intrusion detection analyzes the state and 

behavior of the system to categorize normal behavior 

and anomalies. The main advantages of the technique 

based on anomalies are that it is not necessary to 

establish a database of the characteristics of each 

attack and that it can detect attacks that have not been 

seen before (see e.g., [7, 8]). However, the main 

disadvantage of a technique using this focus is the 

volatility of the network’s normal operating state, 

which can lead to a considerable rate of false positives 

[6]. 

It is the very dynamic and ever-changing nature of 

computer network attacks that make an approach 

based on neural networks an efficient course of action. 

Since neural networks are essentially an array of 

massively interconnected parallel processing elements 

they excel in pattern recognition, classification and 

parallel computation tasks [4]. Neural networks 

possess characteristics that make them an attractive 

tool for intrusion detection. Intrusion detection 

systems carry out a prediction mechanism based on 

known and unknown patterns given that the neural 

network models permit the definition of an 

interconnection scheme which, after being trained, can 

detect abnormal behavior. Naturally this leads to the 

investigation of different types of neural network 

architecture and learning algorithms in IDS. Within 

the analysis technique based on anomalies, attempts 

are made to detect anomalous behavior in normal 

activity. Several approaches have been used to treat 

intrusion detection systems based on anomalies: 

statistical, generation of predictive patterns, and 

artificial neural networks [1, 9]. 

Artificial neural networks allow computers to learn 

and adapt to the different tasks with which they are 

presented, and are inspired by the manner in which the 

human brain functions. Interconnected neurons 

manifest a response depending on the input stimulus. 

The stimulus that the neurons receive on input is 

translated into a decision as an output of the neural 

network [4, 10]. To carry out decisions, the neural 

network requires a phase of iterative training, in which 

data samples are applied and weights are adjusted 

until the resulting factor is found to be close to the 

desired result. Owing to their characteristics of 

learning and generalization, a neural network can 

contribute to the implementation of an intrusion 

detection system that allows the detection of a variety 

of attacks – both known and never seen before [11]. 

The incorporation of neural networks into 

intrusion detection systems has experimented with 

different architectures and learning algorithms. Initial 

studies can be found, such as [5], which present some 

of the advantages and disadvantages of the application 

of neural networks in IDS. In [11], the study 

implements an intrusion detection system called 

NNID (Neural Network Intrusion Detection), which 

uses a collection of commands executed by the user as 

the object of the anomalies, and whose objective is 

that the neural network identifies the variations in the 

patterns of use. In [9], a prototype named I-IDS 

(Intelligent Intrusion Detection System) is developed, 

which monitors the flow of packets and classifies 

network events using a multilayer perceptron (MLP) 

neural network trained with the back-propagation (BP) 

algorithm, which takes the hyperbolic tangent as its 

transfer function. Comparative studies of different 

neural network architectures applied to intrusion 

detection systems can be found in [12, 13]. These 

studies include MLP/BP, Radial Basis Function, Self-

Organizing Maps, and Layered Framework with 

Neural Networks. 

The different studies described above analyze 

performance indices in terms of false positives and 

false negatives. Common problems are identifiable 

within the results that reduce the performance of the 

neural networks applied to intrusion detection 

systems: low convergence speed, the local minima, the 

difficulty of determining the number of hidden layers, 

the quantity of units in the layers, and the quantity of 

samples necessary during the training. Simulated 

annealing and genetic algorithms have been used to 

overcome such difficulties as the local minima, and to 

accelerate the training process through the Levenberg-

Marquardt algorithm and the algorithm used by the 

conjugate gradient method. 

It is evident that a neural network based IDS must 

have the capacity to work online and update its pa-

rameters in real time to adapt to the flow of data over 

a period of time in a real network. This is one of the 

reasons why, out of all the possible neural network 

architectures, recurrent neural networks (RNN) hold 

the best performance parameters in classification, 

identification and convergence speed [4, 10, 14]. In 

the following sections, six different neural network 

based systems for computer IDS are proposed and 

analyzed, namely, a feed-forward neural network 

system (FFNN), an Elman neural network system, a 

fully recurrent neural network (FRNN) system, a self-

recurrent wavelet neural network (SRWNN) system, a 

self-recurrent wavelet neural network with multidi-

mensional radial wavelons (SRWNN-MRW) and a 

wavelet recurrent neural network (WRNN) system. 

Through the comparison of performance percentages 

in classification and identification, it will be shown 
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that the approach that has been followed throughout 

this paper justifies the use of wavelets and neural 

networks as a powerful base for an IDS which works 

directly on the causes of an attack through HTTP 

commands that may be malicious in nature, thus 

protecting the network data flow from unauthorized 

command insertion. 

The main advantages of the proposed IDS 

approach based on the SRWNN-MRW respect to 

previous neural network-based methods are the 

following. The first one is the lower complexity of the 

overall detection model which directly depends on the 

reduced complexity of the proposed recurrent neural 

network. Note that, as it will be discussed in the per-

formance evaluation section of this paper, SRWNN-

MRW requires a significantly smaller number of 

neurons to obtain a similar performance than pre-

viously proposed neural-networks architectures. The 

second advantage is an improvement in the detection 

speed of the system which is supported by the fact that 

SRWNN-MRW requires a reduced number of 

iterations to reach convergence. This allows faster 

online learning and, as a consequence, faster detection 

and identification of HTTP attacks is possible. 

An additional aspect that is important to highlight 

here is that SRWNN-MRW is a new neural network 

topology which is different from previous WNN 

approaches in the way multidimensional data are 

treated. In order to apply traditional WNN into the 

context of multidimensional data multidimensional 

wavelets are usually employed. These multidimen-

sional wavelets are usually constructed using tensor 

products of one-dimensional wavelets. However, as it 

has been discussed in [15], one of the key issues for 

WNN is that the complexity of each wavelet 

considerably increases with the dimension. In contrast, 

in the proposed approach, the use of the so called 

MRW units which only employs one-dimensional 

wavelets reduces the complexity of the network. The 

remainder of this paper is organized as follows. 

Section 2 discusses the HTTP protocol. In Section 3 

we propose the IDS to detect and classify attacks in 

high-level network protocols through the use of 

recurrent neural networks and wavelets. In Section 4, 

we focus on the simulation results of each system. In 

Section 5 conclusions and future work are presented. 

2. Description of HTTP Protocol 

The Spanish company s21sec [16] states that the 

Hypertext Transfer Protocol (HTTP) protocol has 

become the most widely used protocol in the field of 

computer communications. This makes it an obvious 

target for computer network intruders, as it provides a 

way to access restricted networks through the use of 

modified commands which may go undetected if the 

traffic flow between end systems is not monitored. 

Any IDS that attempts to successfully identify and 

classify HTTP based attacks must then be provided 

with a comprehensive database in order for the system 

to have a starting point from which to begin deriving 

its own normal and intrusive data pattern comparison 

sequences [1]. The database must be representative of 

both, the main types of attacks and the main types of 

normal commands that can be present in a network. In 

this study, five main categories of possible data flow 

have been considered [3]: 

Normal: It includes the normal behavior of a 

system command without any attack involved. 

Command Injection: It includes commands (shell 

codes written in machine language) executed directly 

on the system. 

SQL Database Attack: It includes commands 

executed on SQL databases. 

XSS (Cross Site Scripting): It includes commands 

executed via HTML, Java or JavaScript. This 

technique involves scripts that are designed to extract 

information from the user and pass it to the attacker. 

XSS is a type of attack that has as target sites those 

that dynamically generate web pages that display user 

entries that have not been properly validated. An 

attacker that uses XSS can compromise sensitive 

information, manipulate cookies or run malicious code 

on the client. 

Path Modification: It considers the path 

manipulation of a file or directory to provide 

privileges to the attacker. 

The IDS reported in this paper has the ability to 

correctly identify an attack or normal command, and 

then classify it under one of the five possible labels 

that have been considered. 

3. Proposed Approach: SRWNN with 

Multidimensional Radial Wavelons 

The architecture proposed in this work is 

composed through the use of processing nodes known 

as multidimensional radial wavelons (MRW), which 

were first proposed in [15, 17] in a forward 

propagation power architecture designed for the 

approximation of multivariable functions. Fig. 1 

shows the architecture of a MRW unit. Each MRW 

unit is composed of two modules, the first of which 

has the radial function denoted by the letter R, and the 

second of which has the one-dimensional wavelet 

function denoted by 𝜓�. The purpose of this division is 

to process the inputs vector so that they can be used 

for a one-dimensional wavelet function. 

Recall that wavelet transforms involve 

representing a general function in terms of simple, 

fixed building blocks on different scales and at 

different positions. These building blocks are 

generated from a single fixed function called a mother 

wavelet 𝜓�� by translation and dilation operations. The 

wavelet transform can be considered a family of 

related functions [18]: 

𝜓𝑑,𝑡(𝑠) =
1

√|𝑑|
𝜓 (

𝑠−𝑡

𝑑
) (1) 
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where 𝑑 ∈ ℝ+ , 𝑡 ∈ ℝ , 𝑑 ≠ 0 , and 𝜓(⋅)  satisfies the 

admissibility condition. For discrete wavelets, the 

scale (or dilation) and translation parameters in (1) are 

chosen in such a way that at level 𝑗� the wavelet 

𝑑0
𝑗
𝜓(𝑑0

−𝑗
𝑠) is 𝑑0

𝑗
 times the width of 𝜓(⋅). That is, the 

scale parameter {𝑑 = 𝑑0
𝑗
∶ 𝑗 ∈ 𝑍}  and the translation 

parameter {𝑡 = 𝑛𝑡0𝑑0
𝑗
∶ 𝑗, ∈ 𝑍}  This family of 

wavelets is thus given by 

𝜓𝑗,𝑛(𝑠) = d0
−
1

2𝜓(𝑑0
−𝑗
𝑠 − 𝑛𝑡0). (2) 

The mother wavelet function 𝜓(𝑠), scaling 𝑑0 and 

translation 𝑡0  parameters are specifically chosen so 

that 𝜓𝑗,𝑛(𝑠)  constitute orthonormal bases for 𝐿2(ℝ) 

[18]. Fig. 2 shows the architecture of the proposed 

SRWNN – MRW model. The proposed architecture is 

composed of three layers; the first is the input layer, 

the second is the multidimensional radial wavelon 

layer, and finally the output layer, composed of linear 

combiners. The external inputs are represented by 𝑥𝑘, 

𝑘 = 1…𝑁𝑖, 𝑁𝑖 being the number of inputs defined for 

the architecture. The outputs of the R units are 

denoted by 𝑎𝑗 , 𝑗 = 1…𝑁𝑀𝑅𝑊 , 𝑁𝑀𝑅𝑊  being the 

number of multidimensional radial wavelon units. 

These outputs represent the processing of the input 

lines. Within the multi-dimensional radial layer, the 

wavelet units possess an auto-connection that permits 

the introduction of the term memory 𝜓𝑗(𝑛 − 1)  at 

time 𝑛�, which is responsible for the saving the 

information regarding past states of the model. This 

recurring connection is seen as affected by means of 

the factor 𝜃𝑗, which represents the synaptic weight of 

this link. That is to say, the input at the wavelet units 

is formed by the output from the units 𝑅� and the term 

𝜓𝑗(𝑛 − 1) multiplied by the factor 𝜃𝑗. 

The direct connections from the input layer to the 

output combiners are affected by factors 𝑎𝑖𝑘 , 𝑖 =
1…𝑁𝑠 , 𝑁𝑠  being the number of output units. The 

synaptic weights between the output units and the 

wavelet units are denoted by 𝑤𝑖𝑗 .The input layer 

receives the external inputs and transmits them 

directly to the multidimensional radial layer. It is 

possible to denote the vector 𝒙𝑘 of external inputs by 

means of 

𝒙𝑘 = [𝑥1…𝑥𝑁𝑖] (3) 

where 𝑁𝑖 represents the number of external inputs. 

The MRW units are found within multidimensional 

radial wavelon layer. Each unit manages its own 

translation 𝑡𝑗  and dilation parameters 𝑑𝑗  for each of 

the inputs in 𝒙𝑘 . It is possible to represent these 

parameters for the MRW unit in a vector form, as in 

the following: 

𝐝𝑗 = [𝑑𝑗,1…𝑑𝑗,𝑁𝑖] (4) 

𝐭𝑗 = [𝑡𝑗,1…𝑡𝑗,𝑁𝑖] (5) 

𝑗 = 1…𝑁𝑀𝑅𝑊  

where 𝑁𝑀𝑅𝑊  represents the number of multidimen-

sional radial wavelon units found in this layer. The 

principal task of the units R  within this layer is to 

process the multiple inputs in order to produce a scalar 

value, which serves in the construction of the input to 

the wavelet unit. 

To develop the processing of the units R, it is 

necessary to define: 

𝐴(𝐱𝑘, 𝐝𝑗 , 𝐭𝑗) = 𝑑𝑖𝑎𝑔(𝐝𝑗)(𝐱𝑘 − 𝐭𝑗)
𝑇
 (6) 

where 𝑇  denotes the transposed operation of the 

difference between the inputs vector 𝐱𝑘  and the 

translation vector 𝐭𝑗 , 𝑑𝑖𝑎𝑔(𝒅𝑗)  represents a diagonal 

matrix constructed from the dilation vector 𝐝𝑗, as can 

be seen as follows: 

𝑑𝑖𝑎𝑔(𝐝𝑗) = (

𝑑𝑗,1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑑𝑗,𝑁𝑖

). (7) 

From 𝐴(𝐱𝑘, 𝐝𝑗, 𝐭𝑗)  the output of each unit R is 

constructed in the following manner: 

𝑅(𝐱𝑘, 𝐝𝑗 , 𝐭𝑗) = [𝐴(𝐱𝑘, 𝐝𝑗, 𝐭𝑗)
𝑇
�𝐴(𝐱𝑘, 𝐝𝑗, 𝐭𝑗)]

1

2
 (8) 

𝑎𝑗 = 𝑅(𝐱𝑘, 𝐝𝑗 , 𝐭𝑗). (9) 

 

 

Figure 1. Multidimensional Radial Wavelon Unit
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Having defined the outputs of the units R 

(represented by scalar values), a recursive connection 

between the wavelet units is introduced. This 

connection is affected by the synaptic weight 𝜃𝑗 in the 

following manner: 

𝛼𝑗 = 𝑎𝑗 + 𝜓𝑗(𝑛 − 1)𝜃𝑗 (10) 

where 𝛼𝑗  represents the input of the wavelet unit 

𝜓(𝑛). Finally the output of the wavelet unit is given 

by 

𝜓(𝛼𝑗) = 𝜓(𝑎𝑗 + 𝜓𝑗(𝑛 − 1)𝜃𝑗) (11) 

The output layer is comprised of linear combiners, 

which represent the distinct outputs of the model. 

Each output unit has a weight associated with each 

unit of the previous layer (𝑤𝑖𝑗) and with each input 

unit (𝑎𝑖𝑘) . The synaptic weights are defined 

respectively by 

𝑤𝑖𝑗, 𝑖 = 1…𝑁𝑠, 𝑗 = 1…𝑁𝑖  (12) 

𝑎𝑖𝑘, 𝑖 = 1…𝑁𝑠, 𝑘 = 1…𝑁𝑖 (13) 

where 𝑁𝑠 represents the number of defined outputs in 

the architecture. The value of each output unit is given 

by 

𝑦𝑖(𝑛) = ∑ 𝑤𝑖𝑗
𝑁𝑀𝑅𝑊
𝑗=1 𝜓(𝛼𝑗) + ∑ 𝑎𝑖𝑘

𝑁𝑖
𝑘=1 𝑥𝑘. (14) 

The training method for SRWNN – MRW is based 

on the gradient-descent and seeks to minimize the 

following quadratic cost function: 

𝐽𝐼 =
1

2
[𝑦𝑑(𝑛) − 𝑦𝑖(𝑛)]2 (15) 

where 𝑦𝑑(𝑛) is the target value for that output and 

𝑦𝑖(𝑛) is the resulting value of the system at time n. 

The tuning parameters that belongs to the vector 𝑊 =
[𝑎𝑖𝑘𝑡𝑗𝑘𝑑𝑗𝑘𝜃𝑗𝑤𝑖𝑗] of the SRWNN-MRW are continually 

adjusted to minimize the error obtained after a certain 

number of training cycles. The delta rule determines 

the amount of update for the tuning parameters based 

on the gradient direction along with its learning rate 

𝜂𝐼, as follows: 

𝑊(𝑛 + 1) = 𝑊(𝑛) + Δ𝑊(𝑛)  

= −𝜂𝐼 (
𝜕𝐸

𝜕𝑊(𝑛)
). (16) 

The partial derivative of the cost function with 

respect to the tuning parameters is as follows: 

𝜕𝐸

𝜕𝑊(𝑛)
=∑ 𝑒𝑘

𝜕𝑦𝑖(𝑛)

𝜕𝑊(𝑛)𝑘∈0
 (17) 

We need to calculate the value of 
𝜕𝑦𝑖(𝑛)

𝜕𝑊(𝑛)
 to each one 

of the tuning parameters that belongs to the vector 

𝑊 = [𝑎𝑖𝑘𝑡𝑗𝑘𝑑𝑗𝑘𝜃𝑗𝑤𝑖𝑗]. 

a) Weight between the input layer and output layer 

The partial derivative of 
𝜕𝑦𝑖(𝑛)

𝜕𝑎𝑖𝑘(𝑛)
 is computed by 

using the output of the system as follows: 

𝜕𝑦𝑖(𝑛)

𝜕𝑎𝑖𝑘(𝑛)
=

𝜕∑ 𝑤𝑖𝑗

𝑁𝑀𝑅𝑊

𝑗=1
𝜓(𝛼𝑗)+∑ 𝑎𝑖𝑘�

𝑁𝑖
𝑘=1

𝑥𝑘

𝜕𝑎𝑖𝑘(𝑛)
. (18) 

The weights between the final two layers and the 

output of the multidimensional units do not depend on 

 

 

Figure 2. Proposed SRWNN-MRW architecture 
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𝑎𝑖𝑘(𝑛). Therefore the previous equation is converted 

into 

𝜕𝑦𝑖(𝑛)

𝜕𝑎𝑖𝑘(𝑛)
=

𝜕∑ 𝑎𝑖𝑘
𝑁𝑖
𝑘=1

�𝑥𝑘

𝜕𝑎𝑖𝑘(𝑛)
= 𝑥𝑘. (19) 

Equation (19) is the partial derivative of the output 

with respect to 𝑎𝑖𝑘(𝑛) in the SRWNN – MRW model. 

b) The translation parameters 

For the calculation of 
𝜕𝑦𝑖(𝑛)

𝜕𝑡𝑗𝑘(𝑛)
, it is necessary to 

define 

𝜕𝑦𝑖(𝑛)

𝜕𝑡𝑗𝑘(𝑛)
=
𝜕∑ 𝑤𝑖𝑗

𝑁𝑀𝑅𝑊

𝑗=1
𝜓(𝛼𝑗) + ∑ 𝑎𝑖𝑘

𝑁𝑖
𝑘=1 �𝑥𝑘

𝜕𝑡𝑗𝑘(𝑛)
 

From this equation, the second term in the addition 

does not depend on the parameters of translation of 

the units of the wavelet layer, so that it is converted 

into 

𝜕𝑦𝑖(𝑛)

𝜕𝑡𝑗𝑘(𝑛)
=
𝜕∑ 𝑤𝑖𝑗

𝑁𝑀𝑅𝑊

𝑖=𝑗
𝜓(𝛼𝑗)

𝜕𝑡𝑗𝑘(𝑛)
= 𝑤𝑖𝑗

𝜕𝜓(𝛼𝑗)

𝜕𝑡𝑗𝑘(𝑛)
 

By the chain rule, we obtain 

𝜕𝑦𝑖(𝑛)

𝜕𝑡𝑗𝑘(𝑛)
= 𝑤𝑖𝑗

𝜕𝜓(𝛼𝑗)

𝜕𝛼𝑗
�
𝜕𝛼𝑗

𝜕𝑡𝑗𝑘(𝑛)
 

Developing the third term of the product we have, 

𝜕𝑦𝑖(𝑛)

𝜕𝑡𝑗𝑘(𝑛)
= 

𝑤𝑖𝑗

𝜕𝜓(𝛼𝑗)

𝜕𝛼𝑗

𝜕 {𝑑𝑗1(𝑥1 − 𝑡𝑗1)
2
…𝑑𝑗𝑘(𝑥𝑘 − 𝑡𝑗𝑘)

2
}

1
2

𝜕𝑡𝑗𝑘(𝑛)
 

which gives 

𝜕𝑦𝑖(𝑛)

𝜕𝑡𝑗𝑘(𝑛)
= 𝑤𝑖𝑗

𝜕𝜓(𝛼𝑗)

𝜕𝛼𝑗
[
1

2𝑎𝑗
(−2𝑑𝑗𝑘

2 𝑥𝑘 + 2𝑑𝑗𝑘
2 𝑡𝑗𝑘)](20) 

with 𝑎𝑗 = 𝑅(𝐱𝑘, 𝐝𝑗, 𝐭𝑗). 

Equation (20) is the partial derivative of the output 

with respect to 𝑡𝑗𝑘(𝑛) in the SRWNN-MRW model. 

c) The dilation parameters 

Likewise it can be established 

𝜕𝑦𝑖(𝑛)

𝜕𝑑𝑗𝑘(𝑛)
=

𝜕∑ 𝑤𝑖𝑗

𝑁𝑀𝑅𝑊

𝑗=1
𝜓(𝛼𝑗)+∑ 𝑎𝑖𝑘�

𝑁𝑖
𝑘=1

𝑥𝑘

𝜕𝑑𝑗𝑘(𝑛)
. 

From this equation, the second term in the addition 

does not depend on the parameters of dilation of the 

units of the wavelet layer, so that it is converted into 

𝜕𝑦𝑖(𝑛)

𝜕𝑑𝑗𝑘(𝑛)
=
𝜕∑ 𝑤𝑖𝑗

𝑁𝑀𝑅𝑊

𝑗 = 1 𝜓(𝛼𝑗)

𝜕𝑑𝑗𝑘(𝑛)
= 𝑤𝑖𝑗

𝜕𝜓(𝛼𝑗)

𝜕𝑑𝑗𝑘(𝑛)
 

By the chain rule, it follows that 

𝜕𝑦𝑖(𝑛)

𝜕𝑑𝑗𝑘(𝑛)
= 𝑤𝑖𝑗

𝜕𝜓(𝛼𝑗)

𝜕𝛼𝑗
�

𝜕𝛼𝑗

𝜕𝑑𝑗𝑘(𝑛)
. 

Developing the third term of the product we have, 

𝜕𝑦𝑖(𝑛)

𝜕𝑑𝑗𝑘(𝑛)
= 𝑤𝑖𝑗

𝜕𝜓(𝛼𝑗)

𝜕𝛼𝑗
�
𝜕{𝑑𝑗1(𝑥1−𝑡𝑗1)

2
…�𝑑𝑗𝑘(𝑥𝑘−𝑡𝑗𝑘)

2
}
1/2

𝜕𝑑𝑗𝑘(𝑛)
. 

Then, it follows that 

𝜕𝑦𝑖(𝑛)

𝜕𝑑𝑗𝑘(𝑛)
= 𝑤𝑖𝑗

𝜕𝜓(𝛼𝑗)

𝜕𝛼𝑗
�[

1

2𝑎𝑗
(2𝑑𝑗𝑘𝑥𝑘

2 −

4𝑑𝑗𝑘𝑥𝑘𝑡𝑗𝑘 �����+ 2𝑑𝑗𝑘𝑡𝑗𝑘
2 )]. (21) 

Equation (21) is the partial derivative of the output 

with respect to 𝑑𝑗𝑘(𝑛) in the SRWNN – MRW model. 

d) Weights of the self-recursive connections 

To begin, we define the value of 

𝜕𝑦𝑖(𝑛)

𝜕𝑑𝑗𝑘(𝑛)
=
𝜕∑ 𝑤𝑖𝑗

𝑁𝑀𝑅𝑊

𝑗=1
𝜓(𝛼𝑗) + ∑ 𝑎𝑖𝑘

𝑁𝑖
𝑘=1 𝑥𝑘

𝜕𝜃𝑗(𝑛)
 

The second term in the addition does not depend 

on the factor 𝜃𝑗(𝑛), so that it is converted into 

𝜕𝑦𝑖(𝑛)

𝜕𝜃𝑗(𝑛)
=

𝜕∑ 𝑤𝑖𝑗

𝑁𝑀𝑅𝑊

𝑖=1
𝜓(𝛼𝑗)

𝜕𝜃𝑗(𝑛)
= 𝑤𝑖𝑗

𝜕𝜓(𝛼𝑗)

𝜕𝜃𝑗(𝑛)
. 

By the chain rule, it follows that 

𝜕𝑦𝑖(𝑛)

𝜕𝜃𝑗(𝑛)
= 𝑤𝑖𝑗

𝜕𝜓(𝛼𝑗)

𝜕𝛼𝑗
�

𝜕𝛼𝑗

𝜕𝜃𝑗(𝑛)
. 

This yields, 

𝜕𝑦𝑖(𝑛)

𝜕𝜃𝑗(𝑛)
= 𝑤𝑖𝑗

𝜕𝜓(𝛼𝑗)

𝜕𝛼𝑗
�𝜓𝑗(𝑛 − 1). (22) 

Equation (22) is the partial derivative of the output 

with respect to 𝜃𝑗(𝑛) in the SRWNN-MRW model. 

e) Weights of the connections between the product 

layer and the output layer 

To begin, we define the value of 

𝜕𝑦𝑖(𝑛)

𝜕𝑤𝑖𝑗(𝑛)
=

𝜕∑ 𝑤𝑖𝑗

𝑁𝑀𝑅𝑊

𝑗=1
𝜓(𝛼𝑗)+∑ 𝑎𝑖𝑘

𝑁𝑖
𝑘=1

𝑥𝑘

𝜕𝑤𝑖𝑗(𝑛)
. 

Now, it is possible to calculate the partial 

derivative as follows: 

𝜕𝑦𝑖(𝑛)

𝜕𝑤𝑖𝑗(𝑛)
=
𝜕∑ 𝑤𝑖𝑗

𝑁𝑀𝑅𝑊

𝑗=1
𝜓(𝛼𝑗)

𝜕𝑤𝑖𝑗(𝑛)
 

This yields, 

𝜕𝑦𝑖(𝑛)

𝜕𝑤𝑖𝑗(𝑛)
= 𝜓(𝛼𝑗). (23) 

Equation (23) is the partial derivative of the output 

with respect to 𝑤𝑖𝑗(𝑛) in the SRWNN-MRW model. 

To sum up, the adjustments to each of the tuning 

parameters that belong to the vector W are shown in 

Table 1. 

4. Performance Evaluation 

All HTTP requirements that the intruder detection 

system will come across belong to one of the five 

categories under consideration. Ideally, the system 
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Table 1. Partial derivatives for the proposed SRWNN-MRW 

Partial derivative of the output 

𝝏𝒚𝒊(𝒏) with respect to 
Proposed SRWNN-MRW Model 

𝜕𝑎𝑖𝑘(𝑛) 
𝜕𝑦𝑖(𝑛)

𝜕𝑎𝑖𝑘(𝑛)
= 𝑥𝑘 

𝜕𝑡𝑗𝑘(𝑛) 
𝜕𝑦𝑖(𝑛)

𝜕𝑡𝑗𝑘(𝑛)
= 𝑤𝑖𝑗

𝜕𝜓(𝛼𝑗)

𝜕𝛼𝑗
[
1

2𝑎𝑗
(−2𝑑𝑗𝑘

2 𝑥𝑘 + 2𝑑𝑗𝑘
2 𝑡𝑗𝑘)] 

𝜕𝑑𝑗𝑘(𝑛) 
𝜕𝑦𝑖(𝑛)

𝜕𝑑𝑗𝑘(𝑛)
= 𝑤𝑖𝑗

𝜕𝜓(𝛼𝑗)

𝜕𝛼𝑗
[
1

2𝑎𝑗
(2𝑑𝑗𝑘𝑥𝑘

2 − 4𝑑𝑗𝑘𝑥𝑘𝑡𝑗𝑘 + 2𝑑𝑗𝑘𝑡𝑗𝑘
2 )] 

𝜕𝜃𝑗(𝑛) 
𝜕𝑦𝑖(𝑛)

𝜕𝜃𝑗(𝑛)
= 𝑤𝑖𝑗

𝜕𝜓(𝛼𝑗)

𝜕𝛼𝑗
𝜓𝑗(𝑛 − 1) 

𝜕𝑤𝑖𝑗(𝑛) 
𝜕𝑦𝑖(𝑛)

𝜕𝑤𝑖𝑗(𝑛)
= 𝜓(𝛼𝑗) 

 

will classify as well as detect all incoming input 

vectors correctly, thus allowing successful 

subsequent actions in response to an eventual attack. 

For training and testing purposes, the dataset to be 

utilized has been divided in such a way as to count 

with 488 requirements representing abnormal 

commands (Path, Injection, XSS and SQL) and 285 

representing normal commands [2, 3]. The IDS is 

divided in two main sections: data preprocessing and 

neural network training and testing. 

4.1. Data Preprocessing 

The preprocessing procedure is described using 

an example of a typical HTTP requirement given by 

//name.exe?param1=..\..\file. Note that this string 

consists of filenames, parameters and alphanumeric 

strings which normally change from system to 

system. Since the file extensions and special 

characters are the most relevant parts of this string, 

every alphanumeric string is replaced with the special 

character ‘@’ [2]. Hence, the example requirement 

takes the form: //@.exe?@=..\..\@, where only the 

significant part of the requirement is kept. 

The next step involves converting these characters 

to their corresponding ASCII decimal value. Since 

neural network needs a fixed-length input vector and 

http requirements do not have a fixed length, the next 

step is fixing the requirement’s length already for-

matted to decimal. For this purpose, a sliding window 

approach is employed, whose main idea is converting 

a variable length vector in several fixed length vec-

tors, where the length is determined by a constant de-

fined by the nature of the problem. The sliding win-

dow approach considers a decimal vector with six 

elements. Now suppose that a neural network re-

quires a fixed input length M equal to three. Then, 

the sliding window approach delivers (N-M+1) vec-

tors of fixed length M, where N is the length of the 

original vector. Note that in order to improve network 

performance, these vectors are then converted into 

their binary representation and then arranged into a 

binary matrix. Finally this matrix is expressed as a 

single vector of length 𝑀 × 8, where M is the fixed 

length defined by the sliding window [2]. 

4.2. Performance Metrics 

To carry out the evaluation of the intrusion detec-

tion system we must establish indicators that allow to 

know the percentage of detected attacks, or intrusive 

behaviors, and the percentage of false alarms. 

Likewise that commercial IDS, the implementation 

can be affected by varying the alert threshold. This 

means that we must find a balance between detection 

rate and false alarm rate. In summary, we may adjust 

the parameters for each neural network topology to 

detect more attacks but this would also cause an 

increase in the rate of false alarms. The evaluation of 

the different models is mainly concentrated in two 

indicators. The first one is the false positive (FP) 

which indicates the number of false alarms that 

corresponds to patterns that are labeled as harmful 

when the IDS is actually dealing with harmless 

elements. The second indicator is the false negative 

(FN) which denotes dangerous or intrusive behaviors 

similar to normal events that are not detected by the 

IDS features. In addition to FP and FN, we can also 

define indicators of true positives (TP) and true 

negatives (TN). The former describes the correct 

classification of harmful patterns, while the latter 

denotes the correct classification of normal traffic. 

Besides the calculation of the above indicators is 

useful to define two additional measures. The first 

relates to the level of specificity or true negative rate 

(TNR) of the assessed model, that is, the percentage 

of patterns of network traffic that are not intrusive. 

The second measure relates to the sensitivity or true 

positive rate (TPR) and describes the detection rate of 

intrusive behaviors performed correctly. These 

performance metrics are computed as follows [19]: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝑇𝑁𝑅) =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (24) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑇𝑃𝑅) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
. (25) 
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Table 2. Percentage of detection for several neural network architectures in each category 

Network Type Normal Injection Path SQL XSS 

FFNN 97.10% 3.44% 95.89% 0% 53.96% 

ELMAN 96.37% 10.34% 92.82% 42.85% 87.30% 

FRNN 92.75% 58.62% 99.48% 28.57% 41.26% 

WRNN 89.32% 60.40% 99.50% 36.24% 48.60% 

SRWNN 92.75% 33.33% 99.48% 57.14% 65.07% 

Proposed SRWNN-MRW 94.56% 33.33% 98.46% 57.14% 68.25% 

 

The rate of false positives (FPR) and the rate of 

false negatives (FNR) are computed as follows [19]: 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
= 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (26) 

𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁+𝑇𝑃
= 1 − 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦. (27) 

4.3. Neural Network Architectures: Training and 

Testing 

All neural networks described in this paper have 

an input vector length equal to 64 due to the size of 

the original sliding window procedure ( 𝑀 × �8 ), 

which after the binary conversion requires such 

length in input patterns. As for the output layer, it has 

been decided that all networks are to bear five 

distinct neurons in this last output stage (see 

Section 2). Therefore, when a particular input 

sequence is identified, it may be classified into any of 

the categories through the onset of a value of 1 in the 

selected neuron, while all other neurons have a value 

of 0. Following these principles, the first network to 

be tested is a multilayer feedforward neural network 

(FFNN), with two hidden layers with 15 neurons 

each. The number of hidden layers and hidden 

neurons has been selected to allow for an optimal 

performance while keeping processing times within 

reasonable limits [4], [20]. This network is trained 

with gradient-descent with momentum and adaptive 

learning rule back-propagation algorithm, and all 

neurons are sigmoid to enable the network to output a 

one or a zero as this is a pattern classification 

problem. This neural network has been trained with 

70% of the dataset and reached the estimated error 

value of 0.0839 upon completion of the training 

sequence. Table 2 shows the percentage of hits per 

category for each neural network model. It can be 

seen that for all assessed neural network architectures 

a lower detection rate in the category of injection and 

SQL is obtained, whereas a higher detection rate in 

the category of path is attained. If the category of 

normal traffic is observed, the table shows similar 

results for FRNN and self-recurrent neural networks 

using wavelets (SRWNN, SRWNNMRW), which 

translates into a similar percentage in the rate of false 

positives. 

The second network to face training and analysis 

was a simple recurrent network, also known as Elman 

network. Following the principle previously stated 

for input and output layers, this network was 

nevertheless designed to bear 30 neurons in its first 

hidden layer and 30 neurons in its second layer. The 

reason for this increment in neurons, as has been 

explained in [20], is that feedback loops in the 

network architecture require a significantly greater 

number of processing nodes to accurately interrelate 

information from previous instants in time to the 

current expected output. Thus, following the number 

of input vectors and expected number of output 

neurons, the number of 30 neurons per layer was 

calculated [4]. The results from training are as 

expected; the network reached the minimum error 

value of 0.0537. It also did so in much less time, as 

measured by the number of epochs that were 

measured upon completion of its task (see Table 2 

and Table 3). 

The third network subject to evaluation was the 

fully connected recurrent neural network (FRNN). It 

bore the same number of neurons in its input and 

output layers, but the number of hidden layers was 

cut in half due to several criteria. Firstly, multiple 

hidden layers do give neural networks better time 

nonlinear phenomena processing qualities. However, 

an IDS is not a highly nonlinear phenomenon, as it is 

based merely on pattern classification, even if its 

inherent permutations are nonlinear [4], [11]. 

Secondly, training a RNN with the RTRL algorithm 

allows for much faster convergence upon the desired 

error minima, albeit at the cost of a significant 

increase in processing time. Following the calculation 

parameters in [9], the number of neurons per layer, 

30, was assigned to the hidden layer, but the number 

thereof was set to one to reduce the processing time 

of the network as a whole. In small networks such as 

this, the total number of neurons is not a major 

determining factor in performance and speed [20]. 

However, better results than those of either of the 

previous networks were achieved by the FRNN even 

despite its having only one hidden layer. This 

architecture reached an error value of 0.0044 (see 

Table 2 and Table 3). 

Another architecture modeled was a fully 

connected neural network based on wavelets 

(WRNN). The neural network was based on wavelets 

as part of the preprocessing of the training data as 

reported in [21]. The stationary discrete wavelet 

transform was used to decompose the training data in 

different levels of decomposition. Then we trained 

the recurrent neural network modeled above with 
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Table 3. Performance measures for several neural network architectures and the proposed approach 

Network Type 
FFNN 

64×15×15×5 

ELMAN 

64×30×30×5 

FRNN 

64×30×5 

WRNN 

64×30×5 

SRWNN 

64×256×5 

Proposed 

SRWNN – 

MRW 

64×4×5 

MSE 0.0839 0.0537 0.0044 0.0864 0.0589 0.0899 

NMSE 7.33e-5 4.69e-5 3.92e-6 7.55e-5 5.14e-5 7.01e-5 

Convergence 

speed (epochs) 
493 160 81 100 each level 100 60 

Classification 84.07% 86.14% 93.15% 95.67% 92.04% 92.19% 

Identification 78.34% 81.84% 84.23% 92.64% 83.43% 84.23% 

𝐎(𝐧) 𝑁2 𝑁2 𝑁4 𝑁4 𝑁2 𝑁2 

FNR 26.13% 21.87% 6.53% 4.98% 8.52% 9.65% 

FPR 2.89% 3.62% 7.24% 10.67% 7.24% 5.43% 

Specificity 97.10% 96.37% 92.75% 89.32% 92.75% 94.56% 

Sensitivity 73.86% 78.82% 93.46% 95.01% 91.47% 90.34% 

 

random-initialized weights, with the last 

decomposition level for 100 epochs. After that, we 

trained for 100 epochs the same RNN, with the 

previous estimated weights, but now with the 

approach of the data reconstructed in one level. This 

process was repeated until the data was completely 

reconstructed. The algorithm used to train the RNN in 

all levels was the RTRL, with a modification proposed 

in [20] to reduce the complexity order to 𝑂(𝑛3). 

The fifth architecture presented is the Self-

Recurrent Wavelet Neural Network (SRWNN).The 

topology of this network is found to be divided into 

four layers (see [22]): the input layer, the wavelon 

layer, the product layer, and finally the output layer. 

The external instances are accepted in the input layer 

and these inputs are then transmitted directly to the 

next layer. In the case of this study, 64 inputs were 

considered, which represent the length of each of the 

training samples for http requests. The first derivative 

of the Gaussian function 𝜓(𝑥) = −𝑥𝑒𝑥𝑝(
−1

2
𝑥2)  was 

chosen to be a mother wavelet. From this mother 

wavelet, we can calculate the output of each wavelet 

unit by making use of the parameters of translation 

and dilation assigned to each external stimulus, that is 

𝜓𝑖𝑗(𝑧𝑖𝑗) = 𝜓((𝑢𝑖𝑗 − 𝑡𝑖𝑗)/𝑑𝑖𝑗)� , with 𝑧𝑖𝑗 =
𝑢𝑖𝑗−𝑡𝑖𝑗

𝑑𝑖𝑗
 

where 𝑢𝑖𝑗  is the net input to the unit, 𝑡𝑖𝑗  is the 

translation factor and 𝑑𝑖𝑗  stands for dilation factor. 

The subscript 𝑖𝑗  describes the 𝑖�th wavelet unit 

corresponding to the 𝑗�th external input. 

Each wavelon unit has a recursive connection to 

itself, which is affected by the synaptic weight, and in 

this way it introduces a memory term which saves 

information pertaining to previous states of the 

network. The wavelon unit outputs are concentrated in 

the product layer. Each one of the units in this layer 

can be considered multidimensional wavelon unit [15] 

and their output is the result of multiplying various 

one dimensional wavelets. Finally, the output layer is 

formed by various linear combinators whose inputs 

are formed by the outputs from the previous layer (the 

product layer) times a weight cost plus the inputs 

values times a weight factor. The training method for 

SRWNN is based on the gradient-descent with 

adaptive learning rates [23]. Further details on this 

architecture can be found in [22]. The best results 

obtained by the SRWNN architecture were with 4 

wavelons per input, or 256 wavelons in total. During 

the training stage the SRWNN reached the error value 

of 0.0589 at epoch number 100 (see Table 2). The 

results obtained by this architecture in terms of false 

positive rate and false negative rate are close to those 

of FRNN but with a lower cost of processing time and 

storage capacity. 

The last architecture presented is the proposed 

Self-Recurrent Wavelet Neural Network with 

Multidimensional Radial Wavelons (SRWNN – 

MRW) described in Section 3. The first derivative of 

the Gaussian function was chosen to be a mother 

wavelet used as activation function in the wavelons 

units. The number of wavelon units used in the 

architecture depends directly on the input domain 

established by the training samples. The initialization 

of the parameters of translation and dilation play a 

crucial part in ensuring that the wavelet functions 

extend over the entire input domain. The number of 

wavelons units in the SRWNN-MRW architecture was 

set to 4. The training method for SRWNN-MRW is 

based on the gradient-descent with adaptive learning 

rates [23]. During the training stage the 

SRWNNMRW reached the error value of 0.0899 at 

epoch number 60. The results obtained by this 

architecture established a superior in the rate of false 

positives compared with the FRNN and SRWNN 

models, having a rate of 5.43%. 

All networks under analysis went through test 

periods in which 30% of the original dataset was used 

to assess their identification, classification and global 
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error performance parameters. At the output layer, a 

competence function was called upon. Identification 

and classification were used to evaluate network 

performance besides speed of convergence, cost, and 

number of neurons. Classification corresponds to the 

event where an input sequence has been accurately 

labeled as an attack (of any sort) or as a normal 

command sequence. This percentage takes into 

account only which of those inputs the network 

provides are correctly labeled in those two main 

categories, and does not take into consideration 

whether the particular command at an instant in time 

was correctly labeled according to its origin out of the 

four possible kinds of attack. Identification, on the 

other hand, concerns itself with the correct placing of 

any input pattern in its correct slot from out of the 

five. It should be evident that the expected percentages 

for identification are lower than those of classification, 

and in practice it was indeed so. In practice, too, it 

may have occurred that while classification was 

correctly assigned, identification itself failed, and 

therefore identification is in fact harder to attain by an 

IDS. 

Table 3 summarizes all neural network performan-

ce parameters after testing and provides two final 

measures of network effectiveness: false positives and 

false negatives rates. True to their names, a false posi-

tive will occur when the network mistakenly classifies 

an HTTP command as an intrusion when it is not, and 

a false negative conversely involves the classification 

of an attack as normal network behavior. In overall 

terms, the WRNN has outperformed all other net-

works in all parameters, reaching a classification per-

centage of over 95% and thus clearly indicating its su-

periority when compared to other architectures for this 

particular application. In terms of convergence speed, 

a model based on a self-recurrent neural network 

SRWNN–MRW needed 60 training periods compared 

to the 81 periods required by the FRNN model, which 

leaves the Elman model in last place with 160. 

However, the computational cost required for the 

totally connected recurrent model is in the order of 

𝑂(𝑛4), when cataloguing the most costly in terms of 

computational resources. That is to say that taking into 

account the indices of classification and identification, 

the self-recurrent model using wavelets SRWNN – 

MRW, with a computational complexity of 𝑂(𝑛2) , 

offers an approximation close to the totally connected 

recurrent model at lesser computational cost. 

The measurements in the rates of false positives 

and false negatives indicate that although the Elman 

model obtained a lower rate of emitted false positives, 

it also recorded the highest rate of false negatives of 

all the models. It is possible to analyze this behavior 

with the statistical indicators of specificity and 

sensitivity [19]. As stated previously, specificity is 

defined as the probability that an inoffensive input 

pattern is catalogued by the IDS as normal network 

traffic. Sensitivity is the probability that the IDS 

classify a damaging input pattern as an attack on the 

system. Once these two probabilities were identified it 

was clear that the Elman model possesses a high 

probability of specificity, around 96%, which explains 

the low rate of false positives. On the other hand, the 

Elman model possesses low sensitivity, 78%, which 

explains the high percentage in its false negative rate. 

In an ideal IDS, the specificity and sensitivity 

indicators should be high, although practical 

applications never obtain 100%, which does result in 

the emission of false positives and false negatives 

[19]. Taking into account the above, the totally 

 

 

Figure 3. ROC Graph 
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connected recurrent model (FRNN) and the self-

recurrent model using wavelets (SRWNN) achieve 

results with more equality between false negatives and 

false positives, which are 7.24% and 6.53% for the 

first, and 7.24% and 8.52% for the second model. To 

reiterate, the rates obtained by the proposed model 

(SRWNN-MRW) were 5.43% and 9.65%, establishing 

a superior in the rate of false positives than that of 

both architectures mentioned above. 

The ROC (Receiver Operating Characteristics) 

graph in Fig. 3 shows that the application of neural 

networks to the models of intrusion detection 

performs in a significant way, due to the fact that the 

three models considered (FRNN, SRWNN, 

SRWNNMRW) are located in the upper triangular 

region. This permits them to establish their 

development at a distance from the random behavior 

found at the line 𝑦 = 𝑥 [19]. With regard to cost, the 

graph shows that while the Elman model is found 

more in the West part of the graph, the remaining 

models considered are located more to the east, 

indicating greater emission levels of false positives. If 

the axis of the true positives is considered, it is clear 

that the totally connected recurrent model (FRNN) and 

the self-recurrent model using wavelets (WRNN, 

SRWNN and SRWNN–MRW) outperform the Elman 

and FFNN models considerably, establishing their 

advantages at the moment of detection of harmful 

patterns. The Elman model states that it is more 

conservative than the other models considered due to 

the fact that it carries out a positive classification of 

the patterns on the basis of solid evidence and as a 

result possesses a low rate of false positives, while at 

the same time having the disadvantage that it has a 

low rate of true positives. In contrast, the totally 

connected recurrent model (FRNN) and the self-

recurrent models using wavelets (SRWNN and 

SRWNN-MRW) may be called liberal due to the fact 

that they carry out a positive classification on the basis 

of slighter evidence, resulting in a superior classi-

fication of attacks at the cost of obtaining a higher rate 

of false positives. As can be seen in the results 

outlined, the FRNN model and the SRWNN-MRW 

obtained the second best results in terms of the 

indicators of classification and identification, these 

being 93.15%, 84.23%, and 92.19%, 84.23%, respecti-

vely. These measurements identify these models as the 

most feasible candidates in the implementation of the 

intrusion detection system that may comply with the 

security levels required in a communication network. 

The self-recurrent model using wavelets (SRWNN-

MRW) has been presented in this paper in order to 

observe its development as applied to intrusion 

detections systems. 

5. Conclusions and Future Work  

In this paper we have proposed a new model for 

the detection and classification of intrusions based on 

a self-recurrent wavelet neural network with 

multidimensional radial wavelons (SRWNN-MRW). 

This model is suited to work online by analyzing 

nonlinear patterns in real time to self-adjust to changes 

in its input environment. In terms of convergence 

speed, the model based on SRWNN–MRW needed 60 

training periods compared to the 81 periods required 

by the FRNN model, which leaves the Elman model in 

last place with 160. However, the computational cost 

required for the totally FRNN model is in the order of 

𝑂(𝑛4) , indicating the most costly in terms of 

computational resources. This means that taking into 

account the indexes of classification and 

identification, the SRWNN-MRW model, with a 

computational complexity of 𝑂(𝑛2) , offers an 

approximation close to the totally connected recurrent 

model at lesser computational cost. Future work will 

focus on improving the results obtained through the 

use of other recurrent schemes based on wavelets, for 

example, having a fully recurrent network with 

wavelons or using instead multidimensional radial 

wavelons. 
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